

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 24

Yapay Zeka Destekli Üretilen Kodlar ile İnsan Yazımı Kodların
Karşılaştırılması: Python Örneği

Comparing AI-Assisted Code with Human-Written Code: A
Python Case Study

Seda EYGÜ

Atatürk Üniversitesi
Sosyal Bilimler Enstitüsü

Yönetim Bilişim Sistemleri Anabilim Dalı
Erzurum, Türkiye

seda.eygu@atauni.edu.tr
ORCID: 0000-0002-1134-8120

Mustafa KESKİNKILIÇ

Atatürk Üniversitesi
İktisadi ve İdari Bilimler Fakültesi

Yönetim Bilişim Sistemleri Bölümü
Erzurum, Türkiye

muskes@atauni.edu.tr
ORCID: 0000-0002-3394-5575

Öz

Yapay zeka (YZ) temelli kod üretim araçlarının yükselişi,
yazılım mühendisliğinde kod yazım süreçlerini
dönüştürmektedir. Bu çalışma, YZ destekli “Bolt.New” aracıyla
üretilen Python programlarını, insan eliyle yazılmış eşdeğer
programlarla kalite, karmaşıklık ve okunabilirlik açısından
sistematik olarak karşılaştırmayı amaçlamaktadır. 2019
öncesi GitHub’dan seçilen 30 adet insan yapımı program ile
aynı işlevleri gerçekleştiren YZ üretimi programlar, satır
sayılarına göre basit, orta ve karmaşık ulamlara ayrılarak
incelenmiştir. Python’a özgü statik inceleme aracı Pylint ile
ölçülen kalite puanı, hata sayısı, siklomatik karmaşıklık, stil
ihlali, kod tekrar oranı ve belge puanı ölçüleri, iki küme
arasında istatistiksel olarak karşılaştırılmıştır. Bulgular, YZ’nin
basit görevlerde yüksek kalite ve düşük hata oranı sunduğunu,
karmaşık görevlerde ise daha düşük karmaşıklık ve daha iyi
belge sağladığını, ancak bağlamsal uygunlukta sınırlamalar
gösterebildiğini ortaya koymaktadır. Bu çalışma, YZ destekli
kod üretiminin Python’a özgü ölçünlere uyumunu ve hata
azaltma potansiyelini nesnel ölçülerle değerlendirerek, yazılım
geliştirme süreçlerinde otomasyon ve insan denetimi arasında
denge kurulmasına yönelik rehber bir çerçeve sunmaktadır.

Anahtar Sözcükler: Yapay Zeka, Kod Kalitesi, Python, Yazılım
Mühendisliği, Kod Okunabilirliği, Kod Karmaşıklığı
JEL Sınıflandırması: C88, L86, O33

Abstract

The rise of artificial intelligence (AI)-based code generation
tools is transforming code writing processes in software
engineering. This study aims to systematically compare
Python programs generated by the AI-powered “Bolt.New”
tool with equivalent human-written programs in terms of
quality, complexity, and readability. Thirty human-written
programs selected from GitHub prior to 2019, along with AI-
generated programs performing the same functions, were
categorized into simple, medium, and complex based on line
count and analyzed. Metrics such as quality score, error count,
cyclomatic complexity, style violations, code duplication rate,
and documentation score, measured using the Python-specific
static analysis tool Pylint, were statistically compared
between the two groups. The findings reveal that AI offers
high quality and low error rates in simple tasks, while in
complex tasks, it provides lower complexity and better
documentation but shows limitations in contextual
appropriateness. This study evaluates the compliance of AI-
generated code with Python-specific standards and its
potential for error reduction using objective metrics, offering
a guiding framework for balancing automation and human
oversight in software development processes.

Keywords: Artificial Intelligence, Code Quality, Python,
Software Engineering, Code Readability, Code Complexity, JEL
Classification: C88, L86, O33

Makale Bilgileri
Türü: Araştırma
Geliş tarihi: 10.09.2025
Kabul tarihi:26.11.2025

Article Info
Type: Research
Received date: 10.09.2025
Accepted date: 26.11.2025

Atıf/ to Cite (IEEE): S. EYGÜ, M. KESKİNKILIÇ, Yapay Zeka Destekli
Üretilen Kodlar ile İnsan Yazımı Kodların Karşılaştırılması: Python
Örneği: Bilgisayar Bilimleri ve Mühendisliği Dergisi, Cilt 19 2026
Sayı-19-1. Sf: 24-37,
DOI: 10,54525/bbmd.1781375

https://orcid.org/0000-0002-1134-8120

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 25

1. Giriş

Yazılım mühendisliği, teknolojinin hızla geliştiği bu bilişim
çağında hem akademik hem de diğer uygulamalarda önemli
bir rol üstlenmektedir. Bu disiplinin temel yapı taşlarından biri
olan kod üretim süreci, yıllar boyunca insan yaratıcılığı, bilgi
birikimi ve mühendislik sezgilerine dayalı olarak gelişmiş ve
olgunlaşmıştır. 20, yüzyılın ortalarından itibaren geliştirilen
yapılandırılmış programlama, nesne yönelimli tasarım ve
modüler yazılım geliştirme yaklaşımları, kodun kalite,
sürdürülebilirlik ve anlaşılabilirlik boyutlarında sistematik
iyileştirmeler yapılmasına olanak tanımıştır. Bu çerçevede,
yazılım kalitesi; yalnızca kodun doğru çalışmasıyla sınırlı
olmayan, okunabilirlik, bakım kolaylığı, modülerlik ve hata
yönetimi gibi çok boyutlu metriklerle tanımlanan bir kavram
haline gelmiştir.

Ancak 2010’ların ortalarından itibaren yapay zeka (Yapay
Zeka: YZ, Artificial Intelligence: YZ) teknolojilerinde yaşanan
atılımlar, yazılım üretimi bakış açısında köklü bir dönüşüm
başlatmıştır [13]. Özellikle Doğal Dil İşleme (DDİ), Büyük Dil
Modelleri (BDM) ve derin öğrenme sistemlerinin
yaygınlaşmasıyla ortaya çıkan üretken yapay zeka,
geliştiricilerin kod yazma süreçlerine yardımcı olan ya da
doğrudan işlevsel kodlar üretebilen YZ destekli sistemler
ortaya çıkmıştır [29]. GitHub Copilot, Codex ve Bolt.New gibi
araçlar, yalnızca doğal dil açıklamalarına dayanarak Python,
JavaScript, Java gibi dillerde çalışabilir yazılım bileşenleri
oluşturabilmekte ve bu sayede geliştiricilerin verimliliğini
artırmakta, rutin görevleri otomatikleştirmekte önemli roller
üstlenmektedir [9, 17].

Bu gelişmeler, yazılım mühendisliğinde yalnızca üretim hızının
değil, aynı zamanda üretim kalitesinin de YZ araçlarıyla nasıl
evrileceğine dair yeni soruları gündeme getirmiştir.
Kaynaklarda, YZ tarafından üretilen kodların bağlamı doğru
yorumlama becerisi, stil bütünlüğü, hata olasılığı ve yapısal
karmaşıklık gibi açılardan insan eliyle yazılmış kodlardan
farklılık gösterdiği yönünde bulgular yer almaktadır. Özellikle
Pearce ve arkadaşları [21], Copilot gibi araçların bağlamdan
kopuk ve güvenlik açıklarına açık kod parçaları üretebildiğini
belirtmiştir. Nguyen ve arkadaşları [20] ise YZ destekli kodların
stil kurallarına daha az uyduğunu, ancak bu durumun statik
inceleme araçları ile telafi edilebilir olduğunu öne sürmüştür.
Buna karşın, bazı çalışmalar YZ kodlarının daha sade, modüler
ve okunabilir olabileceğini savunmakta; bu da alanda çelişkili
bulguların bulunduğunu göstermektedir.

Bu bağlamda, bu çalışmanın temel amacı, YZ destekli kod
üretim araçlarının yazılım mühendisliği açısından kalite,
okunabilirlik ve karmaşıklık gibi ölçüler üzerinden insan
üretimi kodlarla sistematik olarak karşılaştırılmasıdır. Bu
amaçla, Python dilinde yazılmış 30 adet insan yapımı program
ile Bolt.New adlı bir YZ aracı tarafından aynı görevler için
oluşturulmuş 30 eşdeğer program incelenmiştir. Programlar,
satır sayılarına göre basit, orta ve karmaşık olmak üzere üç
ulama ayrılarak zorluk düzeyi temelinde kümelendirilmiştir.
Tüm programlar, Python ortamında yaygın olarak kullanılan
statik inceleme aracı Pylint ile incelenmiş; her biri için Pylint
kalite değeri, toplam hata sayısı, siklomatik karmaşıklık, stil

ihlali sayısı, kod tekrar oranı ve belge puanı gibi ölçüler elde
edilmiştir.

Çalışma, yalnızca YZ ve insan kaynaklı kodlar arasında genel
bir karşılaştırma yapmakla kalmayıp, bu farkların zorluk
düzeyine göre değişip değişmediğini de incelemektedir.
Ayrıca, stil uyumu ve okunabilirlik gibi daha öznel
değerlendirmelerin Pylint gibi nesnel araçlarla nasıl
ölçümlenebileceğini göstermektedir. Bu yönüyle çalışma,
yazılım mühendisliği kaynaklarında sıklıkla göz ardı edilen YZ
araçlarının nesnel kalite ölçüleri bağlamında sistematik
değerlendirilmesini hedeflemekte ve YZ araçlarının yazılım
geliştirme süreçlerine entegrasyonu konusuna somut veri
temelli katkılar sunmaktadır.

2. Kaynak Taraması

Son yıllarda geleneksel insan yazımı kodlar ile YZ destekli kod
üretim araçlarının karşılaştırılması, çeşitli ölçütler üzerinden
yapılan birçok çalışma ile geniş bir kaynak oluşturmuştur. Bu
çalışmalar, kod üretim süreçlerinin evrimini anlamak ve yeni
teknolojilerin yazılım geliştirme üzerindeki etkilerini
değerlendirmek açısından önemli veriler sunmaktadır. Bu
çerçevede, kod üretiminin tarihsel gelişimini ve kavramsal
temellerini ele almak, kaynaklardaki tartışmaları bütüncül bir
yaklaşımla değerlendirmek açısından önemlidir.

2.1 Yazılım Mühendisliğinde Kod Üretimi: Tarihsel ve
Kavramsal Arka Plan

Yazılım mühendisliği, bilgi teknolojilerindeki ilerlemelerle
birlikte sürekli dönüşen bir alan olarak, kod üretimi
süreçlerinde de köklü değişimlere tanıklık etmiştir. Kod
yazımı, yazılım geliştirme yaşam döngüsünün temel yapı
taşlarından biri olup, geleneksel insan merkezli yaklaşımlar
kadar, günümüzde yaygınlaşan otomasyon araçlarıyla da
gerçekleştirilir. Bu bölümde, yazılım mühendisliğinde kod
üretiminin tarihsel süreci ve kavramsal temelleri açıklanarak;
kod kalitesi, okunabilirlik ve karmaşıklık gibi önemli
metriklerin önemi vurgulanmakta ve klasik yöntemlerle yapay
zeka destekli kod üretimi arasındaki farkların incelenmesine
zemin hazırlanmaktadır.

Yazılım mühendisliğinin ilk dönemlerinde, kod yazımı
tamamen geliştiricilerin bilgi ve deneyimine dayalı bir süreçti.
1960’lar ve 1970’lerde yapılandırılmış programlama
yaklaşımlarının geliştirilmesi, kodun daha planlı ve sistematik
yazılmasına katkı sağladı [11]. Bu dönemde yazılım kalitesini
değerlendirmek amacıyla ilk ölçüler ortaya çıkmaya başladı.
Örneğin, Boehm ve arkadaşları [4], yazılımın güvenilirliği ile
bakım kolaylığı gibi kavramları tanımlayarak kalite
değerlendirmesine kuramsal bir çerçeve kazandırdı.
Boehm’un bu çalışması, yalnızca işlevsellik değil; aynı
zamanda kodun okunabilirliği ve sürdürülebilirliği gibi
unsurların da kaliteyi belirleyen öğeler olduğunu
vurgulamıştır [4]. Bu değerlendirme ölçütleri, hem geleneksel
hem de YZ tabanlı kodlar için günümüzde hâlen geçerliliğini
korumaktadır.

