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Statistical convergence of sequences of sets in
hyperspaces
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Abstract

The concept of statistical convergence in an arbitrary topological space
is nothing new, it is actually a self-evident concept that comes through
the structure of that space. In this paper, by considering the well
known topologies on hyperspaces, we investigate the characterizations
of statistical convergence of sequences of sets in the realm of these
structures.
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1. Introduction

Hyperspace topologies and related concepts of convergence of sequences of sets have
been considered since 1960's. The theory was initially appeared with the work of Wijs-
man [28] and developed by Mosco [21], Wets [27], Attouch [1] and Beer [2],[3],[4]. If a
sequence of sets does not converge then it might be bene�cal to use statistical conver-
gence. Statistical convergence is one of the main concepts of the summability theory that
can be introduced in an arbitrary topological space without the requirement of a lineer
structure or at least a group structure on that space, so it is natural to consider statis-
tical convergence of sequences of sets in the realm of hyperspaces. Maddox [18] studied
statistical convergence in locally convex spaces, Maio and Ko£inac [19] have considered
it in topological spaces and there are some papers studying statistical convergence in
hyperspaces [15], [22], [23], [25]. We add to all these the facts that are direct results of
the topological view.
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An open set in a hyperspace X is a family of closed subsets of the underlying topo-
logical or metric structure on X. As usual we will denote the nonempty closed subsets
of X by CL (X) and the closed subsets of X including the empty set by 2X . Most of the
hyperspace topologies on closed subsets of a Hausdor� space X are usually de�ned by
subbases consisting of members in the following sense:

A+ := {B ∈ CL (X) | B ⊂ A} and A− := {B ∈ CL (X) | A ∩B 6= ∅}
for an arbitrary subset A in X.

In the case of a metric space (X, d), by Sα[x] (resp. Sα[x]) we denote the open (resp.
closed) ball with center x and radious α. Similarly for a subset A of X let

Sα[A] := {x | d (x,A) < α} , Sα[A] := {x | d (x,A) ≤ α}
and

A++ := {B ∈ CL (X) | ∃ε > 0 3 Sε [B] ⊂ A} .
Also, we will require the following well known set valued functions;

ed (A,B) := inf {ε > 0 | Sε [B] ⊃ A}
and

Dd (A,B) := inf {ε > 0 | A ∩ Sε [B] 6= ∅}
which are called excess and gap functions, respectively.

Given ∆ ⊂ CL (X) , the hit and miss topology τ (∆) is de�ned as the topology having

as a subbase of all sets of the form V − with V ∈ τ and all sets of the form (Bc)+ with
B ∈ ∆. The proximal hit and miss topology σ (∆) is de�ned as the topology having as

a subbase of all sets of the form V − with V ∈ τd and all sets of the form (Bc)++ with
B ∈ ∆. If we consider the closed balls instead of members of ∆ in the de�nition of σ (∆) ,
the resulting topology is called the ball proximal topology, τBd . The Vietoris topology
τV is de�ned as the topology having as a subbase of all sets of the form V − with V ∈ τ
and all sets of the form W+ with W ∈ τ. The Wijsman topology τWd is the topology
having as a subbase all sets of the form;

{A ∈ CL (X) | d (x,A) < α} and {A ∈ CL (X) | d (x,A) > α}
for each x ∈ X and α > 0, and the proximal topology τ∆d is de�ned as the topology
having as a subbase all sets of the form V − with V ∈ τd and all sets of the form W++

with W ∈ τd. The Fell topology τF is de�ned as the topology having as a subbase all
sets of the form V − with V ∈ τ and all sets of the form W+ with W ∈ τ and X −W is
compact, whenever X is a Hausdor� space. For general hyperspace notions we refer to
Beer [5].

2. De�nitions and Basic Properties

The notion of statistical convergence was �rst introduced by Fast [9] and studied
by several authors [8], [11], [13], [20], [24]. This concept is based on the notion of the
natural (i.e asiymptotic) density of a subset of positive integers. For a subset K of
positive integers N the natural density of K is given by

δ(K) := lim
n
n−1 |{k ≤ n : K ∈ K}|

whenever the limit exists, where the vertical bars indicate the number of elements of the
enclosed set [10].

