
Hacettepe Journal of Mathematics and Statistics
Volume 47 (4) (2018), 909 � 919

Jackknife variance estimation from complex survey
designs

Raghunath Arnab∗† and Antonio Arcos‡

Abstract

Large scale surveys very often involve multi-stage sampling design,
where the �rst-stage units are selected with varying probability sam-
pling without replacement method and the second and subsequent
stages units are selected with varying or equal probability sampling
schemes. It is well known (vide Chaudhuri and Arnab (1982)) that
for such sampling designs it impossible to �nd an unbiased estimator
of the variance of the estimator of the population total (or mean) as a
homogeneous quadratic function of the estimators of the totals (means)
of second-stage units without estimating variances of the estimators of
the totals (means) of the second and sub-sequent stages of sampling.
Wolter (1985) has shown that the Jackknife estimators of the popu-
lation total based on unequal probability sampling overestimates the
variance. In this paper we have proposed an alternative Jackknife es-
timator after reduction of bias from the original Jackknife estimator.
The performances of the proposed Jackknife estimator and the original
estimator are compared through simulation studies using Household In-
come and Expenditure Survey (HIES) 2002/03 data collected by CSO,
Botswana. The simulation studies reveal that the proposed estimator
fares better than the original Jackknife estimator in terms of relative
bias and mean-square error.
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1. Introduction

A sampling design other than the simple random sampling (SRS) is known as a com-
plex sampling design. Complex designs involve clustering, strati�cation and varying
probability sampling (VPS) among others. Most real life surveys are complex surveys
and for such surveys we often need to estimate several parametric functions such as the
population mean, population ratio of the total of two characteristics, population coe�-
cient of variation, population regression coe�cient and population correlation coe�cient.

For example, Household Income and Expenditure Survey 2002/03 (HIES 2002/03)
conducted by the Central Statistics O�ce (CSO), Botswana, used enumeration areas
(EA's) as �rst-stage units (fsu's) and households in an EA as second-stage units (ssu's).
The EA's are selected by inclusion probability proportional to size (IPPS) sampling
design using PPS systematic sampling procedure (Goodman and Kish (1950)) taking
the number of households in an enumeration area as measure of size variable while the
households in the selected EA's by systematic sampling procedure. The same survey
design was used by CSO for Botswana Aids Impact Surveys (BAIS) 2004, 2008, 2012
amongst others.

Variance estimation is essential for estimating the precision of survey estimates, cal-
culation of con�dence intervals, determination of optimum sample sizes and for testing
of hypotheses, amongst others. In particular, �nding the optimum sample size is the
key factor in the determination of the cost of a survey and the subsequent precision of
estimates.

In a multistage sampling, if the fsu's are selected by without replacement sampling
procedure, the variance of the population total (or mean) cannot be estimated unbiasedly
as a homogeneous quadratic function of the estimates of the ssu totals only. It requires
unbiased estimates of variances of the estimators of the second and sub-sequent sages
(vide Chaudhury and Arnab (1982)). For example if the fsu's are selected by IPPS
sampling design and ssu's are selected by simple random sampling procedure, then the
unbiased estimator of the variance of the estimator of the population total (mean) cannot
be estimated unbiasedly as a quadratic function of the sample means of ssu's of the
selected fsu's only. It should also involve sample variances of the selected ssu's totals
(means) of the second-stage units. To avoid the complexity of the unbiased variance
estimation, conventional approximate variance estimators such as Random group (RG),
Jackknife (JK), Balanced repeated replications (BRR), Bootstrap (BT) methods are
proposed (vide Wolter, 1985). It is well known that for a multi-stage sampling, the RG
and JK methods very often overestimate the variance (Vide Wolter, 1985). Singh et al.
(1998, 1999, 2011) among others proposed alternative methods of variance estimation
for complex survey designs. Arnab et al. (2012, 2015) proposed methods of unbiased
estimation of the variances of the population totals for multi-stage sampling designs.
Their variance estimators involve unbiased estimators of the variances of the �rst-stage
units as well as unbiased estimators (or approximate estimators) of the variances of
the estimators of the second-stage units. The performances of their proposed variance
estimators were compared using simulation studies based on the HIES 02/03 data with
six indicators (study variables). The simulation studies revealed that variance estimators
proposed by Arnab et al. (2015) yielded better estimators in respect to bias and mean
square errors than the conventional Jackknife and Random group methods.