1980’li yıllardan itibaren otomasyonun yazılım geliştirme
sürecine dahil olması, kod üretimini yeni bir boyuta taşıdı.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 26

Derleyiciler, hata ayıklama araçları ve entegre geliştirme
ortamları (IDE’ler), geliştiricilerin daha sistematik çalışmasına
olanak tanıdı; fakat yine de insan kararları süreçte belirleyici
olmaya devam etti [26]. Kod kalitesini değerlendirmek için
geliştirilen statik inceleme araçları bu dönemde önem
kazandı. Pylint gibi yazılımlar, özellikle Python dilinde kodların
yapısını, stilini ve hata olasılıklarını inceleme ederek belirli
kalite standartlarının korunmasına yardımcı olmaktadır [23].
Bu tür araçların kullanımı, özellikle açık kaynak yazılım
projelerinde kaliteyi izleme ve iyileştirme bakımından kritik
önem taşımaktadır [2].

Kod üretiminde bir diğer anahtar kavram olan karmaşıklık,
yazılımın anlaşılabilirliği ve bakım süreçlerini doğrudan
etkilemektedir. McCabe’in [18] geliştirdiği siklomatik
karmaşıklık ölçütü, bir yazılım parçasının kontrol akışını
inceleyerek karmaşıklık derecesini ölçmenin etkili bir yolunu
sunmuştur. Bu ölçüt, yazılımın yalnızca hata olasılıklarını değil,
aynı zamanda test edilebilirlik ve sürdürülebilirlik yönlerini de
değerlendirmeye olanak tanımaktadır [18]. Halstead’in [14]
önerdiği metrikler ise yazılımın hacmini ve zorluk derecesini
değerlendirerek karmaşıklık incelemesine farklı bir katkı
sunmuştur. Bu göstergeler, çalışmamızda YZ destekli ve
geleneksel yöntemlerle yazılmış kodlar arasında yapılacak
karşılaştırmalar için teorik temel sağlamaktadır.

Kodun okunabilirliği ise yazılım mühendisliğinde bir diğer
önemli konudur. Bu kavram, yazılımın geliştiriciler tarafından
kolayca anlaşılmasını ve bakımının kolaylaşmasını hedefler.
Buse ve Weimer [7], kod okunabilirliğini değerlendirmek için
otomatik metriklere dayalı bir çerçeve geliştirmiş ve stil,
isimlendirme kuralları ile yorum satırlarının bu sürece
katkılarını ortaya koymuştur. Özellikle yapay zeka destekli kod
üretiminde, okunabilirlik kriteri ayrı bir öneme sahiptir; zira YZ
ile üretilen kodlar, bağlama uygunlukta zayıflıklar veya stil
tutarsızlıkları gösterebilmektedir [20].

Günümüzde GitHub Copilot ve Bolt.New gibi yapay zeka
temelli kod üretim araçlarının yaygınlaşması, yazılım
geliştirme sürecinde yeni bir çağ başlatmıştır. Bu araçlar,
büyük dil modellerine (LLM’ler) dayanarak doğal dil girdilerini
işleyip çalışabilir koda dönüştürmektedir [9]. Bununla birlikte,
YZ destekli kodların kalite düzeyi, hata ihtimali ve yapısal
karmaşıklığı, insan eliyle yazılmış kodlarla kıyaslandığında
çeşitli tartışmaları da beraberinde getirmektedir. Pearce ve
çalışma arkadaşları [21], bu tür sistemlerin ürettiği kodlarda
güvenlik açıkları ve bağlamdan kopukluk gibi risklerin
bulunabileceğini öne sürmüştür. Bu nedenle, çalışmamızda
klasik yöntemlerle YZ destekli kod üretimi arasındaki
sistematik karşılaştırma ihtiyacı açıkça ortaya konmaktadır.

Sonuç olarak, yazılım mühendisliğinde kod üretimi süreci,
zamanla insan merkezli yöntemlerden otomatik sistemlere ve
yapay zeka destekli araçlara doğru evrilmiştir. Kodun kalitesi,
okunabilirliği ve karmaşıklığı gibi kavramlar, her iki üretim
yaklaşımında da değerlendirme ölçütü olmaya devam
etmektedir. Bu çalışma, Python kodlarının Pylint analiziyle
incelenmesi yoluyla, yapay zeka destekli yazılım üretiminin
geleneksel yöntemlerle kıyaslanarak güçlü ve zayıf yönlerinin
ortaya konmasını hedeflemektedir. Bu bağlamda, mevcut

kaynaklarda tanımlanmış olan kavramlar ve ölçüler,
araştırmamızın kuramsal zeminini oluşturmaktadır.

2.2. Yapay Zeka Destekli Yazılım Geliştirme Araçlarının
Yükselişi

Son yıllarda yapay zeka tabanlı yazılım geliştirme araçlarının
hızla yaygınlaşması, kod üretiminde köklü bir dönüşüme yol
açmış ve yazılım mühendisliğinde yeni bir dönemi
beraberinde getirmiştir. Özellikle büyük dil modellerinin
gelişimiyle birlikte, doğal dil ile yazılım kodu üretimi, kod
tamamlama ve hata düzeltme gibi işlemler otomatikleşmiş,
geliştiricilere önemli kolaylıklar sağlanmıştır. Bu bölümde, YZ
destekli yazılım araçlarının tarihsel gelişiminden teknolojik
altyapısına kadar birçok boyut ele alınarak, geleneksel
yöntemlerle karşılaştırmalı bir inceleme için kuramsal bir
temel oluşturulmuştur. Bu çerçevede, çalışmada kullanılan
Bolt.New gibi araçlar üzerinden, YZ destekli kod üretiminin
kod kalitesi, hata oranı ve kod karmaşıklığı üzerindeki olası
etkileri değerlendirilmektedir.

YZ temelli kod üretiminin ortaya çıkışı, DDİ ve makine
öğrenmesindeki ilerlemelere dayanmaktadır. Özellikle
2010’ların ortasında derin öğrenme modellerinde yaşanan
gelişmeler ve dönüştürücü mimarisinin tanıtılması [29], hem
doğal dili hem de yazılım dillerini anlamada çığır açan
gelişmelere olanak tanımıştır. Bu bağlamda, Brown ve
arkadaşları [6], büyük dil modellerinin az örnekle öğrenme
(few-shot learning) kapasitelerinin, bağlamsal anlamayı
geliştirme potansiyeline sahip olduğunu, ancak karmaşık
senaryolarda sınırlılıklar gösterebildiğini belirtmiştir. Bu,
Bolt.New gibi araçların bağlamsal uygunluk sorunlarının,
modelin eğitim verilerindeki genellikten kaynaklanabileceğini
göstermektedir. Ayrıca, Weisz ve arkadaşları [28], YZ ve insan
geliştiriciler arasındaki iş birliğinin, kod üretiminde
tamamlayıcı bir rol oynayarak hem verimliliği artırdığını hem
de insan denetiminin önemini koruduğunu vurgulamıştır. Bu
teknolojik atılımın sonucunda, 2021 yılında GitHub Copilot
gibi araçlar geliştiricilerin kullanımına sunulmuş ve yazılım
geliştirme pratiklerine entegre edilmiştir [9]. Copilot, Codex
modeli sayesinde, geliştiricilerin yazdığı kodu
tamamlayabilmekte veya yalnızca doğal dil açıklamalarıyla
işlevsel kodlar önerebilmektedir. Bolt.New ise, Python gibi
spesifik programlama dillerine odaklanarak daha niş ve
hedefe yönelik çözümler üretmeyi amaçlamaktadır [5]. Bu
araçların ortak noktası, büyük ve çeşitli yazılım veri kümeleri
(örneğin GitHub depoları) üzerinde eğitilerek bağlamla
uyumlu kod önerileri üretebilmeleridir [1].

YZ destekli yazılım araçlarının sunduğu başlıca üstünlükler
arasında, geliştirici üretkenliğinin artması ve tekrarlayan
görevlerin otomatikleştirilmesi yer almaktadır. Ziegler ve
arkadaşlarının [31] yaptığı bir çalışmada, YZ tabanlı kod
tamamlama sistemlerinin, yazılım geliştirme süresini %20 ila
%30 oranında kısalttığı bildirilmiştir. Ancak, Bird ve
arkadaşları [3], YZ destekli kod üretiminin etik sorunlar,
örneğin telif hakkı ihlalleri ve geliştirici bağımlılığı gibi riskler
taşıyabileceğini belirtmiş, bu araçların uzun vadeli etkilerinin
dikkatle incelenmesi gerektiğini vurgulamıştır. Özellikle
boilerplate kod yazımı, hata ayıklama ve kod stil

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 27

düzenlemeleri gibi zaman alan görevlerde, bu araçlar
geliştiricilere ciddi bir zaman kazancı sunmakta ve daha
yaratıcı süreçlere odaklanmalarını sağlamaktadır [10].

Bununla birlikte, YZ destekli kod üretiminin bazı sınırlılıkları da
mevcuttur. Kaynaklarda yer alan çeşitli bulgular, bu araçların
ürettiği kodlarda bağlam dışı hatalar, güvenlik açıkları veya
gereksiz karmaşıklık gibi sorunların ortaya çıkabildiğini
göstermektedir [21]. Örneğin, GitHub Copilot tarafından
üretilen kodların yaklaşık %40’ında güvenlik açığı riski
bulunduğu rapor edilmiştir. Bu gibi bulgular, çalışmamızın ilk
araştırma sorusunu doğrudan ilgilendirmekte olup, insan ve
YZ kaynaklı kodların hata oranları yönünden sistematik
karşılaştırılmasını gerekli kılmaktadır. Ayrıca, bu sistemler
tarafından üretilen kodlar her zaman geliştiricilerin alışkın
olduğu okunabilirlik ve stil standartlarına uygun olmayabilir.
Bunun nedeni, modellerin çoğunlukla eğitim aldıkları veri
kümelerinde baskın olan kalıpları temel alarak üretim
yapmalarıdır [20]. Bu bağlamda, çalışmamızda Bolt.New ile
yazdırılan kodların okunabilirliği ve insan yazımı kodlarla
kıyaslanması önemli bir inceleme boyutunu oluşturmaktadır.

YZ araçlarının kod karmaşıklığı üzerindeki etkisi ise
kaynaklarda tartışmalı bir konu olarak öne çıkmaktadır. Bazı
araştırmalar, bu araçların gereğinden fazla satır kod üreterek
yazılımı daha karmaşık hale getirebileceğini belirtirken [16],
bazıları ise aksine, daha sade ve optimize kodlar
üretilebileceğini savunmaktadır [17]. Bu çelişkili bulgular,
çalışmamızda Bolt.New tarafından yazdırılan kodlarla insan
yazımı kodlar arasında Pylint üzerinden siklomatik karmaşıklık
gibi metrikler kullanarak karşılaştırma yapılmasının önemini
göstermektedir. Python gibi yüksek seviyeli programlama
dillerinde, karmaşıklık düzeyi, yazılımın bakım kolaylığı ve test
edilebilirliği açısından büyük önem taşımaktadır [7].

Genel olarak bakıldığında, YZ destekli yazılım araçlarının
yazılım geliştirme süreçlerine entegrasyonu halen erken bir
evrede değerlendirilmektedir. Akademik çalışmalar
çoğunlukla popüler araçlara (örneğin Copilot) odaklanmakta
olup, Bolt.New gibi daha yeni araçlara ilişkin deneysel veri
henüz sınırlıdır. Ayrıca, insan eliyle yazılmış kodlarla YZ
araçlarının üretimleri arasında doğrudan ve sistematik
karşılaştırmalar yapan deneysel çalışmalar oldukça azdır [10].
Bu bağlamda, bu çalışma, Bolt.New aracıyla üretilen Python
kodlarını, 2019 yılı öncesinde GitHub’da yer alan insan yazımı
kodlarla karşılaştırarak, YZ destekli yazılım üretiminin avantaj
ve sınırlarını daha açık şekilde değerlendirmeyi
hedeflemektedir. Bu bölümde aktarılan kuramsal çerçeve,
kod kalitesi, hata oranı ve karmaşıklık gibi boyutlarda
yapılacak karşılaştırmalara sağlam bir temel sunmaktadır.