In spite of the fact that the notion of statistical convergence was �rst introduced for
real number sequences and then for complex valued sequences, recently several authors
have investigated this concept in topological, metric or uniform spaces [6], [7], [18], [26].
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In a topological space (X, τ), a sequence x = (xk) is said to be statistically convergent
to a ∈ X if for any open set U that contains a we have

δ ({k ∈ N | xk 6∈ U}) = 0.

Note that statistical convergence is stronger than ordinary convergence in an arbitrary
topological space and statistical limit is unique whenever the space is a Hausdor� space.
Statistical convergence is a topological property and, of course, can be characterized with
the elements of the base of the topology instead of the open sets. Therefore the concept
of statistical convergence in an arbitrary topological space is nothing new, it is actually
a self-evident concept that comes through the structure of that space. For a sequence
x = (xk) in a Hausdor� space X, if there exists a subset K ⊂ N such that δ(K) = 1 and
x is convergent to a ∈ X over K (x has density convergence property) then it is easy
to see that x is statistically convergent to a ([6], [19]). However the converse does not
hold in an arbitrary Hausdor� space. It is shown in [6] and [19] independently that if
the space is �rst countable then x has density convergence property if and only if it is
statistically convergent. (However there exist examples for which the countability of
the base does not hold (see [6]).) The concepts given above can easily be extended to the
concepts of A-density and A-statistical convergence by considering a nonnegative regular
summability matrix A ([12], [14], [16], [20]). Moreover if we allow any ideal I instead of
the ideal of the A-density zero sets we may consider the notion ideal convergence given
in [17]. For the sake of simplicity, we keep the concept of statistical convergence in its
primary form. Of course similar results in the present paper can be easily considered for
A-statistical convergence or ideal convergence.

3. Characterizations

We �rst obtain the following characterizations for statistical convergence with respect
to the hit and miss, proximal hit and miss, and ball proximal topologies by considering
the members of the bases for these topologies.

3.1. Proposition. A sequence (An)n∈N in CL (X) is statistically convergent to A ∈
CL (X) with respect to the hit and miss topology τ (∆) if and only if both of the following

conditions hold:

(i) ∀V ∈ τ 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0
(ii) ∀B ∈ ∆ 3 B ∩A = ∅ : δ ({k ∈ N | Ak ∩B 6= ∅}) = 0.

Proof. If (An)n∈N is statistically convergent to A in τ (∆) , by considering the members
of the subbase of τ (∆) , it is easy to see that (i) and (ii) hold. Conversely, let U be an
element of the base of τ (∆) containing A. Then there exist �nite subsets K, K′ ⊂ N
such that (Vk)k∈K ⊂ τ , (Bk′)k′∈K′ ⊂ ∆ and

U =

{
W ∈ CL(X) | Vk ∩W 6= ∅ for each k ∈ K and W ∩

⋃
k′∈K′

Bk′ = ∅

}
.

Since A ∈ U we have A∩ Vk 6= ∅ for all k ∈ K and A∩Bk′ = ∅ for all k′ ∈ K′. It follows
that

(3.1) δ ({n ∈ N | An ∩ Vk = ∅}) = 0

for all k ∈ K and similarly

(3.2) δ ({n ∈ N | An ∩Bk′ 6= ∅}) = 0

for all k′ ∈ K′. Now if An 6∈ U then there exists a k0 ∈ K such that Vk0 ∩ An = ∅ or
there exists a k′0 ∈ K′ such that An ∩ Bk′0 6= ∅. Considering (3.1) and (3.2) we obtain

that δ ({n ∈ N | An 6∈ U}) = 0. Hence the proof is concluded. �
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3.2. Proposition. A sequence (An)n∈N in CL (X) is statistically convergent to A ∈
CL (X) with respect to the proximal hit and miss topology σ (∆) if and only if both of the

following conditions hold:

(i) ∀V ∈ τ 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0
(ii) Whenever B ∈ ∆, η > 0 and Sη [A] ∩B = ∅, then

δ ({k ∈ N | Sε [Ak] ∩B 6= ∅ whenever 0 < ε < η}) = 0.

