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Öz  

Yapay zeka (YZ) temelli kod üretim araçlarının yükselişi, 
yazılım mühendisliğinde kod yazım süreçlerini 
dönüştürmektedir. Bu çalışma, YZ destekli “Bolt.New” aracıyla 
üretilen Python programlarını, insan eliyle yazılmış eşdeğer 
programlarla kalite, karmaşıklık ve okunabilirlik açısından 
sistematik olarak karşılaştırmayı amaçlamaktadır. 2019 
öncesi GitHub’dan seçilen 30 adet insan yapımı program ile 
aynı işlevleri gerçekleştiren YZ üretimi programlar, satır 
sayılarına göre basit, orta ve karmaşık ulamlara ayrılarak 
incelenmiştir. Python’a özgü statik inceleme aracı Pylint ile 
ölçülen kalite puanı, hata sayısı, siklomatik karmaşıklık, stil 
ihlali, kod tekrar oranı ve belge puanı ölçüleri, iki küme 
arasında istatistiksel olarak karşılaştırılmıştır. Bulgular, YZ’nin 
basit görevlerde yüksek kalite ve düşük hata oranı sunduğunu, 
karmaşık görevlerde ise daha düşük karmaşıklık ve daha iyi 
belge sağladığını, ancak bağlamsal uygunlukta sınırlamalar 
gösterebildiğini ortaya koymaktadır. Bu çalışma, YZ destekli 
kod üretiminin Python’a özgü ölçünlere uyumunu ve hata 
azaltma potansiyelini nesnel ölçülerle değerlendirerek, yazılım 
geliştirme süreçlerinde otomasyon ve insan denetimi arasında 
denge kurulmasına yönelik rehber bir çerçeve sunmaktadır. 

Anahtar Sözcükler: Yapay Zeka, Kod Kalitesi, Python, Yazılım 
Mühendisliği, Kod Okunabilirliği, Kod Karmaşıklığı 
JEL Sınıflandırması: C88, L86, O33 

Abstract  

The rise of artificial intelligence (AI)-based code generation 
tools is transforming code writing processes in software 
engineering. This study aims to systematically compare 
Python programs generated by the AI-powered “Bolt.New” 
tool with equivalent human-written programs in terms of 
quality, complexity, and readability. Thirty human-written 
programs selected from GitHub prior to 2019, along with AI-
generated programs performing the same functions, were 
categorized into simple, medium, and complex based on line 
count and analyzed. Metrics such as quality score, error count, 
cyclomatic complexity, style violations, code duplication rate, 
and documentation score, measured using the Python-specific 
static analysis tool Pylint, were statistically compared 
between the two groups. The findings reveal that AI offers 
high quality and low error rates in simple tasks, while in 
complex tasks, it provides lower complexity and better 
documentation but shows limitations in contextual 
appropriateness. This study evaluates the compliance of AI-
generated code with Python-specific standards and its 
potential for error reduction using objective metrics, offering 
a guiding framework for balancing automation and human 
oversight in software development processes. 
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1. Giriş 

Yazılım mühendisliği, teknolojinin hızla geliştiği bu bilişim 
çağında hem akademik hem de diğer uygulamalarda önemli 
bir rol üstlenmektedir. Bu disiplinin temel yapı taşlarından biri 
olan kod üretim süreci, yıllar boyunca insan yaratıcılığı, bilgi 
birikimi ve mühendislik sezgilerine dayalı olarak gelişmiş ve 
olgunlaşmıştır. 20, yüzyılın ortalarından itibaren geliştirilen 
yapılandırılmış programlama, nesne yönelimli tasarım ve 
modüler yazılım geliştirme yaklaşımları, kodun kalite, 
sürdürülebilirlik ve anlaşılabilirlik boyutlarında sistematik 
iyileştirmeler yapılmasına olanak tanımıştır. Bu çerçevede, 
yazılım kalitesi; yalnızca kodun doğru çalışmasıyla sınırlı 
olmayan, okunabilirlik, bakım kolaylığı, modülerlik ve hata 
yönetimi gibi çok boyutlu metriklerle tanımlanan bir kavram 
haline gelmiştir. 

Ancak 2010’ların ortalarından itibaren yapay zeka (Yapay 
Zeka: YZ, Artificial Intelligence: YZ) teknolojilerinde yaşanan 
atılımlar, yazılım üretimi bakış açısında köklü bir dönüşüm 
başlatmıştır [13]. Özellikle Doğal Dil İşleme (DDİ), Büyük Dil 
Modelleri (BDM) ve derin öğrenme sistemlerinin 
yaygınlaşmasıyla ortaya çıkan üretken yapay zeka, 
geliştiricilerin kod yazma süreçlerine yardımcı olan ya da 
doğrudan işlevsel kodlar üretebilen YZ destekli sistemler 
ortaya çıkmıştır [29]. GitHub Copilot, Codex ve Bolt.New gibi 
araçlar, yalnızca doğal dil açıklamalarına dayanarak Python, 
JavaScript, Java gibi dillerde çalışabilir yazılım bileşenleri 
oluşturabilmekte ve bu sayede geliştiricilerin verimliliğini 
artırmakta, rutin görevleri otomatikleştirmekte önemli roller 
üstlenmektedir [9, 17]. 

Bu gelişmeler, yazılım mühendisliğinde yalnızca üretim hızının 
değil, aynı zamanda üretim kalitesinin de YZ araçlarıyla nasıl 
evrileceğine dair yeni soruları gündeme getirmiştir. 
Kaynaklarda, YZ tarafından üretilen kodların bağlamı doğru 
yorumlama becerisi, stil bütünlüğü, hata olasılığı ve yapısal 
karmaşıklık gibi açılardan insan eliyle yazılmış kodlardan 
farklılık gösterdiği yönünde bulgular yer almaktadır. Özellikle 
Pearce ve arkadaşları [21], Copilot gibi araçların bağlamdan 
kopuk ve güvenlik açıklarına açık kod parçaları üretebildiğini 
belirtmiştir. Nguyen ve arkadaşları [20] ise YZ destekli kodların 
stil kurallarına daha az uyduğunu, ancak bu durumun statik 
inceleme araçları ile telafi edilebilir olduğunu öne sürmüştür. 
Buna karşın, bazı çalışmalar YZ kodlarının daha sade, modüler 
ve okunabilir olabileceğini savunmakta; bu da alanda çelişkili 
bulguların bulunduğunu göstermektedir. 

Bu bağlamda, bu çalışmanın temel amacı, YZ destekli kod 
üretim araçlarının yazılım mühendisliği açısından kalite, 
okunabilirlik ve karmaşıklık gibi ölçüler üzerinden insan 
üretimi kodlarla sistematik olarak karşılaştırılmasıdır. Bu 
amaçla, Python dilinde yazılmış 30 adet insan yapımı program 
ile Bolt.New adlı bir YZ aracı tarafından aynı görevler için 
oluşturulmuş 30 eşdeğer program incelenmiştir. Programlar, 
satır sayılarına göre basit, orta ve karmaşık olmak üzere üç 
ulama ayrılarak zorluk düzeyi temelinde kümelendirilmiştir. 
Tüm programlar, Python ortamında yaygın olarak kullanılan 
statik inceleme aracı Pylint ile incelenmiş; her biri için Pylint 
kalite değeri, toplam hata sayısı, siklomatik karmaşıklık, stil 

ihlali sayısı, kod tekrar oranı ve belge puanı gibi ölçüler elde 
edilmiştir. 

Çalışma, yalnızca YZ ve insan kaynaklı kodlar arasında genel 
bir karşılaştırma yapmakla kalmayıp, bu farkların zorluk 
düzeyine göre değişip değişmediğini de incelemektedir. 
Ayrıca, stil uyumu ve okunabilirlik gibi daha öznel 
değerlendirmelerin Pylint gibi nesnel araçlarla nasıl 
ölçümlenebileceğini göstermektedir. Bu yönüyle çalışma, 
yazılım mühendisliği kaynaklarında sıklıkla göz ardı edilen YZ 
araçlarının nesnel kalite ölçüleri bağlamında sistematik 
değerlendirilmesini hedeflemekte ve YZ araçlarının yazılım 
geliştirme süreçlerine entegrasyonu konusuna somut veri 
temelli katkılar sunmaktadır. 

2. Kaynak Taraması 

Son yıllarda geleneksel insan yazımı kodlar ile YZ destekli kod 
üretim araçlarının karşılaştırılması, çeşitli ölçütler üzerinden 
yapılan birçok çalışma ile geniş bir kaynak oluşturmuştur. Bu 
çalışmalar, kod üretim süreçlerinin evrimini anlamak ve yeni 
teknolojilerin yazılım geliştirme üzerindeki etkilerini 
değerlendirmek açısından önemli veriler sunmaktadır. Bu 
çerçevede, kod üretiminin tarihsel gelişimini ve kavramsal 
temellerini ele almak, kaynaklardaki tartışmaları bütüncül bir 
yaklaşımla değerlendirmek açısından önemlidir. 

2.1 Yazılım Mühendisliğinde Kod Üretimi: Tarihsel ve 
Kavramsal Arka Plan 

Yazılım mühendisliği, bilgi teknolojilerindeki ilerlemelerle 
birlikte sürekli dönüşen bir alan olarak, kod üretimi 
süreçlerinde de köklü değişimlere tanıklık etmiştir. Kod 
yazımı, yazılım geliştirme yaşam döngüsünün temel yapı 
taşlarından biri olup, geleneksel insan merkezli yaklaşımlar 
kadar, günümüzde yaygınlaşan otomasyon araçlarıyla da 
gerçekleştirilir. Bu bölümde, yazılım mühendisliğinde kod 
üretiminin tarihsel süreci ve kavramsal temelleri açıklanarak; 
kod kalitesi, okunabilirlik ve karmaşıklık gibi önemli 
metriklerin önemi vurgulanmakta ve klasik yöntemlerle yapay 
zeka destekli kod üretimi arasındaki farkların incelenmesine 
zemin hazırlanmaktadır. 

Yazılım mühendisliğinin ilk dönemlerinde, kod yazımı 
tamamen geliştiricilerin bilgi ve deneyimine dayalı bir süreçti. 
1960’lar ve 1970’lerde yapılandırılmış programlama 
yaklaşımlarının geliştirilmesi, kodun daha planlı ve sistematik 
yazılmasına katkı sağladı [11]. Bu dönemde yazılım kalitesini 
değerlendirmek amacıyla ilk ölçüler ortaya çıkmaya başladı. 
Örneğin, Boehm ve arkadaşları [4], yazılımın güvenilirliği ile 
bakım kolaylığı gibi kavramları tanımlayarak kalite 
değerlendirmesine kuramsal bir çerçeve kazandırdı. 
Boehm’un bu çalışması, yalnızca işlevsellik değil; aynı 
zamanda kodun okunabilirliği ve sürdürülebilirliği gibi 
unsurların da kaliteyi belirleyen öğeler olduğunu 
vurgulamıştır [4]. Bu değerlendirme ölçütleri, hem geleneksel 
hem de YZ tabanlı kodlar için günümüzde hâlen geçerliliğini 
korumaktadır. 

1980’li yıllardan itibaren otomasyonun yazılım geliştirme 
sürecine dahil olması, kod üretimini yeni bir boyuta taşıdı. 
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Derleyiciler, hata ayıklama araçları ve entegre geliştirme 
ortamları (IDE’ler), geliştiricilerin daha sistematik çalışmasına 
olanak tanıdı; fakat yine de insan kararları süreçte belirleyici 
olmaya devam etti [26]. Kod kalitesini değerlendirmek için 
geliştirilen statik inceleme araçları bu dönemde önem 
kazandı. Pylint gibi yazılımlar, özellikle Python dilinde kodların 
yapısını, stilini ve hata olasılıklarını inceleme ederek belirli 
kalite standartlarının korunmasına yardımcı olmaktadır [23]. 
Bu tür araçların kullanımı, özellikle açık kaynak yazılım 
projelerinde kaliteyi izleme ve iyileştirme bakımından kritik 
önem taşımaktadır [2]. 