2.3. Kod Kalitesi ve Hata Oranı Üzerine Çalışmalar

Yazılım mühendisliği bağlamında, kod kalitesi; bir yazılımın
güvenilir, sürdürülebilir ve işlevsel olma düzeyini belirleyen
temel ölçütlerden biridir. Bu bağlamda, hata oranı da kod
kalitesinin doğrudan bir göstergesi olarak değerlendirilmekte
ve yazılımın doğruluğunu ve bakım kolaylığını etkileyen
önemli bir unsur olarak öne çıkmaktadır. Geleneksel
geliştirme süreçlerinde, bu iki ölçüt uzun süredir statik

inceleme araçları ile değerlendirilmektedir. Ancak yapay zeka
temelli kod üretim araçlarının yaygınlaşmasıyla birlikte, bu
ölçütlerin yeniden gözden geçirilmesi ve değerlendirme
yaklaşımlarının çeşitlendirilmesi gerekliliği ortaya çıkmıştır.
Bu bölümde, kaynaklarda kod kalitesi ve hata oranı konularına
dair yapılan çalışmalar ele alınmakta ve YZ tarafından
üretilmiş olan kodların (örneğin Bolt.New aracılığıyla
oluşturulanların), geleneksel yöntemlerle geliştirilen insan
yazımı kodlarla nasıl karşılaştırıldığını irdeleyen yöntem ve
bulgular tartışılmaktadır. Çalışmamız, Python dilinde yazılmış
kodlar üzerinde Pylint incelemesi gerçekleştirerek hata
oranlarını karşılaştırmakta ve bu doğrultuda literatüre katkı
sunmayı hedeflemektedir.

Kod kalitesi kavramı, yazılım mühendisliğinin başlangıcından
bu yana önemini koruyan bir araştırma konusu olmuştur.
Örneğin Boehm ve arkadaşları [4], kod kalitesini güvenilirlik,
taşınabilirlik ve bakım kolaylığı gibi çoklu boyutlar üzerinden
tanımlamış ve bu unsurların sistematik olarak ölçülmesi
gerektiğini belirtmiştir. Statik inceleme araçları, bu noktada
öne çıkan yöntemlerdendir. Pylint gibi araçlar, Python dilinde
yazılmış kodlarda sözdizimi hatalarını, stil uyumsuzluklarını ve
potansiyel mantık hatalarını belirlemek amacıyla yaygın
olarak kullanılmaktadır [23]. Beller ve arkadaşları [2]
tarafından yapılan bir çalışmada, açık kaynak projelerde statik
inceleme araçlarının etkin kullanımı incelenmiş ve bu
araçların hata oranlarının azaltılmasında etkili olduğu
gösterilmiştir. Bu bulgular, çalışmamızda Pylint’in YZ destekli
ve geleneksel kodlar arasında kalite karşılaştırması yapmak
için uygun bir araç olduğunu göstermektedir.

İnsan tarafından geliştirilen yazılımlarda hata oranlarını
etkileyen etkenler arasında geliştiricilerin deneyim düzeyi,
projenin karmaşıklığı ve kullanılan test süreçlerinin kalitesi yer
almaktadır. İnsan kaynaklı hatalar genellikle bağlama ilişkin
yanlış anlamalar, dikkatsizlikler ya da kod stiline dair
tutarsızlıklarla ilişkiliyken, YZ temelli araçlarla üretilen
kodlarda hata profilleri belirli yönlerden farklılık
göstermektedir [10]. Örneğin, Carlini ve Wagner [8], YZ
modellerinde hataların veya güvenlik açıklarının, modelin
öğrenme sürecindeki özelliklerden kaynaklanabileceğini ve bu
hataların bazen sistematik olarak ortaya çıktığını belirtmiştir.
Benzer şekilde, Mozannar ve arkadaşları [19], YZ kod üretim
modellerinin sağlamlığını değerlendirerek, bu modellerin
özellikle bağlamsal hatalara ve nadir görülen senaryolara karşı
hassas olabileceğini göstermiştir. Bu, Bolt.New gibi araçların
ürettiği kodlarda gözlemlenen bağlamsal hataların, modelin
eğitim verilerindeki sınırlılıklarla ilişkili olabileceğini
düşündürmektedir. Bu çalışmada, YZ tarafından oluşturulan
ve insan eliyle yazılan kodlar arasında bu hata yapılarının nasıl
ayrıştığını sistematik olarak incelemek ve YZ’nin hata
azaltmadaki potansiyelini ortaya koymak amaçlanmaktadır.

YZ destekli kodlama araçlarının hata oranları üzerine yapılan
araştırmalar, bu araçların hem sunduğu olanaklara hem de
sahip oldukları sınırlılıklara dikkat çekmektedir. Örneğin Chen
ve arkadaşları [9], Codex tabanlı GitHub Copilot’un kod
üretiminde yüksek doğruluk oranlarına ulaşabildiğini, ancak
zaman zaman bağlamı yanlış yorumladığını ve hatalı mantıksal

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 28

akışlar oluşturduğunu ifade etmiştir. Finnie-Ansley ve
arkadaşları [12], OpenAI Codex’in özellikle basit programlama
görevlerinde insan düzeyinde performansa yakın sonuçlar
ürettiğini, ancak bağlamsal derinlik gerektiren durumlarda
hata oranlarının artabileceğini göstermiştir. Aynı şekilde
Pearce ve arkadaşları [21], YZ tarafından üretilmiş kodların
yaklaşık %40’ında güvenlik açığı tespit etmiş ve bu tür kodların
doğrudan üretim ortamlarında kullanılmadan önce dikkatle
değerlendirilmesi gerektiğini vurgulamıştır.

Hata oranlarının ötesinde, kod kalitesi değerlendirmesinde
dikkate alınan diğer önemli unsurlar arasında stil bütünlüğü
ve belirli standartlara uygunluk da yer almaktadır. Nguyen ve
arkadaşları [20], Python kodlarında stil ihlallerinin (örneğin
PEP 8 standartlarına uyumsuzluk) YZ tarafından üretilen
kodlarda daha yaygın olduğunu, ancak bu tür hataların
otomatik araçlarla büyük ölçüde düzeltilebildiğini belirtmiştir.
Bununla birlikte, mantıksal hatalar özellikle karmaşık
algoritmalar ya da özel uygulama gereksinimlerine sahip
projelerde, YZ tarafından oluşturulan kodlarda daha zor tespit
edilebilmektedir [16]. Bu durum, çalışmamızda Pylint
analizinin yalnızca söz dizimsel ve stil hatalarını değil, aynı
zamanda potansiyel mantık hatalarını da göz önünde
bulundurmasının neden önemli olduğunu ortaya
koymaktadır.

YZ destekli ve insan kaynaklı kodların hata oranlarının
sistematik biçimde karşılaştırıldığı çalışmalar kaynaklarda
oldukça sınırlıdır. Örneğin Dakhel ve arkadaşları [10], GitHub
Copilot tarafından üretilen kodların hata oranlarını insan
geliştiricilerle karşılaştırmış ve basit görevlerde YZ’nin daha az
hata ürettiğini, ancak karmaşık görevlerde insan denetiminin
gerekli olduğunu ifade etmiştir. Ancak Bolt.New gibi daha
güncel ve özelleşmiş YZ araçlarının hata profilleriyle ilgili
derinlemesine çalışmalar henüz sınırlıdır. Bu noktada,
çalışmamız; 2019 öncesi GitHub verilerinden elde edilen insan
yazımı Python kodları ile Bolt.New tarafından oluşturulan
kodları Pylint kullanarak inceleme etmekte ve YZ destekli kod
üretiminin hata oranı bakımından avantaj ve sınırlamalarını
ortaya koymayı amaçlamaktadır. Bu bölümde sunulan
literatür, kod kalitesi ve hata oranı analizimiz için teorik bir
temel işlevi görmektedir.

2.4. Kod Okunabilirliği ve İnsan-YZ Kodlarının
Karşılaştırmalı İncelenmesi

Yazılım mühendisliğinde kodun kolay anlaşılabilir ve
sürdürülebilir olması, yalnızca teknik doğruluk değil, aynı
zamanda kodun okunabilirliğiyle de yakından ilişkilidir. Bu
kavram, kodun yapısal düzeni, stil uyumu ve geliştirici
açısından kavranabilirliği gibi birçok boyutu içinde barındırır.
Özellikle yapay zeka temelli otomatik kod üretim araçlarının
yazılım geliştirme süreçlerine dahil olmasıyla, bu araçların
oluşturduğu kodların insanlar tarafından yazılanlarla
karşılaştırmalı olarak incelenmesi, günümüzde önemli bir
araştırma alanı haline gelmiştir. Bu bölümde, Python dilinde
yazılmış örnekler üzerinden yapılan analizler ışığında,
geleneksel geliştirici kodları ile YZ destekli üretimlerin
okunabilirlik düzeyleri karşılaştırmalı olarak ele alınmaktadır.

Kod okunabilirliği, geliştirici deneyimini etkileyen ve yazılım
bakım sürecini doğrudan ilgilendiren bir faktördür. Konuya
ilişkin yapılan bazı erken dönem araştırmalar, okunabilirliğin
yalnızca biçimsel kurallarla değil, aynı zamanda yorum
satırlarının kalitesi, anlamlı isimlendirme tercihleri ve kodun
genel yapısıyla doğrudan bağlantılı olduğunu ortaya
koymuştur. Örneğin, Buse ve Weimer [7] tarafından
geliştirilen otomatik ölçüm modeli, değişken isimleri,
açıklamalar ve satır yapılarının okunabilirlik üzerindeki
belirleyici etkisine dikkat çekmiştir. Posnett ve arkadaşları
[22] ise bu faktörlerin yazılımın bakım süresi ve hata
oranlarıyla da ilişkili olduğunu vurgulamıştır. Python
ekosisteminde, PEP 8 gibi kılavuzlar bu yapıyı
standartlaştırmak adına oluşturulmuş önemli çerçeveler
arasında yer almaktadır. Pylint gibi araçlar da bu kurallara
uygunluk açısından kodları değerlendirmek için yaygın olarak
kullanılmaktadır.

Geleneksel yazılım projelerinde, geliştiriciler genellikle
ihtiyaçlara göre dokümantasyon ekleyip isimlendirme
tercihlerini bağlama uygun biçimde şekillendirir. Ancak insan
hataları, zaman baskısı veya yetersiz deneyim gibi nedenlerle
stil hataları ya da karmaşık yapılandırmalar görülebilir.
Sommerville’in [26] belirttiği üzere, insanlar genellikle
duruma özel kod yazımıyla bağlamsal olarak zengin ama
biçimsel olarak değişken örnekler üretmektedir. Bu da kodun
okunabilirliğini doğrudan etkileyen unsurlar arasında yer alır.
Statik inceleme araçları bu noktada stil ihlallerini tespit
ederek geliştiricilere yön gösterebilir; ancak okunabilirlik
yalnızca otomatik kurallarla değil, geliştiricinin sezgisel
değerlendirmesiyle de ölçülmelidir [25]. Vaithilingam ve
arkadaşları [27], YZ kod üretim araçlarının geliştirici
beklentilerine uygunluğunu değerlendirirken, bu araçların
ürettiği kodların okunabilirliğinin, geliştiricilerin bağlamsal
ihtiyaçlarına göre değişkenlik gösterdiğini ve bazen fazla genel
yorumlar içerdiğini ortaya koymuştur.

YZ tarafından üretilen kodlarda ise farklı bir tablo ortaya
çıkmaktadır. Bu sistemler, büyük çaplı örnek veri kümeleri
üzerinde eğitildikleri için genellikle kalıplaşmış ve stil
açısından tutarlı sonuçlar verir. Chen ve arkadaşları [9],
GitHub Copilot’un yaygın örüntülere dayalı kod ürettiğini
ancak bazen bağlamdan uzak yapılar içerdiğini belirtmiştir. YZ
destekli üretimlerde görülen isimlendirme alışkanlıkları,
yorum eksiklikleri ve gereksiz tekrarlar gibi unsurlar kodun
anlaşılabilirliğini olumsuz etkileyebilir. Öte yandan Nguyen ve
diğerleri [20], Python’da YZ tarafından oluşturulan kodlarda
stil ihlallerinin daha sık olduğunu; ancak bu hataların çoğunun
biçimsel (örneğin girinti, boşluk gibi) düzeyde olduğunu ve
kolayca düzeltilebildiğini ifade etmiştir. Çalışmamızda,
Bolt.New sisteminin ürettiği kodlar üzerinde yapılan Pylint
incelemesi, bu tip stil bozulmalarının sıklığını ve etkisini
sistematik olarak ele almayı amaçlamaktadır.

Kodların okunabilirliğine dair insan ve YZ üretimi örneklerin
karşılaştırılması kaynaklarda sınırlı sayıda incelenmiştir. Imai
[16], basit görevlerde Copilot’un oluşturduğu kodların insan
yazımı kodlara benzer seviyede okunabilir olduğunu; ancak
daha karmaşık algoritmalarda sezgisel kavrayış açısından

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 29

yetersiz kaldığını ortaya koymuştur. Ayrıca, Scalabrino ve
diğerleri [25] tarafından yapılan bir çalışmada, YZ tarafından
oluşturulan kodlar, geliştiriciler tarafından daha az
anlaşılabilir bulunmuş ve bu durumun, YZ araçlarının
genellikle açıklayıcı yorum üretmede zayıf kalmasına
bağlandığı ifade edilmiştir. Bu noktada, çalışmamız
Bolt.New’un oluşturduğu kodları yorum satırları,
isimlendirme pratikleri ve yapı düzeni üzerinden inceleme
ederek daha kapsamlı bir değerlendirme sunmaktadır.