Proof. It is easily veri�ed that statistical convergence of (An)n∈N to A in σ (∆) implies
(i) and (ii). To prove the opposite direction, let U be an element of the base of σ (∆)
such that A ∈ U. Then there exist �nite subsets K, K′ ⊂ N such that (Vk)k∈K ⊂ τd and
(Bk)k∈K′ ⊂ ∆ and

U = {W ∈ CL(X) | Vk ∩W 6= ∅ for each k ∈ K and
∃ηk > 0 3 Sηk [W ] ⊂ Bck for each k ∈ K′} .

As A ∈ U we have A∩Vk 6= ∅ for all k ∈ K and there exists ηk > 0 such that Sηk [W ] ⊂ Bck
for all k ∈ K′. It follows that, for all k ∈ K we also have

(3.3) δ ({n ∈ N | An ∩ Vk = ∅}) = 0

and for all k ∈ K′ we have

(3.4) δ ({n ∈ N | Sε[W ] ∩Bk 6= ∅}) = 0

whenever 0 < ε < η = min
k∈K′

ηk. Now if An 6∈ U then there exists a k0 ∈ K such that

Vk0 ∩An = ∅ or there exists a k′0 ∈ K′ such that for any γ > 0 we have Sγ [W ]∩Bk′0 6= ∅.
In particular, whenever 0 < ε < η we have Sε[W ] ∩ Bk 6= ∅. Hence it follows from (3.3)
and (3.4) that δ ({n ∈ N | An 6∈ U}) = 0. �

The proof of the following result goes along the same lines as the previous one, so we
omit it.

3.3. Proposition. A sequence (An)n∈N in CL (X) is statistically convergent to A ∈
CL (X) with respect to the ball proximal topology τBd if and only if both of the following

conditions hold:

(i) ∀V ∈ τ 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0,
(ii) Whenever B is a closed ball, η > 0 and Sη [A] ∩B = ∅, then

δ ({k ∈ N | Sε [Ak] ∩B 6= ∅ whenever 0 < ε < η}) = 0.

The Wijsman topology τWd for CL (X) can often be represented as a ball proximal
hit and miss topology. For instance, this is the case when X is a linear normed space.
But in general one can �nd some examples in literature which shows that the Wijsman
topology may not contain the ball proximal topology (see e.g [5]). In the case of ordinary
convergence, we know that a sequence (An)n∈N in CL (X) is convergent to A ∈ CL (X)
with respect to τWd if and only if the following conditions hold:

(i)Whenever A meets a nonempty open subset V of X, then there exists n0 ∈ N such
that An ∩ V 6= ∅ for all n ≥ n0.

(ii) Whenever 0 < ε < η and Sη[x] ∩ A = ∅, then there exists n0 ∈ N such that
An ∩ Sε[x] = ∅ for all n ≥ n0. [5].

With the help of this fact the following result shows how we have to characterize
statistical convergence with respect to the Wijsman topology in general.

3.4. Theorem. A sequence (An)n∈N in CL (X) is statistically convergent to A ∈ CL (X)
with respect to τWd if and only if both of the following conditions hold:
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(i) ∀V ∈ τd 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0,
(ii) Whenever 0 < ε < η, x ∈ X and Sη [x] ∩A = ∅, then

δ ({k ∈ N | Sε [x] ∩Ak 6= ∅}) = 0.