Kod üretiminde bir diğer anahtar kavram olan karmaşıklık, 
yazılımın anlaşılabilirliği ve bakım süreçlerini doğrudan 
etkilemektedir. McCabe’in [18] geliştirdiği siklomatik 
karmaşıklık ölçütü, bir yazılım parçasının kontrol akışını 
inceleyerek karmaşıklık derecesini ölçmenin etkili bir yolunu 
sunmuştur. Bu ölçüt, yazılımın yalnızca hata olasılıklarını değil, 
aynı zamanda test edilebilirlik ve sürdürülebilirlik yönlerini de 
değerlendirmeye olanak tanımaktadır [18]. Halstead’in [14] 
önerdiği metrikler ise yazılımın hacmini ve zorluk derecesini 
değerlendirerek karmaşıklık incelemesine farklı bir katkı 
sunmuştur. Bu göstergeler, çalışmamızda YZ destekli ve 
geleneksel yöntemlerle yazılmış kodlar arasında yapılacak 
karşılaştırmalar için teorik temel sağlamaktadır. 

Kodun okunabilirliği ise yazılım mühendisliğinde bir diğer 
önemli konudur. Bu kavram, yazılımın geliştiriciler tarafından 
kolayca anlaşılmasını ve bakımının kolaylaşmasını hedefler. 
Buse ve Weimer [7], kod okunabilirliğini değerlendirmek için 
otomatik metriklere dayalı bir çerçeve geliştirmiş ve stil, 
isimlendirme kuralları ile yorum satırlarının bu sürece 
katkılarını ortaya koymuştur. Özellikle yapay zeka destekli kod 
üretiminde, okunabilirlik kriteri ayrı bir öneme sahiptir; zira YZ 
ile üretilen kodlar, bağlama uygunlukta zayıflıklar veya stil 
tutarsızlıkları gösterebilmektedir [20]. 

Günümüzde GitHub Copilot ve Bolt.New gibi yapay zeka 
temelli kod üretim araçlarının yaygınlaşması, yazılım 
geliştirme sürecinde yeni bir çağ başlatmıştır. Bu araçlar, 
büyük dil modellerine (LLM’ler) dayanarak doğal dil girdilerini 
işleyip çalışabilir koda dönüştürmektedir [9]. Bununla birlikte, 
YZ destekli kodların kalite düzeyi, hata ihtimali ve yapısal 
karmaşıklığı, insan eliyle yazılmış kodlarla kıyaslandığında 
çeşitli tartışmaları da beraberinde getirmektedir. Pearce ve 
çalışma arkadaşları [21], bu tür sistemlerin ürettiği kodlarda 
güvenlik açıkları ve bağlamdan kopukluk gibi risklerin 
bulunabileceğini öne sürmüştür. Bu nedenle, çalışmamızda 
klasik yöntemlerle YZ destekli kod üretimi arasındaki 
sistematik karşılaştırma ihtiyacı açıkça ortaya konmaktadır. 

Sonuç olarak, yazılım mühendisliğinde kod üretimi süreci, 
zamanla insan merkezli yöntemlerden otomatik sistemlere ve 
yapay zeka destekli araçlara doğru evrilmiştir. Kodun kalitesi, 
okunabilirliği ve karmaşıklığı gibi kavramlar, her iki üretim 
yaklaşımında da değerlendirme ölçütü olmaya devam 
etmektedir. Bu çalışma, Python kodlarının Pylint analiziyle 
incelenmesi yoluyla, yapay zeka destekli yazılım üretiminin 
geleneksel yöntemlerle kıyaslanarak güçlü ve zayıf yönlerinin 
ortaya konmasını hedeflemektedir. Bu bağlamda, mevcut 

kaynaklarda tanımlanmış olan kavramlar ve ölçüler, 
araştırmamızın kuramsal zeminini oluşturmaktadır. 

2.2. Yapay Zeka Destekli Yazılım Geliştirme Araçlarının 
Yükselişi  

Son yıllarda yapay zeka tabanlı yazılım geliştirme araçlarının 
hızla yaygınlaşması, kod üretiminde köklü bir dönüşüme yol 
açmış ve yazılım mühendisliğinde yeni bir dönemi 
beraberinde getirmiştir. Özellikle büyük dil modellerinin 
gelişimiyle birlikte, doğal dil ile yazılım kodu üretimi, kod 
tamamlama ve hata düzeltme gibi işlemler otomatikleşmiş, 
geliştiricilere önemli kolaylıklar sağlanmıştır. Bu bölümde, YZ 
destekli yazılım araçlarının tarihsel gelişiminden teknolojik 
altyapısına kadar birçok boyut ele alınarak, geleneksel 
yöntemlerle karşılaştırmalı bir inceleme için kuramsal bir 
temel oluşturulmuştur. Bu çerçevede, çalışmada kullanılan 
Bolt.New gibi araçlar üzerinden, YZ destekli kod üretiminin 
kod kalitesi, hata oranı ve kod karmaşıklığı üzerindeki olası 
etkileri değerlendirilmektedir. 

YZ temelli kod üretiminin ortaya çıkışı, DDİ ve makine 
öğrenmesindeki ilerlemelere dayanmaktadır. Özellikle 
2010’ların ortasında derin öğrenme modellerinde yaşanan 
gelişmeler ve dönüştürücü mimarisinin tanıtılması [29], hem 
doğal dili hem de yazılım dillerini anlamada çığır açan 
gelişmelere olanak tanımıştır. Bu bağlamda, Brown ve 
arkadaşları [6], büyük dil modellerinin az örnekle öğrenme 
(few-shot learning) kapasitelerinin, bağlamsal anlamayı 
geliştirme potansiyeline sahip olduğunu, ancak karmaşık 
senaryolarda sınırlılıklar gösterebildiğini belirtmiştir. Bu, 
Bolt.New gibi araçların bağlamsal uygunluk sorunlarının, 
modelin eğitim verilerindeki genellikten kaynaklanabileceğini 
göstermektedir. Ayrıca, Weisz ve arkadaşları [28], YZ ve insan 
geliştiriciler arasındaki iş birliğinin, kod üretiminde 
tamamlayıcı bir rol oynayarak hem verimliliği artırdığını hem 
de insan denetiminin önemini koruduğunu vurgulamıştır. Bu 
teknolojik atılımın sonucunda, 2021 yılında GitHub Copilot 
gibi araçlar geliştiricilerin kullanımına sunulmuş ve yazılım 
geliştirme pratiklerine entegre edilmiştir [9]. Copilot, Codex 
modeli sayesinde, geliştiricilerin yazdığı kodu 
tamamlayabilmekte veya yalnızca doğal dil açıklamalarıyla 
işlevsel kodlar önerebilmektedir. Bolt.New ise, Python gibi 
spesifik programlama dillerine odaklanarak daha niş ve 
hedefe yönelik çözümler üretmeyi amaçlamaktadır [5]. Bu 
araçların ortak noktası, büyük ve çeşitli yazılım veri kümeleri 
(örneğin GitHub depoları) üzerinde eğitilerek bağlamla 
uyumlu kod önerileri üretebilmeleridir [1]. 

YZ destekli yazılım araçlarının sunduğu başlıca üstünlükler 
arasında, geliştirici üretkenliğinin artması ve tekrarlayan 
görevlerin otomatikleştirilmesi yer almaktadır. Ziegler ve 
arkadaşlarının [31] yaptığı bir çalışmada, YZ tabanlı kod 
tamamlama sistemlerinin, yazılım geliştirme süresini %20 ila 
%30 oranında kısalttığı bildirilmiştir. Ancak, Bird ve 
arkadaşları [3], YZ destekli kod üretiminin etik sorunlar, 
örneğin telif hakkı ihlalleri ve geliştirici bağımlılığı gibi riskler 
taşıyabileceğini belirtmiş, bu araçların uzun vadeli etkilerinin 
dikkatle incelenmesi gerektiğini vurgulamıştır. Özellikle 
boilerplate kod yazımı, hata ayıklama ve kod stil 
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düzenlemeleri gibi zaman alan görevlerde, bu araçlar 
geliştiricilere ciddi bir zaman kazancı sunmakta ve daha 
yaratıcı süreçlere odaklanmalarını sağlamaktadır [10]. 

Bununla birlikte, YZ destekli kod üretiminin bazı sınırlılıkları da 
mevcuttur. Kaynaklarda yer alan çeşitli bulgular, bu araçların 
ürettiği kodlarda bağlam dışı hatalar, güvenlik açıkları veya 
gereksiz karmaşıklık gibi sorunların ortaya çıkabildiğini 
göstermektedir [21]. Örneğin, GitHub Copilot tarafından 
üretilen kodların yaklaşık %40’ında güvenlik açığı riski 
bulunduğu rapor edilmiştir. Bu gibi bulgular, çalışmamızın ilk 
araştırma sorusunu doğrudan ilgilendirmekte olup, insan ve 
YZ kaynaklı kodların hata oranları yönünden sistematik 
karşılaştırılmasını gerekli kılmaktadır. Ayrıca, bu sistemler 
tarafından üretilen kodlar her zaman geliştiricilerin alışkın 
olduğu okunabilirlik ve stil standartlarına uygun olmayabilir. 
Bunun nedeni, modellerin çoğunlukla eğitim aldıkları veri 
kümelerinde baskın olan kalıpları temel alarak üretim 
yapmalarıdır [20]. Bu bağlamda, çalışmamızda Bolt.New ile 
yazdırılan kodların okunabilirliği ve insan yazımı kodlarla 
kıyaslanması önemli bir inceleme boyutunu oluşturmaktadır. 

YZ araçlarının kod karmaşıklığı üzerindeki etkisi ise 
kaynaklarda tartışmalı bir konu olarak öne çıkmaktadır. Bazı 
araştırmalar, bu araçların gereğinden fazla satır kod üreterek 
yazılımı daha karmaşık hale getirebileceğini belirtirken [16], 
bazıları ise aksine, daha sade ve optimize kodlar 
üretilebileceğini savunmaktadır [17]. Bu çelişkili bulgular, 
çalışmamızda Bolt.New tarafından yazdırılan kodlarla insan 
yazımı kodlar arasında Pylint üzerinden siklomatik karmaşıklık 
gibi metrikler kullanarak karşılaştırma yapılmasının önemini 
göstermektedir. Python gibi yüksek seviyeli programlama 
dillerinde, karmaşıklık düzeyi, yazılımın bakım kolaylığı ve test 
edilebilirliği açısından büyük önem taşımaktadır [7]. 

Genel olarak bakıldığında, YZ destekli yazılım araçlarının 
yazılım geliştirme süreçlerine entegrasyonu halen erken bir 
evrede değerlendirilmektedir. Akademik çalışmalar 
çoğunlukla popüler araçlara (örneğin Copilot) odaklanmakta 
olup, Bolt.New gibi daha yeni araçlara ilişkin deneysel veri 
henüz sınırlıdır. Ayrıca, insan eliyle yazılmış kodlarla YZ 
araçlarının üretimleri arasında doğrudan ve sistematik 
karşılaştırmalar yapan deneysel çalışmalar oldukça azdır [10]. 
Bu bağlamda, bu çalışma, Bolt.New aracıyla üretilen Python 
kodlarını, 2019 yılı öncesinde GitHub’da yer alan insan yazımı 
kodlarla karşılaştırarak, YZ destekli yazılım üretiminin avantaj 
ve sınırlarını daha açık şekilde değerlendirmeyi 
hedeflemektedir. Bu bölümde aktarılan kuramsal çerçeve, 
kod kalitesi, hata oranı ve karmaşıklık gibi boyutlarda 
yapılacak karşılaştırmalara sağlam bir temel sunmaktadır. 

