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Yapay zeka (YZ) temelli kod (iretim araglarinin yiikselisi,
yazilim miihendisliginde kod yazim siireglerini
déniistiirmektedir. Bu ¢calisma, YZ destekli “Bolt.New” araciyla
iretilen Python programlarini, insan eliyle yazilmis esdeger
programlarla kalite, karmasiklik ve okunabilirlik agisindan
sistematik olarak karsilastirmayr amaglamaktadir. 2019
oncesi GitHub’dan secgilen 30 adet insan yapimi program ile
ayni islevleri gerceklestiren YZ iiretimi programlar, satir
sayilarina gére basit, orta ve karmasik ulamlara ayrilarak
incelenmistir. Python’a 6zgii statik inceleme araci Pylint ile
Olgiilen kalite puani, hata sayisi, siklomatik karmasiklik, stil
ihlali, kod tekrar orani ve belge puani élgiileri, iki kiime
arasinda istatistiksel olarak karsilastirilmistir. Bulgular, YZ'nin
basit gérevlerde yiiksek kalite ve diisiik hata orani sundugunu,
karmasik goérevlerde ise daha diisiik karmasiklik ve daha iyi
belge sagladigini, ancak bagdlamsal uygunlukta sinirlamalar
gosterebildigini ortaya koymaktadir. Bu ¢alisma, YZ destekli
kod iiretiminin Python’a &6zgii él¢iinlere uyumunu ve hata
azaltma potansiyelini nesnel éigiilerle degerlendirerek, yazilim
gelistirme siire¢lerinde otomasyon ve insan denetimi arasinda
denge kurulmasina yénelik rehber bir cerceve sunmaktadir.
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Abstract

The rise of artificial intelligence (Al)-based code generation
tools is transforming code writing processes in software
engineering. This study aims to systematically compare
Python programs generated by the Al-powered “Bolt.New”
tool with equivalent human-written programs in terms of
quality, complexity, and readability. Thirty human-written
programs selected from GitHub prior to 2019, along with Al-
generated programs performing the same functions, were
categorized into simple, medium, and complex based on line
count and analyzed. Metrics such as quality score, error count,
cyclomatic complexity, style violations, code duplication rate,
and documentation score, measured using the Python-specific
static analysis tool Pylint, were statistically compared
between the two groups. The findings reveal that Al offers
high quality and low error rates in simple tasks, while in
complex tasks, it provides lower complexity and better
documentation but shows limitations in contextual
appropriateness. This study evaluates the compliance of Al-
generated code with Python-specific standards and its
potential for error reduction using objective metrics, offering
a guiding framework for balancing automation and human
oversight in software development processes.

Keywords: Artificial Intelligence, Code Quality, Python,
Software Engineering, Code Readability, Code Complexity, JEL
Classification: C88, L86, 033

Bilgisayar Bilimleri ve Miihendisligi Dergisi (2026 Cilt: 19 - Sayi: 1) - 24


https://orcid.org/0000-0002-1134-8120

1. Giris

Yazilim mihendisligi, teknolojinin hizla gelistigi bu bilisim
¢aginda hem akademik hem de diger uygulamalarda énemli
bir rol Gstlenmektedir. Bu disiplinin temel yapi taglarindan biri
olan kod dretim sireci, yillar boyunca insan yaraticiligi, bilgi
birikimi ve mihendislik sezgilerine dayali olarak gelismis ve
olgunlasmistir. 20, yiizyihn ortalarindan itibaren gelistirilen
yapilandiriimis programlama, nesne yonelimli tasarim ve
modiler yazilim gelistirme yaklasimlar, kodun kalite,
surdirilebilirlik ve anlagilabilirlik boyutlarinda sistematik
iyilestirmeler yapilmasina olanak tanimistir. Bu gergevede,
yaziim kalitesi; yalnizca kodun dogru calismasiyla sinirh
olmayan, okunabilirlik, bakim kolayligi, modiilerlik ve hata
yonetimi gibi ¢cok boyutlu metriklerle tanimlanan bir kavram
haline gelmistir.

Ancak 2010’larin ortalarindan itibaren yapay zeka (Yapay
Zeka: YZ, Artificial Intelligence: YZ) teknolojilerinde yasanan
atimlar, yazilim dretimi bakis agisinda kokli bir donligiim
baslatmistir [13]. Ozellikle Dogal Dil isleme (DDI), Biyiik Dil
Modelleri (BDM) ve derin 0grenme sistemlerinin
yayginlasmasiyla ortaya ¢ikan (retken yapay zeka,
gelistiricilerin kod yazma siireglerine yardimci olan ya da
dogrudan islevsel kodlar (retebilen YZ destekli sistemler
ortaya ¢ikmigtir [29]. GitHub Copilot, Codex ve Bolt.New gibi
araglar, yalnizca dogal dil agiklamalarina dayanarak Python,
JavaScript, Java gibi dillerde g¢alisabilir yazilim bilesenleri
olusturabilmekte ve bu sayede gelistiricilerin verimliligini
artirmakta, rutin gorevleri otomatiklestirmekte énemli roller
Ustlenmektedir [9, 17].

Bu gelismeler, yazilim miihendisliginde yalnizca iretim hizinin
degil, ayni zamanda lretim kalitesinin de YZ araglariyla nasil
evrilecegine dair yeni sorulari glindeme getirmistir.
Kaynaklarda, YZ tarafindan Uretilen kodlarin baglami dogru
yorumlama becerisi, stil batinligu, hata olasiligl ve yapisal
karmasiklik gibi acgilardan insan eliyle yazilmis kodlardan
farkhhk gosterdigi ydniinde bulgular yer almaktadir. Ozellikle
Pearce ve arkadaslarn [21], Copilot gibi araglarin baglamdan
kopuk ve givenlik agiklarina agik kod pargalari tretebildigini
belirtmistir. Nguyen ve arkadaslari [20] ise YZ destekli kodlarin
stil kurallarina daha az uydugunu, ancak bu durumun statik
inceleme araclari ile telafi edilebilir oldugunu 6ne sirmastar.
Buna karsin, bazi ¢alismalar YZ kodlarinin daha sade, modiiler
ve okunabilir olabilecegini savunmakta; bu da alanda celiskili
bulgularin bulundugunu géstermektedir.

Bu baglamda, bu galismanin temel amaci, YZ destekli kod
Uretim araglarinin yazihm muhendisligi acisindan kalite,
okunabilirlik ve karmasikhk gibi Olgller (izerinden insan
Uretimi kodlarla sistematik olarak karsilastiriimasidir. Bu
amagcla, Python dilinde yazilmis 30 adet insan yapimi program
ile Bolt.New adli bir YZ araci tarafindan ayni gorevler igin
olusturulmus 30 esdeger program incelenmistir. Programlar,
satir sayilarina gore basit, orta ve karmasik olmak lizere (g
ulama ayrilarak zorluk diizeyi temelinde kiimelendirilmistir.
Tim programlar, Python ortaminda yaygin olarak kullanilan
statik inceleme araci Pylint ile incelenmis; her biri igin Pylint
kalite degeri, toplam hata sayisi, siklomatik karmasiklk, stil

ihlali sayisi, kod tekrar orani ve belge puani gibi 6lcliler elde
edilmistir.

Calisma, yalnizca YZ ve insan kaynakli kodlar arasinda genel
bir karsilastirma yapmakla kalmayip, bu farklarin zorluk
dizeyine gore degisip degismedigini de incelemektedir.
Ayrica, stil uyumu ve okunabilirlik gibi daha 6znel
degerlendirmelerin  Pylint gibi nesnel araglarla nasil
Olgimlenebilecegini godstermektedir. Bu yonilyle ¢alisma,
yazihm muhendisligi kaynaklarinda siklikla goz ardi edilen YZ
araglarinin nesnel kalite Oolglleri baglaminda sistematik
degerlendirilmesini hedeflemekte ve YZ araglarinin yazilim
gelistirme sireglerine entegrasyonu konusuna somut veri
temelli katkilar sunmaktadir.

2. Kaynak Taramasi

Son yillarda geleneksel insan yazimi kodlar ile YZ destekli kod
Uretim araglarinin karsilastirilmasi, cesitli 6lgutler tzerinden
yapilan birgok calisma ile genis bir kaynak olusturmustur. Bu
¢alismalar, kod iretim sireglerinin evrimini anlamak ve yeni
teknolojilerin  yazillm  gelistirme Gzerindeki etkilerini
degerlendirmek acgisindan 6nemli veriler sunmaktadir. Bu
cercevede, kod Uretiminin tarihsel gelisimini ve kavramsal
temellerini ele almak, kaynaklardaki tartismalari btincul bir
yaklasimla degerlendirmek agisindan énemlidir.

2.1 Yazilim Miihendisliginde Kod Uretimi: Tarihsel ve
Kavramsal Arka Plan

Yazillm mihendisligi, bilgi teknolojilerindeki ilerlemelerle
birlikte sirekli doniisen bir alan olarak, kod Uretimi
sireclerinde de kokli degisimlere taniklik etmistir. Kod
yazimi, yazilim gelistirme yasam donglsinin temel yapi
taslarindan biri olup, geleneksel insan merkezli yaklasimlar
kadar, gliniimizde yayginlasan otomasyon araglariyla da
gergeklestirilir. Bu bélimde, yaziim mihendisliginde kod
Uretiminin tarihsel sureci ve kavramsal temelleri agiklanarak;
kod kalitesi, okunabilirlik ve karmasiklik gibi 6nemli
metriklerin 6nemi vurgulanmakta ve klasik yontemlerle yapay
zeka destekli kod Uretimi arasindaki farklarin incelenmesine
zemin hazirlanmaktadir.

Yazihm mihendisliginin ilk doénemlerinde, kod yazimi
tamamen gelistiricilerin bilgi ve deneyimine dayali bir siirecti.
1960’'lar ve 1970’lerde vyapilandiriimis programlama
yaklagimlarinin gelistiriimesi, kodun daha planh ve sistematik
yazilmasina katki sagladi [11]. Bu dénemde yazilim kalitesini
degerlendirmek amaciyla ilk Olgiler ortaya ¢ikmaya basladi.
Ornegin, Boehm ve arkadaslari [4], yazilimin givenilirligi ile

bakim kolayhg gibi kavramlari tanimlayarak kalite
degerlendirmesine  kuramsal bir c¢erceve kazandirdi.
Boehm’un bu ¢alismasi, vyalnizca islevsellik degil; ayni

zamanda kodun okunabilirligi ve sirdurilebilirligi  gibi
unsurlarin  da  kaliteyi belirleyen 06geler oldugunu
vurgulamistir [4]. Bu degerlendirme 6lgitleri, hem geleneksel
hem de YZ tabanh kodlar igin gliniimizde halen gecerliligini
korumaktadir.

1980°li yillardan itibaren otomasyonun yazilm gelistirme
siirecine dahil olmasi, kod Uretimini yeni bir boyuta tasidi.
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Derleyiciler, hata ayiklama aracglari ve entegre gelistirme
ortamlari (IDE’ler), gelistiricilerin daha sistematik ¢alismasina
olanak tanidi; fakat yine de insan kararlari siiregte belirleyici
olmaya devam etti [26]. Kod kalitesini degerlendirmek igin
gelistirilen statik inceleme araglari bu donemde 6nem
kazandi. Pylint gibi yazilimlar, 6zellikle Python dilinde kodlarin
yapisini, stilini ve hata olasiliklarini inceleme ederek belirli
kalite standartlarinin korunmasina yardimci olmaktadir [23].
Bu tur araglarin kullanimi, o6zellikle agik kaynak yazilim
projelerinde kaliteyi izleme ve iyilestirme bakimindan kritik
onem tasimaktadir [2].

