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Statistical convergence of sequences of sets in
hyperspaces
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Abstract

The concept of statistical convergence in an arbitrary topological space
is nothing new, it is actually a self-evident concept that comes through
the structure of that space. In this paper, by considering the well
known topologies on hyperspaces, we investigate the characterizations
of statistical convergence of sequences of sets in the realm of these
structures.
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1. Introduction

Hyperspace topologies and related concepts of convergence of sequences of sets have
been considered since 1960’s. The theory was initially appeared with the work of Wijs-
man [28] and developed by Mosco [21], Wets [27], Attouch [1] and Beer [2],[3],[4]. If a
sequence of sets does not converge then it might be benefical to use statistical conver-
gence. Statistical convergence is one of the main concepts of the summability theory that
can be introduced in an arbitrary topological space without the requirement of a lineer
structure or at least a group structure on that space, so it is natural to consider statis-
tical convergence of sequences of sets in the realm of hyperspaces. Maddox [18] studied
statistical convergence in locally convex spaces, Maio and Kocinac [19] have considered
it in topological spaces and there are some papers studying statistical convergence in
hyperspaces [15], [22], [23], [25]. We add to all these the facts that are direct results of
the topological view.
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An open set in a hyperspace X is a family of closed subsets of the underlying topo-
logical or metric structure on X. As usual we will denote the nonempty closed subsets
of X by CL(X) and the closed subsets of X including the empty set by 2%. Most of the
hyperspace topologies on closed subsets of a Hausdorff space X are usually defined by
subbases consisting of members in the following sense:

AT :={Be€CL(X)|BCA} and A~ :={Be€CL(X)| ANB # 0}

for an arbitrary subset A in X. B
In the case of a metric space (X, d), by Sa[z] (resp. Sa[z]) we denote the open (resp.
closed) ball with center = and radious «. Similarly for a subset A of X let

SalA] == {z | d (2, 4) < a}, SalA] = {z | d (2, 4) < a}
and
ATt :={BeCL(X)|3>035.[B] C A}.
Also, we will require the following well known set valued functions;
eq(A,B):=inf{e > 0] S: [B] D A}
and
Dq(A,B):=inf{e >0]| An S [B] # 0}
which are called excess and gap functions, respectively.

Given A C CL (X), the hit and miss topology 7 (A) is defined as the topology having
as a subbase of all sets of the form V™ with V € 7 and all sets of the form (B)" with
B € A. The proximal hit and miss topology o (A) is defined as the topology having as
a subbase of all sets of the form V™ with V € 74 and all sets of the form (B°)™" with
B € A. If we consider the closed balls instead of members of A in the definition of o (A),
the resulting topology is called the ball proximal topology, 75,. The Vietoris topology
Ty is defined as the topology having as a subbase of all sets of the form V™~ with V € 7

and all sets of the form W+ with W € 7. The Wijsman topology Tw, is the topology
having as a subbase all sets of the form;

{AeCL(X)|d(z,A) <a} and {Ae€ CL(X) |d(z,A) > a}

for each x € X and a > 0, and the proximal topology 7a, is defined as the topology
having as a subbase all sets of the form V™~ with V' € 74 and all sets of the form W*+
with W € 74. The Fell topology 7r is defined as the topology having as a subbase all
sets of the form V™~ with V € 7 and all sets of the form W™ with W € 7 and X — W is
compact, whenever X is a Hausdorff space. For general hyperspace notions we refer to
Beer [5].

2. Definitions and Basic Properties

The notion of statistical convergence was first introduced by Fast [9] and studied
by several authors [8], [11], [13], [20], [24]. This concept is based on the notion of the
natural (i.e asiymptotic) density of a subset of positive integers. For a subset K of
positive integers N the natural density of K is given by

S(K):=limn '[{k<n:KeK}

whenever the limit exists, where the vertical bars indicate the number of elements of the
enclosed set [10].

In spite of the fact that the notion of statistical convergence was first introduced for
real number sequences and then for complex valued sequences, recently several authors
have investigated this concept in topological, metric or uniform spaces [6], [7], [18], [26].
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In a topological space (X, 7), a sequence x = (1) is said to be statistically convergent
to a € X if for any open set U that contains a we have

S({keN|zx ¢U}) =0.