2.3. Kod Kalitesi ve Hata Oranı Üzerine Çalışmalar 

Yazılım mühendisliği bağlamında, kod kalitesi; bir yazılımın 
güvenilir, sürdürülebilir ve işlevsel olma düzeyini belirleyen 
temel ölçütlerden biridir. Bu bağlamda, hata oranı da kod 
kalitesinin doğrudan bir göstergesi olarak değerlendirilmekte 
ve yazılımın doğruluğunu ve bakım kolaylığını etkileyen 
önemli bir unsur olarak öne çıkmaktadır. Geleneksel 
geliştirme süreçlerinde, bu iki ölçüt uzun süredir statik 

inceleme araçları ile değerlendirilmektedir. Ancak yapay zeka 
temelli kod üretim araçlarının yaygınlaşmasıyla birlikte, bu 
ölçütlerin yeniden gözden geçirilmesi ve değerlendirme 
yaklaşımlarının çeşitlendirilmesi gerekliliği ortaya çıkmıştır. 
Bu bölümde, kaynaklarda kod kalitesi ve hata oranı konularına 
dair yapılan çalışmalar ele alınmakta ve YZ tarafından 
üretilmiş olan kodların (örneğin Bolt.New aracılığıyla 
oluşturulanların), geleneksel yöntemlerle geliştirilen insan 
yazımı kodlarla nasıl karşılaştırıldığını irdeleyen yöntem ve 
bulgular tartışılmaktadır. Çalışmamız, Python dilinde yazılmış 
kodlar üzerinde Pylint incelemesi gerçekleştirerek hata 
oranlarını karşılaştırmakta ve bu doğrultuda literatüre katkı 
sunmayı hedeflemektedir. 

Kod kalitesi kavramı, yazılım mühendisliğinin başlangıcından 
bu yana önemini koruyan bir araştırma konusu olmuştur. 
Örneğin Boehm ve arkadaşları [4], kod kalitesini güvenilirlik, 
taşınabilirlik ve bakım kolaylığı gibi çoklu boyutlar üzerinden 
tanımlamış ve bu unsurların sistematik olarak ölçülmesi 
gerektiğini belirtmiştir. Statik inceleme araçları, bu noktada 
öne çıkan yöntemlerdendir. Pylint gibi araçlar, Python dilinde 
yazılmış kodlarda sözdizimi hatalarını, stil uyumsuzluklarını ve 
potansiyel mantık hatalarını belirlemek amacıyla yaygın 
olarak kullanılmaktadır [23]. Beller ve arkadaşları [2] 
tarafından yapılan bir çalışmada, açık kaynak projelerde statik 
inceleme araçlarının etkin kullanımı incelenmiş ve bu 
araçların hata oranlarının azaltılmasında etkili olduğu 
gösterilmiştir. Bu bulgular, çalışmamızda Pylint’in YZ destekli 
ve geleneksel kodlar arasında kalite karşılaştırması yapmak 
için uygun bir araç olduğunu göstermektedir. 

İnsan tarafından geliştirilen yazılımlarda hata oranlarını 
etkileyen etkenler arasında geliştiricilerin deneyim düzeyi, 
projenin karmaşıklığı ve kullanılan test süreçlerinin kalitesi yer 
almaktadır. İnsan kaynaklı hatalar genellikle bağlama ilişkin 
yanlış anlamalar, dikkatsizlikler ya da kod stiline dair 
tutarsızlıklarla ilişkiliyken, YZ temelli araçlarla üretilen 
kodlarda hata profilleri belirli yönlerden farklılık 
göstermektedir [10]. Örneğin, Carlini ve Wagner [8], YZ 
modellerinde hataların veya güvenlik açıklarının, modelin 
öğrenme sürecindeki özelliklerden kaynaklanabileceğini ve bu 
hataların bazen sistematik olarak ortaya çıktığını belirtmiştir. 
Benzer şekilde, Mozannar ve arkadaşları [19], YZ kod üretim 
modellerinin sağlamlığını değerlendirerek, bu modellerin 
özellikle bağlamsal hatalara ve nadir görülen senaryolara karşı 
hassas olabileceğini göstermiştir. Bu, Bolt.New gibi araçların 
ürettiği kodlarda gözlemlenen bağlamsal hataların, modelin 
eğitim verilerindeki sınırlılıklarla ilişkili olabileceğini 
düşündürmektedir. Bu çalışmada, YZ tarafından oluşturulan 
ve insan eliyle yazılan kodlar arasında bu hata yapılarının nasıl 
ayrıştığını sistematik olarak incelemek ve YZ’nin hata 
azaltmadaki potansiyelini ortaya koymak amaçlanmaktadır. 

YZ destekli kodlama araçlarının hata oranları üzerine yapılan 
araştırmalar, bu araçların hem sunduğu olanaklara hem de 
sahip oldukları sınırlılıklara dikkat çekmektedir. Örneğin Chen 
ve arkadaşları [9], Codex tabanlı GitHub Copilot’un kod 
üretiminde yüksek doğruluk oranlarına ulaşabildiğini, ancak 
zaman zaman bağlamı yanlış yorumladığını ve hatalı mantıksal 
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akışlar oluşturduğunu ifade etmiştir. Finnie-Ansley ve 
arkadaşları [12], OpenAI Codex’in özellikle basit programlama 
görevlerinde insan düzeyinde performansa yakın sonuçlar 
ürettiğini, ancak bağlamsal derinlik gerektiren durumlarda 
hata oranlarının artabileceğini göstermiştir. Aynı şekilde 
Pearce ve arkadaşları [21], YZ tarafından üretilmiş kodların 
yaklaşık %40’ında güvenlik açığı tespit etmiş ve bu tür kodların 
doğrudan üretim ortamlarında kullanılmadan önce dikkatle 
değerlendirilmesi gerektiğini vurgulamıştır. 

Hata oranlarının ötesinde, kod kalitesi değerlendirmesinde 
dikkate alınan diğer önemli unsurlar arasında stil bütünlüğü 
ve belirli standartlara uygunluk da yer almaktadır. Nguyen ve 
arkadaşları [20], Python kodlarında stil ihlallerinin (örneğin 
PEP 8 standartlarına uyumsuzluk) YZ tarafından üretilen 
kodlarda daha yaygın olduğunu, ancak bu tür hataların 
otomatik araçlarla büyük ölçüde düzeltilebildiğini belirtmiştir. 
Bununla birlikte, mantıksal hatalar özellikle karmaşık 
algoritmalar ya da özel uygulama gereksinimlerine sahip 
projelerde, YZ tarafından oluşturulan kodlarda daha zor tespit 
edilebilmektedir [16]. Bu durum, çalışmamızda Pylint 
analizinin yalnızca söz dizimsel ve stil hatalarını değil, aynı 
zamanda potansiyel mantık hatalarını da göz önünde 
bulundurmasının neden önemli olduğunu ortaya 
koymaktadır. 

YZ destekli ve insan kaynaklı kodların hata oranlarının 
sistematik biçimde karşılaştırıldığı çalışmalar kaynaklarda 
oldukça sınırlıdır. Örneğin Dakhel ve arkadaşları [10], GitHub 
Copilot tarafından üretilen kodların hata oranlarını insan 
geliştiricilerle karşılaştırmış ve basit görevlerde YZ’nin daha az 
hata ürettiğini, ancak karmaşık görevlerde insan denetiminin 
gerekli olduğunu ifade etmiştir. Ancak Bolt.New gibi daha 
güncel ve özelleşmiş YZ araçlarının hata profilleriyle ilgili 
derinlemesine çalışmalar henüz sınırlıdır. Bu noktada, 
çalışmamız; 2019 öncesi GitHub verilerinden elde edilen insan 
yazımı Python kodları ile Bolt.New tarafından oluşturulan 
kodları Pylint kullanarak inceleme etmekte ve YZ destekli kod 
üretiminin hata oranı bakımından avantaj ve sınırlamalarını 
ortaya koymayı amaçlamaktadır. Bu bölümde sunulan 
literatür, kod kalitesi ve hata oranı analizimiz için teorik bir 
temel işlevi görmektedir. 

2.4. Kod Okunabilirliği ve İnsan-YZ Kodlarının 
Karşılaştırmalı İncelenmesi 

Yazılım mühendisliğinde kodun kolay anlaşılabilir ve 
sürdürülebilir olması, yalnızca teknik doğruluk değil, aynı 
zamanda kodun okunabilirliğiyle de yakından ilişkilidir. Bu 
kavram, kodun yapısal düzeni, stil uyumu ve geliştirici 
açısından kavranabilirliği gibi birçok boyutu içinde barındırır. 
Özellikle yapay zeka temelli otomatik kod üretim araçlarının 
yazılım geliştirme süreçlerine dahil olmasıyla, bu araçların 
oluşturduğu kodların insanlar tarafından yazılanlarla 
karşılaştırmalı olarak incelenmesi, günümüzde önemli bir 
araştırma alanı haline gelmiştir. Bu bölümde, Python dilinde 
yazılmış örnekler üzerinden yapılan analizler ışığında, 
geleneksel geliştirici kodları ile YZ destekli üretimlerin 
okunabilirlik düzeyleri karşılaştırmalı olarak ele alınmaktadır. 

Kod okunabilirliği, geliştirici deneyimini etkileyen ve yazılım 
bakım sürecini doğrudan ilgilendiren bir faktördür. Konuya 
ilişkin yapılan bazı erken dönem araştırmalar, okunabilirliğin 
yalnızca biçimsel kurallarla değil, aynı zamanda yorum 
satırlarının kalitesi, anlamlı isimlendirme tercihleri ve kodun 
genel yapısıyla doğrudan bağlantılı olduğunu ortaya 
koymuştur. Örneğin, Buse ve Weimer [7] tarafından 
geliştirilen otomatik ölçüm modeli, değişken isimleri, 
açıklamalar ve satır yapılarının okunabilirlik üzerindeki 
belirleyici etkisine dikkat çekmiştir. Posnett ve arkadaşları 
[22] ise bu faktörlerin yazılımın bakım süresi ve hata 
oranlarıyla da ilişkili olduğunu vurgulamıştır. Python 
ekosisteminde, PEP 8 gibi kılavuzlar bu yapıyı 
standartlaştırmak adına oluşturulmuş önemli çerçeveler 
arasında yer almaktadır. Pylint gibi araçlar da bu kurallara 
uygunluk açısından kodları değerlendirmek için yaygın olarak 
kullanılmaktadır. 

Geleneksel yazılım projelerinde, geliştiriciler genellikle 
ihtiyaçlara göre dokümantasyon ekleyip isimlendirme 
tercihlerini bağlama uygun biçimde şekillendirir. Ancak insan 
hataları, zaman baskısı veya yetersiz deneyim gibi nedenlerle 
stil hataları ya da karmaşık yapılandırmalar görülebilir. 
Sommerville’in [26] belirttiği üzere, insanlar genellikle 
duruma özel kod yazımıyla bağlamsal olarak zengin ama 
biçimsel olarak değişken örnekler üretmektedir. Bu da kodun 
okunabilirliğini doğrudan etkileyen unsurlar arasında yer alır. 
Statik inceleme araçları bu noktada stil ihlallerini tespit 
ederek geliştiricilere yön gösterebilir; ancak okunabilirlik 
yalnızca otomatik kurallarla değil, geliştiricinin sezgisel 
değerlendirmesiyle de ölçülmelidir [25]. Vaithilingam ve 
arkadaşları [27], YZ kod üretim araçlarının geliştirici 
beklentilerine uygunluğunu değerlendirirken, bu araçların 
ürettiği kodların okunabilirliğinin, geliştiricilerin bağlamsal 
ihtiyaçlarına göre değişkenlik gösterdiğini ve bazen fazla genel 
yorumlar içerdiğini ortaya koymuştur. 

