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Some properties of the total graph and regular
graph of a commutative ring

Manal Ghanem∗ and Khalida Nazzal†

Abstract

Let R be a commutative ring with unity. The total graph of R, T (Γ(R)),
is the simple graph with vertex set R and two distinct vertices are
adjacent if their sum is a zero-divisor in R. Let Reg(Γ(R)) and Z(Γ(R))
be the subgraphs of T (Γ(R)) induced by the set of all regular elements
and the set of zero-divisors in R, respectively. We determine when each
of the graphs T (Γ(R)), Reg(Γ(R)), and Z(Γ(R)) is locally connected,
and when it is locally homogeneous. When each of Reg(Γ(R)) and
Z(Γ(R)) is regular and when it is Eulerian.
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1. Introduction

Throughout this paper R will be used to denote a commutative ring with unity 1 6= 0.
Let Z(R) be the set of all zero-divisors of R. The total graph of R is the simple graph
with vertex set R where two distinct vertices x and y are adjacent if x + y ∈ Z(R).
This graph, denoted by T (Γ(R)), was introduced by Anderson and Badawi in [1], the
authors gave full description for the case when Z(R) is an ideal. On the other hand,
they computed some graphical invariants such as the diameter and the girth of T (Γ(R)).
Akbari and et al. [3], proved that if R is a �nite ring, then a connected total graph is
Hamiltonian. Maimani and et al. [12] investigated the genus of T (Γ(R)). The radius
of T (Γ(R)) was computed in [13]. The domination number of T (Γ(R)) is determined
independently in both [7] and [16]. For a �nite commutative ring R, a characterization of
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Eulerian T (Γ(R)) is given in [16]. Minimum zero -sum k-�ows for T (Γ(R)) are considered
in [15]. The complement of T (Γ(R)) is investigated in [5]. Vertex-connectivity and edge-
connectivity of T (Γ(R)), where R is a �nite commutative ring, are discussed in [14]. Some
properties of the regular graph Reg(Γ(R)) are studied in [4]. The line graph of T (Γ(R))
is investigated in [8]. Furthermore, the generalized total graph of R is de�ned in [2]. For
a survey on the total graph of a commutative ring, the reader may refer to [6] or [10].

The following theorem gives full description of the graph T (Γ(R)) when Z(R) is an
ideal of R.

1.1. Theorem. [1] Let R be a ring such that Z(R) is an ideal of R. Let |Z(R)| = λ,
|R/Z(R)| = µ.

(i) If 2 ∈ Z(R), then Reg(Γ(R)) is the union of µ− 1 disjoint Kλ
′s.

(ii) If 2 ∈ Reg(R), then Reg(Γ(R)) is the union of (µ− 1)/2 disjoint Kλ,λ
′s.

(iii) Z(Γ(R)) is the complete graph, Kλ.
(v) Reg(Γ(R)) is connected if and only if R/Z(R) ∼= Z2 or R/Z(R) ∼= Z3.

Several structural properties of T (Γ(R)), Reg(Γ(R)), and Z(Γ(R)) will be considered.
Section 2 addresses the problems "when is each of the graphs T (Γ(R)), Reg(Γ(R)), and
Z(Γ(R)) locally connected?". Section 3 answers the problem "when is each of the graphs
Reg(Γ(R)), and Z(Γ(R)) regular?". In Section 4, Eulerian Reg(Γ(R)), and Z(Γ(R)) are
characterized, where R is a �nite commutative ring. Section 5 addresses the problem
"when is each of the graphs T (Γ(R)), Reg(Γ(R)), and Z(Γ(R)) locally homogeneous?"

2. When are T (Γ(R)), Reg(Γ(R)), and Z(Γ(R)) Locally Connected?

Let G be a graph with vertex set and edge set V (G) and E(G) respectively. Let v ∈
V (G), the open neighborhood, N(v), of v is de�ned by N(v) = {u ∈ V (G) : uv ∈ E(G)}.
The graph G is said to be locally connected if for all v ∈ V (G), N(v) induces a connected
graph in G. Thus, if G is a union of complete graphs, then G is locally connected and if
a graph G has a bipartite component, other than K1,1, then it is not locally connected.
This, together with Theorem 1.1 give the following theorem.