Proof. Assume that (An) is statistically convergent to A in (CL(X), τWd) and V ∈ τd
such that A ∩ V 6= ∅. Then there exists µ > 0 and x0 ∈ A ∩ V such that Sµ[x0] ⊂ V.
Now if we de�ne

W := {U ∈ CL(X) | d(x0, U) < µ}

then clearly W ∈τWd and A ∈ W. It follows that δ ({n ∈ N | An 6∈W}) = 0. Now, as
Sµ[x0] ∩An = ∅ we have

{n ∈ N | An ∩ V = ∅} ⊂ {n ∈ N | An 6∈W}

which implies that δ ({n ∈ N | An ∩ V = ∅}) = 0. On the other hand, whenever 0 < ε < η
and Sη [x] ∩A = ∅, consider the open set in τWd de�ned by

W := {U ∈ CL(X) | d(x, U) > ε} .

From the fact that

{n ∈ N | Sε[x] ∩An 6= ∅} ⊂ {n ∈ N | An 6∈W}

we have δ ({k ∈ N | Sε [x] ∩Ak 6= ∅}) = 0.
Conversely assume that (i) and (ii) hold and consider the following sets

UA = {V ∈ τd | A ∩ V 6= ∅} and VA = {Sη[x] | Sη[x] ∩A = ∅}

where x 6∈ A. Observe that for any V ∈ UA and Sη[x] ∈ VA we have δ(KV,ε) = 1 for
each positive ε less than η where KV,ε = Kc

V ∩ Kc
ε , KV = {n ∈ N | An ∩ V = ∅} and

Kε = {n ∈ N | Sε[x] ∩A 6= ∅} . Furthermore, since An ∩ V 6= ∅ and Sη[x] ∩ A 6= ∅ for
any n ∈ KV,ε we obtain that (An) converges to A over KV,ε in τWd . Hence (An) is
statistically convergent to A in Wijsman topology. �

The following lemma characterizes the statistical convergence in weak topologies.

3.5. Lemma. For a nonempty set X and a family of Hausdor� topological spaces

{(Xi, τi)}i∈I , consider the weak topology τR on X determined by

R = {fi : X −→ Xi}i∈I .

Then, for an arbitrary sequence x in X and x0 ∈ X, the following are equivalent:

(i) stτR -limx = x0,

(ii) ∀i ∈ I : stτi -lim fi (x) = fi (x0) .

Proof. Since fi is continuous for all i ∈ I it is not di�cult to see that (i) implies (ii).
Conversely assume that stτi -lim fi (x) = fi (x0) for all i ∈ I. Let B be an element of the

base of τR such that x0 ∈ B. Then there exists i1, i2, ..., im ∈ I such that B=

m⋂
p=1

f−1
ip

(Uip)

where Uip ∈ τi for all p = 1, 2, ...,m. It follows that fip(x0) ∈ Uip for all p = 1, 2, ...,m.
Then one can obtain that for each p = 1, 2, ...,m

(3.5) δ
({
n ∈ N | fip(xn) 6∈ Uip

})
= 0.

Now if xn 6∈ B, then there exists po ∈ {1, 2, ...,m} such that xn 6∈ f−1
ip0

(Uip0
). Hence by

(3.5) we have δ ({n ∈ N | xn 6∈ B}) = 0 which completes the proof. �
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3.6. Remark. From the fact that the Wijsman topology is the weak topology gener-
ated by the family of the distance functions {dx : CL (X) −→ R+}x∈X where dx (A) :=
d (x,A) , statistical convergence of a sequence (An)n∈N to A in τWd is actually means
that, for each x ∈ X, we have st- lim

n→∞
dx (An) = dx (A) .

Also one can look di�erently by considering the fact that B ←→ dB is an embed-
ding of (CL (X) , τWd) into the space of continuous functions C (X,R) equipped with the
topology of pointwise convergence. Using the fact that statistical convergence is a topo-
logical property, it follows that statistical convergence of (An)n∈N in Wijsman topology
is determined by the statistical convergence of (dAn)n∈N , in C (X,R) equipped with the
topology of pointwise convergence. In addition, the admissibility of the Wisjman topol-
ogy provides that all the topological results obtained for the hyperspace case are valid
for the ordinary case.

3.7. Proposition. A sequence (An)n∈N in CL (X) is statistically convergent to A ∈
CL (X) with respect to the Vietoris topology τV if and only if both of the following con-

ditions are met:

(i) ∀V ∈ τ 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0
(ii) ∀V ∈ τ 3 A ⊂ V : δ ({k ∈ N | Ak * V }) = 0.