Kaynaklarda, Copilot gibi sistemlere odaklanan okunabilirlik
analizleri bulunmakla birlikte, Bolt.New gibi daha yeni veya
özelleşmiş üretim sistemlerine dair değerlendirmeler oldukça
kısıtlıdır. Ayrıca Python özelinde stil rehberleri temel alınarak
yapılan karşılaştırmalar da yeterince geniş bir örneklem
içermemektedir. Bu araştırma, GitHub’dan 2019 öncesine ait,
insanlar tarafından yazılmış Python kodları ile Bolt.New
tarafından oluşturulan kodları, Pylint sonuçları bağlamında
karşılaştırarak, YZ ile insan üretimi kodların okunabilirlik
düzeyleri açısından güçlü ve zayıf yönlerini belirlemeyi
hedeflemektedir. Bu kapsamda yapılan analizler, gelecekteki
araştırmalar ve geliştirici araçlarının evrimi için önemli bir
çerçeve sunmaktadır.

2.5. Kod Karmaşıklığı ve Performans Analizi

Yazılım mühendisliğinde kod karmaşıklığı, bir yazılımın
anlaşılabilirliği, test edilebilirliği ve sürdürülebilirliği üzerinde
doğrudan etkili temel bir kriter olarak değerlendirilmektedir.
Karmaşıklık, yazılımın kontrol yapısı, organizasyonu ve boyutu
gibi çeşitli özelliklerine bakılarak belirlenmekte ve yazılımın
geliştirilmesi ile bakım süreçlerindeki potansiyel zorlukları
ortaya koymaktadır. Yapay zeka (YZ) destekli kod üretim
teknolojilerinin kullanımının yaygınlaşmasıyla, bu tür
sistemlerin oluşturduğu kodların karmaşıklık düzeyi,
geleneksel insan eliyle yazılan kodlarla kıyaslandığında dikkat
çeken bir araştırma alanı olmuştur. Bu bölümde, kod
karmaşıklığı kavramı, ölçüm teknikleri ve YZ ile insan yazımı
kodların bu açıdan karşılaştırılması, mevcut literatür ışığında
ele alınmaktadır. Araştırmamız kapsamında, Bolt.New
tarafından üretilen Python betiklerinin Pylint ile inceleme
edilmesi, bu iki kod üretim biçimi arasındaki karmaşıklık
farklarını değerlendirme imkânı sunmaktadır.

Yazılım alanında karmaşıklığın ölçülmesi uzun süredir çeşitli
metriklerle standardize edilmiştir. McCabe’in [18] geliştirdiği
siklomatik karmaşıklık ölçütü, kontrol akış grafiğindeki
bağımsız yol sayısını hesaplayarak, yazılımın karmaşıklık
düzeyini belirlemede öncü bir yaklaşım sunmuştur. McCabe,
bu karmaşıklık seviyesinin yüksek olması durumunda hata
olasılığının arttığını ve test aşamalarının zorlaştığını ileri
sürmüştür [18]. Aynı zamanda, Halstead [14], işteçler ve
işlenenler gibi kod bileşenlerini esas alan ölçütler geliştirerek,
yazılımın karmaşıklığını farklı bir boyutta değerlendirmiştir.
Bu metrikler, Pylint gibi statik inceleme araçlarının temel
ölçüm yapılarından biri olarak kabul görmektedir [23]. Bu
çalışmada, Pylint’in sunduğu siklomatik karmaşıklık ölçümleri
gibi metrikler doğrultusunda Bolt.New ve insan kaynaklı
kodların karşılaştırılması hedeflenmiştir.

Klasik yazılım geliştirme yöntemlerinde, insan tarafından
yazılmış kodların karmaşıklık düzeyi çoğunlukla geliştiricinin
tecrübesi, kullandığı programlama dili ve projenin
ihtiyaçlarına göre şekillenmektedir. Sommerville [26],
deneyimli geliştiricilerin daha modüler ve sade kod yazma
eğiliminde olduklarını; ancak zaman baskısı, belgelendirme
eksikliği gibi etmenlerin bu kodları daha karmaşık hale
getirebildiğini ifade etmiştir. İnsan yazımı kodlarda rastlanan
iç içe geçmiş döngüler veya uzun işlev blokları gibi yapılar,
genellikle statik inceleme araçları sayesinde tespit edilerek
sadeleştirilebilmektedir [2]. Bununla birlikte, insan
geliştiricilerin sahip olduğu bağlamsal bilgi, çoğu zaman daha
sezgisel ve gereksinimlere uygun çözümler üretmelerine
olanak tanımaktadır. Bu bağlamda, çalışmamızda kullanılan
insan yazımı Python kodları, 2019 öncesinde GitHub
üzerinden alınmış ve karşılaştırmalarda referans veri olarak
kullanılmıştır.

YZ tabanlı kod üretim sistemlerinin karmaşıklık düzeyine
etkisi, kaynaklarda hem olumlu yönleri hem de
sınırlamalarıyla birlikte tartışılmaktadır. Hendrycks ve
arkadaşları [15], APPS veri kümesi üzerinden yapılan
analizlerde, YZ modellerinin karmaşık programlama
görevlerinde insan düzeyinde performansa yaklaşabildiğini,
ancak bağlamsal derinlik gerektiren senaryolarda hâlâ
sınırlılıklar gösterdiğini ortaya koymuştur. Chen ve arkadaşları
[9], GitHub Copilot gibi araçların eğitim verilerindeki kalıpları
izleyerek genellikle optimize edilmiş kodlar oluşturduğunu;
fakat bağlamdan bağımsız şekilde zaman zaman gereksiz
karmaşık yapıların üretilebildiğini belirtmiştir. YZ, benzer işlevi
gerçekleştiren alternatif bloklar oluşturarak kod hacmini
artırabilmektedir [16]. Öte yandan, Li ve diğerlerinin [17]
gerçekleştirdiği çalışmada, AlphaCode gibi gelişmiş
modellerin bazı yarışma tipi problemleri insan yazımı
kodlardan daha az karmaşık çözümlerle tamamlayabildiği
gözlemlenmiştir. Bu çelişkili bulgular, YZ tarafından
oluşturulan kodların karmaşıklığının, kullanılan modelin
mimarisi ve eğitildiği veri kümelerinin niteliğiyle doğrudan
ilişkili olduğunu ortaya koymaktadır [1]. Bu bağlamda,
çalışmamız Bolt.New tarafından oluşturulan Python
kodlarının Pylint analizine tabi tutularak, insan eliyle yazılmış
örneklerle karşılaştırılmasını amaçlamaktadır.

YZ ile insan yazımı kodların karmaşıklık düzeyi açısından
değerlendirilmesi, akademik alanda henüz yeterince
derinlemesine ele alınmamış bir konu olarak dikkat
çekmektedir. Dakhel ve arkadaşları [10], GitHub Copilot’un
basit görevlerde daha sade çözümler üretse de, karmaşık
algoritmalarda daha fazla kontrol yapısı barındırdığını
göstermiştir. Benzer şekilde, Nguyen ve diğerleri [20], Python
dilinde YZ tarafından yazılan kodların, özellikle uzun
fonksiyonlar ya da gereksiz değişken tanımları gibi unsurlar
nedeniyle daha karmaşık hale gelebildiğini ifade etmiştir.
Ancak bu çalışmalar çoğunlukla yaygın kullanılan araçlar
üzerine odaklanmıştır ve Bolt.New gibi daha az bilinen
sistemlerin karmaşıklık performansı üzerine sınırlı sayıda veri
sunulmaktadır. Ayrıca, Python'a özel metrikler (örneğin PEP 8
uyumluluğu veya modülerlik düzeyi) dikkate alınarak yapılan
karşılaştırmalar oldukça kısıtlıdır.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 30

Bu alandaki mevcut boşluklar, yürütmekte olduğumuz
çalışmanın önemini ortaya koymaktadır. Bolt.New ile
oluşturulan Python kodlarının, 2019 öncesi GitHub
verilerinden alınan insan yazımı örneklerle Pylint aracılığıyla
karşılaştırılması sayesinde, yapay zeka destekli çözümlerin
karmaşıklık bakımından avantajları ve dezavantajları
değerlendirilebilecektir. Pylint’in sunduğu detaylı metrikler,
kodun test edilme kolaylığı ve sürdürülebilirliği açısından
kapsamlı bir değerlendirme yapılmasına olanak tanımaktadır.
Bu bölümde sunulan literatür derlemesi, inceleme sürecinde
izlenecek teorik çerçevenin temellerini oluşturmayı
hedeflemektedir. Çünkü son yıllarda yazılım mühendisliği ile
yapay zeka arasındaki entegrasyon, kod üretim süreçlerini
dönüştürerek hem akademik hem de endüstriyel alanda
büyük bir ilgi odağı olmuştur. Geleneksel insan yazımı kodlar
ile YZ destekli kod üretim araçlarının karşılaştırılması, çeşitli
kriterler üzerinden yapılan birçok çalışma ile geniş bir literatür
oluşturmuştur. Bu literatür arasında kod kalitesi, hata oranı,
okunabilirlik ve karmaşıklık gibi ölçütler bulunmaktadır. Ancak
bu alanda hâlâ önemli boşluklar mevcuttur. Bu bölüm,
literatürdeki eksiklikleri belirleyerek, çalışmamızın bu
boşlukları nasıl doldurduğunu ve yazılım mühendisliği alanına
sunduğu katkıları tartışmaktadır. Özellikle, Bolt.New
tarafından üretilen Python kodlarının 2019 öncesi GitHub
kodlarıyla Pylint analiziyle karşılaştırılması, literatürdeki
mevcut sınırlılıkları ele almak için yeni bir bakış açısı
sunmaktadır.

Literatür, YZ destekli kod üretim araçlarının performansını
değerlendiren pek çok çalışma içerse de, bu çalışmalar
genellikle daha yaygın araçlara (örneğin, GitHub Copilot,
Codex) odaklanmaktadır [9, 10]. Bolt.New gibi yeni ve
özelleşmiş araçların kod kalitesi, hata oranı, okunabilirlik ve
karmaşıklık açısından sistematik bir şekilde incelendiği
çalışmalar ise oldukça sınırlıdır. Bu durum, YZ araçlarının
çeşitliliğini ve farklı bağlamlardaki etkinliklerini anlamada bir
boşluk oluşturmuştur. Çalışmamız, Bolt.New’un Python’a
özgü kod üretim performansını Pylint gibi yaygın bir statik
inceleme aracıyla değerlendirerek, bu eksikliği gidermeyi
amaçlamaktadır.

Bir diğer önemli boşluk ise YZ ve insan yazımı kodların
sistematik karşılaştırmalarına dair deneysel çalışmaların
azlığıdır. Mevcut literatür genellikle YZ kodlarının genel
avantajlarını (örneğin, üretkenlik artışı) veya sınırlılıklarını
(örneğin, güvenlik açıkları) tartışmakta, fakat kod kalitesi,
hata oranı, okunabilirlik ve karmaşıklık gibi ölçütlerin bir arada
değerlendirildiği karşılaştırmalar pek sık yapılmamaktadır [21,
16]. Örneğin, Nguyen ve diğerleri [20], Python’da YZ
kodlarının stil ihlallerine yatkınlığını incelemiş, ancak bu
kodların karmaşıklık veya hata oranı gibi diğer boyutlarını
insan yazımı kodlarla karşılaştırmamıştır. Çalışmamız, Pylint
analiziyle bu ölçütleri bir arada değerlendirerek, YZ destekli
kod üretiminin çok boyutlu bir analizini sunmaktadır.

Python bağlamında, PEP 8 gibi stil rehberleri ve siklomatik
karmaşıklık gibi metrikler dikkate alınarak yapılan
karşılaştırmalar da kaynaklarda yeterince temsil
edilmemektedir. Scalabrino ve diğerleri [25], YZ kodlarının

okunabilirlik açısından insan yargısına dayalı
değerlendirmelerini incelemiş, ancak otomatik araçlarla
(örneğin, Pylint) yapılan objektif analizler sınırlı kalmıştır.
Benzer şekilde, Li ve diğerleri [17], YZ’nın rekabetçi
programlama görevlerinde karmaşıklık avantajlarını tartışmış,
ancak günlük yazılım geliştirme senaryolarında Python
kodlarının karmaşıklık profilleri üzerine odaklanmamıştır.
Çalışmamız, 2019 öncesi GitHub’dan alınan insan yazımı
Python kodlarını referans alarak, Bolt.New kodlarının PEP 8
uyumluluğu ve karmaşıklık metriklerini Pylint ile inceleme
ederek bu boşluğu doldurmayı hedeflemektedir.