2.1. Theorem. Let R be a ring and Z(R) be an ideal of R.

(i) Z(Γ(R)) is a locally connected graph.
(ii) Reg(Γ(R)) and T (Γ(R)) are locally connected graphs if and only if 2 ∈ Z(R),

or R is an integral domain.

The next theorem considers the case when R is a product of two rings.

2.2. Theorem. Let R be a product of two rings R1 and R2. Then T (Γ(R)) is locally
connected if and only if either R1 or R2 is not an integral domain.

Proof. First, we study the case when both R1 and R2 are integral domains. Suppose
that 2 ∈ Reg(R) (i.e. 2 ∈ Reg(R1) and 2 ∈ Reg(R2)), then (−1, 1) and (−1,−1) are
only adjacent to each other in N((1, 0)) and hence there is no path between (−1, 0) and
(−1, 1) in N((1, 0)). If 2 ∈ Z(R1) and 2 ∈ Reg(R2), then (0,−1) is an isolated vertex
in N((1, 1)). And if 2 ∈ Z(R1) and 2 ∈ Z(R2), then there is no path joining (1, 0) and
(0, 1) in N((1, 1)). So, T (Γ(R)) is not locally connected.

Now, we may assume that either R1 or R2 is not an integral domain. Let Ni(u),
denotes the open neighborhood of u in T (Γ(Ri)). Let (a, b) ∈ R and (x, y), (z, w) ∈
N((a, b)). If (x, y) and (z, w) are non-adjacent in N((a, b)), then we have four cases:

Case 1: x ∈ N1(a) and w ∈ N2(b) or (z ∈ N1(a) and y ∈ N2(b)).
Assume that x ∈ N1(a) and w ∈ N2(b). Then (x, y)− (a,w)− (x, b)− (z, w) is a path

in N((a, b)).
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Case 2: x, z ∈ N1(a) or (y, w ∈ N2(b)).
Assume that x, z ∈ N1(a). Then we have three cases.
Case 2.1: 2 ∈ Z(R1).
Choose t ∈ R2\{b}, then (a, t) ∈ N((a, b)). So, (x, y) − (a, t) − (z, w) is a path in

N((a, b)).
Case 2.2: 2 ∈ Reg(R1) and 2 ∈ Z(R2).
If R1 is not an integral domain, then there exist t, s ∈ Z(R1) such that −x+ t 6= a and

−z + r 6= a. Then if −x+ t 6= −z + r, the path (x, y)− (−x+ t, b)− (−z + r, b)− (z, w)
is obtained. Otherwise, (x, y) − (−x + t, b) − (z, w) is a path in N((a, b)). Now, if R2

is not an integral domain, then there exists r ∈ Z(R2) such that −b + r 6= b. So,
(x, y)− (a,−b+ r)− (z, w) is a path in N((a, b)).

Case 2.3: 2 ∈ Reg(R2).
If R2 is not an integral domain, then there exists r ∈ Z(R2) such that −b+ r 6= b. So,

(x, y)− (a,−b+ r)− (z, w) is a path in N((a, b)). If R1 is not an integral domain, then
there exist t, s ∈ Z(R1) such that −x+ t 6= a and −z+ r 6= a. So, when −x+ t 6= −z+ r,
we get the path (x, y)−(−x+t,−b)−(x, b)−(−z+r,−b)−(z, w) in N((a, b)). Otherwise,
we get the path (x, y)− (−x+ t,−b)− (z, w).

Case 3: x ∈ N1(a), z ∈ R1 − N1(a) and w = b or (x = a, y ∈ R2 − N2(b) and
w ∈ N2(b)).

Assume that x ∈ N1(a), z ∈ R1−N1(a) and w = b. Then 2b ∈ Z(R2). So, R1 is not an
integral domain, gives−x+t 6= a for some t ∈ Z(R1). Therefore, (x, y)−(−x+t, b)−(z, w)
is a path in N((a, b)). While R2 is not an integral domain, implies that −b + r 6= b for
some r ∈ Z(R2). So, (x, y)− (a,−b+ r)− (z, w) is a path in N((a, b)).

