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Introduction

Despite significant improvements in the field of control, proportional-integral-derivative 
(PID) type controllers still preserve their popularity and importance in scientific and indus-
trial applications. Their simple design procedure, as well as their robustness and ability to 
control many different types of linear and nonlinear systems efficiently, can be considered 
as the main reasons for this. In the literature on this area of research, it can be seen that 
PID controllers are still widely preferred for the control of many different types of systems 
in the last decade.

An improved PID switching control strategy was proposed for the closed-loop control sys-
tem of an artificial pancreas to cope with Type 1 Diabetes in [1]. A deduced model based 
self-tuning PID control strategy was proposed for implementing a motion control system 
that stabilizes the two-wheeled vehicle and follows the desired motion commands in [2]. 
Velocity and orientation tracking control of a nonholonomic mobile robot was provided via 
an adaptive controller of nonlinear PID-based neural networks in [3]. A direct current (DC) 
motor speed control was provided via a particle swarm optimization supported by an opti-
mal PID controller in [4]. Adaptive fuzzy PID controllers were utilized for the speed control of 
a DC motor in [5-6]. The overall performance of the electro-hydraulic position servo system 
of a servo hydraulic press was improved by means of a fuzzy PID control method while a hy-
brid fuzzy-PID controller was utilized to provide the position control of a hydraulic actuation 
system in [7-8]. A PID-type fuzzy adaptive controller was utilized for the control of an expert 
heating, ventiliating and air-conditioning system having two different zones with variable 
flow-rate in [9]. A real-time particle-swarm-optimization-based PID controlller was designed 
for the levitated balancing and propulsive positioning of a magnetic-levitation transporta-
tion system in [10]. A PID controller was utilized for position and orientation control, as well 
as for the attitude and position trackings of unmanned quadrotors in [11, 12]. In addition 
to these, a gain-scheduled PID control based active fault-tolerant technique was developed 
and applied to a similar vehicle in [13]. PID and linear quadratic regulator based optimal 
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control techniques were proposed to control the nonlinear in-
verted pendulum dynamical system in [14, 15]. A combination 
of an industrial linear PID controller and a neural compensa-
tor was used to minimize steady-state error with respect to 
uncertainties in robot control in [16]. An interval type-2 fuzzy 
PID controller was utilized for the trajectory tracking task of 
a 5 degree-of-freedom (DOF) redundant robot manipulator 
while the global finite-time regulation of robotic manipula-
tors was provided via a nonlinear PID controller in [17, 18]. PID 
control was proposed as a solution for the feedback control 
problem of fully-constrained cable driven parallel manipula-
tors in [19]. A novel fuzzy-PID approach based on feedforward 
control was utilized to regulate the oxygen excess ratio of the 
proton exchange membrane fuel cell system, while another 
feedforward PID control system was proposed to enhance the 
practical positioning performance of a piezo-actuated flexi-
ble 2-DOF micromanipulator integrated with a pair of mod-
ified differential lever displacement amplifiers in [20, 21]. An 
adaptive robust hybrid PID and sliding control optimized by 
multi-objective genetic algorithm optimization was present-
ed to control a biped robot walking in the lateral plane on 
a slope in [22]. The aim was to control the blade pitch angle 
of a wind turbine at different wind speeds and to hold the 
output power stable at a specific set point by utilizing fuzzy 
logic PID controller in [23]. A new control method of combin-
ing a novel positive temperature coefficient material with PID 
control algorithm was proposed in [24]. A PID-based active 

vibration control system of an aluminum plate was designed, 
developed and experimentally verified in [25]. A new control 
design for an autonomous underwater vehicle was presented 
in [26]. In order to do this the researchers utilized a nonlinear 
auto-regressive moving-average exogeneous model of the 
vehicle and the PID controller. 