Kod (retiminde bir diger anahtar kavram olan karmasiklik,
yaziimin anlasilabilirligi ve bakim sireglerini dogrudan
etkilemektedir. McCabe’in  [18] gelistirdigi siklomatik
karmagiklik o6lgutli, bir yazihm pargasinin kontrol akisini
inceleyerek karmasiklik derecesini 6lgmenin etkili bir yolunu
sunmustur. Bu 6lgut, yazilimin yalnizca hata olasiliklarini degil,
ayni zamanda test edilebilirlik ve siirdirdlebilirlik ydnlerini de
degerlendirmeye olanak tanimaktadir [18]. Halstead’in [14]
onerdigi metrikler ise yazilimin hacmini ve zorluk derecesini
degerlendirerek karmasiklik incelemesine farkli bir katki
sunmustur. Bu gostergeler, c¢alismamizda YZ destekli ve
geleneksel yontemlerle yazilmis kodlar arasinda yapilacak
karsilagtirmalar icin teorik temel saglamaktadir.

Kodun okunabilirligi ise yazilim mihendislig§inde bir diger
o6nemli konudur. Bu kavram, yazilimin gelistiriciler tarafindan
kolayca anlasilmasini ve bakiminin kolaylasmasini hedefler.
Buse ve Weimer [7], kod okunabilirligini degerlendirmek icin
otomatik metriklere dayali bir cerceve gelistirmis ve stil,
isimlendirme kurallari ile yorum satirlarinin bu siirece
katkilarini ortaya koymustur. Ozellikle yapay zeka destekli kod
Uretiminde, okunabilirlik kriteri ayri bir 5neme sahiptir; zira YZ
ile Uretilen kodlar, baglama uygunlukta zayifliklar veya stil
tutarsizliklari gosterebilmektedir [20].

GilnlUmiizde GitHub Copilot ve Bolt.New gibi yapay zeka
temelli kod {retim araglarinin yayginlagsmasi, yazilim
gelistirme slirecinde yeni bir ¢ag baslatmistir. Bu araglar,
buyik dil modellerine (LLM’ler) dayanarak dogal dil girdilerini
isleyip calisabilir koda dontstirmektedir [9]. Bununla birlikte,
YZ destekli kodlarin kalite dlzeyi, hata ihtimali ve yapisal
karmasikligi, insan eliyle yazilmis kodlarla kiyaslandiginda
cesitli tartismalari da beraberinde getirmektedir. Pearce ve
calisma arkadaslari [21], bu tiir sistemlerin Grettigi kodlarda
guvenlik aciklari ve baglamdan kopukluk gibi risklerin
bulunabilecegini 6ne slirmustiir. Bu nedenle, ¢alismamizda
klasik yontemlerle YZ destekli kod dretimi arasindaki
sistematik karsilastirma ihtiyaci agikga ortaya konmaktadir.

Sonug olarak, yazihm mihendisliginde kod tretimi sireci,
zamanla insan merkezli yontemlerden otomatik sistemlere ve
yapay zeka destekli araglara dogru evrilmistir. Kodun kalitesi,
okunabilirligi ve karmasikhgi gibi kavramlar, her iki Gretim
yaklasiminda da degerlendirme olg¢liti olmaya devam
etmektedir. Bu ¢alisma, Python kodlarinin Pylint analiziyle
incelenmesi yoluyla, yapay zeka destekli yazihm Uretiminin
geleneksel yontemlerle kiyaslanarak glgli ve zayif yonlerinin
ortaya konmasini hedeflemektedir. Bu baglamda, mevcut

kaynaklarda tanimlanmis olan kavramlar ve
arastirmamizin kuramsal zeminini olusturmaktadir.

oOlgller,

2.2. Yapay Zeka Destekli Yazilim Gelistirme Araglarinin
Yiikselisi

Son yillarda yapay zeka tabanh yazilim gelistirme araglarinin
hizla yayginlasmasi, kod Uretiminde kokli bir doniisime yol
acmis ve vyazilm mihendisliginde vyeni bir doénemi
beraberinde getirmistir. Ozellikle biyik dil modellerinin
gelisimiyle birlikte, dogal dil ile yazihm kodu uretimi, kod
tamamlama ve hata diizeltme gibi islemler otomatiklesmis,
gelistiricilere 6nemli kolayliklar saglanmistir. Bu bélimde, YZ
destekli yazihm araglarinin tarihsel gelisiminden teknolojik
altyapisina kadar bircok boyut ele alinarak, geleneksel
yontemlerle karsilastirmali bir inceleme igin kuramsal bir
temel olusturulmustur. Bu cergevede, galismada kullanilan
Bolt.New gibi araglar uzerinden, YZ destekli kod Uretiminin
kod kalitesi, hata orani ve kod karmasikligi Gizerindeki olasi
etkileri degerlendirilmektedir.

YZ temelli kod Uretiminin ortaya cikisi, DDi ve makine
dgrenmesindeki ilerlemelere  dayanmaktadir.  Ozellikle
2010’larin ortasinda derin 6grenme modellerinde yasanan
gelismeler ve donistirict mimarisinin tanitilmasi [29], hem
dogal dili hem de yazilim dillerini anlamada c¢igir agan
gelismelere olanak tanimigtir. Bu baglamda, Brown ve
arkadaslan [6], bliyik dil modellerinin az 6érnekle 6grenme
(few-shot learning) kapasitelerinin, baglamsal anlamayi
gelistirme potansiyeline sahip oldugunu, ancak karmasik
senaryolarda sinirhliklar gosterebildigini belirtmistir. Bu,
Bolt.New gibi araclarin baglamsal uygunluk sorunlarinin,
modelin egitim verilerindeki genellikten kaynaklanabilecegini
gostermektedir. Ayrica, Weisz ve arkadaslari [28], YZ ve insan
gelistiriciler arasindaki is birliginin, kod Uretiminde
tamamlayici bir rol oynayarak hem verimliligi artirdigini hem
de insan denetiminin énemini korudugunu vurgulamistir. Bu
teknolojik atiimin sonucunda, 2021 yilinda GitHub Copilot
gibi araclar gelistiricilerin kullanimina sunulmus ve yazilim
gelistirme pratiklerine entegre edilmistir [9]. Copilot, Codex
modeli sayesinde, gelistiricilerin yazdigi kodu
tamamlayabilmekte veya yalnizca dogal dil agiklamalariyla
islevsel kodlar onerebilmektedir. Bolt.New ise, Python gibi
spesifik programlama dillerine odaklanarak daha nis ve
hedefe yonelik ¢ozimler Gretmeyi amaglamaktadir [5]. Bu
araglarin ortak noktasi, blyik ve ¢esitli yazilim veri kiimeleri
(6rnegin GitHub depolar) Ulzerinde egitilerek baglamla
uyumlu kod onerileri Uretebilmeleridir [1].

YZ destekli yaziim araglarinin sundugu baslica Ustlinlikler
arasinda, gelistirici Gretkenliginin artmasi ve tekrarlayan
gorevlerin otomatiklestirilmesi yer almaktadir. Ziegler ve
arkadaslarinin [31] yaptigi bir calismada, YZ tabanh kod
tamamlama sistemlerinin, yaziim gelistirme siresini %20 ila
%30 oraninda kisalttigr bildirilmistir. Ancak, Bird ve
arkadaslar [3], YZ destekli kod (iretiminin etik sorunlar,
ornegin telif hakki ihlalleri ve gelistirici bagimliligi gibi riskler
taslyabilecegini belirtmis, bu araglarin uzun vadeli etkilerinin
dikkatle incelenmesi gerektigini vurgulamistir. Ozellikle
boilerplate kod vyazimi, hata ayiklama ve kod stil
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dizenlemeleri gibi zaman alan goérevlerde, bu araglar
gelistiricilere ciddi bir zaman kazanci sunmakta ve daha
yaratici siireglere odaklanmalarini saglamaktadir [10].

Bununla birlikte, YZ destekli kod tretiminin bazi sinirliliklari da
mevcuttur. Kaynaklarda yer alan gesitli bulgular, bu araglarin
Urettigi kodlarda baglam disi hatalar, glivenlik agiklari veya
gereksiz karmasiklik gibi sorunlarin ortaya cikabildigini
gostermektedir [21]. Ornegin, GitHub Copilot tarafindan
Uretilen kodlarin yaklasik %40inda guvenlik acigi riski
bulundugu rapor edilmistir. Bu gibi bulgular, ¢alismamizin ilk
arastirma sorusunu dogrudan ilgilendirmekte olup, insan ve
YZ kaynakh kodlarin hata oranlari yéninden sistematik
karsilastiriimasini gerekli kilmaktadir. Ayrica, bu sistemler
tarafindan Uretilen kodlar her zaman gelistiricilerin aliskin
oldugu okunabilirlik ve stil standartlarina uygun olmayabilir.
Bunun nedeni, modellerin ¢ogunlukla egitim aldiklari veri
kiimelerinde baskin olan kaliplari temel alarak Uretim
yapmalaridir [20]. Bu baglamda, calismamizda Bolt.New ile
yazdirilan kodlarin okunabilirligi ve insan yazimi kodlarla
kiyaslanmasi 6nemli bir inceleme boyutunu olusturmaktadir.

YZ araglarinin  kod karmasikhigi Uzerindeki etkisi ise
kaynaklarda tartismal bir konu olarak 6ne ¢ikmaktadir. Bazi
arastirmalar, bu araglarin gereginden fazla satir kod tireterek
yazilimi daha karmasik hale getirebilecegini belirtirken [16],
bazilari ise aksine, daha sade ve optimize kodlar
Uretilebilecegini savunmaktadir [17]. Bu celiskili bulgular,
calismamizda Bolt.New tarafindan yazdirilan kodlarla insan
yazimi kodlar arasinda Pylint izerinden siklomatik karmasiklik
gibi metrikler kullanarak karsilastirma yapilmasinin 6nemini
gostermektedir. Python gibi yliksek seviyeli programlama
dillerinde, karmasiklik diizeyi, yazilimin bakim kolayligi ve test
edilebilirligi agisindan biiyliik 6nem tasimaktadir [7].

Genel olarak bakildiginda, YZ destekli yazilim araglarinin
yazilim gelistirme siireglerine entegrasyonu halen erken bir
evrede  degerlendirilmektedir. = Akademik  c¢alismalar
cogunlukla popller araglara (6rnegin Copilot) odaklanmakta
olup, Bolt.New gibi daha yeni araglara iliskin deneysel veri
henlz sinirlidir. Ayrica, insan eliyle yazilmis kodlarla YZ
araglarinin Gretimleri arasinda dogrudan ve sistematik
karsilagtirmalar yapan deneysel ¢alismalar oldukga azdir [10].
Bu baglamda, bu calisma, Bolt.New araciyla Uretilen Python
kodlarini, 2019 yili 6ncesinde GitHub’da yer alan insan yazimi
kodlarla karsilastirarak, YZ destekli yazilim {iretiminin avantaj
ve sinirlarini daha aglk  sekilde  degerlendirmeyi
hedeflemektedir. Bu boélimde aktarilan kuramsal gergeve,
kod kalitesi, hata orani ve karmasiklik gibi boyutlarda
yapilacak karsilagstirmalara saglam bir temel sunmaktadir.