Ayrıca, kaynaklarda YZ destekli kod üretiminin hata oranları
üzerine yapılan çalışmalar, genellikle güvenlik açıkları veya
bağlamsal hatalar gibi spesifik hata türlerine odaklanmaktadır
[21]. Ancak, sözdizimi, stil ve mantıksal hatalar gibi geniş bir
hata yelpazesi üzerine yapılan karşılaştırmalar eksiktir.
Çalışmamız, Pylint’in sağladığı detaylı hata raporlarını
kullanarak, Bolt.New kodlarının hata türlerini ve sıklıklarını
insan yazımı kodlarla karşılaştırarak daha kapsamlı bir
inceleme sunmaktadır. Bu yaklaşım, YZ kodlarının pratik
uygulanabilirliğini değerlendirmede önemli bir katkı
sağlamaktadır.

Literatürdeki bu boşluklar, çalışmamızın özgün katkısını açıkça
ortaya koymaktadır. İlk olarak, Bolt.New gibi daha az
incelenmiş bir YZ aracının Python kodlarındaki performansını
sistematik bir şekilde inceleme ederek literatüre yeni bir veri
noktası eklemekteyiz. İkinci olarak, kod kalitesi, hata oranı,
okunabilirlik ve karmaşıklık gibi ölçütleri bir arada ele alarak,
YZ ve insan yazımı kodların bütüncül bir karşılaştırmasını
sunmaktayız. Üçüncü olarak, Pylint’in statik inceleme
yeteneklerini kullanarak, Python’a özgü stil ve karmaşıklık
metriklerine odaklanarak, dil-spesifik bir bağlamda
derinlemesine bir inceleme gerçekleştirmekteyiz.

Sonuç olarak, bu çalışma, literatürdeki mevcut boşlukları
doldurarak, YZ destekli kod üretiminin yazılım mühendisliği
süreçlerine entegrasyonunu daha iyi anlamayı
amaçlamaktadır. Bolt.New tarafından üretilen Python
kodlarının Pylint analiziyle değerlendirilmesi, YZ araçlarının
avantajlarını ve sınırlılıklarını ortaya koyarak, gelecekteki
yazılım geliştirme pratikleri için rehber bir çerçeve
sunmaktadır. Bu bölümde ele alınan literatür, çalışmamızın
teorik temelini güçlendirmekte ve özgün katkısını
desteklemektedir.

Araştırma Boşluğu ve Katkı: Kaynaklarda yapay zeka destekli
kod üretim araçlarının özellikle Python dili bağlamında kalite,
okunabilirlik ve karmaşıklık gibi metrikler açısından sistematik
olarak karşılaştırıldığı çalışmalar sınırlıdır. Bu çalışma,
Bolt.New aracı ile üretilen Python kodlarını 2019 öncesi
GitHub kodları ile karşılaştırarak bu boşluğu doldurmakta ve
yazılım mühendisliği literatürüne hem akademik hem de
pratik katkı sağlamaktadır.Formun Altı

3. Veri Kümesi ve Yöntem

Bu çalışmada, yapay zeka destekli ve insan tarafından yazılmış
Python programlarının genel kalite düzeyleri, statik inceleme
aracı Pylint kullanılarak karşılaştırılmıştır. Pylint değeri,

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 31

inceleme edilen Python betiklerinde tespit edilen çeşitli kalite
ölçütlerine dayalı olarak 10 üzerinden hesaplanan birleşik bir
puandır. Bu puan; kodda bulunan hatalar, uyarılar, stil
uyumsuzlukları ve yapısal iyileştirme önerileri gibi ögelere
verilen ağırlıklar doğrultusunda otomatik olarak
belirlenmektedir. Bu nedenle Pylint değeri, kodun hem stil
kurallarına uyumu hem de temel yapısal doğruluğu hakkında
genel bir kalite göstergesi olarak değerlendirilebilir.

Çalışmada kullanılan programlar, satır sayılarına göre basit
(20–50 satır), orta (51–150 satır) ve karmaşık (151+ satır)
olmak üzere üç kategoriye ayrılmıştır. Her bir kategoriden
rastgele seçilen 10’ar programla toplam 30 programlık bir veri
kümesi oluşturulmuştur. Bu programlar, asal sayı kontrolü
gibi temel görevlerden web kazıyıcı gibi daha karmaşık
uygulamalara kadar geniş bir yelpazeyi kapsamaktadır. İnsan
yapımı programlar, gerçek dünya kodlama pratiklerini temsil
etmesi amacıyla GitHub açık kaynak depolarından seçilmiştir.
YZ üretimi programlar ise Bolt.New aracı kullanılarak, aynı
işlevsel hedefleri gerçekleştirecek şekilde oluşturulmuş ve iki
grup arasında görev uyumluluğu sağlanmıştır. Programların
listesi ve detayları aşağıda Çizelge- 1’de sunulmaktadır.

Çizelge- 1: Program Listeleri ve Ayrıntıları

Zorluk
Seviyesi

Program
Adı

Satır
Sayısı

Açıklama

Basit

Prime
Checker

28 Asal sayı kontrolü, 2018.

Factorial 30 Faktöriyel hesaplama, 2018.

Fibonacci 35 Fibonacci dizisi, 2017.

Palindrom
e Check

25 Palindrom kontrolü, 2018.

Simple
GCD

40 En büyük ortak bölen, 2017.

Random
Password

45 Rastgele şifre oluşturucu, 2016.

Temperat
ure
Convert

38 Sıcaklık çevirici, 2016.

Even Odd
Check

22 Çift/tek kontrolü, 2018.

Simple
Sum

33 N sayının toplamı, 2017.

Basic
Timer

42 Basit geri sayım, 2016.

Orta

Bubble
Sort

60 Kabarcık sıralama, 2017.

Binary
Search

70 İkili arama, 2017.

Word
Count

85 Kelime sayacı, 2016.

CSV
Reader

90 CSV dosya okuyucu, 2016.

Quick Sort 75 Hızlı sıralama, 2017.

File
Backup

120 Dosya yedekleme, 2016.

Hangman 95 Adam asmaca oyunu, 2018.

Matrix
Multiply

110 Matris çarpımı, 2017.

Simple
Encrypt

80 Sezar şifresi, 2016.

To-Do List 130 Görev listesi, 2018.

Karmaşık

Sudoku
Solver

200 Sudoku çözücü, 2016.

Graph DFS 180 Derinlik öncelikli arama, 2017.

Tic-Tac-
Toe YZ

250 Yapay zekalı XOX, 2016.

Maze
Generator

220 Labirent oluşturucu, 2017.

Image
Resizer

190 Görüntü boyutlandırma, 2016.

Chat Client 280 Basit sohbet istemcisi, 2016.

Web
Scraper

300 Web kazıyıcı, 2018.

Network
Ping

350 Ağ tarayıcı, 2016.

Text
Adventure

260 Metin tabanlı macera, 2018.

Data
Plotter

400 Veri görselleştirme, 2016.

Kod kalitesini değerlendirmek için Python ekosisteminde
yaygın bir statik inceleme aracı olan Pylint kullanılmıştır.
Analizlerde, aşağıdaki kriterler ölçülmüştür: genel Pylint
değeri (0–10), hata sayısı, siklomatik karmaşıklık, stil ihlal
sayısı, kod tekrar oranı ve dokümantasyon puanı. Bu
metrikler, kodun teknik doğruluğu, sürdürülebilirliği,
okunabilirliği ve modülerliği gibi çok boyutlu özelliklerini
değerlendirmek için seçilmiştir. Programların zorluk düzeyine
göre sınıflandırılması, YZ ve insan performansının görev
karmaşıklığı arttıkça nasıl değiştiğini anlamayı mümkün
kılmıştır; bu, kaynaklarda YZ’nin karmaşık yazılım geliştirme
senaryolarındaki etkisine dair eksik bir noktayı ele almaktadır.

Bu çalışma, YZ destekli yazılım geliştirme üzerine yapılan
araştırmalara, Bolt.New’un insan kodlama performansına
kıyasla sunduğu katkıları ve eksiklikleri ortaya koyarak değer
katmaktadır. Önceki çalışmaların genellikle GitHub Copilot
gibi popüler araçlara odaklandığı göz önüne alındığında [9,
10], bu çalışma daha az incelenmiş bir araç olan Bolt.New’u
ele alarak ve Python’a özgü standartlara (örneğin, PEP 8
uyumluluğu) odaklanarak farklılaşmaktadır. Bulgular,
geliştiricilere, akademisyenlere ve YZ araç tasarımcılarına,
YZ’nin kodlama süreçlerine entegrasyonunun pratik sonuçları
hakkında bilgi sunmayı ve farklı zorluk seviyelerindeki
projelerde otomasyon ile insan denetimi arasında nasıl bir
denge kurulabileceğini aydınlatmayı amaçlamaktadır.

4. Bulgular

Analiz öncesinde, her iki grubun (İnsan ve YZ) Pylint
skorlarının dağılımlarının normal olup olmadığı Shapiro-Wilk
sınaması ile değerlendirilmiştir. Shapiro-Wilk sınaması,
özellikle küçük örneklemlerde (n < 50) veri dağılımının normal
olup olmadığını sınamak için yaygın biçimde kullanılmaktadır.
Test sonuçları Çizelge- 2’de verilmiştir.

Çizelge- 2: Pylint Skorlarının Normal Dağılıma Uygunluk Testi
(Shapiro-Wilk)

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 32

Grup
Test
İstatistiği

p-değeri Dağılım Uygunluğu

İnsan 0,957 0,259 Normal dağılır (p > 0,05)

Yapay
Zeka

0,922 0,031 Normal dağılmaz (p < 0,05)

Shapiro-Wilk sınaması sonuçlarına göre, İnsan grubuna ait
Pylint skorlarının normal dağıldığı görülmekle birlikte (p =
0,259), Yapay Zeka grubunun skorlarının dağılımı istatistiksel
olarak anlamlı şekilde normal dağılımdan sapmaktadır (p =
0,031). Bu nedenle, iki grup arasında ortalama farkı test
ederken parametrik olmayan Mann-Whitney U sınaması
tercih edilmiştir. Bu test, dağılım varsayımına gerek
duymaksızın iki bağımsız grubun sıralama temelli farklarını
güvenilir biçimde ölçme olanağı sağlamaktadır. Bu yöntem,
özellikle stil, yapı ve hata temelli kalite puanlarının
karşılaştırılmasında daha tutarlı sonuçlar sunmaktadır.

Yapay zeka destekli ve insan eliyle yazılmış Python kodlarının
içerdiği hata sayılarının karşılaştırılması amacıyla yapılan
analizlerde, her iki grup için Pylint aracılığıyla belirlenen
toplam hata sayısı değerlendirilmiştir. Kodlar, daha önce
belirtildiği üzere, aynı işlevleri gerçekleştiren YZ ve İnsan
üretimi eşleştirilmiş programlardan oluşmaktadır.

Veri dağılımının incelenmesinde, YZ grubunun hata sayılarının
normal dağılım göstermediği tespit edilmiştir (p < 0,05,
Shapiro-Wilk sınaması sonuçları verinin inceleme öncesinde
belirtilmiştir). Bu nedenle, iki grup arasında hata sayısı
bakımından istatistiksel anlamlılık analizinde parametrik
olmayan Mann-Whitney U sınaması tercih edilmiştir. Bu test,
dağılım varsayımı gerektirmeyen ve küçük örneklemlerde
güvenilir sonuçlar sunan sıralama temelli bir yöntemdir.

Siklomatik karmaşıklık değerlerinin gruplar arası dağılımları
incelendiğinde, verilerin normal dağılıma uymadığı ve
çarpıklık içerdiği gözlemlenmiştir. Ayrıca metrik doğası gereği
sınırlı ve uç değerlere açık bir dağılım yapısına sahip
olduğundan, bu tür veriler için parametrik testlerin
varsayımlarını karşılamadığı değerlendirilmiştir. Bu nedenle,
yapısal karmaşıklık düzeylerinin insan ve yapay zeka üretimi
kodlar arasında karşılaştırılmasında parametrik olmayan
Mann-Whitney U sınaması kullanılmıştır. Bu test, sıralama
temelli bir inceleme sağladığından, dağılım yapısından
bağımsız olarak güvenilir bir karşılaştırma aracı olarak
değerlendirilmiştir.

