q - Harmonic mappings for which analytic part is q - convex functions of complex order

Asena Çetinkaya ${ }^{*} \dagger$ and Yaşar Polatoğlu ${ }^{\ddagger}$

Abstract

We introduce a new class of harmonic function f, that is subclass of planar harmonic mapping associated with q - difference operator. Let h and g are analytic functions in the open unit disc $\mathbb{D}=\{z:|z|<1\}$. If $f=h+\bar{g}$ is the solution of the non-linear partial differential equation $w_{q}(z)=\frac{D_{q} g(z)}{D_{q} h(z)}=\frac{\bar{f}_{\bar{z}}}{f_{z}}$ with $\left|w_{q}(z)\right|<1, w_{q}(z) \prec b_{1} \frac{1+z}{1-q z}$ and h is $q-$ convex function of complex order, then the class of such functions are called q - harmonic functions for which analytic part is q - convex functions of complex order denoted by $\mathcal{S}_{\mathcal{H}}^{q}(\mathrm{~b})$. Obviously that the class $\mathcal{S}_{\mathcal{H e}_{q}(b)}$ is the subclass of $\mathcal{S}_{\mathcal{H}}$. In this paper, we investigate properties of the class $\mathcal{S}_{\mathcal{H e}_{q}(b)}$ by using subordination techniques.

Keywords: $\quad q$ - difference operator, q - harmonic mapping, q - convex function of complex order.

Mathematics Subject Classification (2010): 30C45

Received : 21.03.2017 Accepted : 31.05.2017 Doi: 10.15672/HJMS.2017.480

[^0]
1. Introduction

A planar harmonic mapping in the open unit disc \mathbb{D} is a complex valued harmonic function f, which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is a simply connected domain, the mapping f has a canonical decomposition $f=h+\bar{g}$, where h and g are analytic in \mathbb{D} and have the following power series expansions

$$
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

where $a_{n}, b_{n} \in \mathbb{C}, n=0,1,2,3, \cdots$. As usual, we call h the analytic part of f and g the co-analytic part of f, respectively. An elegant and complete treatment theory of the harmonic mapping is given in Duren's monograph [3]. Lewy [11] proved in 1936 that the harmonic mapping f is locally univalent in \mathbb{D} if and only if its Jacobian $J_{f}=$ $\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$ is different from zero in \mathbb{D}. In view of this result, locally univalent harmonic mappings in the open unit disc are either sense-preserving if $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ or sense-reversing if $\left|g^{\prime}(z)\right|>\left|h^{\prime}(z)\right|$ in \mathbb{D}. Throughout this paper, we will restrict ourselves to the study of sense-preserving harmonic mappings. We also note that $f=h+\bar{g}$ is sense-preserving in \mathbb{D} if and only if h^{\prime} does not vanish in \mathbb{D} and the second dilatation $w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$ has the property $|w(z)|<1$ for all $z \in \mathbb{D}$. Therefore the class of all sensepreserving harmonic mappings in \mathbb{D} with $a_{0}=b_{0}=0$ and $a_{1}=1$ will be denoted by $\mathcal{S}_{\mathscr{H}}$. Thus $\mathcal{S}_{\mathcal{H}}$ contains standard class \mathcal{S} of analytic univalent functions. The family of all mappings $f \in \mathcal{S}_{\mathcal{H}}$ with the additional property that $g^{\prime}(0)=0$, i.e., $b_{1}=0$ are denoted by $\mathcal{S}_{\mathcal{H}}^{0}$. Hence it is clear that $\mathcal{S} \subset \mathcal{S}_{\mathcal{H}}^{0} \subset \mathcal{S}_{\mathcal{H}}$.

In 1908 and 1910 Jackson [8, 9] initiated a study of q-difference operator by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} \quad \text { for } \quad z \in B \backslash\{0\} \tag{1.1}
\end{equation*}
$$

where B is a subset of complex plane \mathbb{C}, called q - geometric set if $q z \in B$, whenever $z \in B$. Note that if a subset B of \mathbb{C} is $q-$ geometric, then it contains all geometric sequences $\left\{z q^{n}\right\}_{0}^{\infty}, z q \in B$. Obviously, $D_{q} f(z) \rightarrow f^{\prime}(z)$ as $q \rightarrow 1^{-}$. The q - difference operator (1.1) is sometimes called Jackson q - difference operator. Note that such an operator plays an important role in the theory of hypergeometric series and quantum physics (see for instance $[1,4,5,10]$).