2.3. Kod Kalitesi ve Hata Orani Uzerine Calismalar

Yazilim mihendisligi baglaminda, kod kalitesi; bir yazilimin
glvenilir, strdirulebilir ve islevsel olma diizeyini belirleyen
temel Olgutlerden biridir. Bu baglamda, hata orani da kod
kalitesinin dogrudan bir gostergesi olarak degerlendirilmekte
ve yazilmin dogrulugunu ve bakim kolayligini etkileyen
onemli bir unsur olarak ©6ne g¢ikmaktadir. Geleneksel
gelistirme sireglerinde, bu iki Olgiit uzun siredir statik

inceleme araglari ile degerlendirilmektedir. Ancak yapay zeka
temelli kod Uretim araclarinin yayginlasmasiyla birlikte, bu
Olgutlerin yeniden gbézden gegirilmesi ve degerlendirme
yaklasimlarinin gesitlendirilmesi gerekliligi ortaya c¢ikmistir.
Bu bolimde, kaynaklarda kod kalitesi ve hata orani konularina
dair yapilan ¢alismalar ele alinmakta ve YZ tarafindan
Uretilmis olan kodlarin (6rnegin Bolt.New araciligiyla
olusturulanlarin), geleneksel yontemlerle gelistirilen insan
yazimi kodlarla nasil karsilastirildigini irdeleyen yontem ve
bulgular tartigiimaktadir. Galismamiz, Python dilinde yazilmis
kodlar (zerinde Pylint incelemesi gerceklestirerek hata
oranlarini karsilastirmakta ve bu dogrultuda literatlre katki
sunmay! hedeflemektedir.

Kod kalitesi kavrami, yazilim mihendisliginin baslangicindan
bu yana 6nemini koruyan bir arastirma konusu olmustur.
Ornegin Boehm ve arkadaslari [4], kod kalitesini giivenilirlik,
tasinabilirlik ve bakim kolayhgi gibi coklu boyutlar Gzerinden
tanimlamis ve bu unsurlarin sistematik olarak olglilmesi
gerektigini belirtmistir. Statik inceleme araglari, bu noktada
one cikan yontemlerdendir. Pylint gibi araclar, Python dilinde
yazilmis kodlarda s6zdizimi hatalarini, stil uyumsuzluklarini ve
potansiyel mantik hatalarini belirlemek amaciyla yaygin
olarak kullanilmaktadir [23]. Beller ve arkadaslar [2]
tarafindan yapilan bir galismada, agik kaynak projelerde statik
inceleme araglarinin etkin kullanimi incelenmis ve bu
araglarin hata oranlarinin azaltilmasinda etkili oldugu
gosterilmistir. Bu bulgular, calismamizda Pylint’in YZ destekli
ve geleneksel kodlar arasinda kalite karsilastirmasi yapmak
icin uygun bir ara¢ oldugunu géstermektedir.

insan tarafindan gelistirilen yazilmlarda hata oranlarini
etkileyen etkenler arasinda gelistiricilerin deneyim diizeyi,
projenin karmasikligi ve kullanilan test streglerinin kalitesi yer
almaktadir. insan kaynakli hatalar genellikle baglama iliskin
yanhs anlamalar, dikkatsizlikler ya da kod stiline dair
tutarsizliklarla iliskiliyken, YZ temelli araglarla (retilen
kodlarda hata profilleri  belirli  yonlerden farklilik
gdstermektedir [10]. Ornegin, Carlini ve Wagner [8], YZ
modellerinde hatalarin veya givenlik agiklarinin, modelin
o6grenme sirecindeki dzelliklerden kaynaklanabilecegini ve bu
hatalarin bazen sistematik olarak ortaya ciktigini belirtmistir.
Benzer sekilde, Mozannar ve arkadaslari [19], YZ kod Uretim
modellerinin saglamhgini degerlendirerek, bu modellerin
ozellikle baglamsal hatalara ve nadir goriilen senaryolara karsi
hassas olabilecegini gostermistir. Bu, Bolt.New gibi araglarin
Urettigi kodlarda gozlemlenen baglamsal hatalarin, modelin
egitim  verilerindeki  sinirhliklarla iligkili  olabilecegini
disindirmektedir. Bu ¢alismada, YZ tarafindan olusturulan
ve insan eliyle yazilan kodlar arasinda bu hata yapilarinin nasil
ayristigini  sistematik olarak incelemek ve YZ'nin hata
azaltmadaki potansiyelini ortaya koymak amaglanmaktadir.

YZ destekli kodlama araglarinin hata oranlari Gzerine yapilan
arastirmalar, bu araglarin hem sundugu olanaklara hem de
sahip olduklari sinirliliklara dikkat cekmektedir. Ornegin Chen
ve arkadaslari [9], Codex tabanh GitHub Copilot’'un kod
Uretiminde ylksek dogruluk oranlarina ulasabildigini, ancak
zaman zaman baglami yanlis yorumladigini ve hatali mantiksal
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akislar olusturdugunu ifade etmistir. Finnie-Ansley ve
arkadaslari [12], OpenAl Codex’in 6zellikle basit programlama
gorevlerinde insan diizeyinde performansa yakin sonuglar
Urettigini, ancak baglamsal derinlik gerektiren durumlarda
hata oranlarinin artabilecegini gostermistir. Ayni sekilde
Pearce ve arkadaslar [21], YZ tarafindan Uretilmis kodlarin
yaklasik %40’ inda glivenlik agigi tespit etmis ve bu tir kodlarin
dogrudan Uretim ortamlarinda kullanilmadan 6nce dikkatle
degerlendirilmesi gerektigini vurgulamistir.

Hata oranlarinin 6tesinde, kod kalitesi degerlendirmesinde
dikkate alinan diger 6nemli unsurlar arasinda stil butinlGga
ve belirli standartlara uygunluk da yer almaktadir. Nguyen ve
arkadaslan [20], Python kodlarinda stil ihlallerinin (6rnegin
PEP 8 standartlarina uyumsuzluk) YZ tarafindan dretilen
kodlarda daha yaygin oldugunu, ancak bu tiir hatalarin
otomatik araglarla biiyiik dlgtide duzeltilebildigini belirtmistir.
Bununla birlikte, mantiksal hatalar o6zellikle karmagik
algoritmalar ya da 6zel uygulama gereksinimlerine sahip
projelerde, YZ tarafindan olusturulan kodlarda daha zor tespit
edilebilmektedir [16]. Bu durum, calismamizda Pylint
analizinin yalnizca s6z dizimsel ve stil hatalarini degil, ayni
zamanda potansiyel mantik hatalarini da g6z oOninde
bulundurmasinin  neden  6nemli  oldugunu ortaya
koymaktadir.

YZ destekli ve insan kaynakli kodlarin hata oranlarinin
sistematik bicimde karsilastirildigi ¢alismalar kaynaklarda
oldukca sinirlidir. Ornegin Dakhel ve arkadaslari [10], GitHub
Copilot tarafindan dretilen kodlarin hata oranlarini insan
gelistiricilerle karsilastirmis ve basit gérevlerde YZ'nin daha az
hata Urettigini, ancak karmasik gérevlerde insan denetiminin
gerekli oldugunu ifade etmistir. Ancak Bolt.New gibi daha
guncel ve Ozellesmis YZ araglarinin hata profilleriyle ilgili
derinlemesine c¢alismalar henliz sinirhdir. Bu noktada,
calismamiz; 2019 6ncesi GitHub verilerinden elde edilen insan
yazimi Python kodlari ile Bolt.New tarafindan olusturulan
kodlari Pylint kullanarak inceleme etmekte ve YZ destekli kod
Uretiminin hata orani bakimindan avantaj ve sinirlamalarini
ortaya koymayl amaglamaktadir. Bu bolimde sunulan
literatlr, kod kalitesi ve hata orani analizimiz igin teorik bir
temel islevi gormektedir.

2.4. Kod Okunabilirligi ve
Karsilastirmali incelenmesi

insan-YZ Kodlarinin

Yazihm mihendisliginde kodun kolay anlasilabilir ve
surdirilebilir olmasi, yalnizca teknik dogruluk degil, ayni
zamanda kodun okunabilirligiyle de yakindan iliskilidir. Bu
kavram, kodun vyapisal dizeni, stil uyumu ve gelistirici
acisindan kavranabilirligi gibi bircok boyutu icinde barindirir.
Ozellikle yapay zeka temelli otomatik kod {retim araglarinin
yazilim gelistirme sireglerine dahil olmasiyla, bu araglarin
olusturdugu kodlarin insanlar tarafindan yazilanlarla
karsilastirmali olarak incelenmesi, gliniimizde o6nemli bir
arastirma alani haline gelmistir. Bu bélimde, Python dilinde
yazilmis Ornekler Uzerinden vyapilan analizler 1siginda,
geleneksel gelistirici kodlari ile YZ destekli (retimlerin
okunabilirlik diizeyleri karsilastirmali olarak ele alinmaktadir.

Kod okunabilirligi, gelistirici deneyimini etkileyen ve yazilim
bakim siirecini dogrudan ilgilendiren bir faktordiir. Konuya
iliskin yapilan bazi erken dénem arastirmalar, okunabilirligin
yalnizca bigimsel kurallarla degil, ayni zamanda yorum
satirlarinin kalitesi, anlamli isimlendirme tercihleri ve kodun

genel vyapisiyla dogrudan baglantihi oldugunu ortaya
koymustur. Ornegin, Buse ve Weimer [7] tarafindan
gelistirilen otomatik 6l¢im modeli, degisken isimleri,

aciklamalar ve satir yapilarinin okunabilirlik Gzerindeki
belirleyici etkisine dikkat ¢ekmistir. Posnett ve arkadaslari
[22] ise bu faktorlerin yazihmin bakim siresi ve hata
oranlariyla da iliskili oldugunu vurgulamistir. Python
ekosisteminde, PEP 8 gibi kilavuzlar bu yapiy
standartlastirmak adina olusturulmus ©nemli cergeveler
arasinda yer almaktadir. Pylint gibi araclar da bu kurallara
uygunluk agisindan kodlari degerlendirmek igin yaygin olarak
kullaniimaktadir.

Geleneksel vyazilim projelerinde, gelistiriciler genellikle
ihtiyaclara gore dokimantasyon ekleyip isimlendirme
tercihlerini baglama uygun bicimde sekillendirir. Ancak insan
hatalari, zaman baskisi veya yetersiz deneyim gibi nedenlerle
stil hatalari ya da karmasik yapilandirmalar goérilebilir.
Sommerville’in  [26] belirttigi UGzere, insanlar genellikle
duruma 6zel kod yazimiyla baglamsal olarak zengin ama
bigimsel olarak degisken érnekler tiretmektedir. Bu da kodun
okunabilirligini dogrudan etkileyen unsurlar arasinda yer alir.
Statik inceleme araglari bu noktada stil ihlallerini tespit
ederek gelistiricilere yon gosterebilir; ancak okunabilirlik
yalnizca otomatik kurallarla degil, gelistiricinin sezgisel
degerlendirmesiyle de olgulmelidir [25]. Vaithilingam ve
arkadaslari  [27], YZ kod uretim araglarinin gelistirici
beklentilerine uygunlugunu degerlendirirken, bu araglarin
Urettigi kodlarin okunabilirliginin, gelistiricilerin baglamsal
ihtiyaclarina gore degiskenlik gosterdigini ve bazen fazla genel
yorumlar icerdigini ortaya koymustur.