Although, the method of variance estimation involving unbiased variance estimation
of the �rst-stage units produces better variance estimators, it requires computation of
second order inclusion probabilities which are very complex and di�cult to compute
for general IPPS sampling designs. The PPS systematic sampling design proposed by
Goodman and Kish (1950) is very easy to execute and imposes the least restriction on
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pi (viz. pi ≤ 1/n) where pi (
∑
pi = 1) is the normed size measure for the ith unit and

n is the sample size. The expression for the second order inclusion probabilities for
such sampling scheme was obtained by Hartley and Rao (1962) assuming the units are
labelled at random. Such random labelling of units is not possible in practice since the
units adjacent to each other are normally labelled by adjacent numbers. So, in this
present paper, we have considered Sampford's (1967) IPPS sampling design which is
described in Section 2.

Asok and Sukhatme (1976) showed that the variances of the Horvitz-Thompson (1952)
estimator

(1.1) Ŷ =
∑
i∈s

yi
πi

(with πi = npi = inclusion probability of the ith unit) for a �nite population total Y
based on a sample s of size n selected by the Goodman-Kish (1950) or Sampford (1967)'s
sampling scheme, correct to O(N−1) are the same and they are exactly equal to

(1.2) V (Ŷ ) =
1

n

[
N∑
i=1

piz
2
i − (n− 1)

N∑
i=1

p2
i z

2
i

]

where zi =
yi
pi
− Y .

Expression (1.2) indicates that the Horvitz-Thomson estimator based on the PPS sys-
tematic as well as Sampford's procedures possess a uniformly smaller variance than that
of the Hansen-Hurwitz estimator based on a PPSWR sampling design of the same sample
size n. Furthermore, when the variance is considered to be O(N−2), the Horvitz-Thomson
estimator based on Sampford sampling (VSAM ) has a uniformly smaller variance than
that of the PPS systematic sampling procedure VGK and their di�erence

(1.3) VGK − VSAM = (n− 1)

(
N∑
i=1

p2
i zi

)2

is non-negative and increases with the sample size n.
In the present paper, we have proposed an alternative variance estimation formula for

multi-stage sampling design where the �rst-stage units are selected by Sampord's (1967)
IPPS sampling design. The proposed variance formula is obtained by removing the
bias of the conventional Jackknife variance estimator. The adjusted Jackknife variance
estimator is obtained after reduction of bias from the original Jackknife estimator and
it is free from second order inclusion probabilities. The performance of the proposed
variance estimator is tested by simulation studies using HIES (2003/2004) data with six
indicators (study variables). The simulation studies reveal that the proposed variance
formula brings enormous gain in e�ciency with respect to bias and mean square error. We
have also proved that the bias of the conventional Jackknife estimator does not depend
on the group size m and the variances of the estimators of the second-stage units σ2

i 's.

2. Variance Estimation from Multi-stage Sampling

Consider a �nite population U = (U1, . . . , Ui, . . . , UN ) of N �rst-stage units (fsu's).
The ith fsu Ui consists of Mi second-stage units (ssu's). Let yij be the value of variable
of interest y for the jth ssu of the ith fsu and

(2.1) Y =

N∑
i=1

Mi∑
j=1

yij =

N∑
i=1

Yi
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be the population total where Yi =

Mi∑
j=1

yij is the ith fus total.

From the population U , a sample s of n fsu's is selected with probability p(s) using
Sampford's (1967) IPPS sampling design (described below) with normed size pi measure
attached to the i th unit so that the inclusion probability for the ith unit becomes
πi = npi. If the ith fsu is selected in the sample s, a sub-sample si of size mi (pre-
determined number) ssu's is selected from it by using some suitable sampling procedure.
Each of the selected fsu's are sub-sampled independently.

The Sampford's (1967) sampling design is described as follows:
On the �rst draw the ith unit is selected with probability pi(1) = pi. Then the

remaining (n − 1) fsu's are drawn with replacement from the entire population with
probability proportional to λi = pi/(1−npi) attached to the i th unit i.e. the probability

of selecting ith unit at kth draw is pi(k) = λ/
∑N
j=1 λj , k = 2, . . . , n. The selected

units are accepted as a sample if all the n units happen to be di�erent, otherwise the
entire selection is discarded and this process is repeated unless a set of n distinct units
is obtained. Sampford (1967) has shown that the inclusion probability for the selection
of ith unit is πi = npi and ∆ij = πiπj − πij ≥ 0. The expression for the second order
inclusion probabilities is not simple. However, approximate expression of πij correct to
O(N−4), derived by Asok and Sukhatme (1976) is given for n ≥ 3 as follows:

πij = n(n− 1)pipj

[
1 +

(
pi + pj −

∑
j

p2
j

)
+

{
2(p2

i + p2
j )− 2

∑
j

p3
j

(2.2) −(n− 2)pipj + (n− 3)(pi + pj)
∑
j

p2
j − (n− 3)(

∑
j

p2
j )

2

}]
The Horvitz-Thompson (1952) estimator for the population total Y is

(2.3) Ŷ =
∑
i∈s

Ŷi
πi

where Ŷi is an unbiased estimator of Yi and
∑
i∈s

denotes the sum over the distinct units

in s.
The variance of Ŷ is given by

V (Ŷ ) =
1

2

N∑
i6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

+

N∑
i=1

σ2
i

πi

= Vπps +

N∑
i=1

σ2
i

πi
(2.4)

where σ2
i = V (Ŷi) and

(2.5) Vπps =
1

2

N∑
i6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

An exact unbiased estimator of (2.4) was proposed by Chaudhuri and Arnab (1982)
as

(2.6) V̂ (Ŷ ) =
1

2

∑
i6=

∑
j∈s

∆ij

πij

(
Ŷi
πi
− Ŷj
πj

)2

+
∑
i∈s

σ̂2
i

πi

where σ̂2
i is an unbiased estimator of σ2

i .
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3. Jackknife Variance Estimation

To use the exact variance estimator V̂ (Ŷ ) in practice becomes di�cult because of the
computation of πij as well as σ̂

2
i for i, j ∈ s. To avoid such tedious computation, one may

use the Jackknife variance estimator. The Jackknife method of variance estimation for
varying probability sampling was proposed by Wolter (1985) and Särndal et al. (1992).
Following Wolter and Särndal et al., in the proposed Jackknife method the �rst-stage
sample s of size n is partitioned at random into k groups each so that the j th group s̃j
consists of m = n/k (assuming integer) units. The Jackknife estimator of the variance

V (Ŷ ) is

(3.1) VJ =
k − 1

k

k∑
j=1

(
Ŷ−j − Ŷ•

)2

where Ŷ−j =
n

n−m

∑
i∈s

Ŷi
πi
−
∑
k∈s̃j

Ŷk
πk

 is an estimator of Y obtained after deleting

the j th group s̃j from the sample s and Ŷ• =
1

k

k∑
j=1

Ŷ−j .

3.1. Theorem.

(i) The bias of VJ is

B(VJ) =
n

n− 1
(Vpps − Vπps)

where Vpps =
1

n

N∑
i=1

pi

(
Yi
pi
− Y

)2

and Vπps is de�ned in (2.5).

(ii) The estimator VJ overestimates the variance V (Ŷ ) and also independent of the
group size m (i.e. k) and the second-stage variances σ2

i 's.
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Proof. (i)

E(VJ) =
k − 1

k
E

[
k∑
j=1

E

{(
Ŷ−j − Ŷ

)2

| s
}]

=
k − 1

k
E

[
k∑
j=1

V
{
Ŷ−j | s

}]

=
k − 1

k
n2

(
1

n−m −
1

n

)
k

n− 1
E

[∑
j∈s

(
Ŷj
πj

)2

− Ŷ 2

n

]

=
n

n− 1
E

[∑
j∈s

(
Ŷj
πj

)2

− Ŷ 2

n

]

=
n

n− 1
E

[∑
j∈s

Y 2
j + σ2

j

π2
j

− Vπps + Y 2

n

]

=
n

n− 1


N∑
i=1

Y 2
i + σ2

i

πi
−

1
2

N∑
i 6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

+

N∑
i=1

σ2
i

πi
+ Y 2

n


= V (Ŷ ) +

n

n− 1

[
N∑
i=1

Y 2
i

πi
− Y 2

n
− Vπps

]
= V (Ŷ ) +

n

n− 1
(Vpps − Vπps)(3.2)

Hence the bias of the Jackknife estimator is

(3.3) B(VJ) =
n

n− 1
(Vpps − Vπps)

(ii) From expressions (1.3) and (3.3), we note that the magnitude of bias B(VJ) is
positive and independent of m (i.e. k) and σ2

i 's. �

4. Proposed Variance Estimator

Following Asok and Sukhatme (1976), we can approximate the variance Vπps up to
order O(N−2) as

(4.1) Vπps '
1

n

[
N∑
i=1

pi

(
Yi
pi
− Y

)2

− (n− 1)

N∑
i=1

p2
i

(
Yi
pi
− Y

)2
]

Now substituting (4.1), in the expression of bias (3.3), we �nd an approximate expres-
sion of bias as

B(VJ) '
N∑
i=1

p2
i

(
Yi
pi
− Y

)2

=

N∑
i=1

Y 2
i − 2Y

N∑
i=1

Yipi + Y 2
N∑
i=1

p2
i(4.2)