YZ tarafından üretilen kodlarda ise farklı bir tablo ortaya 
çıkmaktadır. Bu sistemler, büyük çaplı örnek veri kümeleri 
üzerinde eğitildikleri için genellikle kalıplaşmış ve stil 
açısından tutarlı sonuçlar verir. Chen ve arkadaşları [9], 
GitHub Copilot’un yaygın örüntülere dayalı kod ürettiğini 
ancak bazen bağlamdan uzak yapılar içerdiğini belirtmiştir. YZ 
destekli üretimlerde görülen isimlendirme alışkanlıkları, 
yorum eksiklikleri ve gereksiz tekrarlar gibi unsurlar kodun 
anlaşılabilirliğini olumsuz etkileyebilir. Öte yandan Nguyen ve 
diğerleri [20], Python’da YZ tarafından oluşturulan kodlarda 
stil ihlallerinin daha sık olduğunu; ancak bu hataların çoğunun 
biçimsel (örneğin girinti, boşluk gibi) düzeyde olduğunu ve 
kolayca düzeltilebildiğini ifade etmiştir. Çalışmamızda, 
Bolt.New sisteminin ürettiği kodlar üzerinde yapılan Pylint 
incelemesi, bu tip stil bozulmalarının sıklığını ve etkisini 
sistematik olarak ele almayı amaçlamaktadır. 

Kodların okunabilirliğine dair insan ve YZ üretimi örneklerin 
karşılaştırılması kaynaklarda sınırlı sayıda incelenmiştir. Imai 
[16], basit görevlerde Copilot’un oluşturduğu kodların insan 
yazımı kodlara benzer seviyede okunabilir olduğunu; ancak 
daha karmaşık algoritmalarda sezgisel kavrayış açısından 
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yetersiz kaldığını ortaya koymuştur. Ayrıca, Scalabrino ve 
diğerleri [25] tarafından yapılan bir çalışmada, YZ tarafından 
oluşturulan kodlar, geliştiriciler tarafından daha az 
anlaşılabilir bulunmuş ve bu durumun, YZ araçlarının 
genellikle açıklayıcı yorum üretmede zayıf kalmasına 
bağlandığı ifade edilmiştir. Bu noktada, çalışmamız 
Bolt.New’un oluşturduğu kodları yorum satırları, 
isimlendirme pratikleri ve yapı düzeni üzerinden inceleme 
ederek daha kapsamlı bir değerlendirme sunmaktadır. 

Kaynaklarda, Copilot gibi sistemlere odaklanan okunabilirlik 
analizleri bulunmakla birlikte, Bolt.New gibi daha yeni veya 
özelleşmiş üretim sistemlerine dair değerlendirmeler oldukça 
kısıtlıdır. Ayrıca Python özelinde stil rehberleri temel alınarak 
yapılan karşılaştırmalar da yeterince geniş bir örneklem 
içermemektedir. Bu araştırma, GitHub’dan 2019 öncesine ait, 
insanlar tarafından yazılmış Python kodları ile Bolt.New 
tarafından oluşturulan kodları, Pylint sonuçları bağlamında 
karşılaştırarak, YZ ile insan üretimi kodların okunabilirlik 
düzeyleri açısından güçlü ve zayıf yönlerini belirlemeyi 
hedeflemektedir. Bu kapsamda yapılan analizler, gelecekteki 
araştırmalar ve geliştirici araçlarının evrimi için önemli bir 
çerçeve sunmaktadır. 

2.5. Kod Karmaşıklığı ve Performans Analizi 

Yazılım mühendisliğinde kod karmaşıklığı, bir yazılımın 
anlaşılabilirliği, test edilebilirliği ve sürdürülebilirliği üzerinde 
doğrudan etkili temel bir kriter olarak değerlendirilmektedir. 
Karmaşıklık, yazılımın kontrol yapısı, organizasyonu ve boyutu 
gibi çeşitli özelliklerine bakılarak belirlenmekte ve yazılımın 
geliştirilmesi ile bakım süreçlerindeki potansiyel zorlukları 
ortaya koymaktadır. Yapay zeka (YZ) destekli kod üretim 
teknolojilerinin kullanımının yaygınlaşmasıyla, bu tür 
sistemlerin oluşturduğu kodların karmaşıklık düzeyi, 
geleneksel insan eliyle yazılan kodlarla kıyaslandığında dikkat 
çeken bir araştırma alanı olmuştur. Bu bölümde, kod 
karmaşıklığı kavramı, ölçüm teknikleri ve YZ ile insan yazımı 
kodların bu açıdan karşılaştırılması, mevcut literatür ışığında 
ele alınmaktadır. Araştırmamız kapsamında, Bolt.New 
tarafından üretilen Python betiklerinin Pylint ile inceleme 
edilmesi, bu iki kod üretim biçimi arasındaki karmaşıklık 
farklarını değerlendirme imkânı sunmaktadır. 

Yazılım alanında karmaşıklığın ölçülmesi uzun süredir çeşitli 
metriklerle standardize edilmiştir. McCabe’in [18] geliştirdiği 
siklomatik karmaşıklık ölçütü, kontrol akış grafiğindeki 
bağımsız yol sayısını hesaplayarak, yazılımın karmaşıklık 
düzeyini belirlemede öncü bir yaklaşım sunmuştur. McCabe, 
bu karmaşıklık seviyesinin yüksek olması durumunda hata 
olasılığının arttığını ve test aşamalarının zorlaştığını ileri 
sürmüştür [18]. Aynı zamanda, Halstead [14], işteçler ve 
işlenenler gibi kod bileşenlerini esas alan ölçütler geliştirerek, 
yazılımın karmaşıklığını farklı bir boyutta değerlendirmiştir. 
Bu metrikler, Pylint gibi statik inceleme araçlarının temel 
ölçüm yapılarından biri olarak kabul görmektedir [23]. Bu 
çalışmada, Pylint’in sunduğu siklomatik karmaşıklık ölçümleri 
gibi metrikler doğrultusunda Bolt.New ve insan kaynaklı 
kodların karşılaştırılması hedeflenmiştir. 

Klasik yazılım geliştirme yöntemlerinde, insan tarafından 
yazılmış kodların karmaşıklık düzeyi çoğunlukla geliştiricinin 
tecrübesi, kullandığı programlama dili ve projenin 
ihtiyaçlarına göre şekillenmektedir. Sommerville [26], 
deneyimli geliştiricilerin daha modüler ve sade kod yazma 
eğiliminde olduklarını; ancak zaman baskısı, belgelendirme 
eksikliği gibi etmenlerin bu kodları daha karmaşık hale 
getirebildiğini ifade etmiştir. İnsan yazımı kodlarda rastlanan 
iç içe geçmiş döngüler veya uzun işlev blokları gibi yapılar, 
genellikle statik inceleme araçları sayesinde tespit edilerek 
sadeleştirilebilmektedir [2]. Bununla birlikte, insan 
geliştiricilerin sahip olduğu bağlamsal bilgi, çoğu zaman daha 
sezgisel ve gereksinimlere uygun çözümler üretmelerine 
olanak tanımaktadır. Bu bağlamda, çalışmamızda kullanılan 
insan yazımı Python kodları, 2019 öncesinde GitHub 
üzerinden alınmış ve karşılaştırmalarda referans veri olarak 
kullanılmıştır. 

YZ tabanlı kod üretim sistemlerinin karmaşıklık düzeyine 
etkisi, kaynaklarda hem olumlu yönleri hem de 
sınırlamalarıyla birlikte tartışılmaktadır. Hendrycks ve 
arkadaşları [15], APPS veri kümesi üzerinden yapılan 
analizlerde, YZ modellerinin karmaşık programlama 
görevlerinde insan düzeyinde performansa yaklaşabildiğini, 
ancak bağlamsal derinlik gerektiren senaryolarda hâlâ 
sınırlılıklar gösterdiğini ortaya koymuştur. Chen ve arkadaşları 
[9], GitHub Copilot gibi araçların eğitim verilerindeki kalıpları 
izleyerek genellikle optimize edilmiş kodlar oluşturduğunu; 
fakat bağlamdan bağımsız şekilde zaman zaman gereksiz 
karmaşık yapıların üretilebildiğini belirtmiştir. YZ, benzer işlevi 
gerçekleştiren alternatif bloklar oluşturarak kod hacmini 
artırabilmektedir [16]. Öte yandan, Li ve diğerlerinin [17] 
gerçekleştirdiği çalışmada, AlphaCode gibi gelişmiş 
modellerin bazı yarışma tipi problemleri insan yazımı 
kodlardan daha az karmaşık çözümlerle tamamlayabildiği 
gözlemlenmiştir. Bu çelişkili bulgular, YZ tarafından 
oluşturulan kodların karmaşıklığının, kullanılan modelin 
mimarisi ve eğitildiği veri kümelerinin niteliğiyle doğrudan 
ilişkili olduğunu ortaya koymaktadır [1]. Bu bağlamda, 
çalışmamız Bolt.New tarafından oluşturulan Python 
kodlarının Pylint analizine tabi tutularak, insan eliyle yazılmış 
örneklerle karşılaştırılmasını amaçlamaktadır. 

YZ ile insan yazımı kodların karmaşıklık düzeyi açısından 
değerlendirilmesi, akademik alanda henüz yeterince 
derinlemesine ele alınmamış bir konu olarak dikkat 
çekmektedir. Dakhel ve arkadaşları [10], GitHub Copilot’un 
basit görevlerde daha sade çözümler üretse de, karmaşık 
algoritmalarda daha fazla kontrol yapısı barındırdığını 
göstermiştir. Benzer şekilde, Nguyen ve diğerleri [20], Python 
dilinde YZ tarafından yazılan kodların, özellikle uzun 
fonksiyonlar ya da gereksiz değişken tanımları gibi unsurlar 
nedeniyle daha karmaşık hale gelebildiğini ifade etmiştir. 
Ancak bu çalışmalar çoğunlukla yaygın kullanılan araçlar 
üzerine odaklanmıştır ve Bolt.New gibi daha az bilinen 
sistemlerin karmaşıklık performansı üzerine sınırlı sayıda veri 
sunulmaktadır. Ayrıca, Python'a özel metrikler (örneğin PEP 8 
uyumluluğu veya modülerlik düzeyi) dikkate alınarak yapılan 
karşılaştırmalar oldukça kısıtlıdır. 
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Bu alandaki mevcut boşluklar, yürütmekte olduğumuz 
çalışmanın önemini ortaya koymaktadır. Bolt.New ile 
oluşturulan Python kodlarının, 2019 öncesi GitHub 
verilerinden alınan insan yazımı örneklerle Pylint aracılığıyla 
karşılaştırılması sayesinde, yapay zeka destekli çözümlerin 
karmaşıklık bakımından avantajları ve dezavantajları 
değerlendirilebilecektir. Pylint’in sunduğu detaylı metrikler, 
kodun test edilme kolaylığı ve sürdürülebilirliği açısından 
kapsamlı bir değerlendirme yapılmasına olanak tanımaktadır. 
Bu bölümde sunulan literatür derlemesi, inceleme sürecinde 
izlenecek teorik çerçevenin temellerini oluşturmayı 
hedeflemektedir. Çünkü son yıllarda yazılım mühendisliği ile 
yapay zeka arasındaki entegrasyon, kod üretim süreçlerini 
dönüştürerek hem akademik hem de endüstriyel alanda 
büyük bir ilgi odağı olmuştur. Geleneksel insan yazımı kodlar 
ile YZ destekli kod üretim araçlarının karşılaştırılması, çeşitli 
kriterler üzerinden yapılan birçok çalışma ile geniş bir literatür 
oluşturmuştur. Bu literatür arasında kod kalitesi, hata oranı, 
okunabilirlik ve karmaşıklık gibi ölçütler bulunmaktadır. Ancak 
bu alanda hâlâ önemli boşluklar mevcuttur. Bu bölüm, 
literatürdeki eksiklikleri belirleyerek, çalışmamızın bu 
boşlukları nasıl doldurduğunu ve yazılım mühendisliği alanına 
sunduğu katkıları tartışmaktadır. Özellikle, Bolt.New 
tarafından üretilen Python kodlarının 2019 öncesi GitHub 
kodlarıyla Pylint analiziyle karşılaştırılması, literatürdeki 
mevcut sınırlılıkları ele almak için yeni bir bakış açısı 
sunmaktadır. 