YZ tarafindan Uretilen kodlarda ise farkli bir tablo ortaya
¢ikmaktadir. Bu sistemler, biyik capl 6rnek veri kiimeleri
Uzerinde egitildikleri icin genellikle kaliplasmis ve stil
acisindan tutarli sonuglar verir. Chen ve arkadaslar [9],
GitHub Copilot’'un yaygin oriintllere dayal kod urettigini
ancak bazen baglamdan uzak yaplilar icerdigini belirtmistir. YZ
destekli Gretimlerde goriilen isimlendirme aliskanliklari,
yorum eksiklikleri ve gereksiz tekrarlar gibi unsurlar kodun
anlagilabilirligini olumsuz etkileyebilir. Ote yandan Nguyen ve
digerleri [20], Python’da YZ tarafindan olusturulan kodlarda
stil ihlallerinin daha sik oldugunu; ancak bu hatalarin gogunun
bicimsel (6rnegin girinti, bosluk gibi) diizeyde oldugunu ve
kolayca duzeltilebildigini ifade etmistir. Calismamizda,
Bolt.New sisteminin Urettigi kodlar lizerinde yapilan Pylint
incelemesi, bu tip stil bozulmalarinin sikligini ve etkisini
sistematik olarak ele almayi amacglamaktadir.

Kodlarin okunabilirligine dair insan ve YZ Uretimi 6rneklerin
karsilastiriimasi kaynaklarda sinirli sayida incelenmistir. Imai
[16], basit gorevlerde Copilot’un olusturdugu kodlarin insan
yazimi kodlara benzer seviyede okunabilir oldugunu; ancak
daha karmasik algoritmalarda sezgisel kavrayis agisindan
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yetersiz kaldigini ortaya koymustur. Ayrica, Scalabrino ve
digerleri [25] tarafindan yapilan bir ¢alismada, YZ tarafindan
olusturulan kodlar, gelistiriciler tarafindan daha az
anlasilabilir bulunmus ve bu durumun, YZ araglarinin
genellikle agiklayict yorum (retmede zayif kalmasina
baglandigi ifade edilmistir. Bu noktada, c¢alismamiz
Bolt.New’un  olusturdugu  kodlari  yorum  satirlari,
isimlendirme pratikleri ve yapi dizeni lizerinden inceleme
ederek daha kapsamli bir degerlendirme sunmaktadir.

Kaynaklarda, Copilot gibi sistemlere odaklanan okunabilirlik
analizleri bulunmakla birlikte, Bolt.New gibi daha yeni veya
ozellesmis Uretim sistemlerine dair degerlendirmeler oldukga
kisithdir. Ayrica Python 6zelinde stil rehberleri temel alinarak
yapilan karsilastirmalar da yeterince genis bir Orneklem
icermemektedir. Bu arastirma, GitHub’dan 2019 6ncesine ait,
insanlar tarafindan yazilmis Python kodlari ile Bolt.New
tarafindan olusturulan kodlari, Pylint sonuglari baglaminda
karsilagtirarak, YZ ile insan {retimi kodlarin okunabilirlik
dizeyleri agisindan glicli ve zayif yonlerini belirlemeyi
hedeflemektedir. Bu kapsamda yapilan analizler, gelecekteki
arastirmalar ve gelistirici araglarinin evrimi icin 6nemli bir
cergeve sunmaktadir.

2.5. Kod Karmasikhgi ve Performans Analizi

Yazilm mihendisliginde kod karmasikhg, bir yazihmin
anlagilabilirligi, test edilebilirligi ve strdurilebilirligi tizerinde
dogrudan etkili temel bir kriter olarak degerlendirilmektedir.
Karmasiklik, yazilimin kontrol yapisi, organizasyonu ve boyutu
gibi cesitli 6zelliklerine bakilarak belirlenmekte ve yazilimin
gelistiriimesi ile bakim streclerindeki potansiyel zorluklari
ortaya koymaktadir. Yapay zeka (YZ) destekli kod Uretim
teknolojilerinin  kullaniminin  yayginlagsmasiyla, bu tir
sistemlerin  olusturdugu kodlarin  karmasikhk dizeyi,
geleneksel insan eliyle yazilan kodlarla kiyaslandiginda dikkat
ceken bir arastirma alani olmustur. Bu bdlimde, kod
karmasikligi kavrami, 6lgim teknikleri ve YZ ile insan yazimi
kodlarin bu agidan karsilastiriimasi, mevcut literatilr 1siginda
ele alinmaktadir. Arastirmamiz kapsaminda, Bolt.New
tarafindan Uretilen Python betiklerinin Pylint ile inceleme
edilmesi, bu iki kod uUretim bigimi arasindaki karmagiklik
farklarini degerlendirme imkani sunmaktadir.

Yazilm alaninda karmasikhgin olgtilmesi uzun siredir cesitli
metriklerle standardize edilmistir. McCabe’in [18] gelistirdigi
siklomatik karmasikhk olgitl, kontrol akis grafigindeki
bagimsiz yol sayisini hesaplayarak, yazilimin karmasiklik
dizeyini belirlemede 6nci bir yaklagim sunmustur. McCabe,
bu karmasiklik seviyesinin yiiksek olmasi durumunda hata
olasiiginin arttigini ve test asamalarinin zorlastigini ileri
slirmustlr [18]. Ayni zamanda, Halstead [14], istecler ve
islenenler gibi kod bilesenlerini esas alan oOlgltler gelistirerek,
vazilimin karmasikligini farkh bir boyutta degerlendirmistir.
Bu metrikler, Pylint gibi statik inceleme araglarinin temel
olgiim yapilarindan biri olarak kabul gérmektedir [23]. Bu
calismada, Pylint’in sundugu siklomatik karmasikhk élglimleri
gibi metrikler dogrultusunda Bolt.New ve insan kaynakh
kodlarin karsilastiriimasi hedeflenmistir.

Klasik yazilim gelistirme yontemlerinde, insan tarafindan
yazilmis kodlarin karmasiklik diizeyi ¢cogunlukla gelistiricinin
tecriibesi, kullandigi  programlama dili ve projenin
ihtiyaclarina gore sekillenmektedir. Sommerville [26],
deneyimli gelistiricilerin daha modiler ve sade kod yazma
egiliminde olduklarini; ancak zaman baskisi, belgelendirme
eksikligi gibi etmenlerin bu kodlari daha karmasik hale
getirebildigini ifade etmistir. insan yazimi kodlarda rastlanan
ic ice gecmis donguler veya uzun islev bloklari gibi yapilar,
genellikle statik inceleme araglari sayesinde tespit edilerek
sadelestirilebilmektedir [2]. Bununla birlikte, insan
gelistiricilerin sahip oldugu baglamsal bilgi, cogu zaman daha
sezgisel ve gereksinimlere uygun c¢6zlimler Uretmelerine
olanak tanimaktadir. Bu baglamda, ¢alismamizda kullanilan
insan yazimi Python kodlar, 2019 o6ncesinde GitHub
Uzerinden alinmis ve karsilagtirmalarda referans veri olarak
kullanilmistir.

YZ tabanl kod uretim sistemlerinin karmasiklik diizeyine

etkisi, kaynaklarda hem olumlu vyoénleri hem de
sinirlamalariyla  birlikte tartisilmaktadir. Hendrycks ve
arkadaslari [15], APPS veri kiimesi Uzerinden yapilan

analizlerde, YZ modellerinin karmasik programlama
gorevlerinde insan dizeyinde performansa yaklasabildigini,
ancak baglamsal derinlik gerektiren senaryolarda hala
sinirliliklar gosterdigini ortaya koymustur. Chen ve arkadaslar
[9], GitHub Copilot gibi araglarin egitim verilerindeki kaliplari
izleyerek genellikle optimize edilmis kodlar olusturdugunu;
fakat baglamdan bagimsiz sekilde zaman zaman gereksiz
karmasik yapilarin tretilebildigini belirtmistir. YZ, benzer islevi
gerceklestiren alternatif bloklar olusturarak kod hacmini
artirabilmektedir [16]. Ote yandan, Li ve digerlerinin [17]
gerceklestirdigi  calismada, AlphaCode gibi gelismis
modellerin bazi yarisma tipi problemleri insan yazimi
kodlardan daha az karmasik ¢ézimlerle tamamlayabildigi
gozlemlenmistir. Bu celiskili bulgular, YZ tarafindan
olusturulan kodlarin karmasikhginin, kullanilan modelin
mimarisi ve egitildigi veri kiimelerinin niteligiyle dogrudan
iliskili oldugunu ortaya koymaktadir [1]. Bu baglamda,
galismamiz  Bolt.New tarafindan olusturulan Python
kodlarinin Pylint analizine tabi tutularak, insan eliyle yazilmig
orneklerle karsilastiriimasini amaglamaktadir.

YZ ile insan yazimi kodlarin karmasikhk dizeyi agisindan
degerlendiriimesi, akademik alanda heniiz yeterince
derinlemesine ele alinmamis bir konu olarak dikkat
cekmektedir. Dakhel ve arkadaslari [10], GitHub Copilot’un
basit gorevlerde daha sade ¢oziimler Uretse de, karmasik
algoritmalarda daha fazla kontrol yapisi barindirdigini
gOstermistir. Benzer sekilde, Nguyen ve digerleri [20], Python
dilinde YZ tarafindan vyazilan kodlarin, 6zellikle uzun
fonksiyonlar ya da gereksiz degisken tanimlari gibi unsurlar
nedeniyle daha karmasik hale gelebildigini ifade etmistir.
Ancak bu galismalar ¢ogunlukla yaygin kullanilan araglar
Gzerine odaklanmistir ve Bolt.New gibi daha az bilinen
sistemlerin karmasiklik performansi Gizerine sinirl sayida veri
sunulmaktadir. Ayrica, Python'a 6zel metrikler (6rnegin PEP 8
uyumlulugu veya modiilerlik diizeyi) dikkate alinarak yapilan
karsilastirmalar oldukga kisithdir.
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Bu alandaki mevcut bosluklar, yiliritmekte oldugumuz
calismanin  6nemini ortaya koymaktadir. Bolt.New ile
olusturulan Python kodlarinin, 2019 0&ncesi GitHub
verilerinden alinan insan yazimi érneklerle Pylint araciligiyla
karsilastiriimasi sayesinde, yapay zeka destekli ¢oziimlerin
karmasiklik bakimindan avantajlari ve dezavantajlari
degerlendirilebilecektir. Pylint'in sundugu detayli metrikler,
kodun test edilme kolayhgl ve surdirilebilirligi agisindan
kapsamli bir degerlendirme yapilmasina olanak tanimaktadir.
Bu bolimde sunulan literatir derlemesi, inceleme siirecinde
izlenecek teorik cercevenin temellerini  olusturmayi
hedeflemektedir. Clnki son yillarda yazihm miihendisligi ile
yapay zeka arasindaki entegrasyon, kod Uretim sireglerini
donustirerek hem akademik hem de endistriyel alanda
biyulk bir ilgi odagl olmustur. Geleneksel insan yazimi kodlar
ile YZ destekli kod Uretim araglarinin karsilagtirilmasi, gesitli
kriterler Gizerinden yapilan birgok ¢alisma ile genis bir literattr
olusturmustur. Bu literatlr arasinda kod kalitesi, hata orani,
okunabilirlik ve karmasiklik gibi 6l¢ttler bulunmaktadir. Ancak
bu alanda halda 6nemli bosluklar mevcuttur. Bu bolim,
literatirdeki eksiklikleri belirleyerek, c¢alismamizin  bu
bosluklari nasil doldurdugunu ve yazilim miihendisligi alanina
sundugu katkilari  tartismaktadir. Ozellikle, Bolt.New
tarafindan Uretilen Python kodlarinin 2019 6ncesi GitHub
kodlariyla Pylint analiziyle karsilastinimasi, literatirdeki
mevcut sinirhliklari ele almak icin yeni bir bakis agisi
sunmaktadir.