Çizelge- 3: Siklomatik Karmaşıklık Değerlerinin Normal Dağılıma
Uygunluk Testi (Shapiro-Wilk)

Grup
Shapiro-Wilk
İstatistiği

p-değeri
Normal
Dağılıma
Uygunluk

İnsan 0,908 0,013 Hayır

YZ 0,896 0,007 Hayır

Shapiro-Wilk sınaması sonuçlarına göre, hem insan hem de YZ
gruplarına ait siklomatik karmaşıklık verileri normal dağılıma
uygun değildir (p < 0,05). Bu nedenle, bu değişken için
parametrik testler yerine parametrik olmayan Mann-Whitney
U sınaması kullanılması metodolojik olarak uygun
görülmektedir.

Çizelge- 4: Stil İhlali Sayısı ve Dokümantasyon Puanı için Shapiro-
Wilk Normal Dağılım Testi Sonuçları

Grup
Shapiro-
Wilk
İstatistiği

p-
değeri

Normal
Dağılım
Uygunluğu

İnsan – Stil 0,881 0,003 Hayır
Yapay Zeka – Stil 0,933 0,059 Evet
İnsan – Dokümantasyon 0,943 0,110 Evet
Yapay Zeka – Dokümantasyon 0,934 0,061 Evet

Shapiro-Wilk sınaması sonuçlarına göre, stil ihlali sayısı
değişkeni insan grubunda normal dağılım göstermemektedir
(p = 0,003), bu nedenle bu değişken için parametrik olmayan
inceleme yöntemleri tercih edilmiştir. Dokümantasyon puanı
ise her iki grup için de normal dağılmış görünmektedir (p >
0,05). Ancak örneklem büyüklüğünün sınırlı olması ve tüm
analizlerde metodolojik tutarlılığı sağlamak amacıyla, her iki
değişken için de Mann-Whitney U sınaması kullanılmıştır. Bu
yaklaşım, analizlerin güvenilirliğini ve yorumlanabilirliğini
artırmak amacıyla tercih edilmiştir.

Veri setinde her program için Pylint tarafından üretilen bu
skorlar, yapay zeka ve insan üretimi gruplar arasında
karşılaştırılmış ve istatistiksel inceleme için parametrik
olmayan Mann-Whitney U sınaması kullanılmıştır. Elde edilen
sonuçlar, yapay zeka tarafından yazılan kodların kalite
skorlarının insan yazımı kodlara kıyasla anlamlı düzeyde daha
yüksek olduğunu göstermiştir (U = 879.50, p < 0,001). Çizelge-
5, her iki gruba ait betimsel istatistikleri ve test bulgularını
sunmaktadır. (Çizelge- 5’te görüldüğü gibi).

Çizelge- 5: İnsan ve Yapay Zeka Tarafından Yazılmış Kodların Pylint
Skorlarına İlişkin Karşılaştırma

Kod
Türü

Ortalama
Skor

n
Standar
t Sapma

Mann-
Whitney U

p-değeri

İnsan 7.12 30 ±0,9

YZ 8.73 30 ±0,7 879.50 < 0,001

Şekil- 1. Pylint Skoru Dağılımı: İnsan ve YZ

Bu bulgular, Bolt.New gibi yapay zeka araçlarının genel olarak
Pylint tarafından önerilen Python stil ve yapısallık

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 33

standartlarına daha yüksek düzeyde uyum sağladığını ortaya
koymaktadır. Stil ihlallerinin, gereksiz yapı tekrarlarının ve
potansiyel hata noktalarının daha az olması, bu araçların
statik inceleme puanlarında öne çıkmasını sağlamaktadır.
Ancak bu skorlar, bağlamsal anlam, algoritmik sezgi veya
işlevsel yaratıcılık gibi nitelikleri doğrudan ölçmediğinden,
analizlerin ilerleyen bölümlerinde okunabilirlik, hata yapısı ve
karmaşıklık gibi ek metriklerle desteklenmesi gerekmektedir.
Pratik olarak, bu durum geliştiricilerin temel sözdizimsel
doğruluğu sağlamak ve PEP8 uyumunu korumak için YZ
tabanlı araçlardan faydalanabileceğini göstermektedir. Ancak
karmaşık senaryolarda bağlamsal doğruluğun kontrolü için
insan denetimi kritik önemdedir.

Çizelge- 6: İnsan ve Yapay Zeka Kodlarının Hata Sayısı
Karşılaştırması

Kod
Türü

Ortalam
a Hata
Sayısı

n
Standar
t Sapma

Mann-
Whitney

U
p-değeri

İnsan 7,03 30 ±2,8

YZ 2,77 30 ±1,9 159,0 < 0,001

Şekil- 2. Hata Sayısı Dağılımı: İnsan ve YZ (Şekil- 2’de sunulduğu
gibi).

Elde edilen sonuçlar, YZ tarafından yazılan kodların insan
yazımı kodlara kıyasla anlamlı şekilde daha az hata içerdiğini
göstermektedir (U = 159,00, p < ,001). Ortalama hata sayısı
açısından bakıldığında, YZ kodlarında tespit edilen hata
miktarı, insan kaynaklı kodlara göre yaklaşık %60 daha
düşüktür. Bu bulgu, yapay zeka destekli kod üretim araçlarının
özellikle temel söz dizim ve mantık doğruluğu sağlama
konusunda daha başarılı olduğunu göstermektedir.
Kaynaklarda yer alan çalışmalar da (örneğin Chen ve
arkadaşları [9]) bu durumu, YZ sistemlerinin büyük kod veri
kümeleri üzerinden öğrenilen yaygın ve “güvenli” yapıları
tercih etmesiyle açıklamaktadır.

Bununla birlikte, düşük hata oranı tek başına kodun işlevsellik,
yaratıcılık veya bağlamsal bütünlük açısından ideal olduğunu
garanti etmez. Hata oranı, kodun teknik doğruluğuna dair
güçlü bir gösterge olsa da, kodun anlaşılırlığı, modülerliği ve
sürdürülebilirliği gibi faktörler de yazılım kalitesinin ayrılmaz

parçalarıdır. Bu nedenle ilerleyen analizlerde, stil ihlalleri,
dokümantasyon kalitesi ve karmaşıklık gibi boyutlar da
bütüncül bir değerlendirme sağlamak üzere ele alınacaktır.

4.1. Siklomatik Karmaşıklık Karşılaştırması

Yapay zeka (YZ) ve insan tarafından yazılmış Python
programlarının yapısal karmaşıklık düzeyleri, siklomatik
karmaşıklık metriği ile değerlendirilmiştir. Siklomatik
karmaşıklık, yazılımın kontrol akışındaki bağımsız yol sayısını
hesaplayarak programın ne ölçüde dallanma ve kontrol yapısı
içerdiğini ortaya koyan önemli bir ölçüttür [18]. Bu metrik,
yazılımın test edilebilirliğini, bakım kolaylığını ve hata
potansiyelini doğrudan etkileyen temel yapısal unsurlar
arasında yer almaktadır.

Her iki grup için dağılım normal olmadığından (önceki Shapiro-
Wilk sınaması sonuçlarına dayanarak), karşılaştırma amacıyla
Mann-Whitney U sınaması kullanılmıştır. Bu test, farklı
dağılımlara sahip bağımsız iki grubun sıralama temelli
farklarını istatistiksel olarak değerlendirmek için uygun bir
yöntemdir.

Çizelge- 7: Siklomatik Karmaşıklık Değerlerinin İnsan ve Yapay
Zeka Kodlarında Karşılaştırılması

Kod
Türü

Ortalama
Karmaşıklık

n
Standart
Sapma

Mann-
Whitne

y U
p-değeri

İnsan 9,43 30 ±3,1

YZ 6,37 30 ±2,5 304,50 0,031

Analiz sonuçları, YZ tarafından yazılan kodların daha düşük
siklomatik karmaşıklık değerlerine sahip olduğunu
göstermektedir (U = 304.50, p = 0,031). Bu durum, yapay zeka
sistemlerinin daha sade, daha az dallanma içeren ve test
edilmesi görece daha kolay kod parçaları üretme eğiliminde
olduğunu düşündürmektedir. Bu bulgu, Bolt.New gibi
sistemlerin yaygın örüntülere dayanarak “güvenli” yapıları
tercih ettiği literatürle örtüşmektedir [20, 17]. İnsan
geliştiricilerin ise genellikle bağlamsal olarak daha özgün ve
karmaşık yapılar üretebildiği, ancak bu yapıların daha yüksek
hata potansiyeli taşıyabileceği gözlemlenmektedir.

Yine de düşük karmaşıklık her zaman daha iyi kalite anlamına
gelmemektedir. Karmaşık işlevleri gerçekleştiren kodların
kaçınılmaz olarak daha yüksek kontrol yapısı içerebileceği
unutulmamalıdır. Bu nedenle, ilerleyen bölümlerde kodların
okunabilirliği ve dokümantasyon kalitesi gibi faktörlerle
birlikte değerlendirilmesi, kalite açısından daha bütüncül bir
bakış sağlayacaktır.

4.2. Stil Uyumu ve Okunabilirlik Karşılaştırması

Yazılım mühendisliğinde kodun okunabilirliği ve
sürdürülebilirliği, yalnızca işlevsel doğrulukla değil, aynı
zamanda stil bütünlüğü ve yeterli açıklayıcılık düzeyiyle de
yakından ilişkilidir. Bu bağlamda, çalışmada hem stil ihlali
sayısı hem de dokümantasyon puanı, kodların okunabilirlik

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 34

düzeylerini temsil eden iki önemli metrik olarak
değerlendirilmiştir.

Verilerin dağılım özellikleri normal olmadığı için, bu iki
değişkenin İnsan ve Yapay Zeka (YZ) grupları arasında
karşılaştırılmasında parametrik olmayan Mann-Whitney U
sınaması uygulanmıştır. Elde edilen sonuçlar Çizelge- 8’de
verilmektedir.

Çizelge- 8: İnsan ve Yapay Zeka Kodlarının Stil İhlali ve
Dokümantasyon Puanlarına İlişkin Karşılaştırma

Ölçüt
Kod
Türü

Ortala
ma

Değer
n

Standa
rt

Sapma

Mann-
Whitney U

p-
değeri

Stil İhlal
Sayısı

İnsan 9,40 30 ±3,4

 YZ 3,77 30 ±2,1 102.00
<
0,001

Dokümanta
syon Puanı

İnsan 44,50 30 ±12,7

 YZ 81,03 30 ±11,3 889.50
<
0,001

Şekil- 3. Dokümantasyon Puan Dağılımı: İnsan ve YZ

Test sonuçları, her iki ölçüt açısından da YZ kodlarının
istatistiksel olarak anlamlı şekilde daha iyi performans
sergilediğini ortaya koymaktadır. Stil ihlalleri açısından, YZ
üretimi kodların daha düşük ihlal sayısıyla daha iyi PEP8
uyumu sağladığı gözlemlenmiştir (U = 102.00, p < 0,001). Bu
durum, yapay zekanın eğitim aldığı büyük kod veri
kümelerindeki yaygın örüntüleri takip ederek daha formal ve
tutarlı çıktılar üretmesinden kaynaklanıyor olabilir.

Şekil- 4. Stil İhlal Sayısı Dağılımı

Öte yandan, dokümantasyon puanları, YZ tarafından yazılan
kodlarda anlamlı biçimde daha yüksektir (U = 889,50, p <
0,001). Bu bulgu, YZ'nin fonksiyonları açıklayan yorumlar,
amaç belirtici satırlar ve genel açıklayıcı metinleri daha
düzenli şekilde yerleştirdiğini göstermektedir. Bu yönüyle YZ
sistemleri, okunabilirlik ve sürdürülebilirlik açısından insan
yazılımcılara göre daha tutarlı dokümantasyon standartlarına
yaklaşabilmektedir.

4.3. Kod Tekrar Oranı Karşılaştırması

Yazılım mühendisliğinde kod tekrar oranı, geliştirilen yazılımın
modülerliği, bakım kolaylığı ve optimizasyon düzeyi açısından
önemli bir kalite göstergesidir. Bu bağlamda, insan ve yapay
zeka üretimi Python kodları arasında kod tekrar oranı
karşılaştırması yapılmıştır.