Literatür, YZ destekli kod üretim araçlarının performansını 
değerlendiren pek çok çalışma içerse de, bu çalışmalar 
genellikle daha yaygın araçlara (örneğin, GitHub Copilot, 
Codex) odaklanmaktadır [9, 10]. Bolt.New gibi yeni ve 
özelleşmiş araçların kod kalitesi, hata oranı, okunabilirlik ve 
karmaşıklık açısından sistematik bir şekilde incelendiği 
çalışmalar ise oldukça sınırlıdır. Bu durum, YZ araçlarının 
çeşitliliğini ve farklı bağlamlardaki etkinliklerini anlamada bir 
boşluk oluşturmuştur. Çalışmamız, Bolt.New’un Python’a 
özgü kod üretim performansını Pylint gibi yaygın bir statik 
inceleme aracıyla değerlendirerek, bu eksikliği gidermeyi 
amaçlamaktadır. 

Bir diğer önemli boşluk ise YZ ve insan yazımı kodların 
sistematik karşılaştırmalarına dair deneysel çalışmaların 
azlığıdır. Mevcut literatür genellikle YZ kodlarının genel 
avantajlarını (örneğin, üretkenlik artışı) veya sınırlılıklarını 
(örneğin, güvenlik açıkları) tartışmakta, fakat kod kalitesi, 
hata oranı, okunabilirlik ve karmaşıklık gibi ölçütlerin bir arada 
değerlendirildiği karşılaştırmalar pek sık yapılmamaktadır [21, 
16]. Örneğin, Nguyen ve diğerleri [20], Python’da YZ 
kodlarının stil ihlallerine yatkınlığını incelemiş, ancak bu 
kodların karmaşıklık veya hata oranı gibi diğer boyutlarını 
insan yazımı kodlarla karşılaştırmamıştır. Çalışmamız, Pylint 
analiziyle bu ölçütleri bir arada değerlendirerek, YZ destekli 
kod üretiminin çok boyutlu bir analizini sunmaktadır. 

Python bağlamında, PEP 8 gibi stil rehberleri ve siklomatik 
karmaşıklık gibi metrikler dikkate alınarak yapılan 
karşılaştırmalar da kaynaklarda yeterince temsil 
edilmemektedir. Scalabrino ve diğerleri [25], YZ kodlarının 

okunabilirlik açısından insan yargısına dayalı 
değerlendirmelerini incelemiş, ancak otomatik araçlarla 
(örneğin, Pylint) yapılan objektif analizler sınırlı kalmıştır. 
Benzer şekilde, Li ve diğerleri [17], YZ’nın rekabetçi 
programlama görevlerinde karmaşıklık avantajlarını tartışmış, 
ancak günlük yazılım geliştirme senaryolarında Python 
kodlarının karmaşıklık profilleri üzerine odaklanmamıştır. 
Çalışmamız, 2019 öncesi GitHub’dan alınan insan yazımı 
Python kodlarını referans alarak, Bolt.New kodlarının PEP 8 
uyumluluğu ve karmaşıklık metriklerini Pylint ile inceleme 
ederek bu boşluğu doldurmayı hedeflemektedir. 

Ayrıca, kaynaklarda YZ destekli kod üretiminin hata oranları 
üzerine yapılan çalışmalar, genellikle güvenlik açıkları veya 
bağlamsal hatalar gibi spesifik hata türlerine odaklanmaktadır 
[21]. Ancak, sözdizimi, stil ve mantıksal hatalar gibi geniş bir 
hata yelpazesi üzerine yapılan karşılaştırmalar eksiktir. 
Çalışmamız, Pylint’in sağladığı detaylı hata raporlarını 
kullanarak, Bolt.New kodlarının hata türlerini ve sıklıklarını 
insan yazımı kodlarla karşılaştırarak daha kapsamlı bir 
inceleme sunmaktadır. Bu yaklaşım, YZ kodlarının pratik 
uygulanabilirliğini değerlendirmede önemli bir katkı 
sağlamaktadır. 

Literatürdeki bu boşluklar, çalışmamızın özgün katkısını açıkça 
ortaya koymaktadır. İlk olarak, Bolt.New gibi daha az 
incelenmiş bir YZ aracının Python kodlarındaki performansını 
sistematik bir şekilde inceleme ederek literatüre yeni bir veri 
noktası eklemekteyiz. İkinci olarak, kod kalitesi, hata oranı, 
okunabilirlik ve karmaşıklık gibi ölçütleri bir arada ele alarak, 
YZ ve insan yazımı kodların bütüncül bir karşılaştırmasını 
sunmaktayız. Üçüncü olarak, Pylint’in statik inceleme 
yeteneklerini kullanarak, Python’a özgü stil ve karmaşıklık 
metriklerine odaklanarak, dil-spesifik bir bağlamda 
derinlemesine bir inceleme gerçekleştirmekteyiz. 

Sonuç olarak, bu çalışma, literatürdeki mevcut boşlukları 
doldurarak, YZ destekli kod üretiminin yazılım mühendisliği 
süreçlerine entegrasyonunu daha iyi anlamayı 
amaçlamaktadır. Bolt.New tarafından üretilen Python 
kodlarının Pylint analiziyle değerlendirilmesi, YZ araçlarının 
avantajlarını ve sınırlılıklarını ortaya koyarak, gelecekteki 
yazılım geliştirme pratikleri için rehber bir çerçeve 
sunmaktadır. Bu bölümde ele alınan literatür, çalışmamızın 
teorik temelini güçlendirmekte ve özgün katkısını 
desteklemektedir. 

Araştırma Boşluğu ve Katkı: Kaynaklarda yapay zeka destekli 
kod üretim araçlarının özellikle Python dili bağlamında kalite, 
okunabilirlik ve karmaşıklık gibi metrikler açısından sistematik 
olarak karşılaştırıldığı çalışmalar sınırlıdır. Bu çalışma, 
Bolt.New aracı ile üretilen Python kodlarını 2019 öncesi 
GitHub kodları ile karşılaştırarak bu boşluğu doldurmakta ve 
yazılım mühendisliği literatürüne hem akademik hem de 
pratik katkı sağlamaktadır.Formun Altı 

3. Veri Kümesi ve Yöntem  

Bu çalışmada, yapay zeka destekli ve insan tarafından yazılmış 
Python programlarının genel kalite düzeyleri, statik inceleme 
aracı Pylint kullanılarak karşılaştırılmıştır. Pylint değeri, 
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inceleme edilen Python betiklerinde tespit edilen çeşitli kalite 
ölçütlerine dayalı olarak 10 üzerinden hesaplanan birleşik bir 
puandır. Bu puan; kodda bulunan hatalar, uyarılar, stil 
uyumsuzlukları ve yapısal iyileştirme önerileri gibi ögelere 
verilen ağırlıklar doğrultusunda otomatik olarak 
belirlenmektedir. Bu nedenle Pylint değeri, kodun hem stil 
kurallarına uyumu hem de temel yapısal doğruluğu hakkında 
genel bir kalite göstergesi olarak değerlendirilebilir. 

Çalışmada kullanılan programlar, satır sayılarına göre basit 
(20–50 satır), orta (51–150 satır) ve karmaşık (151+ satır) 
olmak üzere üç kategoriye ayrılmıştır. Her bir kategoriden 
rastgele seçilen 10’ar programla toplam 30 programlık bir veri 
kümesi oluşturulmuştur. Bu programlar, asal sayı kontrolü 
gibi temel görevlerden web kazıyıcı gibi daha karmaşık 
uygulamalara kadar geniş bir yelpazeyi kapsamaktadır. İnsan 
yapımı programlar, gerçek dünya kodlama pratiklerini temsil 
etmesi amacıyla GitHub açık kaynak depolarından seçilmiştir. 
YZ üretimi programlar ise Bolt.New aracı kullanılarak, aynı 
işlevsel hedefleri gerçekleştirecek şekilde oluşturulmuş ve iki 
grup arasında görev uyumluluğu sağlanmıştır. Programların 
listesi ve detayları aşağıda Çizelge- 1’de sunulmaktadır. 

 

 

Çizelge- 1: Program Listeleri ve Ayrıntıları 

Zorluk 
Seviyesi 

Program 
Adı 

Satır 
Sayısı 

Açıklama 

Basit 
 

Prime 
Checker 

28 Asal sayı kontrolü, 2018. 

Factorial 30 Faktöriyel hesaplama, 2018. 

Fibonacci 35 Fibonacci dizisi, 2017. 

Palindrom
e Check 

25 Palindrom kontrolü, 2018. 

Simple 
GCD 

40 En büyük ortak bölen, 2017. 

Random 
Password 

45 Rastgele şifre oluşturucu, 2016. 

Temperat
ure 
Convert 

38 Sıcaklık çevirici, 2016. 

Even Odd 
Check 

22 Çift/tek kontrolü, 2018. 

Simple 
Sum 

33 N sayının toplamı, 2017. 

Basic 
Timer 

42 Basit geri sayım, 2016. 

Orta 

Bubble 
Sort 

60 Kabarcık sıralama, 2017. 

Binary 
Search 

70 İkili arama, 2017. 

Word 
Count 

85 Kelime sayacı, 2016. 

CSV 
Reader 

90 CSV dosya okuyucu, 2016. 

Quick Sort 75 Hızlı sıralama, 2017. 

File 
Backup 

120 Dosya yedekleme, 2016. 

Hangman 95 Adam asmaca oyunu, 2018. 

Matrix 
Multiply 

110 Matris çarpımı, 2017. 

Simple 
Encrypt 

80 Sezar şifresi, 2016. 

To-Do List 130 Görev listesi, 2018. 

Karmaşık 

Sudoku 
Solver 

200 Sudoku çözücü, 2016. 

Graph DFS 180 Derinlik öncelikli arama, 2017. 

Tic-Tac-
Toe YZ 

250 Yapay zekalı XOX, 2016. 

Maze 
Generator 

220 Labirent oluşturucu, 2017. 

Image 
Resizer 

190 Görüntü boyutlandırma, 2016. 

Chat Client 280 Basit sohbet istemcisi, 2016. 

Web 
Scraper 

300 Web kazıyıcı, 2018. 

Network 
Ping 

350 Ağ tarayıcı, 2016. 

Text 
Adventure 

260 Metin tabanlı macera, 2018. 

Data 
Plotter 

400 Veri görselleştirme, 2016. 

Kod kalitesini değerlendirmek için Python ekosisteminde 
yaygın bir statik inceleme aracı olan Pylint kullanılmıştır. 
Analizlerde, aşağıdaki kriterler ölçülmüştür: genel Pylint 
değeri (0–10), hata sayısı, siklomatik karmaşıklık, stil ihlal 
sayısı, kod tekrar oranı ve dokümantasyon puanı. Bu 
metrikler, kodun teknik doğruluğu, sürdürülebilirliği, 
okunabilirliği ve modülerliği gibi çok boyutlu özelliklerini 
değerlendirmek için seçilmiştir. Programların zorluk düzeyine 
göre sınıflandırılması, YZ ve insan performansının görev 
karmaşıklığı arttıkça nasıl değiştiğini anlamayı mümkün 
kılmıştır; bu, kaynaklarda YZ’nin karmaşık yazılım geliştirme 
senaryolarındaki etkisine dair eksik bir noktayı ele almaktadır. 

Bu çalışma, YZ destekli yazılım geliştirme üzerine yapılan 
araştırmalara, Bolt.New’un insan kodlama performansına 
kıyasla sunduğu katkıları ve eksiklikleri ortaya koyarak değer 
katmaktadır. Önceki çalışmaların genellikle GitHub Copilot 
gibi popüler araçlara odaklandığı göz önüne alındığında [9, 
10], bu çalışma daha az incelenmiş bir araç olan Bolt.New’u 
ele alarak ve Python’a özgü standartlara (örneğin, PEP 8 
uyumluluğu) odaklanarak farklılaşmaktadır. Bulgular, 
geliştiricilere, akademisyenlere ve YZ araç tasarımcılarına, 
YZ’nin kodlama süreçlerine entegrasyonunun pratik sonuçları 
hakkında bilgi sunmayı ve farklı zorluk seviyelerindeki 
projelerde otomasyon ile insan denetimi arasında nasıl bir 
denge kurulabileceğini aydınlatmayı amaçlamaktadır. 