As can be seen from the given examples PID and PID-based 
controllers can be used to control many different types of sys-
tems in a wide variety of areas, ranging from daily life to bio-
medical applications, from military applications to transporta-
tion. At this point it should also be noted that the mentioned 
studies are only a selection of the numerous PID control studies 
available in the literature. Although, the PID controller has been 
widely used for the control of many different types of systems, 
optimum tuning of the PID parameters (i.e., proportional, inte-
gral and derivative gains), which can be considered as the main 
issue of the PID control process, still remains a problem. PID 
parameters that are not tuned properly negatively affect the 
control performance. In some cases the stability of the system 
may be negatively affected by the tuning. This problem can 
be observed in most of the aforementioned studies and other 
PID control applications. As a result of this, proposing tuning 
methods for PID parameters has become a popular topic in the 
research area of the control. Detailed surveys on this topic can 
be found in [27, 28]. This topic has also preserved its popularity 
in the last decade. A new robust PID tuning method for the op-

Figure 1. ANN model based PID tuning and control scheme
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timal closed-loop performance with specified gain and phase 
margins based on nonlinear optimization was developed in 
[29]. A stochastic, multi-parameters, divergence optimization 
method for the auto-tuning of PID controllers according to a 
fractional-order reference method was presented in [30]. Gain 
and phase margin specifications of the inner and outer loop 
based internal model control plus PID tuning procedure was 
proposed in [31]. A new model reduction method and an ex-
plicit PID tuning rule for the purpose of PID auto-tuning based 
on a fractional order plus time delay model are presented in 
[32]. A Newmark method based PID control rule was proposed 
for the active vibration control of multi-DOF flexible systems 
in [33]. One could easily add to these examples. However, the 
aforementioned studies are enough to clarify these issues. PID 
control can be considered to be a feasible solution for the con-
trol of nonlinear systems, and combining the PID control with 
an appropriate gain tuning method increases this feasibility.

One of the most suitable approaches was proposed to cope 
with these issues [34]. In the mentioned study, a PID based con-
trol scheme that can be used for the control of single-input-sin-
gle-output nonlinear systems was proposed. In this scheme, 
control was provided via a digital PID controller combined with 
a nonlinear auto-regressive exogeneous (NARX) system model 
of the controlled system. Using this structure PID gains were ad-
justed online during the control process by utilizing the NARX 
model of the system. The control of the system was provided 
by utilizing a correction term that was computed by using the 
NARX model during the control gain adjusting process. Accord-
ing to the given structure when the gains reach their optimum 
values, the NARX model is deactived and the control process 
is continued with the classical PID approach. The structure of 
the proposed scheme provides an opportunity for the control-
ler to adapt the changes in the system and/or enviromental 
factors during the control process. The proposed method is a 
suitable method when considering its ability to control non-
linear systems. However, most of the nonlinear systems have 
more than one input and output. As a result of this they are 
modeled as multi-input-multi-output (MIMO) systems. It is not 
possible to apply the above-mentioned method to these types 
of system with its current structure. This situation can be seen 
as the possible weakness of the proposed method. Moreover, 
performance of the proposed method was not experimental-
ly verified in [34]. The main purpose of this study is to elimi-
nate all of the above-mentioned deficiencies and to make the 
proposed method usable for a broader class of nonlinear sys-
tems. The system is brought into the appropriate structure for 
MIMO nonlinear systems. Since it is necessary to make a lot of 
changes to the structure of the system it is a challenging task. 
Performance of the newly proposed method is experimentally 
verified by utilizing from it to provide the joint space control of 
a rigid link 2-DOF robot manipulator. This experimental verifi-
cation can be seen as another contribution of this study. 

The rest of the paper is organized as follows. In section 2, the 
structure of the proposed artificial neural network (ANN) mod-

el based PID tuning and control scheme is presented and ex-
plained in a detailed manner. In section 3, the architecture and 
the learning algorithm of the utilized ANN is summarized. In 
section 4, the performance of the proposed method is demon-
strated via experimental studies Finally, conclusions are given 
in section 5.

Artificial Neural Network (ANN) Model Based PID Tuning 
and Control Method

The structure of the proposed scheme is shown in Figure 1. As 
mentioned in the previous section, this structure is the rear-
ranged version of the structure given in accordance with the 
structures of MIMO systems [34]. Jacobian calculation block 
used for computing the correction term of the control signal 
and another Jacobian calculation block used for PID tuning are 
rearranged according to MIMO systems having m inputs and 
m outputs. Moreover, the structure of the PID controller, ANN 
model and Line Search blocks were made available for MIMO 
systems. As a result of this, PID parameters denoted by Kp, KI, 
and KD, became m × m diagonal matrices. In this structure de-
sired trajectory, outputs of the ANN model, the plant and the 
error are denoted by yd, ŷ, y, and en ∈  respectively. The time 
index is represented by  while the control input and its 
corrections are denoted by, Un+1, δun+1µ , respectively. 
As a result of these structure and dimension changes, math-
ematical analysis and design must be completely rearranged. 