Literatiir, YZ destekli kod dretim araclarinin performansini
degerlendiren pek ¢ok calisma icerse de, bu calismalar
genellikle daha yaygin araglara (6rnegin, GitHub Copilot,
Codex) odaklanmaktadir [9, 10]. Bolt.New gibi yeni ve
ozellesmis araglarin kod kalitesi, hata orani, okunabilirlik ve
karmasiklik acisindan sistematik bir sekilde incelendigi
calismalar ise oldukga sinirhdir. Bu durum, YZ araglarinin
cesitliligini ve farkh baglamlardaki etkinliklerini anlamada bir
bosluk olusturmustur. Calismamiz, Bolt.New’un Python’a
6zgl kod Uretim performansini Pylint gibi yaygin bir statik
inceleme araciyla degerlendirerek, bu eksikligi gidermeyi
amaclamaktadir.

Bir diger onemli bosluk ise YZ ve insan yazimi kodlarin
sistematik karsilastirmalarina dair deneysel c¢alismalarin
azligidir. Mevcut literatir genellikle YZ kodlarinin genel
avantajlarini (6rnegin, Uretkenlik artisi) veya sinirhiliklarini
(6rnegin, guvenlik aciklar) tartismakta, fakat kod kalitesi,
hata orani, okunabilirlik ve karmasiklik gibi 6l¢iitlerin bir arada
degerlendirildigi karsilastirmalar pek sik yapilmamaktadir [21,
16]. Ornegin, Nguyen ve digerleri [20], Python’'da YZ
kodlarinin stil ihlallerine yatkinhgini incelemis, ancak bu
kodlarin karmasiklik veya hata orani gibi diger boyutlarini
insan yazimi kodlarla karsilastirmamistir. Calismamiz, Pylint
analiziyle bu olgltleri bir arada degerlendirerek, YZ destekli
kod iiretiminin ¢ok boyutlu bir analizini sunmaktadir.

Python baglaminda, PEP 8 gibi stil rehberleri ve siklomatik
karmasiklik gibi metrikler dikkate alinarak vyapilan
karsilastirmalar  da kaynaklarda  yeterince  temisil
edilmemektedir. Scalabrino ve digerleri [25], YZ kodlarinin

okunabilirlik acisindan insan yargisina dayali
degerlendirmelerini incelemis, ancak otomatik araclarla
(6rnegin, Pylint) yapilan objektif analizler sinirlh kalmistir.
Benzer sekilde, Li ve digerleri [17], YZ'min rekabetgci
programlama gorevlerinde karmasiklik avantajlarini tartismis,
ancak gunlik yazihm gelistirme senaryolarinda Python
kodlarinin karmasiklik profilleri Gzerine odaklanmamistir.
Calismamiz, 2019 oncesi GitHub’dan alinan insan yazimi
Python kodlarini referans alarak, Bolt.New kodlarinin PEP 8
uyumlulugu ve karmasiklik metriklerini Pylint ile inceleme
ederek bu boslugu doldurmayi hedeflemektedir.

Ayrica, kaynaklarda YZ destekli kod Gretiminin hata oranlar
Gzerine yapilan galismalar, genellikle givenlik agiklari veya
baglamsal hatalar gibi spesifik hata tiirlerine odaklanmaktadir
[21]. Ancak, sozdizimi, stil ve mantiksal hatalar gibi genis bir
hata yelpazesi Uzerine yapilan karsilastirmalar eksiktir.
Calismamiz, Pylint'in sagladigi detayh hata raporlarini
kullanarak, Bolt.New kodlarinin hata tirlerini ve sikliklarini
insan yazimi kodlarla karsilastirarak daha kapsaml bir
inceleme sunmaktadir. Bu yaklasim, YZ kodlarinin pratik
uygulanabilirligini  degerlendirmede 6nemli bir katki
saglamaktadir.

Literatlirdeki bu bogluklar, galismamizin 6zguin katkisini agikga
ortaya koymaktadir. ilk olarak, Bolt.New gibi daha az
incelenmis bir YZ aracinin Python kodlarindaki performansini
sistematik bir sekilde inceleme ederek literatiire yeni bir veri
noktasi eklemekteyiz. ikinci olarak, kod kalitesi, hata orani,
okunabilirlik ve karmasiklik gibi dlgitleri bir arada ele alarak,
YZ ve insan yazimi kodlarin bitlncil bir karsilastirmasini
sunmaktayiz. Uglincli olarak, Pylint’in statik inceleme
yeteneklerini kullanarak, Python’a 6zgi stil ve karmasikhk
metriklerine  odaklanarak, dil-spesifik  bir  baglamda
derinlemesine bir inceleme gergeklestirmekteyiz.

Sonug olarak, bu galisma, literatirdeki mevcut bosluklari
doldurarak, YZ destekli kod dretiminin yazihm miihendisligi
slireglerine entegrasyonunu daha iyi anlamayi
amagclamaktadir. Bolt.New tarafindan Uretilen Python
kodlarinin Pylint analiziyle degerlendirilmesi, YZ araglarinin
avantajlarini ve sinirliliklarini ortaya koyarak, gelecekteki
yazihm gelistirme pratikleri igin rehber bir cerceve
sunmaktadir. Bu boélimde ele alinan literatiir, ¢alismamizin
teorik temelini glglendirmekte ve 06zglin katkisini
desteklemektedir.

Arastirma Boslugu ve Katki: Kaynaklarda yapay zeka destekli
kod Uretim araglarinin 6zellikle Python dili baglaminda kalite,
okunabilirlik ve karmasiklk gibi metrikler agisindan sistematik
olarak karsilastirildigi  ¢alismalar sinirhdir. Bu ¢alisma,
Bolt.New araci ile Uretilen Python kodlarini 2019 Oncesi
GitHub kodlari ile karsilastirarak bu boslugu doldurmakta ve
yazihm mihendisligi literatlirine hem akademik hem de
pratik katki saglamaktadir.Formun Alti

3. Veri Kiimesi ve Yontem

Bu ¢alismada, yapay zeka destekli ve insan tarafindan yazilmis
Python programlarinin genel kalite diizeyleri, statik inceleme
araci Pylint kullanilarak karsilastirilmistir. Pylint degeri,
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inceleme edilen Python betiklerinde tespit edilen gesitli kalite
olcltlerine dayali olarak 10 Gizerinden hesaplanan birlesik bir
puandir. Bu puan; kodda bulunan hatalar, uyarilar, stil
uyumsuzluklari ve yapisal iyilestirme onerileri gibi 6gelere
verilen  agirhklar  dogrultusunda  otomatik  olarak
belirlenmektedir. Bu nedenle Pylint degeri, kodun hem stil
kurallarina uyumu hem de temel yapisal dogrulugu hakkinda
genel bir kalite gostergesi olarak degerlendirilebilir.

Calismada kullanilan programlar, satir sayilarina goére basit
(20-50 satir), orta (51-150 satir) ve karmasik (151+ satir)
olmak Uzere lg¢ kategoriye ayrilmistir. Her bir kategoriden
rastgele secilen 10’ar programla toplam 30 programlik bir veri
kiimesi olusturulmustur. Bu programlar, asal sayi kontroli
gibi temel gorevlerden web kaziyici gibi daha karmasik
uygulamalara kadar genis bir yelpazeyi kapsamaktadir. insan
yapimi programlar, gercek diinya kodlama pratiklerini temsil
etmesi amaciyla GitHub agik kaynak depolarindan segilmistir.
YZ iretimi programlar ise Bolt.New araci kullanilarak, ayni
islevsel hedefleri gerceklestirecek sekilde olusturulmus ve iki
grup arasinda gorev uyumlulugu saglanmistir. Programlarin
listesi ve detaylari asagida Cizelge- 1’de sunulmaktadir.

Cizelge- 1: Program Listeleri ve Ayrintilari

Matrix 110 Matris ¢arpimi, 2017.
Multiply
Simple 80 Sezar sifresi, 2016.
Encrypt
To-Do List 130 Gorev listesi, 2018.
Sudoku 200 Sudoku ¢6ziicu, 2016.
Solver
Graph DFS 180 Derinlik 6ncelikli arama, 2017.
Tic-Tac- 250 Yapay zekali XOX, 2016.
Toe YZ
Maze 220 Labirent olusturucu, 2017.
Generator
Image 190 Gorinti boyutlandirma, 2016.

K K Resizer

armasi ChatClient 280 Basit sohbet istemcisi, 2016.

Web 300 Web kaziyici, 2018.
Scraper
Network 350 Ag tarayici, 2016.
Ping
Text 260 Metin tabanl macera, 2018.
Adventure
Data 400 Veri gorsellestirme, 2016.
Plotter

Kod kalitesini degerlendirmek igin Python ekosisteminde
yaygin bir statik inceleme araci olan Pylint kullaniimigtir.
Analizlerde, asagidaki kriterler o6lgllmustiir: genel Pylint
degeri (0-10), hata sayisi, siklomatik karmasiklik, stil ihlal

sayisi, kod tekrar orani ve dokimantasyon puani. Bu
Zorl'uk ] Program Satir Agiklama metrikler, kodun teknik dogrulugu, sardirdlebilirligi,
Seviyesi Adi Sayisi \ R . co. . . C
Prime 28 Asal say! kontroldi, 2018, unl:nabl|lr!lgl ve_ .modu.lerl_lgl_ gibi ¢ok boyutlu ozeI'I'lkIet.'lnl
Checker degerlendirmek icin segilmistir. Programlarin zorluk diizeyine
Factorial 30 Faktériyel hesaplama, 2018. gore siniflandiriimasi, YZ ve insan performansinin gorev
Fibonacci 35 Fibonacci dizisi, 2017. karmagsikhgr arttikga nasil degistigini anlamayr mimkin
Palindrom 25 Palindrom kontrolii, 2018. kilmistir; bu, kaynaklarda YZ'nin karmasik yazilim gelistirme
e Check senaryolarindaki etkisine dair eksik bir noktayi ele almaktadir.
Z?Dple 0 En biyuk ortak blen, 2017. Bu c¢alisma, YZ destekli yazihm gelistirme Uzerine yapilan
Bt Random 45 Rastgele sifre olusturucu, 2016. ira§t|rmalara,v Bolt.New’un mslar? kqdlama performansina
Password lyasla sundug“u katkilari ve eksiklikleri ortaya koyarak deger
Temperat 38 Sicaklik gevirici, 2016. katmaktadir. Onceki ¢alismalarin genellikle GitHub Copilot
ure gibi populer araglara odaklandigi gbz éniine alindiginda [9,
Convert 10], bu ¢calisma daha az incelenmis bir arag¢ olan Bolt.New’u
Even Odd 22 Gift/tek kontrold, 2018. ele alarak ve Python’a 6zgl standartlara (6rnegin, PEP 8
Check uyumlulugu) odaklanarak farklilasmaktadir.  Bulgular,
Simple 33 N sayinin toplami, 2017. gelistiricilere, akademisyenlere ve YZ ara¢ tasarimcilarina,
sum o YZ’nin kodlama siireglerine entegrasyonunun pratik sonuglari
B.asm 42 Basit geri sayim, 2016. hakkinda bilgi sunmayr ve farkh zorluk seviyelerindeki
;T;ZL 60 Kabarcik siralama, 2017, projelerde oto.masyvlf)r? ile insan denetimi arasinda nasil bir
Sort denge kurulabilecegini aydinlatmayi amaglamaktadir.
Binary 70 ikili arama, 2017. 4. Bulgular
Search
Word 85 Kelime sayaci, 2016. Analiz &ncesinde, her iki grubun (insan ve YZ) Pylint
Orta Count skorlarinin dagihimlarinin normal olup olmadigi Shapiro-Wilk
csv 90 CSV dosya okuyucu, 2016. sinamasi ile degerlendirilmistir. Shapiro-Wilk sinamasi,
Reader Ozellikle kuguik 6rneklemlerde (n < 50) veri dagiliminin normal
Quick Sort 75 Hizli siralama, 2017. olup olmadigini sinamak icin yaygin bicimde kullaniimaktadir.
;i:zkup 120 Dosya yedekleme, 2016. Test sonuglari Cizelge- 2’de verilmistir.