Also, note that $D_{q} f(0) \rightarrow f^{\prime}(0)$ as $q \rightarrow 1^{-}$and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. In fact, $q-$ calculus is ordinary classical calculus without the notion of limits. Recent interest in $q-$ calculus is because of its applications in various branches of mathematics and physics. For definition and properties of q - difference operator and q - calculus, one may refer to [1, 4, 5, 10].

Under the hypothesis of the definition of q - difference operator, then we have the following rules:
(1) For a function $f(z)=z^{n}$, we observe that

$$
D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1} .
$$

Therefore we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty} a_{n} \frac{1-q^{n}}{1-q} z^{n-1} .
$$

(2) If functions f and g are defined on a q - geometric set $B \subset \mathbb{C}$ such that $q-$ derivatives of f and g exist for all $z \in B$, then
(i) $D_{q}(a f(z) \pm b g(z))=a D_{q} f(z) \pm b D_{q} g(z)$ where a and b are real or complex constants.
(ii) $D_{q}(f(z) \cdot g(z))=g(z) D_{q} f(z)+f(q z) D_{q} g(z)$.
(iii) $D_{q}\left(\frac{f(z)}{g(z)}\right)=\frac{g(q z) D_{q} f(z)-f(q z) D_{q} g(z)}{g(z) g(q z)}, \quad g(z) g(q z) \neq 0$.
(iv) As a right inverse, Jackson introduced q - integral

$$
\int_{0}^{z} f(t) d_{q} t=z(1-q) \sum_{n=0}^{\infty} q^{n} f\left(z q^{n}\right)
$$

provided that the series converges.
The following theorem is an analogue of the fundamental theorem of calculus.
A. Theorem. ([10]) Let f be a q - regular at zero, defined on q - geometric set B containing zero. Define

$$
F(z)=\int_{c}^{z} f(\zeta) d_{q} \zeta, \quad(\zeta \in B)
$$

where c is a fixed point in B, then F is q - regular at zero. Furthermore $D_{q} F(z)$ exists for every $z \in B$ and

$$
D_{q} F(z)=f(z)
$$

for every $z \in B$.
Conversely, if a and b are two points in B, then

$$
\int_{a}^{b} D_{q} f(\zeta) d_{q} \zeta=f(b)-f(a)
$$

(3) The q - differential is defined as

$$
d_{q} f(z)=f(z)-f(q z) .
$$

Therefore we can write

$$
d_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} d_{q} z .
$$

(4) The partial q - derivative of a multivariable real continous functions $f\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to a variable x_{i} is defined by

$$
\begin{gathered}
D_{q, x_{i}} f(\vec{x})=\frac{f(\vec{x})-\varepsilon_{q, x_{i}} f(\vec{x})}{(1-q) x_{i}}, \quad x_{i} \neq 0, q \in(0,1) \\
{\left[D_{q, x_{i}} f(\vec{x})\right]_{x_{i}=0}=\lim _{x_{i} \rightarrow 0} D_{q, x_{i}} f(\vec{x})}
\end{gathered}
$$

where $\varepsilon_{q, x_{i}} f(\vec{x})=f\left(x_{1}, x_{2}, \ldots, x_{i-1}, q x_{i}, x_{i+1}, \ldots, x_{n}\right)$ and we use $D_{k, x}^{k}$ instead of operator $\frac{\partial_{q}^{k}}{\partial_{q} x^{k}}$ for some simplification.
Finally, let Ω be the family of functions ϕ analytic in \mathbb{D}, and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Denote by \mathcal{P}_{q} the family of functions p of the form $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, analytic in \mathbb{D} and satisfy the condition

$$
\begin{equation*}
\left|p(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q}, \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

where $q \in(0,1)$ is a fixed real number. Let \mathcal{A} be the family of functions f, defined by $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, that are analytic in \mathbb{D} and satisfy the conditions $f(0)=$ $0, f^{\prime}(0)=1$. If f satisfies the condition

$$
1+\frac{1}{b}\left(q z \frac{D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}\right) \prec \frac{1+z}{1-q z},
$$