The control input is updated according to the update rule of 
the digital PID controller given as

      (1)

Tuning the PID parameters starting from zero to their proper 
values is the main purpose of the proposed structure. The K – 
step ahead prediction of the plant’s behavior is employed for 
this purpose. This prediction is produced by applying the con-
trol input given in (1) to the ANN model of the plant K times. 
It is attempted to minimize the following objective function 
for each output of the system by updating the PID parameters 
based on these predictions

      (2)



221

Electrica 2018; 18(2): 218-226
Bıdıklı B. A Self-Tuning PID Control Method for MIMO Nonlinear Systems

where the subscript i = 1, ..., m and the diagonal matrix whose 
diagonal elements are equal to penalty terms and the pre-
diction horizon are denoted by  and 
, respectively. The Levenberg-Marquardt (LM) rule is utilized 
as the minimization algorithm in the proposed structure and 
this rule realizes the minimization according to the following 
equation

 
(3)

where  denotes the standard identity ma-
trix, while the parameter that provides the transition between 
the steepest-descent and the Gauss-Newton algorithms is 
denoted by . The Jacobian matrix represented by  

 is defined as

      (4)

 

and  that contains the prediction errors and 
the input related optimization terms is defined as

      (5)

 

The aim is to iteratively provide optimum tuning of the PID 
parameters during the control process according to the given 
structure and algorithms. In addition, obtaining an efficient 
control performance during the transient-state, increasing ro-
bustness against possible disturbances and adaptivity of the 
proposed method are other aims. All of these situations are 
realized by utilizing correction term. This term compensates 
the deficiency of the control input when it cannot be provided 
by the controller, otherwise it disables. Mathematically, it can 
be said that the corrector block tries to minimize the elements 
of the objective functions’ vector denoted by Ji with respect 
to    (i.e., correction term of the  control input that 

specifically affects the  output) based on the second-order 
Taylor approximation of this element given as

      (6)

Values of  terms that minimize the objective function 
can be found by taking the derivative of (6) with respect to this 
term and equalizing the result to zero as

      (7)

The term in (7), corresponds to the Newton direction and 
this provides a quadratic convergence to the local minimum 
when the Hessian terms in the Taylor expansion are positive 
and the higher order terms are negligible [35]. The following 

 matrix proposed by a Jacobian approxima-
tion is utilized to avoid the time consuming calculation of sec-
ond-order derivatives 

      (8)

 
The gradient term can exactly be represented and the Hessian 
term can approximately be represented via the matrix given in 
(8) as

  (9)

     (10)

where the operator  represents the  order derivative of a 
vector or a matrix with respect to the variable . The vector of 
the correction terms can be computed as
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   (11)

where (7) and (9) were utilized. From (10) it is clear that we only 
need the first order derivatives. As demonstrated in Figure 1, it 
is possible to express the Jacobian matrix (4) as a multiplication 
of two matrices via the chain rule as , the matrix de-
noted by  being one of these matrices, with the other matrix 
denoted by  being expressed in terms of errors as

      (12)

 

So it is clearly seen that both of these matrices have crucial 
roles in the proposed structure since they are utilized to com-
pute the Jacobian matrix that is used to tune the PID param-
eters. Moreover,  has an another critical role. It preserves 
the efficiency of the control by providing the correction terms. 
The minimization of the objective function can be realized via 
the the vector of optimum step lengths  computed 
in the last block namely as line search. Since every term ex-
cept the step length was determined before this point, the 
general problem transforms into multi-dimensional optimi-
zation problem according to this step length. It can be solved 
via any method whose structure is feasible for this purpose. 
Gauss-Newton algorithm is preferred to cope with this issue in 
this study [36]. Additionaly, ANN model of the MIMO nonlinear 
system is utilized for the calculation of the Jacobian matrix. A 
detailed attempt at explaining the modeling procedure is giv-
en in the following section.

Artificial Neural Network (ANN) Modeling, Prediction and 
Jacobian Calculation

From the given structure it is clear that its performance is di-
rectly related to the representation capability of the ANN mod-
el of the plant. Jacobian matrix in (4) is based on the predictions 
of the ANN model and this matrix is utilized both for tuning 
of the PID parameters and for computation of the correction 
terms. It can easily be considered that the ANN model is the 
most important part of the proposed method. In this section, 
ANN modeling, prediction and Jacobian calculation used in 
this study are examined in detail.