915

Let VadJ be an improved adjusted estimator of the variance of V (Ŷ ). Then an ap-
proximate of unbiased estimator of B(VJ) as

(4.3) B̂(VJ) =
∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + (Ŷ 2 − VadJ)

(
N∑
i=1

p2
i

)

The proposed adjusted Jackknife variance estimator of V (Ŷ ) is obtained as a solution
of the following equation

VadJ = VJ − B̂(VJ)

= VJ −

[∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + (Ŷ 2 − VadJ)

(
N∑
i=1

p2
i

)]
(4.4)

The equation (4.4) yields

VadJ =

[
VJ −

{∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + Ŷ 2

(
N∑
i=1

p2
i

)}]
/{

1−

(
N∑
i=1

p2
i

)}
(4.5)

Now replacing

(
N∑
i=1

p2
i

)
by it's unbiased estimate

∑
i∈s

p2
i

πi
=

1

n

∑
i∈s

1

pi
, the expression

(4.5), we �nd an improved jackknife estimator (vide Särndal et al.(1992)) as

V ∗adJ =

[
VJ −

{∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + Ŷ 2

(
1

n

∑
i∈s

1

pi

)}]
/{

1−

(
1

n

∑
i∈s

1

pi

)}
(4.6)

5. Relative E�ciency

Here we compare the performance of the proposed variance estimator V ∗adJ with re-
spect to VJ through simulation studies. For the simulation study, we consider the stratum
�Gaborone district" of HIES 2002/03 survey as population. The Gaborone district com-
prises 13 (= N) enumeration areas (EA's) of 120, 132, 140, 120, 120, 112, 64, 72, 96,
120, 100, 90 and 80 households respectively. From the population (Gaborone district) a
sample s of EA's is selected by Sampford's (1967) IPPS sampling scheme taking number
of households Mi of the ith EA as measure of size variable. The inclusion probability

of the ith EA is πi = npi where pi = Mi/M , M =
∑
i∈U

Mi = 1366. If the ith fsu (EA)

Ui is selected in the sample s, a sub-sample si of size mi = γMi (γ = 0.50, 0.33, 0.10)
households (second-stage units) is selected from it by SRSWOR method. Here mi's
are pre-determined numbers and the subsamples si's are selected independently from
each of the fsu's (�rst-stage units). The variance σ2

i (V (Ŷi)) is unbiasedly estimated by

σ̂2
i = M2

i (
1

mi
− 1

Mi
)

1

mi − 1

∑
j∈si

(yij − yi)
2, yi =

1

mi

∑
æ∈si

yij .
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From the selected households information relating to six di�erent indicators viz. Total
consumption, Cash earnings, School meals, Gross Income, Earned Income and Income
Tax are collected.

From the selected sample estimates of population total Ŷ , Jackknife estimator VJ
(with k = n) and the proposed adjusted Jackknife estimator V ∗adJ are obtained. The
selection of sample and estimation of the variance estimators from each the selected
sample (iteration) are repeated R = 100, 000 times. Let Ŷ [r], VJ [r] and V̂adJ(1)[r] be the

value of Ŷ , VJ and V ∗adJ based on the r th iteration, r = 1, . . . , R.

The relative bias of Ŷ is obtained as

RB(Ŷ ) =

[
1

R

R∑
r=1

Ŷ [r]− Y

]
/Y

The relative biases and mean square errors (MSE) of VJ and V ∗adJ are obtained as
follows:

Relative bias of VJ = RB(VJ) = B(VJ)/V =

[
1

R

R∑
r=1

VJ [r]− V

]
/V ,

Relative bias of V ∗adJ = RB(V ∗adJ) = B(V ∗adJ)/V =

[
1

R

R∑
r=1

V ∗adJ [r]− V

]
/V ,

MSE of VJ = M(VJ) =
1

R

R∑
r=1

(VJ [r]− V )2 and

MSE of V ∗adJ = M(V ∗adJ) =
1

R

R∑
r=1

(V ∗adJ [r]− V )2,

where the true variance V is obtained 100,000 simulated samples. The e�ciency of
the proposed variance estimator V ∗adJ with respect to VJ is given by

RE =
M(VJ)

M(V ∗adJ)
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Table 1

n γ Average sample size RB(Ŷ )% cv(Ŷ ) RBR% PRE%

Total consumption

3 0.50 164.536 -0.195 0.172 9.849 111.29
0.33 110.055 -0.413 0.190 7.392 108.74
0.10 32.827 -0.047 0.278 -0.915 100.76