where $b \in \mathbb{C}, b \neq 0$, then f is called q - convex function of complex order, and the class of such functions are denoted by $\mathcal{C}_{q}(b)$. If f_{1} and f_{2} are analytic functions in \mathbb{D}, then we say
that f_{1} is subordinate to f_{2}, written as $f_{1} \prec f_{2}$ if there exists a Schwarz function $\phi \in \Omega$ such that $f_{1}(z)=f_{2}(\phi(z)), z \in \mathbb{D}$. We also note that if f_{2} univalent in \mathbb{D}, then $f_{1} \prec f_{2}$ if and only if $f_{1}(0)=f_{2}(0)$ and $f_{1}(\mathbb{D}) \subset f_{2}(\mathbb{D})$. This implies that $f_{1}\left(\mathbb{D}_{r}\right) \subset f_{2}\left(\mathbb{D}_{r}\right)$, where $\mathbb{D}_{r}=\{z:|z|<r, 0<r<1\}$ (Subordination principle [6]).

We also need the following lemmas:
1.1. Lemma. Let ϕ be analytic in \mathbb{D} with $\phi(0)=0$ and $|\phi(z)|<1, z \in \mathbb{D}$. If $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at a point z_{0}, then we have

$$
z_{0} \phi^{\prime}\left(z_{0}\right)=m \phi\left(z_{0}\right), \quad m \geq 1
$$

For more details of Jack's lemma, one may refer to [7].
1.2. Lemma. ([12]) If h is an element of $\mathcal{C}_{q}(b)$, then

$$
F_{2}(|b|, \operatorname{Re} b, q, r) \leq\left|D_{q} h(z)\right| \leq F_{1}(|b|, \operatorname{Re} b, q, r)
$$

where

$$
\begin{aligned}
& F_{1}(|b|, R e b, q, r)=\left[(1-q r)^{R e b+|b|} \cdot(1+q r)^{R e b-|b|}\right]^{-\frac{1-q^{2}}{2 q^{2} \log q^{-1}}}, \\
& F_{2}(|b|, R e b, q, r)=\left[(1-q r)^{R e b-|b|} \cdot(1+q r)^{R e b+|b|}\right]^{-\frac{1-q^{2}}{2 q^{2} \log q^{-1}}} .
\end{aligned}
$$

The aim of this paper is to investigate properties of the class of q - harmonic functions for which analytic part is q - convex functions of complex order defined by
$\mathcal{S}_{\mathcal{H e}_{q}(b)}=\left\{f=h+\bar{g}: w_{q}(z)=\frac{D_{q} g(z)}{D_{q} h(z)}=\frac{\bar{f}_{\bar{z}}}{f_{z}}, w_{q}(z) \prec b_{1} \frac{1+z}{1-q z},\left|w_{q}(z)\right|<1, h \in \mathcal{C}_{q}(b)\right\}$, where

$$
D_{q} h(z)=\frac{h(z)-h(q z)}{(1-q) z}=f_{z} \quad \text { and } \quad D_{q} g(z)=\frac{g(z)-g(q z)}{(1-q) z}=\bar{f}_{\bar{z}}
$$

2. Main Results

In this section, we first assume that the function f is sense-preserving q - harmonic function if and only if $w_{q}(z)=\frac{\bar{f}_{\bar{z}}}{f_{z}}$ is analytic. To show that
(\Rightarrow) Let $f=h+\bar{g}$ be sense-preserving q - harmonic function, then we will show that w_{q} is analytic. Since $h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ are analytic functions, then we can write q - derivatives of these functions as

$$
D_{q} h(z)=1+\sum_{n=2}^{\infty} \frac{1-q^{n}}{1-q} a_{n} z^{n-1} \quad \text { and } \quad D_{q} g(z)=b_{1}+\sum_{n=2}^{\infty} \frac{1-q^{n}}{1-q} b_{n} z^{n-1}
$$

We must note that when $q \rightarrow 1^{-}, D_{q} h(z)$ reduces to $h^{\prime}(z)$ and $D_{q} g(z)$ reduces to $g^{\prime}(z)$. The second q - dilatation and $q-$ Jakobian are defined by

$$
\begin{gathered}
w_{q}(z)=\frac{D_{q} g(z)}{D_{q} h(z)}=\frac{\bar{f}_{\bar{z}}}{f_{z}} \\
J_{f q}(z)=\left|D_{q} h(z)\right|^{2}-\left|D_{q} g(z)\right|^{2} .
\end{gathered}
$$