Hangman 95 Adam asmaca oyunu, 2018.

Cizelge- 2: Pylint Skorlarinin Normal Dagilima Uygunluk Testi
(Shapiro-Wilk)
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Test

Cizelge- 4: Stil ihlali Sayisi ve Dokiimantasyon Puani igin Shapiro-
Wilk Normal Dagilim Testi Sonuglari

Grup istatistigi p-degeri  Dagilim Uygunlugu
insan 0,957 0,259 Normal dagilir (p > 0,05)
ZZL’:V 0,922 0,031 Normal dagilmaz (p < 0,05)

Shapiro-Wilk sinamasi sonuglarina gére, insan grubuna ait
Pylint skorlarinin normal dagildigi gorilmekle birlikte (p =
0,259), Yapay Zeka grubunun skorlarinin dagilhimi istatistiksel
olarak anlamh sekilde normal dagilimdan sapmaktadir (p =
0,031). Bu nedenle, iki grup arasinda ortalama farki test
ederken parametrik olmayan Mann-Whitney U sinamasi
tercih edilmistir. Bu test, dagihm varsayimina gerek
duymaksizin iki bagimsiz grubun siralama temelli farklarini
givenilir bicimde 6lgme olanag saglamaktadir. Bu yontem,
ozellikle stil, yapi ve hata temelli kalite puanlarinin
karsilastiriilmasinda daha tutarli sonuglar sunmaktadir.

Yapay zeka destekli ve insan eliyle yazilmis Python kodlarinin
icerdigi hata sayilarinin karsilastiriimasi amaciyla yapilan
analizlerde, her iki grup igin Pylint aracili§iyla belirlenen
toplam hata sayisi degerlendirilmistir. Kodlar, daha 6nce
belirtildigi (izere, ayni islevleri gergeklestiren YZ ve insan
retimi eslestirilmis programlardan olusmaktadir.

Veri dagiliminin incelenmesinde, YZ grubunun hata sayilarinin
normal dagilm gostermedigi tespit edilmistir (p < 0,05,
Shapiro-Wilk sinamasi sonuglari verinin inceleme 6ncesinde
belirtilmistir). Bu nedenle, iki grup arasinda hata sayisi
bakimindan istatistiksel anlamhlik analizinde parametrik
olmayan Mann-Whitney U sinamasi tercih edilmistir. Bu test,
dagihm varsayimi gerektirmeyen ve kigiuk orneklemlerde
givenilir sonuglar sunan siralama temelli bir yontemdir.

Siklomatik karmasiklik degerlerinin gruplar arasi dagilimlari
incelendiginde, verilerin normal dagilhma uymadigl ve
carpikhk icerdigi gozlemlenmistir. Ayrica metrik dogasi geregi
sinirh ve ug¢ degerlere acik bir dagilim vyapisina sahip
oldugundan, bu tir veriler igin parametrik testlerin
varsayimlarini karsilamadigi degerlendirilmistir. Bu nedenle,
vapisal karmasiklik diizeylerinin insan ve yapay zeka Uretimi
kodlar arasinda karsilastirilmasinda parametrik olmayan
Mann-Whitney U sinamasi kullanilmistir. Bu test, siralama
temelli bir inceleme sagladigindan, dagihm yapisindan
bagimsiz olarak guvenilir bir karsilastirma araci olarak
degerlendirilmistir.

Cizelge- 3: Siklomatik Karmasiklhik Degerlerinin Normal Dagilima
Uygunluk Testi (Shapiro-Wilk)

Shapiro-Wilk L Normal
Grup istatistigi p-degeri Dagilima
& Uygunluk
insan 0,908 0,013 Hayir
YZ 0,896 0,007 Hayir

Shapiro-Wilk sinamasi sonuglarina gére, hem insan hem de YZ
gruplarina ait siklomatik karmasiklk verileri normal dagilima
uygun degildir (p < 0,05). Bu nedenle, bu degisken icin
parametrik testler yerine parametrik olmayan Mann-Whitney
U sinamasi kullanilmasi  metodolojik olarak uygun
gorilmektedir.

Shapiro- Normal
Grup }Nilk. . degeri Dagihm 5
Istatistigi Uygunlugu
insan — Stil 0,881 0,003  Hayir
Yapay Zeka — Stil 0,933 0,059 Evet
insan — Dokiima ntasyon 0,943 0,110 Evet
Yapay Zeka — Dokiimantasyon 0,934 0,061 Evet

Shapiro-Wilk sinamasi sonuglarina gore, stil ihlali sayisi
degiskeni insan grubunda normal dagilim géstermemektedir
(p = 0,003), bu nedenle bu degisken icin parametrik olmayan
inceleme yontemleri tercih edilmistir. Dokiimantasyon puani
ise her iki grup icin de normal dagilmis gériinmektedir (p >
0,05). Ancak orneklem buyUkliglinin sinirli olmasi ve tim
analizlerde metodolojik tutarlihgi saglamak amaciyla, her iki
degisken icin de Mann-Whitney U sinamasi kullaniimistir. Bu
yaklasim, analizlerin gulvenilirligini ve yorumlanabilirligini
artirmak amaciyla tercih edilmistir.

Veri setinde her program igin Pylint tarafindan Uretilen bu
skorlar, yapay zeka ve insan Uretimi gruplar arasinda
karsilastiriimis ve istatistiksel inceleme igin parametrik
olmayan Mann-Whitney U sinamasi kullaniimistir. Elde edilen
sonuglar, yapay zeka tarafindan vyazilan kodlarin kalite
skorlarinin insan yazimi kodlara kiyasla anlamli diizeyde daha
yiksek oldugunu gostermistir (U = 879.50, p < 0,001). Cizelge-
5, her iki gruba ait betimsel istatistikleri ve test bulgularini
sunmaktadir. (Cizelge- 5’te goruldigu gibi).

Gizelge- 5: insan ve Yapay Zeka Tarafindan Yazilmis Kodlarin Pylint
Skorlarina iliskin Karsilastirma

Kod Ortalama Standar  Mann- _degeri
Tard Skor tSapma  Whitney U p-des
insan 7.12 30 0,9

Yz 8.73 30 0,7 879.50 < 0,001

951

8.5

8.0

75

Pylint Skoru

7.0

6.5

6.0

insan Al
Kod Turd

Sekil- 1. Pylint Skoru Dagilimi: insan ve YZ

Bu bulgular, Bolt.New gibi yapay zeka araclarinin genel olarak
Pylint tarafindan oOnerilen Python stil ve yapisallik
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standartlarina daha yilksek diizeyde uyum sagladigini ortaya
koymaktadir. Stil ihlallerinin, gereksiz yapi tekrarlarinin ve
potansiyel hata noktalarinin daha az olmasi, bu araglarin
statik inceleme puanlarinda 6ne c¢ikmasini saglamaktadir.
Ancak bu skorlar, baglamsal anlam, algoritmik sezgi veya
islevsel yaraticilik gibi nitelikleri dogrudan 6lgmediginden,
analizlerin ilerleyen béliimlerinde okunabilirlik, hata yapisi ve
karmasiklik gibi ek metriklerle desteklenmesi gerekmektedir.
Pratik olarak, bu durum gelistiricilerin temel sdzdizimsel
dogrulugu saglamak ve PEP8 uyumunu korumak igin YZ
tabanli araglardan faydalanabilecegini gostermektedir. Ancak
karmasik senaryolarda baglamsal dogrulugun kontroli icin
insan denetimi kritik 6nemdedir.

Cizelge- 6: insan ve Yapay Zeka Kodlarinin Hata Sayisi
Karsilagtirmasi

tal M -
Kod Ortalam Standar a'mn -
- a Hata n Whitney p-degeri
Tari t Sapma
Sayisi U
insan 7,03 30 2,8
Yz 2,77 30 1,9 159,0 <0,001
Hata Sayisi Dagilimi: insan vs Al
14
12
10
£
4
, _
1]
Insan Al

Kod Turd

Sekil- 2. Hata Sayisi Dagilimi: insan ve YZ (Sekil- 2’de sunuldugu
gibi).

Elde edilen sonuglar, YZ tarafindan yazilan kodlarin insan
yazimi kodlara kiyasla anlamli sekilde daha az hata igerdigini
gostermektedir (U = 159,00, p < ,001). Ortalama hata sayisi
acisindan bakildiginda, YZ kodlarinda tespit edilen hata
miktari, insan kaynakh kodlara gore yaklasik %60 daha
disliktir. Bu bulgu, yapay zeka destekli kod tGretim araglarinin
ozellikle temel s6z dizim ve mantik dogrulugu saglama
konusunda daha basarili oldugunu gdstermektedir.
Kaynaklarda vyer alan c¢alismalar da (6rnegin Chen ve
arkadaslar [9]) bu durumu, YZ sistemlerinin biylk kod veri
kiimeleri Gzerinden Ogrenilen yaygin ve “glvenli” yapilari
tercih etmesiyle agiklamaktadir.

Bununla birlikte, diislik hata orani tek basina kodun islevsellik,
yaraticilik veya baglamsal bitiinlik agisindan ideal oldugunu
garanti etmez. Hata orani, kodun teknik dogruluguna dair
glclu bir gosterge olsa da, kodun anlasilirhgi, moddulerligi ve
sirdiralebilirligi gibi faktorler de yazilim kalitesinin ayrilmaz

pargalaridir. Bu nedenle ilerleyen analizlerde, stil ihlalleri,
dokliimantasyon kalitesi ve karmasiklik gibi boyutlar da
buttncil bir degerlendirme saglamak lzere ele alinacaktir.

4.1. Siklomatik Karmasiklik Karsilagtirmasi

Yapay zeka (YZ) ve insan tarafindan yazilmis Python
programlarinin yapisal karmasikhk duzeyleri, siklomatik
karmasiklik metrigi ile degerlendirilmistir.  Siklomatik
karmasiklik, yazilimin kontrol akisindaki bagimsiz yol sayisini
hesaplayarak programin ne 6lglide dallanma ve kontrol yapisi
icerdigini ortaya koyan onemli bir olguttiir [18]. Bu metrik,
yazihmin test edilebilirligini, bakim kolaylhgini ve hata
potansiyelini dogrudan etkileyen temel yapisal unsurlar
arasinda yer almaktadir.

Her iki grup icin dagilim normal olmadigindan (6nceki Shapiro-
Wilk sinamasi sonuglarina dayanarak), karsilastirma amaciyla
Mann-Whitney U sinamasi kullanilmistir. Bu test, farkli
dagihmlara sahip bagimsiz iki grubun siralama temelli
farklarini istatistiksel olarak degerlendirmek igin uygun bir
yontemdir.