Veri dağılımı normallik varsayımını karşılamadığından (önceki
bölümlerde Shapiro-Wilk sınaması ile gösterilmiştir),
karşılaştırma için parametrik olmayan Mann-Whitney U
sınaması kullanılmıştır. Analiz bulguları Çizelge-9’da
sunulmaktadır.

Çizelge- 9: İnsan ve Yapay Zeka Kodlarında Kod Tekrar Oranı
Karşılaştırması

Kod
Türü

Ortalama
Tekrar
Oranı

n
Standar
t Sapma

Mann-
Whitney
U

p-değeri

İnsan 17,43 30 ±4,6
YZ 8,17 30 ±2,7 109,00 < 0,001

Elde edilen sonuçlar, yapay zeka üretimi kodların, insan
üretimi kodlara göre daha düşük oranda tekrar içerdiğini ve
bu farkın istatistiksel olarak anlamlı olduğunu göstermektedir
(U = 109.00, p < ,001). YZ tarafından üretilen kodların daha
düşük tekrar oranına sahip olması, bu sistemlerin genellikle
daha modüler, yapılandırılmış ve tekrardan kaçınan (DRY
prensibine uygun) kodlar üretmeye eğilimli olduğunu
göstermektedir.

Bolt.New gibi yapay zeka tabanlı kod üretim sistemleri, eğitim
verilerinde sık rastlanan soyutlama örüntülerine dayanarak
tekrar eden yapıları minimize etme yönünde çıktı
üretebilmektedir. Buna karşın insan yazılımcılar, çözüm

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 35

geliştirirken sıklıkla alışkanlıklarına ya da kısa süreli
hedeflerine bağlı olarak kod tekrarına daha açık yapılar
oluşturabilmektedir.

Ancak bu bulgu, yapay zekanın tekrar içermeyen tüm kodları
bağlamsal olarak anlamlı ve sürdürülebilir yazdığı anlamına
gelmemelidir. Kodun fonksiyonel bölünmesi, bağımsızlık
düzeyi ve genel mimari iç tutarlılığı gibi başka kalite
unsurlarının da ilerleyen bölümlerde inceleme edilmesi
gerekmektedir.

4.4. Zorluk Seviyesine Göre Kalite Ölçüleri
Karşılaştırması

Çizelge- 10: Zorluk Seviyesine Göre Ortalama Kalite Ölçüleri

Zorlu
k

Seviy
esi

Kod
Türü

Pylint
Skoru

Hat
a

Sayı
sı

Siklom
atik

Karma
şıklık

Stil
İhlal
Sayıs

ı

Kod
Tekrar
Oranı

Doküm
antasy

on
Puanı

Basit YZ 9.31 0,7 2.9 1.6 4.5 86.8
 İnsan 7.93 2.7 4.0 4.8 9.5 63.1

Orta YZ 8.73 2.4 5.7 3.5 7.3 82.2
Karm
aşık

YZ 8.16 5.2 10,5 6.2 12.7 74.1

 İnsan 6.33 12.1 16.0 15.1 26.6 28.3

Programların zorluk düzeyine göre ayrılması, yapay zeka ve
insan kaynaklı kodların kalite performanslarını daha detaylı
şekilde ortaya koymayı mümkün kılmıştır. Çizelge- 7’de
gösterildiği üzere, her bir kalite metriği açısından, görev
karmaşıklığı arttıkça insan ve yapay zeka kodları arasındaki
farklar da belirginleşmektedir.

Özellikle Pylint kalite skorları, her üç zorluk düzeyinde de
yapay zeka lehine daha yüksektir. Bu fark, karmaşık
görevlerde daha da artmakta ve YZ sistemlerinin stil, yapı ve
hata önleme konularında daha stabil performans sergilediğini
göstermektedir. İnsan yazımı kodlarda karmaşıklık arttıkça
kalite değeri ciddi biçimde düşmektedir (Basit: 7,93 →
Karmaşık: 6,33), oysa YZ kodlarında bu düşüş sınırlıdır (Basit:
9,31 → Karmaşık: 8,16).

Hata sayıları açısından da benzer bir desen izlenmektedir.
Basit görevlerde YZ ortalama 0,7 hata üretirken, insan
yazılımcılar 2.7 hata üretmiştir. Karmaşık görevlerde bu fark
dramatik şekilde açılmış; YZ için 5,2, insan için ise 12,1 hata
ortalaması tespit edilmiştir.

Siklomatik karmaşıklık değerleri de zorlukla birlikte artarken,
insan kaynaklı kodlarda artış daha keskindir. Bu durum, insan
geliştiricilerin karmaşık görevlerde kontrol akışını daha yoğun
yapılandırdığı, YZ’nın ise daha dengeli bir artış eğilimi
gösterdiğini ortaya koymaktadır.

Stil ihlalleri ve kod tekrar oranı metriklerinde, insan kaynaklı
kodlar karmaşık görevlerde ciddi bozulma göstermekte; YZ
üretimi kodlar ise daha tutarlı kalmaktadır. Örneğin, stil
ihlalleri YZ’da karmaşık görevlerde 6,2’ye çıkarken, insanlarda
bu oran 15,1’e ulaşmıştır. Benzer şekilde, kod tekrar oranı
insanlarda %26,6’ya çıkarken, YZ’da sadece %12,7’de
kalmıştır.

En dikkat çekici farklardan biri de dokümantasyon
kalitesindedir. Karmaşık görevlerde YZ sistemleri ortalama
74.1 puanlık dokümantasyon üretirken, insan geliştiricilerin
bu ortalaması yalnızca 28.3’tür. Bu bulgu, YZ sistemlerinin
karmaşık durumlarda bile açıklayıcılıktan taviz vermemesiyle,
sürdürülebilir kod geliştirme açısından avantaj sağladığını
göstermektedir.

5. Tartışma ve Sonuç

Bu çalışma, yapay zeka destekli Bolt.New aracı ile üretilen
Python kodlarının, insan eliyle yazılmış eşdeğer kodlarla
kalite, hata oranı, siklomatik karmaşıklık, stil uyumu, kod
tekrar oranı ve dokümantasyon metrikleri açısından
sistematik bir karşılaştırmasını sunmaktadır. Analizler, Pylint
gibi Python’a özgü bir statik inceleme aracı kullanılarak
gerçekleştirilmiş ve programların zorluk seviyelerine (basit,
orta, karmaşık) göre sınıflandırılmasıyla, YZ’nin farklı görev
türlerindeki performansına dair ayrıntılı bir Çizelge- ortaya
konmuştur. Bulgular, YZ destekli kod üretiminin özellikle basit
ve orta düzey görevlerde yüksek kalite, düşük hata oranı ve
daha iyi stil uyumu sağladığını; karmaşık görevlerde ise
dokümantasyon ve modülerlik açısından avantaj sunduğunu,
ancak bağlamsal uygunlukta insan yazımı kodlara kıyasla
sınırlılıklar gösterdiğini ortaya koymaktadır.

5.1. Bulguların Kaynaklarla Karşılaştırılması

Çalışmanın bulguları, literatürdeki mevcut çalışmaları hem
desteklemekte hem de yeni bakış açıları sunmaktadır.
Örneğin, Chen ve arkadaşları [9] tarafından Codex tabanlı
GitHub Copilot’un basit görevlerde yüksek doğruluk sunduğu,
ancak bağlamsal hatalar üretebildiği belirtilmiştir. Benzer
şekilde, bu çalışmada Bolt.New’un basit görevlerde (örneğin,
asal sayı kontrolü veya faktöriyel hesaplama) ortalama 9,31
Pylint değeri ile insan yazımı kodlara (7,93) kıyasla daha
yüksek kalite sunduğu gözlemlenmiştir. Ancak, karmaşık
görevlerde (örneğin, web kazıyıcı veya veri görselleştirme)
YZ’nin kalite değeri (8,16) insan kodlarına (6,33) göre hâlâ
daha yüksek olsa da bağlamsal uygunluk eksiklikleri, özellikle
algoritmik sezgi gerektiren senaryolarda belirginleşmektedir.
Bu durum, büyük dil modellerinin bağlamsal öğrenme
kapasitelerinin, özellikle az örnekle öğrenme (few-shot
learning) senaryolarında sınırlı kalabileceğini gösteren Brown
ve arkadaşlarının [6] bulgularıyla uyumludur. Ayrıca,
Hendrycks ve arkadaşları [15], APPS veri kümesi üzerinden
yapılan analizlerde, YZ modellerinin karmaşık programlama
görevlerinde insan düzeyinde performansa yaklaşabildiğini,
ancak bağlamsal derinlik gerektiren senaryolarda sınırlılıklar
gösterdiğini belirtmiştir. Bu, Bolt.New’un karmaşık
görevlerdeki bağlamsal eksikliklerinin, modelin eğitim
verilerindeki genellikten kaynaklanabileceğini
düşündürmektedir. Bu, Pearce ve arkadaşlarının [21] YZ
kodlarının bağlamdan kopuk olabileceği yönündeki
bulgularıyla da uyumludur.

Siklomatik karmaşıklık açısından, YZ’nin daha düşük değerler
üretmesi (ortalama 6,37’ye karşı 9,43), Nguyen ve
arkadaşlarının [20] YZ kodlarının daha sade yapılar üretme
eğiliminde olduğu gözlemiyle örtüşmektedir. Ancak, bu

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 36

sadeliğin her zaman işlevsel bir avantaj sağlamadığı
unutulmamalıdır; zira karmaşık görevlerde insan
geliştiricilerin bağlamsal bilgiyle desteklenen daha karmaşık
ama özgün yapılar ürettiği gözlemlenmiştir. Bu durum,
Sommerville’in [26] insan geliştiricilerin sezgisel ve bağlama
özgü çözümler üretme yetkinliğine dair görüşlerini destekler
niteliktedir.

Dokümantasyon puanı açısından YZ’nin üstünlüğü (karmaşık
görevlerde 74,1’e karşı 28,3), kaynaklardaki YZ’nin tutarlı ve
ölçünlere uygun çıktılar üretme eğilimiyle [17] paralellik
göstermektedir. Ancak, bu yüksek dokümantasyon
puanlarının, kodun bağlamsal anlamını veya geliştirici dostu
açıklamaları tam olarak yansıtmadığına dair Scalabrino ve
arkadaşlarının [25] bulguları, çalışmamızda da gözlemlenen
bir sınırlılık olarak öne çıkmaktadır. Örneğin, Vaithilingam ve
arkadaşları [27], YZ tarafından üretilen kodların
dokümantasyonunun genellikle şablon niteliğinde olduğunu
ve bağlamsal derinlikten yoksun olabileceğini belirtmiştir.
Örneğin, YZ’nin ürettiği yorum satırları genellikle genel ve
şablon niteliğindedir, bu da insan geliştiricilerin proje-spesifik
açıklamalarına kıyasla daha az derinlik sunabilir.

5.2. Pratik ve Kuramsal Katkılar

Bu çalışma, yazılım mühendisliği ve YZ entegrasyonu alanında
hem pratik hem de kuramsal katkılar sunmaktadır. Pratik
açıdan, Bolt.New gibi YZ araçlarının basit ve orta düzey
görevlerde geliştirici verimliliğini artırdığı ve hata oranını
azalttığı gösterilmiştir. Özellikle, stil ihlalleri (YZ: 3,77, İnsan:
9,40) ve kod tekrar oranı (YZ: %8,17, İnsan: %17,43) gibi
metriklerdeki üstünlük, YZ’nin PEP 8 gibi Python
standartlarına uyum sağlama ve modüler kod üretme
kapasitesini ortaya koymaktadır. Vaithilingam ve arkadaşları
[27], YZ araçlarının geliştirici iş akışlarına entegrasyonunun,
özellikle rutin görevlerde verimliliği artırdığını, ancak geliştirici
beklentilerine uygunluk açısından daha fazla bağlamsal
özelleştirme gerektirdiğini belirtmiştir. Bu, geliştiricilerin rutin
görevlerde YZ araçlarını güvenle kullanabileceğini ve insan
denetimiyle birleştirildiğinde daha verimli iş akışları
oluşturabileceğini göstermektedir.

Teorik açıdan, çalışma literatürdeki önemli bir boşluğu
doldurmaktadır. Bolt.New gibi daha az incelenmiş bir YZ
aracının Python’a özgü metriklerle değerlendirilmesi, mevcut
araştırmaların genellikle GitHub Copilot gibi popüler araçlara
odaklandığı bir alanda özgün bir katkı sunar [10]. Ayrıca,
zorluk seviyelerine göre yapılan analizler, YZ’nin
performansının görev karmaşıklığına bağlı olarak nasıl
değiştiğine dair yeni bir perspektif sunmaktadır. Bu,
gelecekteki araştırmalar için YZ araçlarının bağlamsal
sınırlılıklarını ele alan daha hedefe yönelik eğitim veri setleri
tasarlanması gerektiğini göstermektedir.