4. Bulgular 

Analiz öncesinde, her iki grubun (İnsan ve YZ) Pylint 
skorlarının dağılımlarının normal olup olmadığı Shapiro-Wilk 
sınaması ile değerlendirilmiştir. Shapiro-Wilk sınaması, 
özellikle küçük örneklemlerde (n < 50) veri dağılımının normal 
olup olmadığını sınamak için yaygın biçimde kullanılmaktadır. 
Test sonuçları Çizelge- 2’de verilmiştir. 

Çizelge- 2: Pylint Skorlarının Normal Dağılıma Uygunluk Testi 
(Shapiro-Wilk) 
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Grup 
Test 
İstatistiği 

p-değeri Dağılım Uygunluğu 

İnsan 0,957 0,259 Normal dağılır (p > 0,05) 

Yapay 
Zeka 

0,922 0,031 Normal dağılmaz (p < 0,05) 

Shapiro-Wilk sınaması sonuçlarına göre, İnsan grubuna ait 
Pylint skorlarının normal dağıldığı görülmekle birlikte (p = 
0,259), Yapay Zeka grubunun skorlarının dağılımı istatistiksel 
olarak anlamlı şekilde normal dağılımdan sapmaktadır (p = 
0,031). Bu nedenle, iki grup arasında ortalama farkı test 
ederken parametrik olmayan Mann-Whitney U sınaması 
tercih edilmiştir. Bu test, dağılım varsayımına gerek 
duymaksızın iki bağımsız grubun sıralama temelli farklarını 
güvenilir biçimde ölçme olanağı sağlamaktadır. Bu yöntem, 
özellikle stil, yapı ve hata temelli kalite puanlarının 
karşılaştırılmasında daha tutarlı sonuçlar sunmaktadır. 

Yapay zeka destekli ve insan eliyle yazılmış Python kodlarının 
içerdiği hata sayılarının karşılaştırılması amacıyla yapılan 
analizlerde, her iki grup için Pylint aracılığıyla belirlenen 
toplam hata sayısı değerlendirilmiştir. Kodlar, daha önce 
belirtildiği üzere, aynı işlevleri gerçekleştiren YZ ve İnsan 
üretimi eşleştirilmiş programlardan oluşmaktadır. 

Veri dağılımının incelenmesinde, YZ grubunun hata sayılarının 
normal dağılım göstermediği tespit edilmiştir (p < 0,05, 
Shapiro-Wilk sınaması sonuçları verinin inceleme öncesinde 
belirtilmiştir). Bu nedenle, iki grup arasında hata sayısı 
bakımından istatistiksel anlamlılık analizinde parametrik 
olmayan Mann-Whitney U sınaması tercih edilmiştir. Bu test, 
dağılım varsayımı gerektirmeyen ve küçük örneklemlerde 
güvenilir sonuçlar sunan sıralama temelli bir yöntemdir. 

Siklomatik karmaşıklık değerlerinin gruplar arası dağılımları 
incelendiğinde, verilerin normal dağılıma uymadığı ve 
çarpıklık içerdiği gözlemlenmiştir. Ayrıca metrik doğası gereği 
sınırlı ve uç değerlere açık bir dağılım yapısına sahip 
olduğundan, bu tür veriler için parametrik testlerin 
varsayımlarını karşılamadığı değerlendirilmiştir. Bu nedenle, 
yapısal karmaşıklık düzeylerinin insan ve yapay zeka üretimi 
kodlar arasında karşılaştırılmasında parametrik olmayan 
Mann-Whitney U sınaması kullanılmıştır. Bu test, sıralama 
temelli bir inceleme sağladığından, dağılım yapısından 
bağımsız olarak güvenilir bir karşılaştırma aracı olarak 
değerlendirilmiştir. 

Çizelge- 3: Siklomatik Karmaşıklık Değerlerinin Normal Dağılıma 
Uygunluk Testi (Shapiro-Wilk) 

Grup 
Shapiro-Wilk 
İstatistiği 

p-değeri 
Normal 
Dağılıma 
Uygunluk 

İnsan 0,908 0,013 Hayır 

YZ 0,896 0,007 Hayır 

Shapiro-Wilk sınaması sonuçlarına göre, hem insan hem de YZ 
gruplarına ait siklomatik karmaşıklık verileri normal dağılıma 
uygun değildir (p < 0,05). Bu nedenle, bu değişken için 
parametrik testler yerine parametrik olmayan Mann-Whitney 
U sınaması kullanılması metodolojik olarak uygun 
görülmektedir. 

Çizelge- 4: Stil İhlali Sayısı ve Dokümantasyon Puanı için Shapiro-
Wilk Normal Dağılım Testi Sonuçları 

Grup 
Shapiro-
Wilk 
İstatistiği 

p-
değeri 

Normal 
Dağılım 
Uygunluğu 

İnsan – Stil 0,881 0,003 Hayır 
Yapay Zeka – Stil 0,933 0,059 Evet 
İnsan – Dokümantasyon 0,943 0,110 Evet 
Yapay Zeka – Dokümantasyon 0,934 0,061 Evet 

Shapiro-Wilk sınaması sonuçlarına göre, stil ihlali sayısı 
değişkeni insan grubunda normal dağılım göstermemektedir 
(p = 0,003), bu nedenle bu değişken için parametrik olmayan 
inceleme yöntemleri tercih edilmiştir. Dokümantasyon puanı 
ise her iki grup için de normal dağılmış görünmektedir (p > 
0,05). Ancak örneklem büyüklüğünün sınırlı olması ve tüm 
analizlerde metodolojik tutarlılığı sağlamak amacıyla, her iki 
değişken için de Mann-Whitney U sınaması kullanılmıştır. Bu 
yaklaşım, analizlerin güvenilirliğini ve yorumlanabilirliğini 
artırmak amacıyla tercih edilmiştir. 

Veri setinde her program için Pylint tarafından üretilen bu 
skorlar, yapay zeka ve insan üretimi gruplar arasında 
karşılaştırılmış ve istatistiksel inceleme için parametrik 
olmayan Mann-Whitney U sınaması kullanılmıştır. Elde edilen 
sonuçlar, yapay zeka tarafından yazılan kodların kalite 
skorlarının insan yazımı kodlara kıyasla anlamlı düzeyde daha 
yüksek olduğunu göstermiştir (U = 879.50, p < 0,001). Çizelge- 
5, her iki gruba ait betimsel istatistikleri ve test bulgularını 
sunmaktadır. (Çizelge- 5’te görüldüğü gibi). 

Çizelge- 5: İnsan ve Yapay Zeka Tarafından Yazılmış Kodların Pylint 
Skorlarına İlişkin Karşılaştırma 

Kod 
Türü 

Ortalama 
Skor 

n 
Standar
t Sapma 

Mann-
Whitney U 

p-değeri 

İnsan 7.12 30 ±0,9   

YZ 8.73 30 ±0,7 879.50 < 0,001 

 

 
Şekil- 1. Pylint Skoru Dağılımı: İnsan ve YZ 

Bu bulgular, Bolt.New gibi yapay zeka araçlarının genel olarak 
Pylint tarafından önerilen Python stil ve yapısallık 
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standartlarına daha yüksek düzeyde uyum sağladığını ortaya 
koymaktadır. Stil ihlallerinin, gereksiz yapı tekrarlarının ve 
potansiyel hata noktalarının daha az olması, bu araçların 
statik inceleme puanlarında öne çıkmasını sağlamaktadır. 
Ancak bu skorlar, bağlamsal anlam, algoritmik sezgi veya 
işlevsel yaratıcılık gibi nitelikleri doğrudan ölçmediğinden, 
analizlerin ilerleyen bölümlerinde okunabilirlik, hata yapısı ve 
karmaşıklık gibi ek metriklerle desteklenmesi gerekmektedir. 
Pratik olarak, bu durum geliştiricilerin temel sözdizimsel 
doğruluğu sağlamak ve PEP8 uyumunu korumak için YZ 
tabanlı araçlardan faydalanabileceğini göstermektedir. Ancak 
karmaşık senaryolarda bağlamsal doğruluğun kontrolü için 
insan denetimi kritik önemdedir. 

Çizelge- 6: İnsan ve Yapay Zeka Kodlarının Hata Sayısı 
Karşılaştırması 

Kod 
Türü 

Ortalam
a Hata 
Sayısı 

n 
Standar
t Sapma 

Mann-
Whitney 

U 
p-değeri 

İnsan 7,03 30 ±2,8   

YZ 2,77 30 ±1,9 159,0 < 0,001 

 

Şekil- 2. Hata Sayısı Dağılımı: İnsan ve YZ (Şekil- 2’de sunulduğu 
gibi). 

Elde edilen sonuçlar, YZ tarafından yazılan kodların insan 
yazımı kodlara kıyasla anlamlı şekilde daha az hata içerdiğini 
göstermektedir (U = 159,00, p < ,001). Ortalama hata sayısı 
açısından bakıldığında, YZ kodlarında tespit edilen hata 
miktarı, insan kaynaklı kodlara göre yaklaşık %60 daha 
düşüktür. Bu bulgu, yapay zeka destekli kod üretim araçlarının 
özellikle temel söz dizim ve mantık doğruluğu sağlama 
konusunda daha başarılı olduğunu göstermektedir. 
Kaynaklarda yer alan çalışmalar da (örneğin Chen ve 
arkadaşları [9]) bu durumu, YZ sistemlerinin büyük kod veri 
kümeleri üzerinden öğrenilen yaygın ve “güvenli” yapıları 
tercih etmesiyle açıklamaktadır. 

Bununla birlikte, düşük hata oranı tek başına kodun işlevsellik, 
yaratıcılık veya bağlamsal bütünlük açısından ideal olduğunu 
garanti etmez. Hata oranı, kodun teknik doğruluğuna dair 
güçlü bir gösterge olsa da, kodun anlaşılırlığı, modülerliği ve 
sürdürülebilirliği gibi faktörler de yazılım kalitesinin ayrılmaz 

parçalarıdır. Bu nedenle ilerleyen analizlerde, stil ihlalleri, 
dokümantasyon kalitesi ve karmaşıklık gibi boyutlar da 
bütüncül bir değerlendirme sağlamak üzere ele alınacaktır. 

4.1. Siklomatik Karmaşıklık Karşılaştırması 

Yapay zeka (YZ) ve insan tarafından yazılmış Python 
programlarının yapısal karmaşıklık düzeyleri, siklomatik 
karmaşıklık metriği ile değerlendirilmiştir. Siklomatik 
karmaşıklık, yazılımın kontrol akışındaki bağımsız yol sayısını 
hesaplayarak programın ne ölçüde dallanma ve kontrol yapısı 
içerdiğini ortaya koyan önemli bir ölçüttür [18]. Bu metrik, 
yazılımın test edilebilirliğini, bakım kolaylığını ve hata 
potansiyelini doğrudan etkileyen temel yapısal unsurlar 
arasında yer almaktadır. 

Her iki grup için dağılım normal olmadığından (önceki Shapiro-
Wilk sınaması sonuçlarına dayanarak), karşılaştırma amacıyla 
Mann-Whitney U sınaması kullanılmıştır. Bu test, farklı 
dağılımlara sahip bağımsız iki grubun sıralama temelli 
farklarını istatistiksel olarak değerlendirmek için uygun bir 
yöntemdir. 