Case 4: x = a, w = b, 2a ∈ Z(R1), and 2b ∈ Z(R2) or (y = b, x = a, 2a ∈ Z(R1) and
2b ∈ Z(R2)).

Assume that x = a, w = b, 2a ∈ Z(R1), and 2b ∈ Z(R2). Then R1 is not an integral
domain, implies that −x + t 6= a for some t ∈ Z(R1) and R2 is not an integral domain
implies that −b + r 6= b for some r ∈ Z(R2). Thus, (x, y) − (−x + t, b) − (z, w) or
(x, y)− (a,−b+ r)− (z, w) is a path in N((a, b)). �

If R is a local ring, then Z(R) is an ideal and hence Z(Γ(R)) is a complete graph
which is obviously locally connected. When R is a product of two rings, we have the
following theorem.

2.3. Theorem. Let R be a product of two rings R1 and R2. Then Z(Γ(R)) is locally
connected if and only if either R1 or R2 is not an integral domain.

Proof. Observe that if R is a product of two integral domains, then there is no path
joining (1, 0) and (0, 1) in N((0, 0)). So Z(Γ(R)) is not locally connected. Assume that
either R1 or R2 is not an integral domain. Since (0, 0) ∈ N((a, b)) for any non-zero zero-
divisors (a, b), we have (x, y)−(0, 0)−(z, w) is a path joining (x, y) and (z, w) in N((a, b)).
Thus N((a, b)) is locally connected for all (a, b) ∈ Z(R) − {0}. So it remains to study
connectivity of the graph induced byN((0, 0)). Assume that (x, y) and (z, w) are two non-
adjacent vertices in N((0, 0)), then x ∈ Z(R1)\{0} implies that (x, y)−(−x,−w)−(z, w)
is a path in N((0, 0)) and y ∈ Z(R2)\{0} implies that (x, y)− (−z,−y)− (z, w) is a path
in N((0, 0)). �

Next, we will investigate when Reg(Γ(R)) is locally connected. If R is a local ring,
then Reg(Γ(R)) is locally connected if R is an integral domain or 2 ∈ Z(R). If R is a
product of two rings, then we have the following.

2.4. Theorem. Let R be a product of two rings and 2 ∈ Reg(R). Then Reg(Γ(R)) is
locally connected.
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Proof. Assume that (a, b) ∈ Reg(R) and (x, y), (z, w) are two non-adjacent vertices in
N((a, b)). Then x ∈ N(a) gives the path (x, y)− (a,−b)− (−a,−w)− (z, w) in N((a, b)),
and y ∈ N(b) gives the path (x, y)− (−a, b)− (−z,−b)− (z, w) in N((a, b)). �

Let R = R1 × R2 , then it is easy to see that if |Reg(R1)| = 1, then 2 ∈ Z(R) and
Reg(Γ(R)) is a complete graph and hence it is locally connected.

A Boolean ring provides an example of a ring R with only one regular element, this
is due to the fact that for all r ∈ R, r = r2. So, we get the following.

2.5. Theorem. If R is a Boolean ring or R is a product of rings with at least one
Boolean factor, then Reg(Γ(R)) is a complete graph.

At this point it makes sense to require that |Reg(Ri)| ≥ 2, for all i.

2.6. Theorem. Let R be a product of two local rings R1 and R2 such that 2 ∈ Z(R)
and |Reg(Ri)| ≥ 2 for i = 1, 2. Then Reg(Γ(R)) is locally connected if and only if R1 or
R2 is not an integral domain.

Proof. Suppose that R = R1 × R2 where R1 and R2 are integral domains, 2 ∈ Z(R)
and |Reg(Ri)| ≥ 2 for i = 1, 2. Choose (t, s) ∈ Reg(R)\{(1, 1)}, then 2 ∈ Z(R1) and
2 ∈ Z(R2) imply that (1, s) and (t, 1) are two non-adjacent vertices in Reg(Γ(R)) and
there is no path joining them in N((1, 1)). If 2 ∈ Z(R1) and 2 ∈ Reg(R2), then (1,−1)
and (t,−1) ,where t ∈ Reg(R1)\{1}, are non-adjacent vertices in N((1, 1)), with no path
joining them in N((1, 1)). So Reg(Γ(R)) is not locally connected.