Also, the total q - differential of $f(\vec{x})$ can be written in the following manner,

$$
d_{q} f(\vec{x})=D_{q, x_{1}} d_{q} x_{1}+D_{q, x_{2}} d_{q} x_{2}+D_{q, x_{3}} d_{q} x_{3}+\cdots+D_{q, x_{n}} d_{q} x_{n}
$$

Therefore the q-differential can be written as

$$
d_{q} f=D_{q, z} d_{q} z+D_{q, \bar{z}} d_{q} \bar{z} .
$$

Consequently, f is locally univalent and sense-preserving if $\left|D_{q} h(z)\right|>\left|D_{q} g(z)\right|$ and sense-reversing if $\left|D_{q} g(z)\right|>\left|D_{q} h(z)\right|$. Note that $f_{z} \neq 0$ whenever $J_{f q}(z)>0$. For sense-preserving f, one sees that

$$
\left(\left|D_{q} h(z)\right|-\left|D_{q} g(z)\right|\right)\left|d_{q} z\right| \leq\left|d_{q} f\right| \leq\left(\left|D_{q} h(z)\right|+\left|D_{q} g(z)\right|\right)\left|d_{q} z\right| .
$$

With aid of these definitions, let $f=h+\bar{g}$ be the solution of the non-linear elliptic partial differential equation

$$
w_{q}(z) f_{z}=\bar{f}_{\bar{z}}
$$

under the condition $\left|w_{q}(z)\right|<1$ for all $z \in \mathbb{D}$. A non-constant complex -valued function f is q - harmonic and orientation sense-preserving mapping on \mathbb{D} if and only if f is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
w_{q}(z) f_{z}=\bar{f}_{\bar{z}} \tag{2.1}
\end{equation*}
$$

where

$$
f_{z}=D_{q} h(z)=\frac{h(z)-h(q z)}{(1-q) z} \quad \text { and } \quad \bar{f}_{\bar{z}}=D_{q} g(z)=\frac{g(z)-g(q z)}{(1-q) z} .
$$

If we take the q - derivative of equation (2.1) with respect to \bar{z}, we get

$$
\begin{equation*}
\bar{f}_{\bar{z} z}=f_{z \bar{z}} w_{q}(z)+f_{z} \frac{\partial w_{q}}{\partial \bar{z}} . \tag{2.2}
\end{equation*}
$$

On the other hand, since f is q - harmonic, then we have $\triangle f=4 \frac{\partial^{2} f}{\partial z \partial \bar{z}}=4 f_{z \bar{z}}=0$ and $\bar{f}_{\bar{z} z}=0$. Therefore the equality (2.2) reduces to

$$
\begin{equation*}
f_{z} \frac{\partial w_{q}}{\partial \bar{z}}=0 \tag{2.3}
\end{equation*}
$$

and this shows that $\frac{\partial w_{q}}{\partial \bar{z}}=0$, that is, w_{q} is analytic.
(\Leftarrow) Conversely, if w_{q} is analytic in \mathbb{D}, then $\frac{\partial w_{q}}{\partial \bar{z}}=0$. Therefore equality (2.2) reduces to
(2.4) $\quad \bar{f}_{\bar{z} z}=f_{z \bar{z}} w_{q}(z)$.

On the other hand, using the definition of w_{q}, we have $\left|w_{q}(z)\right|<1$. Thus, we get

$$
\begin{equation*}
1-\left|w_{q}(z)\right| \neq 0 \tag{2.5}
\end{equation*}
$$

Considering (2.4) and (2.5), we obtain
(2.6) $\quad \bar{f}_{\bar{z} z}=f_{z \bar{z}} w_{q}(z) \Rightarrow f_{z \bar{z}}=0$
and the equality (2.6) shows that f is q - harmonic. This proves our assumption.
We now investigate properties of the class $\mathcal{S}_{\mathcal{H} e_{q}(b)}$. For Theorem 2.4, we need the following results. The first theorem is very important in order to obtain subordination of the analytic functions involving q - difference operator.
2.1. Theorem. ([2]) p is an element of \mathcal{P}_{q} if and only if $p(z) \prec \frac{1+z}{1-q z}$. This result is sharp for the functions $p(z)=\frac{1+\phi(z)}{1-q \phi(z)}$, where ϕ is a Schwarz function.