4 0.50 219.562 -0.483 0.192 21.033 125.62
0.33 146.606 0.881 0.203 18.834 120.66
0.10 43.878 0.121 0.273 3.596 105.90

Cash earnings

3 0.50 164.536 -0.171 0.178 9.718 111.35
0.33 110.055 -0.377 0.196 7.331 108.71
0.10 32.827 -0.027 0.285 -0.869 100.84

4 0.50 219.562 0.285 0.192 22.114 125.79
0.33 146.606 1.657 0.204 19.804 120.88
0.10 43.878 0.864 0.276 4.114 106.15

School meals

3 0.50 164.536 0.001 0.169 9.314 111.06
0.33 110.055 -0.150 0.187 7.255 108.82
0.10 32.827 0.329 0.266 0.4 103.64

4 0.50 219.562 -0.468 0.175 22.601 126.50
0.33 146.606 0.890 0.184 19.936 123.24
0.10 43.878 -0.164 0.247 5.496 110.38

Gross Income

3 0.50 164.536 -0.304 0.169 9.588 110.98
0.33 110.055 -0.569 0.188 7.05 108.19
0.10 32.827 -0.053 0.278 -1.721 99.15

4 0.50 219.562 -0.509 0.195 19.774 124.58
0.33 146.606 0.880 0.206 17.457 119.32
0.10 43.878 0.103 0.278 2.454 103.63

Earned Income

3 0.50 164.536 0.108 0.187 9.454 107.63
0.33 110.055 0.085 0.214 6.54 103.53
0.10 32.827 1.318 0.323 -1.311 95.98

4 0.50 219.562 -0.239 0.183 26.922 117.71
0.33 146.606 1.037 0.197 21.583 113.12
0.10 43.878 0.806 0.294 3.223 99.76

Income Tax

3 0.50 164.536 0.077 0.182 9.432 107.36
0.33 110.055 0.053 0.208 6.473 103.89
0.10 32.827 1.368 0.313 -1.328 95.75

4 0.50 219.562 -0.301 0.186 25.786 117.67
0.33 146.606 1.040 0.198 20.616 113.11
0.10 43.878 0.744 0.289 3.115 99.73

Table 1 gives the average sample size, Percentage relative bias RB(Ŷ )%(= RB(Ŷ )×
100) and Coe�cient of variation (cv) of Ŷ , Percentage relative bias reduction RBR%(=
{RB(VJ) − RB(V ∗adJ)} × 100) and percentage relative e�ciency PRE = RE × 100 of
the adjusted Jackknife estimator over the conventional Jackknife estimator. The Table
1 shows that the proposed adjusted Jackknife estimator possesses the lower bias and
higher e�ciency than the original Jackknife estimator in almost all the situations. The
reduction in biases of the proposed estimator and relative e�ciencies vary together. The
percentage reduction of biases vary from -1.72% to 26.92% while e�ciencies vary from
95.75% to 126.50%. For a given fsu size (n) both the reduction of bias and e�ciency
increase with the increase of ssu size (mi) while for a given ssu size (mi), both the
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reduction of biases and e�ciencies increase with the fsu size (n). However, there is
virtually no reduction of biases and increase of e�ciencies when both fsu and ssu sizes
are small for some of the indicators e.g. Gross Income (n = 3, γ = 0.1), Earned Income
(n = 3, γ = 0.1;n = 4, γ = 0.1) and Income Tax (n = 3, γ = 0.1;n = 4, γ = 0.1).

6. Conclusions

Multi-stage sampling designs are used extensively in real life surveys. The expression
of the exact unbiased variance estimators of the population total (or mean) is com-
plex. So, Jackknife variance estimators are used for computing standard errors of the
estimators. Standard errors are used for determination of con�dence intervals, testing
of hypothesis and determination of the optimal sample size. The jackknife estimators
generally overestimate the bias and hence results provide inappropriate inferences. It is
proved in this paper that the bias of the Jackknife variance estimators is independent
of the group size m and second-stage variances (σ2

i ) of the sampling designs used. An
alternative Jackknife variance estimator has been proposed in this paper by eliminating
bias of the usual Jackknife estimator. The performances of the proposed Jackknife vari-
ance estimators are compared with the existing one using HIES 2002/data. The study
reveals that the proposed adjusted variance estimators perform better than the original
Jackknife estimators in terms of reduction of bias and enhancing relative e�ciencies in
almost all the situations. The present study is based on a limited sample size due to
small resources. However, a similar study with large sample size will certainly provide
more conclusive performance of the proposed variance estimator.
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