Conversely, let R = R1 ×R2 where R1 and R2 are two local rings such that 2 ∈ Z(R)
and |Reg(Ri)| ≥ 2, for i = 1, 2. Without loss of generality, assume that 2 ∈ Z(R1). Let
(a, b) ∈ Reg(R) and (x, y), (z, w) be two non-adjacent vertices in N((a, b)). If R1 is not
an integral domain, then there exists t ∈ Z(R1) such that t + a 6= a. Since Z(R1) is an
ideal of R, t + a ∈ Reg(R1). Therefore, (x, y) − (a + t,−y) − (a + t,−w) − (z, w) is a
path in N((a, b)). And if R2 is not an integral domain, then t− y 6= b and s− w 6= b for
some t, s ∈ Z(R2), so (x, y)− (a, t− y)− (a, s− w)− (z, w) is a path in N((a, b)) when
t− y 6= s− w, otherwise, we have the path (x, y)− (a, t− y)− (z, w) in N((a, b)).

�

2.7. Theorem. If R = Πn
i=1Ri, n ≥ 3, then Reg(Γ(R)) is locally connected.

Proof. Let a = (ai) ∈ Reg(R) and u = (ui) and v = (vi) be two non-adjacent vertices in
N(a). Since u ∈ N(a), ai + ui ∈ Z(Ri), for some i, say for i = 1. De�ne w = (wi) such
that w1 = u1, w2 = −u2, w3 = −v3 and wi = 1 for all i ≥ 4, then u−w − v is a path in
N(a).

�

An Artinian ring is a ring that satis�es the descending chain condition on ideals. An
Artinian ring R can be written uniquely (up to isomorphism) as a �nite direct product
of Artinian local rings. Since Z(R) is an ideal of R when R is local, we may conclude the
following.

2.8. Theorem. Let R be an Artinian ring, then

(i) T (Γ(R)) is not locally connected if and only if R is a local ring satisfying 2 ∈
Reg(R) and R is not an integral domain or R is a product of integral domains.

(ii) Z(Γ(R)) is not locally connected if and only if R is a product of two integral
domains.

(iii) Reg(Γ(R)) is not locally connected if and only if R is a local ring satisfying
2 ∈ Reg(R) and R is not an integral domain or R = R1 × R2, 2 ∈ Z(R), and
|Reg(Ri)| ≥ 2 and Ri is an integral domain for i = 1, 2.
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2.9. Corollary. (i) T (Γ(Zn)) is not locally connected if and only if n = tm, where
t is an odd prime and m ≥ 2 or n = t1t2, where t1, and t2 are distinct primes.

(ii) Z(Γ(Zn)) is not locally connected if and only if n = t1t2 where t1 and , t2 are
two distinct primes.

(iii) Reg(Γ(Zn)) is not locally connected if and only if n = tm, where t is an odd
prime and m ≥ 2.

3. When are T (Γ(R)), Reg(Γ(R)), and Z(Γ(R)) regular?

In this section, we study regularity of the graphs T (Γ(R)), Reg(Γ(R)), and Z(Γ(R))
for any ring R. Maimani et al. [12] proved that in T (Γ(R)), deg(u) = |Z(R)| − 1 if
2 ∈ Z(R) or u ∈ Z(R), and deg(u) = |Z(R)| otherwise. So, T (Γ(R)) is regular graph
only if 2 ∈ Z(R) or R is an in�nite non integral domain ring.

Now, we examine regularity of Reg(Γ(R)). Clearly, if Z(R) is an ideal, then Reg(Γ(R))
is regular of degree |Z(R)| − 1, when 2 ∈ Z(R) and it is regular graph of degree |Z(R)|
when 2 ∈ Reg(R).