Proof. If p is an element of \mathcal{P}_{q}, then we have

$$
\left|p(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q} \Leftrightarrow|p(z)-m| \leq m,
$$

where $m=\frac{1}{1-q}>1$. Therefore we can write

$$
\left|\frac{1}{m} p(z)-1\right| \leq 1
$$

Thus the function $\psi(z)=\frac{1}{m} p(z)-1$ is analytic and has modulus at most 1 in \mathbb{D}, and so

$$
\phi(z)=\frac{\psi(z)-\psi(0)}{1-\overline{\psi(0)} \psi(z)}=\frac{\left(\frac{1}{m} p(z)-1\right)-\left(\frac{1}{m}-1\right)}{1-\left(\frac{1}{m}-1\right)\left(\frac{1}{m} p(z)-1\right)}
$$

satisfies the conditions of Schwarz lemma. This shows that we can write

$$
p(z)=\frac{1+\phi(z)}{1-\left(1-\frac{1}{m}\right) \phi(z)} \Rightarrow p(z) \prec \frac{1+z}{1-q z} .
$$

Conversely, suppose that the function p is analytic in \mathbb{D} and satisfies the condition $p(0)=$ 1 and

$$
\begin{aligned}
p(z) \prec \frac{1+z}{1-q z} \Rightarrow p(z) & =\frac{1+\phi(z)}{1-\left(1-\frac{1}{m}\right) \phi(z)} \\
p(z)-m & =m \frac{\frac{1-m}{m}+\phi(z)}{1+\frac{1-m}{m} \phi(z)} .
\end{aligned}
$$

On the other hand the function $\frac{\frac{1-m}{m}+\phi(z)}{1+\frac{1-m}{m} \phi(z)}$ maps the unit circle onto itself, then we have

$$
|p(z)-m| \leq m \Leftrightarrow\left|p(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q} .
$$

This shows that $p \in \mathcal{P}_{q}$.
We must note that the linear tranformation $\frac{1+z}{1-q z}$ maps $|z|=r$ onto the disc with centre $C(r)=\frac{1+q r^{2}}{1-q^{2} r^{2}}$ and radius $\rho(r)=\frac{(1+q) r}{1-q^{2} r^{2}}$.
2.2. Lemma. If f is a function (real or complex valued) defined on q - geometric set \mathbb{B} with $|q| \neq 1$, then

$$
D_{q}(\log f(z))=\frac{D_{q} f(z)}{f(z)}
$$

Proof. Using the definition of q - difference operator, then we have

$$
D_{q}(\log f(z))=\frac{\log f(q z)-\log f(z)}{q z-z}=\log \left(1+h \frac{D_{q} f(z)}{f(z)}\right)^{\frac{1}{h}}
$$

If we take limit for $h \rightarrow 0$, we obtain the desired result.
2.3. Lemma. (q-Jack's Lemma) Let ϕ be analytic in \mathbb{D} with $\phi(0)=0$. If $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{D}$, then we have

$$
z_{0} D_{q} \phi\left(z_{0}\right)=m \phi\left(z_{0}\right)
$$

where $m \geq 1$ is a real number.
Proof. Using the definition of q - difference operator and Jack's lemma, then we can write

$$
D_{q} \phi(z)=\frac{\phi(z)-\phi(q z)}{z-q z}=\frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}, \quad q z=z_{0} .
$$

If we take limit for $z \rightarrow z_{0}$, we get

$$
\lim _{z \rightarrow z_{0}} D_{q} \phi(z)=D_{q} \phi\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}=\phi^{\prime}\left(z_{0}\right) .
$$

Therefore we have

$$
z_{0} D_{q} \phi\left(z_{0}\right)=m \phi\left(z_{0}\right)
$$

2.4. Theorem. If $f=h+\bar{g}$ is an element of $\mathcal{S}_{\mathscr{H} \mathcal{C}_{q}(b)}$, then

$$
\begin{equation*}
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+z}{1-q z} . \tag{2.7}
\end{equation*}
$$