Similar to the Wisjman topology, Vietoris topology is actually the weak topology
determined by the family of distance functionals {dx | x ∈ X, d ∈ D} whenever D is the
set of compatible metrics forX. Then it follows from Lemma 1 that statistical convergence
of a sequence (An) to A in CL (X) is actually means that, for each x ∈ X and for each
d ∈ D, we have st- lim

n→∞
dx (An) = dx (A) .

The proximal topology on the closed sets of a metric space (X, d) is the weak topology
determined by the family of distance functions {qx | x ∈ X, q ∈ Dd} whenever Dd denotes
the set of compatible metrics for d. Then it follows from Lemma 1 that the statistical con-
vergence in proximal topology can be determined by the family of such kind of distance
functions. Therefore statistical convergence of a sequence (An)n∈N to A in CL (X) is actu-
ally means that, for each x ∈ X and q ∈ Dd, we have
st- lim

n→∞
qx (An) = qx (A) . In addition; using the fact that τ∆d is also the weak topology

determined by the family of gap functions {Dd (B, .) | B ∈ CL (X)} one can observe that
stτ∆d

- lim
n→∞

An = A means that st- lim
n→∞

Dd (B,An) = Dd (B,A) for each B ∈ CL (X) .

The Attouch-Wets topology on CL (X) is the topology that CL (X) inherits from
C (X,R) , equipped with the topology τucb of uniform convergence on bounded subsets
of X, under the identi�cation B ←→ dB . The following characterization is a consequence
of this fact.

3.8. Proposition. A sequence (An)n∈N of bounded sets in CL (X) is statistically con-

vergent to a bounded set A in CL (X) with respect to the Attouch-Wets topology τAWd if

and only if for every ε > 0,

δ ({k : ducb (dAk , dA) ≥ ε}) = 0

whenever

ducb (f, g) =
∑
n

2−n min

{
1, sup
d(x,x0)<n

|f (x)− g (x)|

}
for all f, g ∈ C (X,R) .

A similar fact also holds for the Hausdor� metric topology τHd on CL (X) since it is the
topology that CL (X) inherits from (C (X,R) , τuc) under the identi�cation B ←→ dB .
Therefore, (An)n∈N in CL (X) is statistically convergent to A ∈ CL (X) with respect to
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τHd means that:

∀ε > 0 : δ

({
k : sup

x∈X
|d (x,Ak)− d (x,A)| > ε

})
= 0.

In addition, due to the fact that τHd is the weak topology on CL (X) such that for each
B ∈ CL (X) both

A −→ Dd (B,A) and A −→ ed (B,A)

are continuous, (An)n∈N in CL (X) is statistically convergent to A ∈ CL (X) with respect
to τHd means that:

st− lim
n→∞

Dd (B,An) = Dd (B,A)

and

st− lim
n→∞

ed (B,An) = ed (B,A)

for each B ∈ CL (X).
The proof of the following result is a consequence of the de�nition of Fell topology.

3.9. Proposition. If X is a Hausdor� space, then a sequence (An)n∈N in CL (X) is

statistically convergent to A ∈ CL (X) with respect to the Fell topology τF if and only if

both of the following conditions are met:

(i) ∀V ∈ τ 3 A ∩ V 6= ∅ : δ ({k ∈ N | Ak ∩ V = ∅}) = 0
(ii) ∀W ∈ τ 3 A ⊂W and X\W compact : δ ({k ∈ N | Ak *W}) = 0.

In the realm of function spaces, the characterization of statistical convergence for
graph topology with base

{
W+ |W open in X × Y

}
which is much stronger than τ∆d

is straightforward. Clearly, a sequence (fn)n∈N in C (X,Y ) is said to be statistically
convergent to f ∈ C (X,Y ) with respect to the graph topology if and only if for each
open set W in X × Y containing f , we have δ ({k ∈ N | fk *W}) = 0.
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