Cizelge- 7: Siklomatik Karmasiklik Degerlerinin insan ve Yapay
Zeka Kodlarinda Karsilagtirilmasi

M -
Kod Ortalama Standart a.nn P
- Whitne p-degeri
Tard Karmagiklik Sapma yU
insan 9,43 30 #3,1
Yz 6,37 30 2,5 304,50 0,031

Analiz sonuglari, YZ tarafindan yazilan kodlarin daha dusik
siklomatik  karmasikhk  degerlerine  sahip  oldugunu
gostermektedir (U = 304.50, p = 0,031). Bu durum, yapay zeka
sistemlerinin daha sade, daha az dallanma igceren ve test
edilmesi gorece daha kolay kod parcalari iretme egiliminde
oldugunu dusundirmektedir. Bu bulgu, Bolt.New gibi
sistemlerin yaygin oriintllere dayanarak “giivenli” yapilari
tercih ettigi literatiirle 6rtiismektedir [20, 17]. Insan
gelistiricilerin ise genellikle baglamsal olarak daha 6zgiin ve
karmasik yapilar tretebildigi, ancak bu yapilarin daha yiiksek
hata potansiyeli tasiyabilecegi gozlemlenmektedir.

Yine de diisiik karmasiklik her zaman daha iyi kalite anlamina
gelmemektedir. Karmasik islevleri gerceklestiren kodlarin
kaginilmaz olarak daha yiksek kontrol yapisi igerebilecegi
unutulmamalidir. Bu nedenle, ilerleyen béliimlerde kodlarin
okunabilirligi ve dokimantasyon kalitesi gibi faktorlerle
birlikte degerlendirilmesi, kalite agisindan daha butiincil bir
bakis saglayacaktir.

4.2. Stil Uyumu ve Okunabilirlik Karsilastirmasi

Yazilim miihendisliginde kodun okunabilirligi ve
slrdurulebilirligi, yalnmzca islevsel dogrulukla degil, ayni
zamanda stil blatinligu ve yeterli aciklayicilik diizeyiyle de
yakindan iliskilidir. Bu baglamda, ¢alismada hem stil ihlali
sayisi hem de dokiimantasyon puani, kodlarin okunabilirlik
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dizeylerini temsil eden iki onemli metrik olarak

degerlendirilmistir.

Verilerin dagilim ozellikleri normal olmadigi igin, bu iki
degiskenin insan ve Yapay Zeka (YZ) gruplar arasinda
karsilastiriilmasinda parametrik olmayan Mann-Whitney U
sinamasi uygulanmistir. Elde edilen sonuglar Cizelge- 8'de
verilmektedir.

Cizelge- 8: insan ve Yapay Zeka Kodlarinin Stil ihlali ve
Dokiimantasyon Puanlarina iliskin Karsilagtirma

Blciit Kod Orl;t]e;la n Star:da Mann- L
cu Tiirii . Whitney U degeri
Deger Sapma
st dhlal o 940 30 34
Sayisi
<
+
YZ 3,77 30 2,1 102.00 0,001
Dokimanta = . 4450 30  +12,7
syon Puani
<
+
YZ 81,03 30 11,3  889.50 0,001
Dokimantasyon Puani Dagilimi: insan vs Al
90}
8o
_70
5
5 60f
@
£ s0f
2 40
30}
20}

Insan Al
Kod Turd

Sekil- 3. Dokiimantasyon Puan Dagilimi: insan ve YZ

Test sonuglari, her iki 6l¢lit acisindan da YZ kodlarinin
istatistiksel olarak anlamli sekilde daha iyi performans
sergiledigini ortaya koymaktadir. Stil ihlalleri agisindan, YZ
Uretimi kodlarin daha disiik ihlal sayisiyla daha iyi PEP8
uyumu sagladigi gézlemlenmistir (U = 102.00, p < 0,001). Bu
durum, vyapay zekanin egitim aldigi buyik kod veri
kiimelerindeki yaygin 6rintileri takip ederek daha formal ve
tutarli giktilar Gretmesinden kaynaklaniyor olabilir.

Stil ihlal Sayisi Dagilimi: insan vs Al

=
=

=
S

-
N

—
=]

=]

stil ihlal Sayisi

insan Al
Kod Tard

Sekil- 4. Stil ihlal Sayisi Dagilimi

Ote yandan, dokiimantasyon puanlari, YZ tarafindan yazilan
kodlarda anlamli bicimde daha yiiksektir (U = 889,50, p <
0,001). Bu bulgu, YZ'nin fonksiyonlari agiklayan yorumlar,
amag belirtici satirlar ve genel aciklayici metinleri daha
dizenli sekilde yerlestirdigini gdstermektedir. Bu yonlyle YZ
sistemleri, okunabilirlik ve sirdirilebilirlik agisindan insan
yazilimcilara gore daha tutarli dokiimantasyon standartlarina
yaklasabilmektedir.

4.3. Kod Tekrar Orani Karsilagtirmasi

Yazihm mihendisliginde kod tekrar orani, gelistirilen yazilimin
modalerligi, bakim kolayligi ve optimizasyon diizeyi agisindan
onemli bir kalite gostergesidir. Bu baglamda, insan ve yapay
zeka dretimi Python kodlari arasinda kod tekrar orani
karsilagtirmasi yapilmistir.

Veri dagilimi normallik varsayimini karsilamadigindan (6nceki
bolimlerde Shapiro-Wilk sinamasi ile gosterilmistir),
karsilastirma igin parametrik olmayan Mann-Whitney U
sinamasi  kullanilmistir.  Analiz  bulgulari  Cizelge-9'da
sunulmaktadir.

Gizelge- 9: insan ve Yapay Zeka Kodlarinda Kod Tekrar Orani
Karsilagtirmasi

Ortalama Mann-
Kod Standar . ..
. Tekrar n Whitney p-degeri
Tari t Sapma
Orani U
insan 17,43 30 4,6
Yz 8,17 30 12,7 109,00 < 0,001

Elde edilen sonuglar, yapay zeka lretimi kodlarin, insan
Uretimi kodlara gore daha diisik oranda tekrar icerdigini ve
bu farkin istatistiksel olarak anlaml oldugunu géstermektedir
(U =109.00, p <,001). YZ tarafindan dretilen kodlarin daha
disik tekrar oranina sahip olmasi, bu sistemlerin genellikle
daha modiiler, yapilandirilmis ve tekrardan kaginan (DRY
prensibine uygun) kodlar (retmeye egilimli oldugunu
gostermektedir.

Bolt.New gibi yapay zeka tabanl kod {iretim sistemleri, egitim
verilerinde sik rastlanan soyutlama oriintilerine dayanarak
tekrar eden vyapilari minimize etme yoniinde c¢ikti
Uretebilmektedir. Buna karsin insan vyazilimcilar, ¢6zim
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gelistirirken siklikla ahlskanliklarina ya da kisa streli
hedeflerine bagli olarak kod tekrarina daha acik yapilar
olusturabilmektedir.

Ancak bu bulgu, yapay zekanin tekrar icermeyen tiim kodlar
baglamsal olarak anlamli ve sirdirdilebilir yazdigi anlamina
gelmemelidir. Kodun fonksiyonel bdlinmesi, bagimsizlik
dizeyi ve genel mimari i¢ tutarhhg gibi baska kalite
unsurlarinin da ilerleyen boélimlerde inceleme edilmesi
gerekmektedir.

4.4. Zorluk Kalite

Karsilagtirmasi

Seviyesine Gore Olgiileri

Cizelge- 10: Zorluk Seviyesine Gére Ortalama Kalite Olgiileri

Zorlu Hat Siklom .Stil Kod Dokiim
k Kod Pylint a atik Ihlal antasy
Tiird Skor Sa Karma  Sayis Tekrar on
Seviy urd u v V! Orani
esi s sikhk 1 Puani
Basit Yz 9.31 0,7 2.9 1.6 4.5 86.8
insan  7.93 2.7 4.0 4.8 9.5 63.1
Orta YZ 8.73 2.4 5.7 3.5 7.3 82.2
Karm vz 816 52 105 62 127 74.1
asik
insan  6.33 12.1  16.0 15.1 26.6 28.3

Programlarin zorluk diizeyine gore ayrilmasi, yapay zeka ve
insan kaynakli kodlarin kalite performanslarini daha detayl
sekilde ortaya koymayr mimkin kilmistir. Cizelge- 7’de
gosterildigi Uzere, her bir kalite metrigi agisindan, gorev
karmasikligl arttikga insan ve yapay zeka kodlari arasindaki
farklar da belirginlegsmektedir.

Ozellikle Pylint kalite skorlari, her ii¢ zorluk diizeyinde de
yapay zeka lehine daha yiksektir. Bu fark, karmasik
gorevlerde daha da artmakta ve YZ sistemlerinin stil, yapi ve
hata 6nleme konularinda daha stabil performans sergiledigini
gdstermektedir. insan yazimi kodlarda karmasiklik arttikca
kalite degeri ciddi bigimde dismektedir (Basit: 7,93 >
Karmasik: 6,33), oysa YZ kodlarinda bu disus sinirhdir (Basit:
9,31 - Karmasik: 8,16).

Hata sayilari agisindan da benzer bir desen izlenmektedir.
Basit gorevlerde YZ ortalama 0,7 hata (retirken, insan
yazilimcilar 2.7 hata Uretmistir. Karmasik gorevlerde bu fark
dramatik sekilde ac¢ilmis; YZ igin 5,2, insan icin ise 12,1 hata
ortalamasi tespit edilmistir.

Siklomatik karmasiklik degerleri de zorlukla birlikte artarken,
insan kaynakli kodlarda artis daha keskindir. Bu durum, insan
gelistiricilerin karmasik gorevlerde kontrol akisini daha yogun
vapilandirdigl, YZ'nin ise daha dengeli bir artis egilimi
gosterdigini ortaya koymaktadir.

Stil ihlalleri ve kod tekrar orani metriklerinde, insan kaynakli
kodlar karmasik gorevlerde ciddi bozulma gdéstermekte; YZ
retimi kodlar ise daha tutarli kalmaktadir. Ornegin, stil
ihlalleri YZ'da karmasik gorevlerde 6,2'ye c¢ikarken, insanlarda
bu oran 15,1'e ulasmistir. Benzer sekilde, kod tekrar orani
insanlarda %26,6’'ya c¢ikarken, YZ'da sadece %12,7'de
kalmistir.

En dikkat c¢ekici farklardan biri de dokiimantasyon
kalitesindedir. Karmasik gorevlerde YZ sistemleri ortalama
74.1 puanlik dokiimantasyon Uretirken, insan gelistiricilerin
bu ortalamasi yalnizca 28.3’tlir. Bu bulgu, YZ sistemlerinin
karmasik durumlarda bile agiklayiciliktan taviz vermemesiyle,
sirdardlebilir kod gelistirme agisindan avantaj sagladigini
gostermektedir.

5. Tartisma ve Sonug

Bu c¢alisma, yapay zeka destekli Bolt.New araci ile {retilen
Python kodlarinin, insan eliyle yazilmig esdeger kodlarla
kalite, hata orani, siklomatik karmasiklik, stil uyumu, kod
tekrar orani ve dokiimantasyon metrikleri agisindan
sistematik bir karsilastirmasini sunmaktadir. Analizler, Pylint
gibi Python’a 6zgl bir statik inceleme araci kullanilarak
gerceklestirilmis ve programlarin zorluk seviyelerine (basit,
orta, karmasik) gore siniflandiriimasiyla, YZ'nin farkli gérev
turlerindeki performansina dair ayrintilh bir Cizelge- ortaya
konmugtur. Bulgular, YZ destekli kod uretiminin 6zellikle basit
ve orta diizey gorevlerde yiksek kalite, diisiik hata orani ve
daha iyi stil uyumu sagladigini; karmasik goérevlerde ise
dokiimantasyon ve modiilerlik agisindan avantaj sundugunu,
ancak baglamsal uygunlukta insan yazimi kodlara kiyasla
sinirhiliklar gosterdigini ortaya koymaktadir.