 

Çizelge- 7: Siklomatik Karmaşıklık Değerlerinin İnsan ve Yapay 
Zeka Kodlarında Karşılaştırılması 

Kod 
Türü 

Ortalama 
Karmaşıklık 

n 
Standart 
Sapma 

Mann-
Whitne

y U 
p-değeri 

İnsan 9,43 30 ±3,1   

YZ 6,37 30 ±2,5 304,50 0,031 

Analiz sonuçları, YZ tarafından yazılan kodların daha düşük 
siklomatik karmaşıklık değerlerine sahip olduğunu 
göstermektedir (U = 304.50, p = 0,031). Bu durum, yapay zeka 
sistemlerinin daha sade, daha az dallanma içeren ve test 
edilmesi görece daha kolay kod parçaları üretme eğiliminde 
olduğunu düşündürmektedir. Bu bulgu, Bolt.New gibi 
sistemlerin yaygın örüntülere dayanarak “güvenli” yapıları 
tercih ettiği literatürle örtüşmektedir [20, 17]. İnsan 
geliştiricilerin ise genellikle bağlamsal olarak daha özgün ve 
karmaşık yapılar üretebildiği, ancak bu yapıların daha yüksek 
hata potansiyeli taşıyabileceği gözlemlenmektedir. 

Yine de düşük karmaşıklık her zaman daha iyi kalite anlamına 
gelmemektedir. Karmaşık işlevleri gerçekleştiren kodların 
kaçınılmaz olarak daha yüksek kontrol yapısı içerebileceği 
unutulmamalıdır. Bu nedenle, ilerleyen bölümlerde kodların 
okunabilirliği ve dokümantasyon kalitesi gibi faktörlerle 
birlikte değerlendirilmesi, kalite açısından daha bütüncül bir 
bakış sağlayacaktır. 

4.2. Stil Uyumu ve Okunabilirlik Karşılaştırması 

Yazılım mühendisliğinde kodun okunabilirliği ve 
sürdürülebilirliği, yalnızca işlevsel doğrulukla değil, aynı 
zamanda stil bütünlüğü ve yeterli açıklayıcılık düzeyiyle de 
yakından ilişkilidir. Bu bağlamda, çalışmada hem stil ihlali 
sayısı hem de dokümantasyon puanı, kodların okunabilirlik 
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düzeylerini temsil eden iki önemli metrik olarak 
değerlendirilmiştir. 

Verilerin dağılım özellikleri normal olmadığı için, bu iki 
değişkenin İnsan ve Yapay Zeka (YZ) grupları arasında 
karşılaştırılmasında parametrik olmayan Mann-Whitney U 
sınaması uygulanmıştır. Elde edilen sonuçlar Çizelge- 8’de 
verilmektedir. 

Çizelge- 8: İnsan ve Yapay Zeka Kodlarının Stil İhlali ve 
Dokümantasyon Puanlarına İlişkin Karşılaştırma 

Ölçüt 
Kod 
Türü 

Ortala
ma 

Değer 
n 

Standa
rt 

Sapma 

Mann-
Whitney U 

p-
değeri 

Stil İhlal 
Sayısı 

İnsan 9,40 30 ±3,4   

 YZ 3,77 30 ±2,1 102.00 
< 
0,001 

Dokümanta
syon Puanı 

İnsan 44,50 30 ±12,7   

 YZ 81,03 30 ±11,3 889.50 
< 
0,001 

 

Şekil- 3. Dokümantasyon Puan Dağılımı: İnsan ve YZ 

Test sonuçları, her iki ölçüt açısından da YZ kodlarının 
istatistiksel olarak anlamlı şekilde daha iyi performans 
sergilediğini ortaya koymaktadır. Stil ihlalleri açısından, YZ 
üretimi kodların daha düşük ihlal sayısıyla daha iyi PEP8 
uyumu sağladığı gözlemlenmiştir (U = 102.00, p < 0,001). Bu 
durum, yapay zekanın eğitim aldığı büyük kod veri 
kümelerindeki yaygın örüntüleri takip ederek daha formal ve 
tutarlı çıktılar üretmesinden kaynaklanıyor olabilir. 

 

Şekil- 4. Stil İhlal Sayısı Dağılımı 

Öte yandan, dokümantasyon puanları, YZ tarafından yazılan 
kodlarda anlamlı biçimde daha yüksektir (U = 889,50, p < 
0,001). Bu bulgu, YZ'nin fonksiyonları açıklayan yorumlar, 
amaç belirtici satırlar ve genel açıklayıcı metinleri daha 
düzenli şekilde yerleştirdiğini göstermektedir. Bu yönüyle YZ 
sistemleri, okunabilirlik ve sürdürülebilirlik açısından insan 
yazılımcılara göre daha tutarlı dokümantasyon standartlarına 
yaklaşabilmektedir. 

4.3. Kod Tekrar Oranı Karşılaştırması 

Yazılım mühendisliğinde kod tekrar oranı, geliştirilen yazılımın 
modülerliği, bakım kolaylığı ve optimizasyon düzeyi açısından 
önemli bir kalite göstergesidir. Bu bağlamda, insan ve yapay 
zeka üretimi Python kodları arasında kod tekrar oranı 
karşılaştırması yapılmıştır. 

Veri dağılımı normallik varsayımını karşılamadığından (önceki 
bölümlerde Shapiro-Wilk sınaması ile gösterilmiştir), 
karşılaştırma için parametrik olmayan Mann-Whitney U 
sınaması kullanılmıştır. Analiz bulguları Çizelge-9’da 
sunulmaktadır. 

Çizelge- 9: İnsan ve Yapay Zeka Kodlarında Kod Tekrar Oranı 
Karşılaştırması 

Kod 
Türü 

Ortalama 
Tekrar 
Oranı 

n 
Standar
t Sapma 

Mann-
Whitney 
U 

p-değeri 

İnsan 17,43 30 ±4,6   
YZ 8,17 30 ±2,7 109,00 < 0,001 

Elde edilen sonuçlar, yapay zeka üretimi kodların, insan 
üretimi kodlara göre daha düşük oranda tekrar içerdiğini ve 
bu farkın istatistiksel olarak anlamlı olduğunu göstermektedir 
(U = 109.00, p < ,001). YZ tarafından üretilen kodların daha 
düşük tekrar oranına sahip olması, bu sistemlerin genellikle 
daha modüler, yapılandırılmış ve tekrardan kaçınan (DRY 
prensibine uygun) kodlar üretmeye eğilimli olduğunu 
göstermektedir. 

Bolt.New gibi yapay zeka tabanlı kod üretim sistemleri, eğitim 
verilerinde sık rastlanan soyutlama örüntülerine dayanarak 
tekrar eden yapıları minimize etme yönünde çıktı 
üretebilmektedir. Buna karşın insan yazılımcılar, çözüm 
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geliştirirken sıklıkla alışkanlıklarına ya da kısa süreli 
hedeflerine bağlı olarak kod tekrarına daha açık yapılar 
oluşturabilmektedir. 

Ancak bu bulgu, yapay zekanın tekrar içermeyen tüm kodları 
bağlamsal olarak anlamlı ve sürdürülebilir yazdığı anlamına 
gelmemelidir. Kodun fonksiyonel bölünmesi, bağımsızlık 
düzeyi ve genel mimari iç tutarlılığı gibi başka kalite 
unsurlarının da ilerleyen bölümlerde inceleme edilmesi 
gerekmektedir. 

4.4. Zorluk Seviyesine Göre Kalite Ölçüleri 
Karşılaştırması 

Çizelge- 10: Zorluk Seviyesine Göre Ortalama Kalite Ölçüleri 

Zorlu
k 

Seviy
esi 

Kod 
Türü 

Pylint 
Skoru 

Hat
a 

Sayı
sı 

Siklom
atik 

Karma
şıklık 

Stil 
İhlal 
Sayıs

ı 

Kod 
Tekrar 
Oranı 

Doküm
antasy

on 
Puanı 

Basit YZ 9.31 0,7 2.9 1.6 4.5 86.8 
 İnsan 7.93 2.7 4.0 4.8 9.5 63.1 

Orta YZ 8.73 2.4 5.7 3.5 7.3 82.2 
Karm
aşık 

YZ 8.16 5.2 10,5 6.2 12.7 74.1 

 İnsan 6.33 12.1 16.0 15.1 26.6 28.3 

Programların zorluk düzeyine göre ayrılması, yapay zeka ve 
insan kaynaklı kodların kalite performanslarını daha detaylı 
şekilde ortaya koymayı mümkün kılmıştır. Çizelge- 7’de 
gösterildiği üzere, her bir kalite metriği açısından, görev 
karmaşıklığı arttıkça insan ve yapay zeka kodları arasındaki 
farklar da belirginleşmektedir. 

Özellikle Pylint kalite skorları, her üç zorluk düzeyinde de 
yapay zeka lehine daha yüksektir. Bu fark, karmaşık 
görevlerde daha da artmakta ve YZ sistemlerinin stil, yapı ve 
hata önleme konularında daha stabil performans sergilediğini 
göstermektedir. İnsan yazımı kodlarda karmaşıklık arttıkça 
kalite değeri ciddi biçimde düşmektedir (Basit: 7,93 → 
Karmaşık: 6,33), oysa YZ kodlarında bu düşüş sınırlıdır (Basit: 
9,31 → Karmaşık: 8,16). 

Hata sayıları açısından da benzer bir desen izlenmektedir. 
Basit görevlerde YZ ortalama 0,7 hata üretirken, insan 
yazılımcılar 2.7 hata üretmiştir. Karmaşık görevlerde bu fark 
dramatik şekilde açılmış; YZ için 5,2, insan için ise 12,1 hata 
ortalaması tespit edilmiştir. 

Siklomatik karmaşıklık değerleri de zorlukla birlikte artarken, 
insan kaynaklı kodlarda artış daha keskindir. Bu durum, insan 
geliştiricilerin karmaşık görevlerde kontrol akışını daha yoğun 
yapılandırdığı, YZ’nın ise daha dengeli bir artış eğilimi 
gösterdiğini ortaya koymaktadır. 

Stil ihlalleri ve kod tekrar oranı metriklerinde, insan kaynaklı 
kodlar karmaşık görevlerde ciddi bozulma göstermekte; YZ 
üretimi kodlar ise daha tutarlı kalmaktadır. Örneğin, stil 
ihlalleri YZ’da karmaşık görevlerde 6,2’ye çıkarken, insanlarda 
bu oran 15,1’e ulaşmıştır. Benzer şekilde, kod tekrar oranı 
insanlarda %26,6’ya çıkarken, YZ’da sadece %12,7’de 
kalmıştır. 

En dikkat çekici farklardan biri de dokümantasyon 
kalitesindedir. Karmaşık görevlerde YZ sistemleri ortalama 
74.1 puanlık dokümantasyon üretirken, insan geliştiricilerin 
bu ortalaması yalnızca 28.3’tür. Bu bulgu, YZ sistemlerinin 
karmaşık durumlarda bile açıklayıcılıktan taviz vermemesiyle, 
sürdürülebilir kod geliştirme açısından avantaj sağladığını 
göstermektedir. 

5. Tartışma ve Sonuç 

Bu çalışma, yapay zeka destekli Bolt.New aracı ile üretilen 
Python kodlarının, insan eliyle yazılmış eşdeğer kodlarla 
kalite, hata oranı, siklomatik karmaşıklık, stil uyumu, kod 
tekrar oranı ve dokümantasyon metrikleri açısından 
sistematik bir karşılaştırmasını sunmaktadır. Analizler, Pylint 
gibi Python’a özgü bir statik inceleme aracı kullanılarak 
gerçekleştirilmiş ve programların zorluk seviyelerine (basit, 
orta, karmaşık) göre sınıflandırılmasıyla, YZ’nin farklı görev 
türlerindeki performansına dair ayrıntılı bir Çizelge- ortaya 
konmuştur. Bulgular, YZ destekli kod üretiminin özellikle basit 
ve orta düzey görevlerde yüksek kalite, düşük hata oranı ve 
daha iyi stil uyumu sağladığını; karmaşık görevlerde ise 
dokümantasyon ve modülerlik açısından avantaj sunduğunu, 
ancak bağlamsal uygunlukta insan yazımı kodlara kıyasla 
sınırlılıklar gösterdiğini ortaya koymaktadır. 