The mathematical expression of an ANN model of a MIMO non-
linear system is given as

      (13)

 

where  represents the  value of the  in-
put while the  value of the  output is represented by 

. The number of the past values of inputs of the ANN 
model are denoted by  and , respectively. The un-
certain function denoted by  can be obtained by applying 
the learning data to ANN according to the relation mathemat-
ically expressed as

      (14)

 

where  represents the input 
data point from the input space while an appropriate output 
value is denoted by  . Obtaining a 
model that represents the relation between input and output 
data points is the main aim. Learning data group T is used to 
obtain the approximate behavior of the system.

Single layer, feedforward, MIMO ANN structure used in this 
study is given in Figure 2. 

In this structure the numerical value of  is given as 
 while weights from  input to  

neuron cell and from  neuron cell to  output are denot-
ed by  and , respectively. Bias values from neuron 
cell to hidden layer and from output layer to  output are de-
noted by  and , respectively. These values are adjustable 
parameters of the ANN updated in every single iteration until 
their optimum values are obtained. 

Figure 2. ANN Structure
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The input-output relationship of an ANN model is expressed as

      (15)

 

where  represents the sigmoidal activation function 
expressed as . Number of neurons in the hidden 
layer are denoted by  and  is computed as

      (16)

The following objective function is minimized by updating the 
adjustable parameters in every single iteration

      (17)
 

The LM rule is utilized in every iteration to optimize the adjust-
able parameters as 

      (18)
 

where  represents the vector that contains 
learning errors and defined as

      (19)
 

 is a vector of weights and biases 

      (20)

and  is a Jacobian matrix whose structure is 
given as

      (21)

 

The ANN model can be obtained by utilizing the given equa-
tions and realizing the necessary number of iterations until the 
value of the objective function in (15) reaches the desired level. 
The future behavior of the plant can be predicted by utilizing 
(14), after the ANN model has been obtained.

Algorithm of the ANN Model-Based PID Tuning and 
Control

After the necessary arrangements are realized on the structure 
and mathematical design, the algorithm given in [34] can be 
used directly. The steps of the proposed algorithm can be item-
ized as follows:

Step 1: The minimum and maximum input values umin and umax 
that can be applied to the plant are determined. Then the mod-
eling data is collected from the system by applying random in-
puts from the interval given as [umin, umax] and measuring the 
outputs of the plant.

Step 2: A set of training data is formed after the nu and ny values 
of the ANN model (13) are determined. Then, the set of input 
and output values are normalized to the interval .

Step 3: From the collected N data from the plant, data pairs are 
randomly selected as the learning data for the ANN model, the 
remaining data are used as test and validation data pairs.

Step 4: PID tuning and control are realized by applying the fol-
lowing algorithm at each iteration:

• The corresponding control input  is computed 
according to the measured error .

• The K-step future behavior of the system is predicted by 
utilizing the ANN model of the plant. To realize this pre-
diction the K-step input sequence  is 
applied to the ANN model.

• The Jacobian matrix  is calculated by utilizing ANN 
model and then the correction term is determined by 

Figure 3. Phantom OMNI Haptic Device
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utilizing both the ANN model and the calculated Jaco-
bian matrix.

• The vector of optimum step sizes of the correction 
terms µ is founded via the Gauss-Newton algorithm.

• Summation of the control input and the correction term 
(i.e., ) is applied to the system.

• The general Jacobian matrix (4) is calculated and the PID 
parameters are updated utilizing (3).

Experimental Results

Phantom OMNI haptic device shown in Figure 3 was used as 
an experimental setup. A 2-DOF rigid link robot manipulator 
structure was obtained by mechanically stopping the first joint 
whose angle was denoted by . Joint space control ap-
plication of the remaining links, whose angles were denoted by 

 and , respectively, was realized for the performance 
demonstration of the proposed method. 