The following theorems address the case when R is a product of two rings.

3.1. Theorem. Let R be a product of two rings R1 and R2 where R1 and R2 are
two rings such that |Reg(R1)| = n1 and |Reg(R2)| = n2. Let (u1, u2) ∈ Reg(R) and
deg1(u1) = r1 and deg2(u2) = r2, where degi(ui) is the degree of ui in Reg(Γ(Ri)). Then
the degree of the vertex (u1, u2) in Reg(Γ(R)) is given by,

deg((u1, u2)) =


n2r1 + n1r2 − r1r2, if 2 ∈ Reg(R);
n1r2 + n2r1 + (n1 + n2)− (r1 + r2)− r1r2 − 2, if 2 ∈ Z(R1) and 2 ∈ Z(R2);
n1r2 + n2r1 − r2 + n2 − r1r2 − 1, if 2 ∈ Z(R1) and 2 ∈ Reg(R2) .

Proof. Note that if 2 ∈ Reg(R), then N((u1, u2)) = {(a, b) ∈ Reg(R) : a ∈ N(u1) or b ∈
N(u2)}. So, |N((u1, u2))| = r1n2 + n1r2 − r1r2. If 2 ∈ Z(R1) and 2 ∈ Z(R2), then
N((u1, u2)) = {(a, b) ∈ Reg(R)\{(u1, u2)} : a ∈ N(u1) ∪ {u1} or b ∈ N(u2) ∪ {u2}}. So,
|N((u1, u2))| = (r2+1)n1+(r1+1)n2−(r1+1)(r2+1)−1. If 2 ∈ Z(R1) and 2 ∈ Reg(R2),
then N((u1, u2)) = {(a, t) ∈ Reg(R)\{(u1, u2)} : a ∈ N(u1) ∪ {u1} or b ∈ N(u2)}. So,
|N((u1, u2))| = (r1 + 1)n2 + n1r2 − (r1 + 1)r2 − 1. �

Since for any local ring R the graph Reg(Γ(R)) is regular and every �nite ring is a
product of local rings by using Theorem 3.1 we get the following.

3.2. Theorem. If R is a �nite ring, then Reg(Γ(R)) is a regular graph.

The following two lemmas will be useful in the subsequent work.

3.3. Lemma. Let R be a �nite ring. Then

(i) if |R| is even, then |Z(R)| and |Reg(R)| are both odd when R is a �eld or a
product of �elds of even orders, and they are both even otherwise.

(ii) if |R| is odd, then |Reg(R)| is even and |Z(R)| is odd.

If R is a ring, then 2 ∈ Z(R) if and only if |r| = 2 in (R,+), for some r ∈ R\{0}. If
R is a �nite ring, then 2 ∈ Z(R) if and only if |R| is even.

Using Theorem 3.1 and the same notation, it is easy to conclude the following.

3.4. Lemma. Let R be a product of two local rings R1 and R2 and (u1, u2) ∈ Reg(R).
Then the degree of the vertex (u1, u2) in Reg(Γ(R)) is even if and only if |Reg(R1)|,
|Reg(R2)| are both odd and deg1(u1), deg2(u2) are both even.

Now, we are ready to prove the following theorem.

3.5. Theorem. Let R be a �nite ring. Then Reg(Γ(R)) is a regular graph of even degree
if and only if R is a �eld or a product of two or more �elds of even orders.
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Proof. Let R = Πn
i=1Ri, n ≥ 2 , where Ri is a �nite local ring for all i. First, we will

study the three special cases: (i) |R| is odd or (ii) Ri is a �eld of even order for all i, or
(iii) Ri is not a �eld of even order for all i. Using induction in each case, Theorem 3.1
and the above two lemmas, we get Reg(Γ(R)) is a regular graph of odd order and even
degree when R is a product of �elds of even orders, and it is a regular graph of even order
and odd degree otherwise. Now, we move to the case where R is a product of �elds of
even orders and local rings that are not �elds of even orders, note that R ∼= S×T , where
S is the product of all �elds R′is and T is the product of all not �elds local rings R′is .
Then Reg(Γ(R)) is a regular graph of even order and odd degree. Finally if |R| = 2mt,
where t > 1 is odd integer, we may write R ∼= S × T , where |S| = 2m, and |T | = t.
Therefore, Reg(Γ(R)) is a regular graph of even order and odd degree.