Proof. Since $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H e}_{q}(b)}$, then we have

$$
\frac{D_{q} g(z)}{D_{q} h(z)} \prec b_{1} \frac{1+z}{1-q z} .
$$

The linear transformation $w=b_{1} \frac{1+z}{1-q z}$ maps $|z|=r$ onto the disc with centre $C(r)=$ $\left(\frac{\alpha_{1}\left(1+q r^{2}\right)}{1-q^{2} r^{2}}, \frac{\alpha_{2}\left(1+q r^{2}\right)}{1-q^{2} r^{2}}\right)$ and radius $\rho(r)=\frac{\left|b_{1}\right|(1+q) r}{1-q^{2} r^{2}}$, where $\alpha_{1}=\operatorname{Reb}_{1}$ and $\alpha_{2}=\operatorname{Reb}_{2}$. Thus using the subordination principle and the definition of the class $\mathcal{S}_{\mathcal{H e}_{q}(b)}$, we can write

$$
\begin{equation*}
w_{q}\left(\mathbb{D}_{r}\right)=\left\{\frac{D_{q} g(z)}{D_{q} h(z)}:\left|\frac{D_{q} g(z)}{D_{q} h(z)}-\frac{b_{1}\left(1+q r^{2}\right)}{1-q^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(1+q) r}{1-q^{2} r^{2}}, q \in(0,1)\right\} \tag{2.8}
\end{equation*}
$$

In order to verify Schwarz function conditions, we define the function ϕ by

$$
\begin{equation*}
\frac{g(z)}{h(z)}=b_{1} \frac{1+\phi(z)}{1-q \phi(z)} \tag{2.9}
\end{equation*}
$$

Note that ϕ is a well defined analytic function and

$$
\left.\frac{g(z)}{h(z)}\right|_{z=0}=b_{1}=b_{1} \frac{1+\phi(0)}{1-q \phi(0)}
$$

This proves that $\phi(0)=0$. We now need to show that $|\phi(z)|<1$ for all $z \in \mathbb{D}$. If we take q - derivative of both sides of (2.9) and simplify, we get

$$
\frac{D_{q} g(z)}{h(z)}-\frac{g(q z) D_{q} h(z)}{h(z) h(q z)}=b_{1} \frac{D_{q} \phi(z)-q \phi(q z) D_{q} \phi(z)+q D_{q} \phi(z)+q \phi(q z) D_{q} \phi(z)}{(1-\phi(z))(1-\phi(q z))} .
$$

Multiplying both sides of this equation by $h(z) / D_{q} h(z)$ and simplifying, we obtain

$$
\begin{equation*}
\frac{D_{q} g(z)}{D_{q} h(z)}=b_{1}\left(\frac{1+\phi(q z)}{1-q \phi(q z)}+\frac{(1+q) z D_{q} \phi(z)}{(1-q \phi(z))(1-q \phi(q z))} \cdot \frac{h(z)}{z D_{q} h(z)}\right) . \tag{2.10}
\end{equation*}
$$

Applying Lemma 2.2 in the equation (2.10), we can write the following form

$$
\begin{equation*}
\frac{D_{q} g(z)}{D_{q} h(z)}=b_{1}\left(\frac{1+\phi(q z)}{1-q \phi(q z)}+\frac{(1+q) z D_{q} \phi(z)}{(1-q \phi(z))(1-q \phi(q z))}(1-q \phi(z))^{b \frac{1-q^{2}}{q^{2} \log q-1}}\right) \tag{2.11}
\end{equation*}
$$

Assume to the contrary that there esists a point $z_{0} \in \mathbb{D}_{r}$ such that $\left|\phi\left(z_{0}\right)\right|=1$. In view of Lemma 2.3, equation (2.11) gives
$\frac{D_{q} g\left(z_{0}\right)}{D_{q} h\left(z_{0}\right)}=b_{1}\left(\frac{1+\phi\left(q z_{0}\right)}{1-q \phi\left(q z_{0}\right)}+\frac{(1+q) m \phi\left(z_{0}\right)}{\left(1-q \phi\left(z_{0}\right)\right)\left(1-q \phi\left(q z_{0}\right)\right)}\left(1-q \phi\left(z_{0}\right)\right)^{b \frac{1-q^{2}}{q^{2} \log q-1}}\right) \notin w_{q}\left(\mathbb{D}_{r}\right)$.
This contradicts our assumption (2.8) and therefore $|\phi(z)|<1$ for all $z \in \mathbb{D}$. This completes the proof of our theorem.
2.5. Corollary. If $f=h+\bar{g} \in \mathcal{S}_{\mathcal{H e}_{q}(b)}$, then we have
(2.12) $\quad F_{2}\left(|b|, \operatorname{Re} b,\left|b_{1}\right|, q, r\right) \leq\left|D_{q} g(z)\right| \leq F_{1}\left(|b|, \operatorname{Re} b,\left|b_{1}\right|, q, r\right)$,
where