Note that statistical convergence is stronger than ordinary convergence in an arbitrary
topological space and statistical limit is unique whenever the space is a Hausdorff space.
Statistical convergence is a topological property and, of course, can be characterized with
the elements of the base of the topology instead of the open sets. Therefore the concept
of statistical convergence in an arbitrary topological space is nothing new, it is actually
a self-evident concept that comes through the structure of that space. For a sequence
2 = (z1) in a Hausdorff space X, if there exists a subset K C N such that 6(K) =1 and
x is convergent to a € X over K (x has density convergence property) then it is easy
to see that x is statistically convergent to a ([6], [19]). However the converse does not
hold in an arbitrary Hausdorff space. It is shown in [6] and [19] independently that if
the space is first countable then z has density convergence property if and only if it is
statistically convergent. (However there exist examples for which the countability of
the base does not hold (see [6]).) The concepts given above can easily be extended to the
concepts of A-density and A-statistical convergence by considering a nonnegative regular
summability matrix A ([12], [14], [16], [20]). Moreover if we allow any ideal I instead of
the ideal of the A-density zero sets we may consider the notion ideal convergence given
in [17]. For the sake of simplicity, we keep the concept of statistical convergence in its
primary form. Of course similar results in the present paper can be easily considered for
A-statistical convergence or ideal convergence.

3. Characterizations

We first obtain the following characterizations for statistical convergence with respect
to the hit and miss, proximal hit and miss, and ball proximal topologies by considering
the members of the bases for these topologies.

3.1. Proposition. A sequence (An),y i CL(X) is statistically convergent to A €
CL (X) with respect to the hit and miss topology T (A) if and only if both of the following
conditions hold:

(VW eT2ANV £0:5§({keN|AxNV =0})=0

(i) VBEA>BNA=0:§{keN| A, NB#0})=0.

Proof. If (Ap)nen is statistically convergent to A in 7 (A), by considering the members
of the subbase of 7 (A), it is easy to see that (i) and (ii) hold. Conversely, let U be an
element of the base of 7 (A) containing A. Then there exist finite subsets K, K’ C N
such that (Vi)kex C 7, (By )rerx’ C A and

u—{WECL(X)|VkﬂW7é®foreachkeKandWﬂ U Bk/—ﬂ}.
k'eK'

Since A € U we have ANV # () for all k € K and AN By, = () for all k' € K'. It follows
that

(31) d({neN|A,NVe=0})=0
for all £ € K and similarly
(32) d({neN|A,NBpy #£0})=0

for all k¥’ € K'. Now if A, ¢ U then there exists a ko € K such that Vi, N A, = 0 or
there exists a kj € K’ such that A, N By, # 0. Considering (3.1) and (3.2) we obtain
that 6 ({n € N| A, ¢ U}) = 0. Hence the proof is concluded. O
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3.2. Proposition. A sequence (An), oy tn CL(X) is statistically convergent to A €
CL (X) with respect to the prozimal hit and miss topology o (A) if and only if both of the
following conditions hold:

(()YVWerTs2ANV #D:§{keN| ANV =0})=0

(i) Whenever B € A,n >0 and S, [A]N B =0, then

d({k € N| 5. [Ax] N B # 0 whenever 0 < e < n}) = 0.

Proof. It is easily verified that statistical convergence of (A,), .y to A in o (A) implies
(i) and (ii). To prove the opposite direction, let U be an element of the base of o (A)
such that A € U. Then there exist finite subsets K, K’ C N such that (Vi)rex C 74 and
(Bk)lceK’ C A and

U= {WeCL(X)|VinW #0 for each k € K and
Ik > 03 S, [W] C Bf for each k € K'}.

As A € U we have ANV}, # ( for all k € K and there exists n, > 0 such that S,, [W] C Bj,
for all k € K'. It follows that, for all k € K we also have

(33) d({neN|A.NV,=0})=0

and for all k € K’ we have

(34) d({neN|S[W]NB,#0})=0

whenever 0 < ¢ < n = grelkn/ k. Now if A, ¢ U then there exists a kg € K such that

Vig M An = 0 or there exists a ko € K’ such that for any v > 0 we have S, [W]N By, # 0.

In particular, whenever 0 < € < n we have S.[W] N By # (. Hence it follows from (3.3)
and (3.4) that 6 {n e N| A, ¢ U}) =0. 0

The proof of the following result goes along the same lines as the previous one, so we
omit it.