�

Note that Z(Γ(R)) is a regular graph, of degree |Z(R)| − 1, when R is a local ring
since Z(Γ(R)) ∼= K|Z(R)|. However, Z(Γ(R)) is not regular if R is a product of two rings,
since N((0, 0)) = Z(R)/{(0, 0)} and N((0, 1)) ⊆ Z(R)/{(1, 0), (0, 1)}. So, we get the
following.

3.6. Theorem. Let R be a �nite ring, then

(i) Z(Γ(R)) is a regular graph if and only if R is a local ring
(ii) Z(Γ(R)) is a regular graph of even degree if and only if R is a �eld or R is a

local ring of odd order.

3.7. Corollary. (i) T (Γ(Zn)), and Reg(Γ(Zn)) are regular graphs of even degrees
if and only if n = 2.

(ii) Z(Γ(Zn)) is regular graph of even degree if and only if n = 2 or n = pm, p is
odd prime and m ≥ 1.

4. When are Reg(Γ(R)) and Z(Γ(R)) Eulerian?

A graph is said to be Eulerian if it has a closed trail containing all of its edges. Or
equivalently, a connected graph G is Eulerian if and only if the degree of each vertex in
V (G) is even.

Clearly, if R is a �nite local ring, then T (Γ(R)) is non Eulerian, and Reg(Γ(R)) is
Eulerian if and only if R ∼= Z2, while Z(Γ(R)) is Eulerian if and only if |R| is odd or R
is a �eld.

The next theorem, which is due to Shekarriz et al. [16], characterizes Eulerian T (Γ(R))
when R is a �nite ring.

4.1. Theorem. Let R be a �nite ring, then the graph T (Γ(R)) is Eulerian if and only
if R is a product of two or more �elds of even orders.

Let R be a direct product of two rings. Then Reg(Γ(R)) is connected, since for any
two vertices (a, b) and (x, y) in Reg(Γ(R)), (a, b)− (−a,−y)− (x, y) is a path joining the
two non-adjacent vertices, [1]. So, for any �nite non local ring R, Reg(Γ(R)) is connected.

Using Theorem 3.5, the following theorem is obtained.

4.2. Theorem. Let R be a �nite ring. Then the graph Reg(Γ(R)) is Eulerian if and
only if R ∼= Z2 or R is a product of two or more �elds of even orders.

Finally, we investigate when Z(Γ(R)) is Eulerian.

4.3. Theorem. Let R be a �nite ring. Then
Z(Γ(R)) is Eulerian if and only if R is a �eld or |R| is odd.
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Proof. Clearly, if R is is a local ring, then Z(Γ(R)) is Eulerian if and only if R is a �eld
or |R| is odd. Suppose that R =

∏n
i=1Ri, where Ri is a �nite local ring for all i. Then

we have two cases.
Case 1: |R| is even. If Z(Γ(R)) is Eulerian, then deg((0, 0, ..., 0)) = |Z(R)| − 1 is

even. From Lemma 3.3, R is a product of �elds of even orders. So deg((1, 0, 0, ..., 0) =
|Z(R)| − 1−

∏n
i=2 |Reg(Ri)| is odd, a contradiction.

Case 2: |R| is odd. Then |Ri| is odd for all i. Take w = (wi) ∈ Z(R). De�ne
T = {t ∈ {1, 2, .., n} : wt ∈ Z(Rt)} and J = {1, 2, .., n}\T . Now, to compute the
degree of w in Z(Γ(R)), note that for any �nite local ring of odd order S, the sum of
any two elements is a zero-divisor if and only if both elements are zero-divisors or one
of them belongs to the coset x + Z(S) and the other belongs to the coset −x + Z(S),
where x ∈ Reg(S). So, the vertex a = (ai) ∈ Z(R)\{w} is non-adjacent to w when
ai ∈ Reg(Ri) for all i ∈ T , and ai ∈ Ri\ − wi + Z(Ri)) for all i ∈ J and ai ∈ Z(Ri) for
some i ∈ J . Since | − wi + Z(Ri)| = |Z(Ri)| for all i, we have deg(w) = (|Z(R)| − 1) −
(
∏
i∈T |Reg(Ri)|(