$$
\begin{aligned}
& F_{1}\left(|b|, \operatorname{Re} b,\left|b_{1}\right|, q, r\right)=\left[(1-q r)^{R e b+|b|}(1+q r)^{R e b-|b|}\right]^{-\frac{1-q^{2}}{2 q^{2} \log q-1}} \frac{\left|b_{1}\right|(1+r)}{1-q r}, \\
& F_{2}\left(|b|, \operatorname{Re} b,\left|b_{1}\right|, q, r\right)=\left[(1-q r)^{R e b-|b|}(1+q r)^{R e b+|b|}\right]^{-\frac{1-q^{2}}{2 q^{2} \log q^{-1}}} \frac{\left|b_{1}\right|(1-r)}{1+q r} .
\end{aligned}
$$

Proof. Since $f=h+\bar{g}$ is an element of $\mathcal{S}_{\mathscr{H} e_{q}(b)}$, from Theorem 2.4 we write $\frac{D_{q} g(z)}{D_{q} h(z)} \prec$ $b_{1} \frac{1+z}{1-q z}$, where $h \in \mathcal{C}_{q}(b)$. Therefore we have

$$
\left|\frac{D_{q} g(z)}{D_{q} h(z)}-\frac{b_{1}\left(1+q r^{2}\right)}{1-q^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(1+q) r}{1-q^{2} r^{2}} .
$$

This inequality yields

$$
\left|D_{q} g(z)\right| \leq\left|D_{q} h(z)\right| \frac{\left|b_{1}\right|(1+r)}{1-q r} .
$$

If we use Lemma 1.2, we get the right side of (2.12). Similarly, we can prove the other side of the inequality (2.12).
2.6. Corollary. If $f=h+\bar{g} \in \mathcal{S}_{\mathscr{H} e_{q}(b)}$, then we have

$$
\begin{equation*}
f=h(z)+\overline{h(z) b_{1} \frac{1+\phi(z)}{1-q \phi(z)}}, \tag{2.13}
\end{equation*}
$$

where ϕ is a Schwarz function.
Proof. Using Theorem 2.4, then we can write

$$
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+z}{1-q z} \Rightarrow \frac{g(z)}{h(z)}=b_{1} \frac{1+\phi(z)}{1-q \phi(z)} .
$$

Therefore we obtain

$$
g(z)=h(z) b_{1} \frac{1+\phi(z)}{1-q \phi(z)}
$$

which gives (2.13).

References

[1] Andrews, G.E. Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441484.
[2] Çetinkaya, A. and Mert, O. A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of $12^{\text {th }}$ Symposium on Geometric Function Theory and Applications (2016), 67-76.
[3] Duren, P. Harmonic mappings in the plane, Cambridge Tracts in Math. 2004.
[4] Fine, N.J. Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
[5] Gasper, G. and Rahman, M. Basic hypergeometric series, Cambridge University Press, 2004.
[6] Goodman, A.W. Univalent functions Volume I and II, Polygonal Pub. House, 1983.
[7] Jack, I.S. Functions starlike and convex of order α, J. Lond. Math. Soc. (2), 3 (1971), 469-474.
[8] Jackson, F.H. On $q-$ functions and a certain difference operator, Trans. Roy. Soc. Edin. 46 (1908), 253-281.
[9] Jackson, F.H. On $q-$ difference integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[10] Kac, V. and Cheung, P. Quantum calculus, Springer, 2001.
[11] Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
[12] Polatog̃lu, Y., Aydog̃an, M. and Mert, O. Some properties of $q-$ convex functions of complex order, Sarajevo J. Math. Submitted, 2016.

[^0]: *Department of Mathematics and Computer Sciences,İstanbul Kültür University, İstanbul, TURKEY
 Email : asnfigen@hotmail.com
 $\dagger_{\text {Corresponding Author. }}$
 $\ddagger_{\text {Department }}$ of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, TURKEY,
 Email : y.polatoglu@iku.edu.tr