5.1. Bulgularin Kaynaklarla Karsilastiriimasi

Calismanin bulgulari, literatiirdeki mevcut galismalari hem
desteklemekte hem de yeni bakis agilari sunmaktadir.
Ornegin, Chen ve arkadaslar [9] tarafindan Codex tabanli
GitHub Copilot’un basit gorevlerde yiiksek dogruluk sundugu,
ancak baglamsal hatalar Uretebildigi belirtilmistir. Benzer
sekilde, bu ¢alismada Bolt.New’un basit gérevlerde (6rnegin,
asal sayi kontroll veya faktériyel hesaplama) ortalama 9,31
Pylint degeri ile insan yazimi kodlara (7,93) kiyasla daha
yiksek kalite sundugu gozlemlenmistir. Ancak, karmasik
gorevlerde (6rnegin, web kaziyici veya veri gorsellestirme)
YZ'nin kalite degeri (8,16) insan kodlarina (6,33) gore hala
daha yiiksek olsa da baglamsal uygunluk eksiklikleri, 6zellikle
algoritmik sezgi gerektiren senaryolarda belirginlesmektedir.
Bu durum, blyik dil modellerinin baglamsal 6grenme
kapasitelerinin, ozellikle az ornekle 6grenme (few-shot
learning) senaryolarinda sinirl kalabilecegini gosteren Brown
ve arkadaslarinin [6] bulgulariyla uyumludur. Ayrica,
Hendrycks ve arkadaslari [15], APPS veri kiimesi Gzerinden
yapilan analizlerde, YZ modellerinin karmasik programlama
gorevlerinde insan dilizeyinde performansa yaklasabildigini,
ancak baglamsal derinlik gerektiren senaryolarda sinirliliklar

gosterdigini  belirtmistir.  Bu, Bolt.New'un karmasik
gorevlerdeki baglamsal eksikliklerinin, modelin egitim
verilerindeki genellikten kaynaklanabilecegini

duslindirmektedir. Bu, Pearce ve arkadaslarinin [21] YZ
kodlarinin  baglamdan kopuk olabilecegi yonindeki
bulgulariyla da uyumludur.

Siklomatik karmasiklik agisindan, YZ'nin daha dislik degerler
Uretmesi (ortalama 6,37'ye karsi 9,43), Nguyen ve
arkadaslarinin [20] YZ kodlarinin daha sade yapilar Gretme
egiliminde oldugu gozlemiyle ortismektedir. Ancak, bu
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sadeligin her zaman islevsel bir avantaj saglamadigi
unutulmamahdir;  zira  karmasik  gorevlerde insan
gelistiricilerin baglamsal bilgiyle desteklenen daha karmasik
ama 0Ozgln vyapilar Urettigi gozlemlenmistir. Bu durum,
Sommerville’in [26] insan gelistiricilerin sezgisel ve baglama
0zgli ¢coziimler Gretme yetkinligine dair gorislerini destekler
niteliktedir.

Doklimantasyon puani agisindan YZ'nin Gstiinligi (karmasik
gorevlerde 74,1’e karsi 28,3), kaynaklardaki YZ'nin tutarh ve
Olglinlere uygun ciktilar Uretme egilimiyle [17] paralellik
gostermektedir. Ancak, bu yiksek dokiimantasyon
puanlarinin, kodun baglamsal anlamini veya gelistirici dostu
actklamalari tam olarak yansitmadigina dair Scalabrino ve
arkadaslarinin [25] bulgulari, calismamizda da gézlemlenen
bir sinirlilik olarak 6ne ¢ikmaktadir. Ornegin, Vaithilingam ve
arkadaslart  [27], YZ tarafindan (retilen kodlarin
dokiimantasyonunun genellikle sablon niteliginde oldugunu
ve baglamsal derinlikten yoksun olabilecegini belirtmistir.
Ornegin, YZ’'nin Urettigi yorum satirlari genellikle genel ve
sablon niteligindedir, bu da insan gelistiricilerin proje-spesifik
actklamalarina kiyasla daha az derinlik sunabilir.

5.2. Pratik ve Kuramsal Katkilar

Bu calisma, yazilim miihendisligi ve YZ entegrasyonu alaninda
hem pratik hem de kuramsal katkilar sunmaktadir. Pratik
acidan, Bolt.New gibi YZ araglarinin basit ve orta dizey
gorevlerde gelistirici verimliligini artirdigi ve hata oranini
azalttig) gésterilmistir. Ozellikle, stil ihlalleri (YZ: 3,77, insan:
9,40) ve kod tekrar orani (YZ: %8,17, insan: %17,43) gibi
metriklerdeki  Ustunlik, YZ'nin PEP 8 gibi Python
standartlarina uyum saglama ve modiiler kod iretme
kapasitesini ortaya koymaktadir. Vaithilingam ve arkadaslari
[27], YZ araglarinin gelistirici is akiglarina entegrasyonunun,
ozellikle rutin gérevlerde verimliligi artirdigini, ancak gelistirici
beklentilerine uygunluk acisindan daha fazla baglamsal
ozellestirme gerektirdigini belirtmistir. Bu, gelistiricilerin rutin
gorevlerde YZ araclarini glivenle kullanabilecegini ve insan
denetimiyle birlestirildiginde daha verimli is akislar
olusturabilecegini gostermektedir.

Teorik acgidan, c¢alisma literatiirdeki 6nemli bir boslugu
doldurmaktadir. Bolt.New gibi daha az incelenmis bir YZ
aracinin Python’a 6zgi metriklerle degerlendirilmesi, mevcut
arastirmalarin genellikle GitHub Copilot gibi popliler araglara
odaklandigi bir alanda 6zgiin bir katki sunar [10]. Ayrica,
zorluk  seviyelerine gbre vyapilan analizler, YZ'nin
performansinin gérev karmagsikligina bagh olarak nasil
degistigine dair yeni bir perspektif sunmaktadir. Bu,
gelecekteki arastirmalar igin YZ araglarinin baglamsal
sinirhliklarini ele alan daha hedefe yonelik egitim veri setleri
tasarlanmasi gerektigini gostermektedir.

5.3. Sinirlar ve Gelecek Calismalar

Calismanin bazi sinirlari bulunmaktadir. ilk olarak, veri kiimesi
30 insan yazimi ve 30 YZ liretimi programla sinirhdir, bu da
genellenebilirligi kisitlayabilir. Daha genis bir 6rneklemle
yapilacak galismalar, bulgularin daha gesitli senaryolarda test
edilmesini saglayabilir. ikinci olarak, Pylint gibi statik inceleme

araclari, kodun islevsel dogrulugunu veya baglamsal
uygunlugunu tam olarak dlgemez. Ornegin, Carlini ve Wagner
[8] tarafindan belirtildigi lizere, YZ modellerinde ortaya ¢ikan
hatalar veya guivenlik agiklari, bazen modelin 6zelliklerinden
kaynaklanan yapisal sinirliliklar olarak degerlendirilebilir; bu
da Pylint’in tespit edemeyecegi potansiyel riskleri igerir.
Benzer sekilde, Mozannar ve arkadaslari [19], YZ kod Uretim
modellerinin baglamsal hatalara ve nadir gérilen senaryolara
karsi hassas oldugunu, bu durumun model saglamhgini
artiracak yeni egitim yaklasimlarini gerektirdigini belirtmistir.
Gelecekteki ¢alismalar, dinamik inceleme araglari veya insan
gelistiricilerin subjektif degerlendirmelerini dahil ederek daha
bitiincil bir kalite incelemesi sunabilir. Ugiincii olarak,
Bolt.New’un performansinin yalnizca Python dilinde
degerlendirilmis olmasi, diger programlama dillerine
genellenmesini zorlastirmaktadir. Farkh dillerde (6rnegin,
JavaScript veya C++) benzer karsilastirmalar yapilmasi, YZ'nin
dil-spesifik etkilerini anlamada faydali olabilir.

Gelecekteki arastirmalar, YZ araglarinin baglamsal anlamayi
ivilestirmek icin nasil egitilebilecegine odaklanabilir. Ornegin,
Xu ve arkadaslari [30], alan-spesifik veri setleriyle yapilan ince
ayar (fine-tuning) islemlerinin, YZ modellerinin baglamsal
uygunlugunu artirabilecegini ve kod lretiminde daha proje-
odakli sonuglar sunabilecegini gostermistir. Brown ve
arkadaslarinin [6] az 6rnekle 6grenme Uzerine ¢alismalari da,
proje-spesifik veri setleriyle ince ayar yapilmis modellerin
baglamsal uygunluk sorunlarini  azaltabilecegini 6ne
sirmektedir.

Ayrica, Hendrycks ve arkadaslari [15], karmasik programlama
gorevlerinde YZ modellerinin performansini artirmak igin
daha zengin ve baglam odakli veri setlerinin gerektigini
vurgulamistir. YZ destekli kod Uretiminin glvenlik agiklar
Uzerindeki etkisi, Pearce ve arkadaslarinin [21] vurguladig
Uzere, daha derinlemesine incelenmelidir. Mozannar ve
arkadaslari  [19] tarafindan Onerilen model saglamhgi
analizleri, Bolt.New gibi araglarin Uretim ortamlarinda
gluvenilirligini artirmak icin 6nemli bir aragtirma yonu olabilir.
Son olarak, YZ araglarinin gelistirici is akislarina
entegrasyonunun uzun vadeli etkileri, 6rnegin gelistirici
beceri kaybi veya bagimlilik gibi sosyo-teknik boyutlar,
ilerideki galismalar icin 6nemli bir arastirma alanidir.

5.4. Sonug¢

Bu calisma, Bolt.New gibi YZ destekli kod iretim araglarinin
Python baglaminda insan yazimi kodlarla karsilastirildiginda,
ozellikle basit ve orta diizey gorevlerde yiiksek kalite, disik
hata orani ve daha iyi stil uyumu sundugunu ortaya
koymaktadir. Karmasik gorevlerde ise YZ, dokiimantasyon ve
modulerlik agisindan avantaj saglasa da, baglamsal uygunluk
ve algoritmik sezgi gerektiren senaryolarda insan denetimine
ihtiya¢ duymaktadir. Weisz ve arkadaslari [28], YZ ve insan
gelistiriciler arasindaki is birliginin, kod Uretiminde
tamamlayici bir rol oynayarak hem verimliligi artirdigini hem
de insan uzmanliginin vazgecilmezligini korudugunu
vurgulamistir. Bu bulgular, YZ araglarinin yazihm gelistirme
siireclerinde giiglii bir tamamlayici rol oynayabilecegini, ancak
insan uzmanliginin vazgecilmezligini géstermektedir.
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Pratik acidan, gelistiriciler YZ araglarini rutin goérevlerde
verimliligi artirmak icin kullanabilir, ancak karmasik
projelerde baglamsal dogruluk igin insan denetimi kritik
onemdedir. Teorik agidan, ¢alisma YZ destekli kod Gretiminin
Python’a 6zgli standartlara uyumunu nesnel metriklerle
degerlendirerek literatiire katki sunmakta ve gelecekteki
arastirmalar icin bir rehber gerceve onermektedir. Yazilim
muhendisligi ile YZ'nin kesisiminde, otomasyon ve insan
yaraticihgi arasinda bir denge kurularak daha verimli, glivenilir
ve slrdurilebilir kod tiretim stiregleri olusturulabilir.
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