3.3. Proposition. A sequence (An),y in CL(X) is statistically convergent to A €
CL (X) with respect to the ball prozimal topology T, if and only if both of the following
conditions hold:

(()VWerd2ANV #£D:6{keN| A, NV =0}) =0,

(i) Whenever B is a closed ball, n > 0 and Sy [A]N B =0, then

5 ({k € N| S:[Ax] N B # 0 whenever 0 < e < n}) = 0.

The Wijsman topology mw, for CL (X) can often be represented as a ball proximal
hit and miss topology. For instance, this is the case when X is a linear normed space.
But in general one can find some examples in literature which shows that the Wijsman
topology may not contain the ball proximal topology (see e.g [5]). In the case of ordinary
convergence, we know that a sequence (An), .y in CL (X) is convergent to A € CL (X)
with respect to Tw, if and only if the following conditions hold:

(¢)Whenever A meets a nonempty open subset V' of X, then there exists no € N such
that A, NV # Q for all n > no.

(i) Whenever 0 < ¢ < n and Sy[z] N A = 0, then there exists no € N such that
An N Se[z] =0 for all n > no. [5].

With the help of this fact the following result shows how we have to characterize
statistical convergence with respect to the Wijsman topology in general.

3.4. Theorem. A sequence (An), oy in CL (X) is statistically convergent to A € CL (X)
with respect to Tw, if and only if both of the following conditions hold:
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VWV eTadANV #D:5({keN| ANV =0}) =0,
(i1) Whenever 0 <e <mn, z € X and S, [x]NA =0, then

§({k € N| 8. [2] N Ay, # 0}) = 0.

Proof. Assume that (A,) is statistically convergent to A in (CL(X),Tw,) and V € 74
such that ANV # 0. Then there exists p > 0 and zo € ANV such that S,[ze] C V.
Now if we define

W:={U € CL(X) | d(z0,U) < pu}
then clearly W €rw, and A € W. It follows that § ({n € N| A, € W}) = 0. Now, as
Su[ro] N A, = 0 we have
{neN|A, NV =0} C{neN|A, W}
which implies that § ({n € N| A, NV = 0}) = 0. On the other hand, whenever 0 < € < 7
and S, [z] N A = 0, consider the open set in 7w, defined by
W:={U € CL(X) | d(z,U) > ¢}.
From the fact that
(neN|Sfz]NAn£0} C {neN| A, g W)
we have 6 ({k € N| S [z] N Ay # 0}) = 0.
Conversely assume that (¢) and (i) hold and consider the following sets
Usa ={V era| ANV #£ 0} and V4 = {Sy[z] | Sylz] N A = 0}

where ¢ A. Observe that for any V € U4 and Syfz] € V4 we have §(Ky,.) = 1 for
each positive ¢ less than n where Ky = Ky N K¢, Ky = {ne€N| A4, NV =0} and
K. = {neN| S.[z] N A # 0}. Furthermore, since A, NV # @ and S,[z] N A # ( for
any n € Ky, we obtain that (A,) converges to A over Ky, in 7w,. Hence (A4,) is
statistically convergent to A in Wijsman topology. O

The following lemma characterizes the statistical convergence in weak topologies.

3.5. Lemma. For a nonempty set X and a family of Hausdorff topological spaces
{(Xi,7)},cr > consider the weak topology T on X determined by

%:{fZX—>XZ}l€I

Then, for an arbitrary sequence x in X and xo € X, the following are equivalent:
(1) Strg-limz = xo,
(13) Vi € I : sty -lim f; (z) = fi (x0) -

Proof. Since f; is continuous for all ¢ € I it is not difficult to see that (i) implies (ii).
Conversely assume that st -lim f; (z) = fi (zo) for all ¢ € I. Let B be an element of the

base of 7« such that o € B. Then there exists i1, 42, ...,4m € I such that B= ﬂ fi;l(Ul-p)
p=1

where U;, € 7; for all p=1,2,...,m. It follows that fi,(zo) € U, for all p=1,2,...,m

Then one can obtain that for each p =1,2,...,m

(35) d({neN]|fi,(zn) €U, }) =0.

Now if z, ¢ B, then there exists p, € {1,2,...,m} such that x, & f ( Uiy, )- Hence by
(3.5) we have 6 ({n € N| z, € B}) = 0 which completes the proof. O
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3.6. Remark. From the fact that the Wijsman topology is the weak topology gener-
ated by the family of the distance functions {d, : CL (X) — Ry} . where d; (A) :=
d(x, A), statistical convergence of a sequence (An), .y to A in 7w, is actually means
that, for each = € X, we have st—nlin;odx (An) =ds (A).