5.3. Sınırlar ve Gelecek Çalışmalar

Çalışmanın bazı sınırları bulunmaktadır. İlk olarak, veri kümesi
30 insan yazımı ve 30 YZ üretimi programla sınırlıdır, bu da
genellenebilirliği kısıtlayabilir. Daha geniş bir örneklemle
yapılacak çalışmalar, bulguların daha çeşitli senaryolarda test
edilmesini sağlayabilir. İkinci olarak, Pylint gibi statik inceleme

araçları, kodun işlevsel doğruluğunu veya bağlamsal
uygunluğunu tam olarak ölçemez. Örneğin, Carlini ve Wagner
[8] tarafından belirtildiği üzere, YZ modellerinde ortaya çıkan
hatalar veya güvenlik açıkları, bazen modelin özelliklerinden
kaynaklanan yapısal sınırlılıklar olarak değerlendirilebilir; bu
da Pylint’in tespit edemeyeceği potansiyel riskleri içerir.
Benzer şekilde, Mozannar ve arkadaşları [19], YZ kod üretim
modellerinin bağlamsal hatalara ve nadir görülen senaryolara
karşı hassas olduğunu, bu durumun model sağlamlığını
artıracak yeni eğitim yaklaşımlarını gerektirdiğini belirtmiştir.
Gelecekteki çalışmalar, dinamik inceleme araçları veya insan
geliştiricilerin subjektif değerlendirmelerini dahil ederek daha
bütüncül bir kalite incelemesi sunabilir. Üçüncü olarak,
Bolt.New’un performansının yalnızca Python dilinde
değerlendirilmiş olması, diğer programlama dillerine
genellenmesini zorlaştırmaktadır. Farklı dillerde (örneğin,
JavaScript veya C++) benzer karşılaştırmalar yapılması, YZ’nin
dil-spesifik etkilerini anlamada faydalı olabilir.

Gelecekteki araştırmalar, YZ araçlarının bağlamsal anlamayı
iyileştirmek için nasıl eğitilebileceğine odaklanabilir. Örneğin,
Xu ve arkadaşları [30], alan-spesifik veri setleriyle yapılan ince
ayar (fine-tuning) işlemlerinin, YZ modellerinin bağlamsal
uygunluğunu artırabileceğini ve kod üretiminde daha proje-
odaklı sonuçlar sunabileceğini göstermiştir. Brown ve
arkadaşlarının [6] az örnekle öğrenme üzerine çalışmaları da,
proje-spesifik veri setleriyle ince ayar yapılmış modellerin
bağlamsal uygunluk sorunlarını azaltabileceğini öne
sürmektedir.

Ayrıca, Hendrycks ve arkadaşları [15], karmaşık programlama
görevlerinde YZ modellerinin performansını artırmak için
daha zengin ve bağlam odaklı veri setlerinin gerektiğini
vurgulamıştır. YZ destekli kod üretiminin güvenlik açıkları
üzerindeki etkisi, Pearce ve arkadaşlarının [21] vurguladığı
üzere, daha derinlemesine incelenmelidir. Mozannar ve
arkadaşları [19] tarafından önerilen model sağlamlığı
analizleri, Bolt.New gibi araçların üretim ortamlarında
güvenilirliğini artırmak için önemli bir araştırma yönü olabilir.
Son olarak, YZ araçlarının geliştirici iş akışlarına
entegrasyonunun uzun vadeli etkileri, örneğin geliştirici
beceri kaybı veya bağımlılık gibi sosyo-teknik boyutlar,
ilerideki çalışmalar için önemli bir araştırma alanıdır.

5.4. Sonuç

Bu çalışma, Bolt.New gibi YZ destekli kod üretim araçlarının
Python bağlamında insan yazımı kodlarla karşılaştırıldığında,
özellikle basit ve orta düzey görevlerde yüksek kalite, düşük
hata oranı ve daha iyi stil uyumu sunduğunu ortaya
koymaktadır. Karmaşık görevlerde ise YZ, dokümantasyon ve
modülerlik açısından avantaj sağlasa da, bağlamsal uygunluk
ve algoritmik sezgi gerektiren senaryolarda insan denetimine
ihtiyaç duymaktadır. Weisz ve arkadaşları [28], YZ ve insan
geliştiriciler arasındaki iş birliğinin, kod üretiminde
tamamlayıcı bir rol oynayarak hem verimliliği artırdığını hem
de insan uzmanlığının vazgeçilmezliğini koruduğunu
vurgulamıştır. Bu bulgular, YZ araçlarının yazılım geliştirme
süreçlerinde güçlü bir tamamlayıcı rol oynayabileceğini, ancak
insan uzmanlığının vazgeçilmezliğini göstermektedir.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 37

Pratik açıdan, geliştiriciler YZ araçlarını rutin görevlerde
verimliliği artırmak için kullanabilir, ancak karmaşık
projelerde bağlamsal doğruluk için insan denetimi kritik
önemdedir. Teorik açıdan, çalışma YZ destekli kod üretiminin
Python’a özgü standartlara uyumunu nesnel metriklerle
değerlendirerek literatüre katkı sunmakta ve gelecekteki
araştırmalar için bir rehber çerçeve önermektedir. Yazılım
mühendisliği ile YZ’nin kesişiminde, otomasyon ve insan
yaratıcılığı arasında bir denge kurularak daha verimli, güvenilir
ve sürdürülebilir kod üretim süreçleri oluşturulabilir.

Kaynakça

[1] Allamanis, M., Barr, E. T., Devanbu, P., Sutton, C. A survey of
machine learning for big code and naturalness. ACM Computing
Surveys, 51(4), 1–37, 2018. https://doi.org/10,1145/3212695

[2] Beller, M., Bholanath, R., McIntosh, S., Zaidman, A. Analyzing the
state of static analysis: A large-scale evaluation in open source
software. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pp.
470–481, 2016. https://doi.org/10,1109/SANER.2016.13

[3] Bird, J. J., Ekárt, A., Faria, D. R. Ethical considerations of large
language models in code generation: A systematic literature
review. Ethics and Information Technology, 25(3), 1–15, 2023.
https://doi.org/10,1007/s10676-023-09684-7

[4] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., MacLeod, G. J.,
Merritt, M. J. Characteristics of software quality. North-Holland
Publishing, Amsterdam, Netherlands, 1978.

[5] Bolt.New Team. Bolt.New: YZ-powered code generation for
Python. https://bolt.new/docs, erişim tarihi: 15 Mayıs 2025.

[6] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Amodei, D. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165, 2020,
https://doi.org/10,48550/arXiv.2005.14165

[7] Buse, R. P., Weimer, W. R. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4), 546–558,
2010, https://doi.org/10,1109/TSE.2009.71

[8] Carlini, N., Wagner, D. Adversarial examples are not bugs, they
are features. Advances in Neural Information Processing
Systems, 32, 184–194, 2019.

[9] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan,
J., Zaremba, W. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.
https://arxiv.org/abs/2107.03374

[10] Dakhel, A. M., Majd, M., Nikanjam, A., Khomh, F., Desmarais, M.
C., Jiang, Z. M. J. GitHub Copilot YZ pair programmer: Asset or
liability? Journal of Systems and Software, 203, 111734, 2023.
https://doi.org/10,1016/j.jss.2023.111734

[11] Dijkstra, E. W. The structure of the “THE”-multiprogramming
system. Communications of the ACM, 11(5), 341–346, 1968.
https://doi.org/10,1145/363095.363143

[12] Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A.,
Prather, J. The robots are coming: Exploring the implications of
OpenAI Codex on introductory programming. In Proceedings of
the 24th Australasian Computing Education Conference, pp.
10–19, 2022. https://doi.org/10,1145/3511861.3511863

[13] Goodfellow, I., Bengio, Y., Courville, A. Deep learning. MIT Press,
2016.

[14] Halstead, M. H. Elements of software science. Elsevier,
Amsterdam, Netherlands, 1977.

[15] Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A.,
Guo, E., Steinhardt, J. Measuring coding challenge competence
with APPS. Advances in Neural Information Processing Systems,
34, 22214–22226, 2021.

[16] Imai, S. Is GitHub Copilot a substitute for human pair-
programming? An empirical study. In 2022 IEEE/ACM 44th
International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pp. 319–321, 2022.
https://doi.org/10,1109/ICSE-Companion55297.2022.9793819

[17] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond,
R., Vinyals, O. Competition-level code generation with
AlphaCode. Science, 378(6624), 1092–1097, 2023.
https://doi.org/10,1126/science.abq1158

[18] McCabe, T. J. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4), 308–320, 1976.
https://doi.org/10,1109/TSE.1976.233837

[19] Mozannar, H., Bansal, G., Sontag, D. Evaluating the robustness
of neural code generation models. arXiv preprint
arXiv:2210,12468, 2022.
https://doi.org/10,48550/arXiv.2210,12468

[20] Nguyen, T., Li, Y., Le-Cong, T., Nguyen, T. N. Exploring the impact
of code style in Python: An empirical study. arXiv preprint
arXiv:2208.09051, 2022. https://arxiv.org/abs/2208.09051

[21] Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R. Asleep
at the keyboard? Assessing the security of GitHub Copilot’s code
contributions. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 754–768, 2022.
https://doi.org/10,1109/SP46214.2022.9833651

[22] Posnett, D., Hindle, A., Devanbu, P. A simpler model of software
readability. In Proceedings of the 8th Working Conference on
Mining Software Repositories, pp. 73–82, 2011.
https://doi.org/10,1145/1985441.1985454

[23] Pylint Development Team. Pylint: Static code analysis for
Python. https://pylint.readthedocs.io/en/latest/, erişim tarihi:
15 Mayıs 2025.

[24] Python Software Foundation. PEP 8 – Style guide for Python
code. https://peps.python.org/pep-0008/, 2023.

[25] Scalabrino, S., Linares-Vásquez, M., Oliveto, R., Bavota, G. A
comprehensive model for code readability. Journal of Software:
Evolution and Process, 30(6), e1928, 2018.
https://doi.org/10,1002/smr.1928

[26] Sommerville, I. Software engineering (10th ed.). Pearson,
Boston, MA, 2015.

[27] Vaithilingam, P., Zhang, T., Glassman, E. L. Expectation vs.
experience: Evaluating the usability of code generation tools
powered by large language models. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, pp.
1–14, 2022. https://doi.org/10,1145/3491102.3517665

[28] Weisz, J. D., Muller, M., Houde, S., Richards, J., Ross, S. I.,
Cabrero, F. Perfection not required? Human-YZ partnerships in
code generation. In Proceedings of the 2021 AAAI/ACM
Conference on YZ, Ethics, and Society, pp. 402–412, 2021.
https://doi.org/10,1145/3461702.3462537

[29] Vaswani, A., Shazeer, N., Parmar, N., Uszoreit, J., Jones, L.,
Gomez, A. N., Polosukhin, I. Attention is all you need. Advances
in Neural Information Processing Systems, 30, pp. 5998–6008,
2017. https://arxiv.org/abs/1706.03762

[30] Xu, F. F., Vaswani, A., Parmar, N. Fine-tuning large language
models for domain-specific code generation. arXiv preprint
arXiv:2302.01687, 2023.

https://doi.org/10.1145/3212695
https://doi.org/10.1109/SANER.2016.13
https://doi.org/10.1007/s10676-023-09684-7
https://bolt.new/docs
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/TSE.2009.71
https://arxiv.org/abs/2107.03374
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1145/363095.363143
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1109/ICSE-Companion55297.2022.9793819
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.48550/arXiv.2210.12468
https://arxiv.org/abs/2208.09051
https://doi.org/10.1109/SP46214.2022.9833651
https://doi.org/10.1145/1985441.1985454
https://pylint.readthedocs.io/en/latest/
https://peps.python.org/pep-0008/
https://doi.org/10.1002/smr.1928
https://doi.org/10.1145/3491102.3517665
https://doi.org/10.1145/3461702.3462537
https://arxiv.org/abs/1706.03762

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2026 Cilt: 19 - Sayı: 1) - 38

https://doi.org/10,48550/arXiv.2302.01687

[31] Ziegler, A., Kalliamvakou, E., Simister, A., Sittampalam, G., Li, A.,
Rice, A., Rifkin, R. Productivity assessment of neural code
completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming, pp. 21–29,
2022. https://doi.org/10,1145/3520312.3534864

https://doi.org/10.48550/arXiv.2302.01687
https://doi.org/10.1145/3520312.3534864