5.1. Bulguların Kaynaklarla Karşılaştırılması 

Çalışmanın bulguları, literatürdeki mevcut çalışmaları hem 
desteklemekte hem de yeni bakış açıları sunmaktadır. 
Örneğin, Chen ve arkadaşları [9] tarafından Codex tabanlı 
GitHub Copilot’un basit görevlerde yüksek doğruluk sunduğu, 
ancak bağlamsal hatalar üretebildiği belirtilmiştir. Benzer 
şekilde, bu çalışmada Bolt.New’un basit görevlerde (örneğin, 
asal sayı kontrolü veya faktöriyel hesaplama) ortalama 9,31 
Pylint değeri ile insan yazımı kodlara (7,93) kıyasla daha 
yüksek kalite sunduğu gözlemlenmiştir. Ancak, karmaşık 
görevlerde (örneğin, web kazıyıcı veya veri görselleştirme) 
YZ’nin kalite değeri (8,16) insan kodlarına (6,33) göre hâlâ 
daha yüksek olsa da bağlamsal uygunluk eksiklikleri, özellikle 
algoritmik sezgi gerektiren senaryolarda belirginleşmektedir. 
Bu durum, büyük dil modellerinin bağlamsal öğrenme 
kapasitelerinin, özellikle az örnekle öğrenme (few-shot 
learning) senaryolarında sınırlı kalabileceğini gösteren Brown 
ve arkadaşlarının [6] bulgularıyla uyumludur. Ayrıca, 
Hendrycks ve arkadaşları [15], APPS veri kümesi üzerinden 
yapılan analizlerde, YZ modellerinin karmaşık programlama 
görevlerinde insan düzeyinde performansa yaklaşabildiğini, 
ancak bağlamsal derinlik gerektiren senaryolarda sınırlılıklar 
gösterdiğini belirtmiştir. Bu, Bolt.New’un karmaşık 
görevlerdeki bağlamsal eksikliklerinin, modelin eğitim 
verilerindeki genellikten kaynaklanabileceğini 
düşündürmektedir. Bu, Pearce ve arkadaşlarının [21] YZ 
kodlarının bağlamdan kopuk olabileceği yönündeki 
bulgularıyla da uyumludur. 

Siklomatik karmaşıklık açısından, YZ’nin daha düşük değerler 
üretmesi (ortalama 6,37’ye karşı 9,43), Nguyen ve 
arkadaşlarının [20] YZ kodlarının daha sade yapılar üretme 
eğiliminde olduğu gözlemiyle örtüşmektedir. Ancak, bu 
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sadeliğin her zaman işlevsel bir avantaj sağlamadığı 
unutulmamalıdır; zira karmaşık görevlerde insan 
geliştiricilerin bağlamsal bilgiyle desteklenen daha karmaşık 
ama özgün yapılar ürettiği gözlemlenmiştir. Bu durum, 
Sommerville’in [26] insan geliştiricilerin sezgisel ve bağlama 
özgü çözümler üretme yetkinliğine dair görüşlerini destekler 
niteliktedir. 

Dokümantasyon puanı açısından YZ’nin üstünlüğü (karmaşık 
görevlerde 74,1’e karşı 28,3), kaynaklardaki YZ’nin tutarlı ve 
ölçünlere uygun çıktılar üretme eğilimiyle [17] paralellik 
göstermektedir. Ancak, bu yüksek dokümantasyon 
puanlarının, kodun bağlamsal anlamını veya geliştirici dostu 
açıklamaları tam olarak yansıtmadığına dair Scalabrino ve 
arkadaşlarının [25] bulguları, çalışmamızda da gözlemlenen 
bir sınırlılık olarak öne çıkmaktadır. Örneğin, Vaithilingam ve 
arkadaşları [27], YZ tarafından üretilen kodların 
dokümantasyonunun genellikle şablon niteliğinde olduğunu 
ve bağlamsal derinlikten yoksun olabileceğini belirtmiştir. 
Örneğin, YZ’nin ürettiği yorum satırları genellikle genel ve 
şablon niteliğindedir, bu da insan geliştiricilerin proje-spesifik 
açıklamalarına kıyasla daha az derinlik sunabilir. 

5.2. Pratik ve Kuramsal Katkılar 

Bu çalışma, yazılım mühendisliği ve YZ entegrasyonu alanında 
hem pratik hem de kuramsal katkılar sunmaktadır. Pratik 
açıdan, Bolt.New gibi YZ araçlarının basit ve orta düzey 
görevlerde geliştirici verimliliğini artırdığı ve hata oranını 
azalttığı gösterilmiştir. Özellikle, stil ihlalleri (YZ: 3,77, İnsan: 
9,40) ve kod tekrar oranı (YZ: %8,17, İnsan: %17,43) gibi 
metriklerdeki üstünlük, YZ’nin PEP 8 gibi Python 
standartlarına uyum sağlama ve modüler kod üretme 
kapasitesini ortaya koymaktadır. Vaithilingam ve arkadaşları 
[27], YZ araçlarının geliştirici iş akışlarına entegrasyonunun, 
özellikle rutin görevlerde verimliliği artırdığını, ancak geliştirici 
beklentilerine uygunluk açısından daha fazla bağlamsal 
özelleştirme gerektirdiğini belirtmiştir. Bu, geliştiricilerin rutin 
görevlerde YZ araçlarını güvenle kullanabileceğini ve insan 
denetimiyle birleştirildiğinde daha verimli iş akışları 
oluşturabileceğini göstermektedir. 

Teorik açıdan, çalışma literatürdeki önemli bir boşluğu 
doldurmaktadır. Bolt.New gibi daha az incelenmiş bir YZ 
aracının Python’a özgü metriklerle değerlendirilmesi, mevcut 
araştırmaların genellikle GitHub Copilot gibi popüler araçlara 
odaklandığı bir alanda özgün bir katkı sunar [10]. Ayrıca, 
zorluk seviyelerine göre yapılan analizler, YZ’nin 
performansının görev karmaşıklığına bağlı olarak nasıl 
değiştiğine dair yeni bir perspektif sunmaktadır. Bu, 
gelecekteki araştırmalar için YZ araçlarının bağlamsal 
sınırlılıklarını ele alan daha hedefe yönelik eğitim veri setleri 
tasarlanması gerektiğini göstermektedir. 

5.3. Sınırlar ve Gelecek Çalışmalar 

Çalışmanın bazı sınırları bulunmaktadır. İlk olarak, veri kümesi 
30 insan yazımı ve 30 YZ üretimi programla sınırlıdır, bu da 
genellenebilirliği kısıtlayabilir. Daha geniş bir örneklemle 
yapılacak çalışmalar, bulguların daha çeşitli senaryolarda test 
edilmesini sağlayabilir. İkinci olarak, Pylint gibi statik inceleme 

araçları, kodun işlevsel doğruluğunu veya bağlamsal 
uygunluğunu tam olarak ölçemez. Örneğin, Carlini ve Wagner 
[8] tarafından belirtildiği üzere, YZ modellerinde ortaya çıkan 
hatalar veya güvenlik açıkları, bazen modelin özelliklerinden 
kaynaklanan yapısal sınırlılıklar olarak değerlendirilebilir; bu 
da Pylint’in tespit edemeyeceği potansiyel riskleri içerir. 
Benzer şekilde, Mozannar ve arkadaşları [19], YZ kod üretim 
modellerinin bağlamsal hatalara ve nadir görülen senaryolara 
karşı hassas olduğunu, bu durumun model sağlamlığını 
artıracak yeni eğitim yaklaşımlarını gerektirdiğini belirtmiştir. 
Gelecekteki çalışmalar, dinamik inceleme araçları veya insan 
geliştiricilerin subjektif değerlendirmelerini dahil ederek daha 
bütüncül bir kalite incelemesi sunabilir. Üçüncü olarak, 
Bolt.New’un performansının yalnızca Python dilinde 
değerlendirilmiş olması, diğer programlama dillerine 
genellenmesini zorlaştırmaktadır. Farklı dillerde (örneğin, 
JavaScript veya C++) benzer karşılaştırmalar yapılması, YZ’nin 
dil-spesifik etkilerini anlamada faydalı olabilir. 

Gelecekteki araştırmalar, YZ araçlarının bağlamsal anlamayı 
iyileştirmek için nasıl eğitilebileceğine odaklanabilir. Örneğin, 
Xu ve arkadaşları [30], alan-spesifik veri setleriyle yapılan ince 
ayar (fine-tuning) işlemlerinin, YZ modellerinin bağlamsal 
uygunluğunu artırabileceğini ve kod üretiminde daha proje-
odaklı sonuçlar sunabileceğini göstermiştir. Brown ve 
arkadaşlarının [6] az örnekle öğrenme üzerine çalışmaları da, 
proje-spesifik veri setleriyle ince ayar yapılmış modellerin 
bağlamsal uygunluk sorunlarını azaltabileceğini öne 
sürmektedir. 

Ayrıca, Hendrycks ve arkadaşları [15], karmaşık programlama 
görevlerinde YZ modellerinin performansını artırmak için 
daha zengin ve bağlam odaklı veri setlerinin gerektiğini 
vurgulamıştır. YZ destekli kod üretiminin güvenlik açıkları 
üzerindeki etkisi, Pearce ve arkadaşlarının [21] vurguladığı 
üzere, daha derinlemesine incelenmelidir. Mozannar ve 
arkadaşları [19] tarafından önerilen model sağlamlığı 
analizleri, Bolt.New gibi araçların üretim ortamlarında 
güvenilirliğini artırmak için önemli bir araştırma yönü olabilir. 
Son olarak, YZ araçlarının geliştirici iş akışlarına 
entegrasyonunun uzun vadeli etkileri, örneğin geliştirici 
beceri kaybı veya bağımlılık gibi sosyo-teknik boyutlar, 
ilerideki çalışmalar için önemli bir araştırma alanıdır. 

5.4. Sonuç 

Bu çalışma, Bolt.New gibi YZ destekli kod üretim araçlarının 
Python bağlamında insan yazımı kodlarla karşılaştırıldığında, 
özellikle basit ve orta düzey görevlerde yüksek kalite, düşük 
hata oranı ve daha iyi stil uyumu sunduğunu ortaya 
koymaktadır. Karmaşık görevlerde ise YZ, dokümantasyon ve 
modülerlik açısından avantaj sağlasa da, bağlamsal uygunluk 
ve algoritmik sezgi gerektiren senaryolarda insan denetimine 
ihtiyaç duymaktadır. Weisz ve arkadaşları [28], YZ ve insan 
geliştiriciler arasındaki iş birliğinin, kod üretiminde 
tamamlayıcı bir rol oynayarak hem verimliliği artırdığını hem 
de insan uzmanlığının vazgeçilmezliğini koruduğunu 
vurgulamıştır. Bu bulgular, YZ araçlarının yazılım geliştirme 
süreçlerinde güçlü bir tamamlayıcı rol oynayabileceğini, ancak 
insan uzmanlığının vazgeçilmezliğini göstermektedir. 
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Pratik açıdan, geliştiriciler YZ araçlarını rutin görevlerde 
verimliliği artırmak için kullanabilir, ancak karmaşık 
projelerde bağlamsal doğruluk için insan denetimi kritik 
önemdedir. Teorik açıdan, çalışma YZ destekli kod üretiminin 
Python’a özgü standartlara uyumunu nesnel metriklerle 
değerlendirerek literatüre katkı sunmakta ve gelecekteki 
araştırmalar için bir rehber çerçeve önermektedir. Yazılım 
mühendisliği ile YZ’nin kesişiminde, otomasyon ve insan 
yaratıcılığı arasında bir denge kurularak daha verimli, güvenilir 
ve sürdürülebilir kod üretim süreçleri oluşturulabilir. 
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