Also one can look differently by considering the fact that B <— dp is an embed-
ding of (CL (X),Tw,) into the space of continuous functions C (X, R) equipped with the
topology of pointwise convergence. Using the fact that statistical convergence is a topo-
logical property, it follows that statistical convergence of (A,), . in Wijsman topology
is determined by the statistical convergence of (da,,),cy, in C (X, R) equipped with the
topology of pointwise convergence. In addition, the admissibility of the Wisjman topol-
ogy provides that all the topological results obtained for the hyperspace case are valid
for the ordinary case.

3.7. Proposition. A sequence (An), oy tn CL(X) is statistically convergent to A €
CL (X) with respect to the Vietoris topology Tv if and only if both of the following con-
ditions are met:

(VW eT2ANV £0:5({keN|AxNV =0})=0

(i) VW eT>2ACV:6({keN| A, L V}) =0.

Similar to the Wisjman topology, Vietoris topology is actually the weak topology
determined by the family of distance functionals {d, | z € X,d € ©} whenever D is the
set of compatible metrics for X. Then it follows from Lemma 1 that statistical convergence
of a sequence (A,) to A in CL (X) is actually means that, for each x € X and for each
d € ©, we have st- lim d, (An) = da (A).

n—oo

The proximal topology on the closed sets of a metric space (X, d) is the weak topology
determined by the family of distance functions {¢, | z € X, ¢ € D4} whenever D4 denotes
the set of compatible metrics for d. Then it follows from Lemma 1 that the statistical con-
vergence in proximal topology can be determined by the family of such kind of distance
functions. Therefore statistical convergence of a sequence (A,),, oy to Ain C'L (X) is actu-
ally means that, for each =« € X and ¢ € D4, we have
st-nli_)rr;oqz (An) = ¢« (A) . In addition; using the fact that 7a, is also the weak topology

determined by the family of gap functions {Dq4 (B,.) | B € CL(X)} one can observe that
stra,- lim A, = A means that st- lim Dq (B, An) = Da (B, A) for each B € CL (X).
n— o0

L n—oo

The Attouch-Wets topology on CL (X) is the topology that C'L (X) inherits from
C (X,R), equipped with the topology Tyc» of uniform convergence on bounded subsets
of X, under the identification B +— dp. The following characterization is a consequence
of this fact.

3.8. Proposition. A sequence (Ayn), oy of bounded sets in CL(X) is statistically con-
vergent to a bounded set A in CL (X) with respect to the Attouch- Wets topology Taw, if
and only if for every e > 0,

d ({k : ducb (dAk,dA) > 5}) =0

whenever

n d(z,x0)<n

ducs (f,9) = 2227" min {1, sup  [f (z) — g(w)l} for all f,g € C(X,R).

A similar fact also holds for the Hausdorff metric topology 77, on C'L (X) since it is the
topology that C'L (X) inherits from (C (X,R),7u.) under the identification B +— dp.
Therefore, (Ay), oy in CL (X) is statistically convergent to A € C'L (X) with respect to
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T, means that:

Ve>0:6 ({k :sup |d (z, Ax) — d (z, A)| > 5}) =0.
zeX

In addition, due to the fact that 74, is the weak topology on C'L (X) such that for each

B e CL(X) both

A— Dg(B,A) and A — eq (B, A)

are continuous, (An), oy in CL (X) is statistically convergent to A € C'L (X) with respect
to 7z, means that:

st — lim Dq (B, An) = D4 (B, A)
n—oo
and

st — lim eq (B, An) = eq (B, A)
n— oo

for each B € CL (X).
The proof of the following result is a consequence of the definition of Fell topology.

3.9. Proposition. If X is a Hausdorff space, then a sequence (An), oy in CL(X) is
statistically convergent to A € CL(X) with respect to the Fell topology Tr if and only if
both of the following conditions are met:

YW eT2ANV AD:6({keN| ANV =0})=0

(i) VW e T3 ACW and X\W compact : 6 ({k e N| A,  W}) =0.

In the realm of function spaces, the characterization of statistical convergence for
graph topology with base {WJr | W oopen in X X Y} which is much stronger than 7a,
is straightforward. Clearly, a sequence (fn), oy in C'(X,Y) is said to be statistically
convergent to f € C'(X,Y) with respect to the graph topology if and only if for each
open set W in X x Y containing f, we have § ({k € N| fi £ W}) = 0.
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