∏
i∈J |Reg(Ri)| −

∏
i∈J(|Reg(Ri)| − |Z(Ri)|)). Since |Z(R)| is odd and

|Reg(Ri)| is even for all i, we get deg(w) is even. Moreover Z(Γ(R)) is connected graph
since 0 adjacent s to all other vertices in Z(Γ(R)). Thus Z(Γ(R)) is Eulerian.

�

4.4. Corollary. (i) T (Γ(Zn)) is never Eulerian.
(ii) Reg(Γ(Zn)) is Eulerian if and only if n = 2.
(iii) Z(Γ(Zn)) is Eulerian if and only if n = 2 or n is an odd number.

5. When are T (Γ(R)), Reg(Γ(R)) and Z(Γ(R)) locally homogeneous?

A graph G is called locally homogeneous if the graph induced by the neighborhoods of
any two vertices are isomorphic. Let H be a given graph. A graph G is called locally H
if for each vertex v ∈ V (G), the subgraph induced by the open neighborhood of v, N(v),
is isomorphic to H. Locally H graphs are also called locally homogeneous [17]. Graphs
associated with algebraic structures are known to exhibit some symmetrical properties,
see for example [17]. In this section, we investigate homogeneity in the total graphs
associated with rings.

Let R be a local ring with |Z(R)| = α. Then by Theorem 1.1, T (Γ(R)) is locally H
if and only if 2 ∈ Z(R). In this case, H = Kα−1. So, if R is a �nite local ring, then

T (Γ(R)) is locally H if and only if |R| is even, Reg(Γ(R)) is either locally Kα−1 or Kα,
and Z(Γ(R)) is locally Kα−1. The next theorem treats the case for any �nite ring R.

5.1. Theorem. Let R be a �nite ring. Then

(i) Let x and y be two distinct vertices in T (Γ(R)). Then, the subgraph of T (Γ(R))
induced by N(x) is isomorphic to the subgraph induced by N(y) if and only if
|R| is even.

(ii) Let x and y be two distinct vertices in Reg(Γ(R)). Then, the subgraph of
Reg(Γ(R)) induced by N(x) is isomorphic to the subgraph induced by N(y).

(iii) Z(Γ(R)) is locally H if and only if R is a local ring. In this case, H = K|Z(R)|−1.

Proof. (1) If |R| is odd, then 2 /∈ Z(R), and so, T (Γ(R) is not regular, hence we may
assume that |R| is even. Let R = Πn

i=1Ri. Where each Ri is a local ring. Without
loss of generality, we may assume that 2 ∈ Z(R1). Obviously, for n = 1, the result
holds. If S = Πn

i=2Ri, then R = R1 × S. We will prove that the neighborhoods of
any two distinct vertices in T (Γ(R)) are isomorphic. Let (a, b) be an arbitrary element
in R. Let N1 = {a} × (S/{b}), N2 = {(x, y) ∈ R : x 6= a, x + a ∈ Z(R1)} and
N3 = {(x, y) ∈ R : x+a ∈ Reg(R1), and y+ b ∈ Z(S)}. Note that N1, N2 and N3 form a
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partition for N((a, b)). Thus N((a, b)) = N1 ∪N2 ∪N3. N1 induces a complete graph of
order |S| − 1. For each �xed vertex r ∈ S, let N2r = {(x, r) ∈ R : x 6= a, x+ a ∈ Z(R1)}.
Each set N2r induces a copy of the graph induced by N(a) in the graph T (Γ(R1) which a
complete graph. Besides, for each pair of distinct vertices in r, s ∈ S, each vertex (x1, r)
in N2r is adjacent to each vertex (x2, s) in N2s , since x1 + x2 + 2a ∈ Z(R1) implies that
x1 + x2 ∈ Z(R1). Each vertex in N1 is adjacent to each vertex in N2.