At this point it should be stated that each of the previously men-
tioned parameters has a crucial role for the proposed method and 
all of them should be selected appropriately. However, proposing 
different suitable methods for all of the selections is a hard and 
time consuming task. Moreover, it increases the computational 
complexity. Some of these parameters were fixed to some con-
stant values by considering these issues. The prediction horizon 
and the matrix of weigthing factors were fixed to K = 10 and λ = 
0.01I2. Since, it was observed during the experiments that 5-step 

Figure 4. Selection of Number of Hidden Neurons

Figure 5. Control Gains for u1(t)

Figure 6. Control Gains for u2(t)

Figure 7. Actual (line) and Reference (dashed) Trajectories

Figure 8. Link Tracking Errors

Figure 9. Control Inputs
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previous values of the inputs and the outputs provide the best 
validation error, the number of the past values of the inputs and 
the outputs were selected as nu and ny = 5, respectively. 

The number of hidden neurons directly affects the modeling 
performance of the ANN. As a result of this, it can directly be 
related to the performance of the proposed method. Both of 
the selections that are less or more than the optimum value 
decrease the representation capability of the ANN model. The 
number of hidden neurons were selected to reduce the norm 
of the matrix containing the validation errors. To reach this pur-
pose, ANN modeling was realized 1000 times for each number 
of neurons and the means of the norm values were marked on 
Figure 4. As it can be seen from Figure 4, any significant change 
was not observed in this value after 23 neurons. As a result of 
this, the optimum number of hidden neurons was selected as 
23. At this point it should be stated that all of this process was 
applied to 1000 learning, 500 test and 500 validation data that 
were randomly selected from the collected input output data 
pairs from both links of the experimental system.

The control objective is to make  and  follow a si-
nusoidal desired trajectory chosen as

      (22)
 

The adjustment process of the control gains can be seen from 
Figure 5 and Figure 6 for  and , respectively. From 
these figures it can be seen that the control gains were tuned 
to their optimum values approximately in 4 seconds. Optimum 
values of control gains were obtained as Kp = diag ([0.005, 
0.02]), Kı = diag ([0.008, 0.013]) and KD = diag (0.025, 0.04). 

The desired and the actual trajectories are shown together in 
Figure 7, while the tracking errors and the control inputs are 
given in Figure 8 and Figure 9, respectively. From Figure 7 and 
Figure 8, it can be seen that the control objective was met.

Conclusion

In this study, a self-tuning PID control scheme was proposed 
for the control of MIMO nonlinear systems. A number of op-
timization methods were used in conjuction with the ANN 
model of the system to ensure the self-tuning structure. First, 
the ANN model of the system was obtained via input and 
output data pairs collected from the system. These data pairs 
were randomly classified as learning, test and validation data 
and they were used to train a single layer, feedforward MIMO 
ANN structure. Then, the obtained ANN model was utilized for 
both PID tuning and control purposes. A vector of correction 
term computed via the Gauss-Newton algorithm was used to 
provide control until the PID parameters reach their optimum 
values. As a result of this, the control objective was met during 
the PID tuning process. Once the PID parameters reached their 
optimum values, the correction term was disabled and the pro-

cess was continued with the classical PID control. Performance 
of the proposed method was demonstrated via a joint-space 
control application of a rigid link 2-DOF robot manipulator. In 
the experiments, it was observed that PID parameters were 
tuned to their optimum values in 4 seconds. However, from 
the actual and desired trajectories and the link tracking errors 
it was also seen that the control objective was met before this 
process and it continued after the optimum parameter values 
were provided. From these results, it can be said that all of the 
previously mentioned purposes were reached in the experi-
mental studies.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The authors have no conflicts of interest to de-
clare.

Financial Disclosure: The authors declared that this study has re-
ceived no financial support.

References

1. T. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, D. E. Seborg, “An im-
proved PID switching control strategy for Type 1 Diabetes”, IEEE 
Trans on Biomed Eng, vol. 55, no. 3, pp. 857-865, 2008.

2. T. J. Ren, T. C. Chen and C. J. Chen, “Motion control for a two-
wheeled vehicle using a self-tuning PID controller”, Control Engi-
neering Practice, vol. 16, no. 3, pp. 365-375, 2008.

3. J. Ye, “Adaptive control of nonlinear PID-based analog neural net-
works for a nonholonomic mobile robot”, Neurocomputing, vol. 71, 
no. 7-9, pp. 1561-1565, 2008.

4. B. Allaoua, B. Gasbaoui, B. Mebarki, “Setting up PID DC motor 
speed control alteration parameters using particle swarm optimi-
zation strategy”, Leonaro Electronic J. of Practices and Technologies, 
no. 14, pp. 19-32, 2009.