Now, we claim that N3 induces a complete graph. Let (x1, y1), (x2, y2) ∈ N3 then
a+ x1 ∈ Reg(R1) and a+ x2 ∈ Reg(R1). we study two cases:

Case 1: a ∈ Z(R1), then both x1 and x2 belong to Reg(R1). By Theorem 2.9 of [1],
x1 +x2 ∈ Z(R1) or x1−x2 ∈ Z(R1). Assume that x1−x2 ∈ Z(R1), say x1−x2 = z and
x1 + x2 = r , for some r ∈ Reg(R1) and some z ∈ Z(R1). This implies that 2x1 − z = r
which is a contradiction, thus x1 + x2 ∈ Z(R1) and hence (x1, y1) is adjacent to (x2, y2).

Case 2. a ∈ Reg(R1), we have x1 + a = r1 and x2 + a = r2, where r1, r2 ∈ Reg(R1).
Either r1 +r2 ∈ Z(R1) or r1−r2 ∈ Z(R1). If r1 +r2 ∈ Z(R1), then x1 +x2 +2a ∈ Z(R1),
and hence x1 + x2 ∈ Z(R1). If r1 − r2 ∈ Z(R1) ,then x1 − x2 ∈ Z(R1), if x1 ∈ Reg(R1),
then x1 − a = z1, for some z1 ∈ Z(R1). But x1 + a = r1, where r1 ∈ Reg(R1). So,
2x1 = z1 + r1 which is a contradiction. Similarly, x2 ∈ Z(R1), and hence, (x1, y1) is
adjacent to (x2, y2) .

If a vertex (x1, y1) ∈ N2, is adjacent to a vertex (x2, y2) ∈ N3, then, x1+x2 ∈ Reg(R1),
To see this write x1+a = z and x2+a = r, where z ∈ Z(R1) and r ∈ Reg(S), this implies
that x1 + x2 + (2a− z) = r, and so, x1 + x2 ∈ Reg(R1). We may write Z(S) =

⋃m
i=1 Ii,

where each Ii is a maximal ideal of S. Suppose that b ∈ bi + Ii, if ai + bi ∈ Ii, then
y2 ∈

⋃m
i=1 ai + Ii. Let G be the bipartite subgraph of T (Γ(R)) with partite sets N2 and

N3 where two vertices (x1, y1) ∈ N2 and (x2, y2) ∈ N3 are adjacent if y1 + y2 ∈ Z(S).
Similarly, N1 ∪ N3 with edges joining N1 to N3 form another bipartite graph. Finally,
since this description of N((a, b)) does not depend on the choice of (a, b), we conclude
that the neighborhood of any two vertices in T (Γ(R)) are isomorphic .

(ii) Considering Theorem 3.2, Reg(Γ(R)) is regular. Let R = Πn
i=1Ri. For i =

1, 2, . . . , n, let Gi be the spanning subgraph of Reg(Γ(R)) where two vertices (x1, x2, ...xn)
and (y1, y2, ...yn) are adjacent in Gi if xi + yi ∈ Z(Ri). The graph Reg(Γ(R)) is the
overlay of the layers Gi, i = 1, 2, . . . , n. Each layer is a union of complete graphs or a
union of complete bipartite graphs. Let x and y be two distinct vertices in Reg(Γ(R)).
Let Ni(x) and Ni(y) be the open neighborhoods of x and y respectively, in the graph
Gi. Then N(x) = ∪i=ni=1Ni(x), and N(y) = ∪i=ni=1Ni(y). So, N(x) is the overlay of the
layers induced by Ni(x), i = 1, 2, . . . , n. Similar result holds for N(y). Observe that
for each i = 1, 2, . . . , n, Ni(x) and Ni(y) induce isomorphic subgraphs of the graph Gi,
consequently, N(x) and N(y) induce isomorphic subgraphs of the graph Reg(Γ(R)).

(iii) Direct result of Theorem 3.6 part (1) and the argument before Theorem 6.1. �
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