5. R. Kandiban, R. Arulmozhiyal, “Design of adaptive fuzzy PID con-
troller for speed control of BLDC motor”, International Journal of 
Soft Computing and Engineering, vol. 2, no. 1, pp. 386-391, 2012.

6. U. K. Bansal and R. Narvey, “Speed control of DC motor using fuzzy 
PID controller”, Advance in Electronic and Electric Engineering, 
vol. 3, no. 9, pp. 1209-1220, 2013.

7. J. M. Zheng, S. Zhao, S. Wei, “Application of self-tuning fuzzy PID 
controller for a SRM direct drive volume control hydraulic press”, 
Control Engineering Practice, vol. 17, no. 12, pp. 1398-1404, 2009.

8. Ş. Çetin, A. V. Akkaya, “Simulation and hybrid fuzzy-PID control for 
positioning of a hydraulic system”, Nonlinear Dynamics, vol. 61, no. 
3, pp. 465-476, 2010.

9. S. Soyguder, M. Karakose, H. Alli, “Design and simulation of 
self-tuning PID-type fuzzy adaptive control for an expert HVAC 
system”, Expert Systems with Applications, vol. 36, no. 3, pp. 4566-
4573, 2009.

10. R. Wai, J. Lee, K. Chuang, “Real-time PID control strategy for mag-
lev transportation system via particle swarm optimization”, IEEE 
Transactions on Industrial Electronics, vol. 58, no. 2, pp. 629-646, 
2011.

11. J. Li, Y. Li, “Dynamic analysis and PID control for a quadrotor”, IEEE 
International Conference on Mechatronics and Automation Chi-
na, 2011.

12. I. Sadeghzadeh, A. Mehta, A. Chamseddine, Y. Zhang, “Active fault 
tolerant control of a quadrotor UAV based on gainscheduled PID 



226

Electrica 2018; 18(2): 218-226
Bıdıklı B. A Self-Tuning PID Control Method for MIMO Nonlinear Systems

control”, IEEE Canadian Conference on Electrical and Computer 
Engineering, Montreal, QC, Camada, 2012.

13. F. Goodarzi, D. Lee, T. Lee, “Geometric nonlinear PID control of a 
quadrotor UAV on SE(3),” European Control Conference, Zurich, 
Switzerland, 2013.

14. L. B. Prasad, B. Tyagi, H. O. Gupta, “Modelling and simulation for 
optimal control of nonlinear inverted pendulum dynamical sys-
tem using PID controller and LQR”, Asia Modelling Symposium, 
Bali, Indonesia, 2012.

15. L. B. Prasad, B. Tyagi, H. O. Gupta, “Optimal control of nonlinear in-
verted pendulum system using PID controller and LQR: Performance 
analysis without and with disturbance input”, International Journal of 
Automation and Computing, vol. 11, no. 6, pp. 661-670 2014.

16. W. Yu, J. Rosen, “Neural PID control of robot manipulators with ap-
plication to an upper limb exoskeleton”, IEEE Trans Cybern, vol. 43, 
no. 2, pp. 673-684 2013.

17. A. Kumar, V. Kumar, “Evolving and interval type-2 fuzzy PID con-
troller for the redundant robotic manipulator”, Expert Systems with 
Applications, vol. 73, pp. 161-177, 2017.

18. Y. Su, C. Zheng, “PID control for global finite-time regulation of ro-
botic manipulators,” International Journal of Systems Science, vol. 
48, no. 3, pp. 547-558, 2017.

19. M. A. Khosravi, H. D. Taghirad, “Robust PID control of fully-con-
strained cable driven parallel robots”, Mechatronics, vol. 24, no. 2, 
pp. 87-97, 2014.

20. K. Ou, Y. Wang, Z. Li, Y. Shen, D. Xuan, “Feedforward fuzzy-PID con-
trol for air flow regulation of PEM fuel cell system,” International 
Journal of Hydrogen Energy, vol. 40, no. 35, pp. 11686-11695, 2015.

21. H. Tang, Y. Li, “Feedforward nonlinear PID control of a novel micro-
manipulator using Presiach hysteresis compensator,” Robotics and 
Computer-Integrated Manufacturing, vol. 34, pp. 124-132, 2015.

22. M. Taherkhorsandi, M. J. Mahmoodabadi, M. Talebipour, K. K. Cas-
tillo-Villar, “Pareto design of an adaptive robust hybrid of PID and 
sliding control for a biped robot via genetic algorithm optimiza-
tion”, Nonlinear Dynamics, vol. 79, pp. 251-263, 2015.

23. Z. Civelek, M. Lüy, E. Çam, N. Barışçı, “Control of pitch angle of wind 
turbine by fuzzy pid controller”, Intelligent Automation & Soft 
Computing, vol. 22, no. 3, pp. 463-471, 2016.

24. J. Song, W. Cheng, Z. Xu, S. Yuan, M. Liu, “Study on PID temperature 
control performance of a novel PTC material with room tempera-

ture Curie point”, International Journal of Heat and Mass Transfer, 
vol. 95, pp. 1038-1046, 2016.

25. A. M. Simonovic, N. N. Jovanovic, N. S. Lukic, N. D. Zoric, S. N. 
Stupar, S. S. Ilic, “Experimental studies on active vibration control 
of smart plate using a modified PID controller with optimal orien-
tation of piezoelectric actuator,” Journal of Vibration and Control, 
vol. 22, no. 1, pp. 2619-2631, 2016.

26. R. Rout, B. Subudhi, “Inverse optimal self-tuning PID control de-
sign for an autonomous underwater vehicle”, International Journal 
of Systems Science, vol. 48, no. 2, pp. 367-375, 2017.

27. K. J. Aström, T. Hagglund, C. C. Hang, W. K. Ho, “Automatic tuning 
and adaptation for PID controllers - a survey,” Control Engineering 
Practice, vol. 1, no. 4, pp. 699-714, 1993.

28. P. Cominos, N. Munro, “PID controllers: recent tuning methods and 
design to specification,” Control Theory and Applications, vol. 149, 
no. 1, pp. 46-53, 2002.

29. K. Li, “PID tuning for optimal closed-loop performance with speci-
fied gain and phase margins”, IEEE Transactions on Control, Systems 
Technology, vol. 21, no. 3, pp. 1024-1030, 2013.

30. B. B. Alagoz, A. Ates, C. Yeroglu, “Auto-tuning of PID controller ac-
cording to fractional-order reference model approximation for DC 
rotor control”, Mechatronics, vol. 23, pp. 789-797, 2013.

31. A. T. Azar, F. E. Serrano, “Robust IMC-PID tuning for cascade control 
systems with gain and phase margin specifications”, Neural Com-
puting and Applications, vol. 25, pp. 983-995, 2014.

32. C. Y. Jin, H. R. Kyung, S. W. Sung, J. Lee, I. B. Lee, “PID auto-tuning 
using new model reduction method and explicit PID tuning rule 
for a fractional order plus time delay model,” Journal of Process 
Control, vol. 24, pp. 113-128, 2014.

33. Ş. Yavuz, L. Malgaca, H. Karagülle, “Analysis of active vibration 
control of multi-degree-of-freedom flexible systems by Newmark 
method”, Simulation, Modelling and Practice Theory, vol. 69, pp. 
136-148, 2016.

34. S. Iplikci, “A comparative study on a novel model-based PID tuning 
and control mechanism for nonlinear systems”, International Journal 
of Robust and Nonlinear Control, vol. 20, no. 13, pp. 1483-1501, 2010.

35. J. Nocedal, S. J. Wright, Numerical Optimization, Springer: New 
York, 1999.

36. P. Venkatamaran, Applied Optimization with MATLAB Program-
ming, Wiley-Interscience: New York, 2002.

Barış Bıdıklı was born in İzmir, Turkey on September 14th, 1989. He received his BSc, MSc and PhD degrees in 
Electrical & Electronics Engineering from Pamukkale University, Denizli, Turkey in 2011, in Electrical & Electronics 
Engineering from İzmir Institute of Technology, İzmir, Turkey in 2013 and 2016, respectively. He is currently an 
Assist. Prof. Dr. at the department of Mechatronics Engineering, Faculty of Engineering and Architecture, İzmir 
Katip Çelebi University, İzmir, Turkey. His research interests include observer design, adaptive and robust control 
of uncertain nonlinear dynamical systems, partial state feedback and output feedback control techniques, non-
linear control techniques for mechatronic systems and dynamic simulations of mechatronic systems.


