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ACTIONS OF INTERNAL GROUPOIDS IN THE CATEGORY OF
LEIBNIZ ALGEBRAS

TUNÇAR ŞAHAN AND AYHAN ERCIYES

Abstract. The aim of this paper is to characterize the notion of internal
category (groupoid) in the category of Leibniz algebras and investigate some
properties of well-known notions such as covering groupoids and groupoid op-
erations (actions) in this category. Further, for a fixed internal groupoid G
in the category of Leibniz algebras, we prove that the category of covering
groupoids of G and the category of internal groupoid actions of G on Leib-
niz algebras are equivalent. Finally, we interpret the corresponding notion of
covering groupoids in the category of crossed modules of Leibniz algebras.

1. Introduction

Covering groupoids have an important role in the applications of groupoids (see
for example [3] and [14]). It is well known that for a groupoid G, the category
GpdAct(G) of groupoid actions of G on sets, these are also called operations or
G-sets, are equivalent to the category GpdCov/G of covering groupoids of G. For
the topological version of this equivalence, see [6, Theorem 2].
If G is a group-groupoid, which is an internal groupoid in the category of groups,

then the category GpGpdCov/G of group-groupoid coverings of G is equivalent to
the category GpGpdAct(G) of group-groupoid actions of G on groups [8, Proposi-
tion 3.1]. In [2] this result has been generalized to the case where G is an internal
groupoid in an algebraic category C which is called a category of groups with op-
erations, acting on a group with operations. Covering groupoids of a categorical
group have been studied in [25] and of a categorical ring have been studied in [22].
In [9] it was proved that the categories of crossed modules and group-groupoids,

under the name of G-groupoids, are equivalent (see also [18] for an alternative
equivalence in terms of an algebraic object called catn-groups). By applying this

Received by the editors: December 20, 2017; Accepted: March 21, 2018.
2010 Mathematics Subject Classification. Primary 17A32; Secondary 20L05, 18D35.
Key words and phrases. Leibniz algebra, groupoid action, covering.
This work has been supported by Research Fund of the Aksaray University. Project

Number:2016-019.

c©2018 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

619
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equivalence of the categories, normal and quotient objects in the category of group-
groupoids have been recently obtained in [27]. The study of internal category theory
was continued in the works of Datuashvili [12] and [13]. Moreover, she developed
cohomology theory of internal categories in categories of groups with operations
[10] and [11] (see also [28] for more information on internal categories in categories
of groups with operations). The equivalences of the categories in [9] enable us to
generalize some results on group-groupoids to the more general internal groupoids
for a certain category of groups with operations C (see for example [2], [23], [24]
and [21]).
In the mid-twentieth century, Whitehead introduced the notion of crossed mod-

ule, in a series of papers [30, 31, 32], as algebraic models for (connected) homotopy
2-types (i.e. connected spaces with no homotopy group in degrees above 2), in much
the same way that groups are algebraic models for homotopy 1-types. A crossed
module consists of groups A and B, where B acts on A by automorphisms, and a
homomorphism of groups α : A → B satisfying (i) α(ba) = b + α(a) − b and (ii)
α(a)a1 = a+ a1 − a for all a, a1 ∈ A and b ∈ B. Crossed modules can be viewed as
2-dimensional groups [4] and have been widely used in: homotopy theory [5]; the
theory of identities among relations for group presentations [7]; algebraic K-theory
[17]; and homological algebra [15, 19]. See [5, pp.49] for some discussion of the
relation of crossed modules to crossed squares and so to homotopy 3-types. In [9]
it has been proven that the categories of crossed modules and group groupoids are
equivalent and this equivalence has been found important in applications. This
equivalence is generalized in [28].
Recently, in [26] authors have interpreted in the category of crossed modules the

notion of action of a group-groupoid on a group via a group homomorphism and
hence introduced the notion of lifting of a crossed module over groups. Further they
showed some results on liftings of crossed modules and proved that the category
of liftings of crossed modules, the category of covering crossed modules and the
category of group-groupoid actions are equivalent. In order to interpret the notion
of liftings in the category of crossed modules over Leibniz algebras one needs the
detailed definitions and properties of internal action groupoid, covering groupoid,
covering crossed module in this category.
In this paper, first we define and investigate some properties of internal cate-

gories (and hence internal groupoids) in the category of Leibniz algebras. Further
we define coverings and actions in the category of internal groupoids in the cate-
gory of Leibniz algebras and prove that the category of internal groupoid actions
and the category of covering groupoids of a fixed internal groupoid G in the cat-
egory of Leibniz algebras are equivalent. Finally, using the equivalence between
the categories of internal groupoids in the category of Leibniz algebras and crossed
modules in the category of Leibniz algebras, we interpret the notion of covering in
the category of crossed modules in the category of Leibniz algebras.
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2. Preliminaries

A Leibniz algebra L is a k-vector space equipped with a bilinear map [−,−] : L×
L → L, satisfying the Leibniz identity [x, [y, z]] = [[x, y] , z] − [[x, z] , y] for all
x, y, z ∈ L. Leibniz algebras are the generalization of Lie algebras. Indeed, for a
Leibniz algebra L, if [x, x] = 0 for all x ∈ L, then L becomes a Lie algebra. On the
other hand, every Lie algebra is a Leibniz algebra.

Definition 1. A Leibniz algebra morphism is a k−linear map f : L→ L′ which is
compatible with the bracket map, i.e.

f [x, y] = [f(x), f(y)]

for all x, y ∈ L.

The category of Leibniz algebras consist of Leibniz algebras as objects and Leib-
niz algebra morphisms as morphisms. This category is denoted by Lbnz.

Definition 2. A Leibniz algebra with trivial bracket is called an Abelian (or singu-
lar) Leibniz algebra.

Definition 3. For any Leibniz algebras L and L′, a Leibniz action of L on L′ consist
of two bilinear maps Λ: L×L′ → L′, (x, a) 7→ x·m and ρ : L′×L→ L′, (a, x) 7→ m·x
satisfying

i. x · [m,n] = [x ·m,n]− [x · n,m],
ii. [m,x · n] = [m · x, n]− [m,n] · x,
iii. [m,n · x] = [m,n] · x− [m · x, n],
iv. x · (y ·m) = [x, y] ·m− (x ·m) · y,
v. x · (m · y) = (x ·m) · y − [x, y] ·m,
vi. m · [x, y] = (m · x) · y − (m · y) · x
for all x, y ∈ L and m,n ∈ L′.

Let L and L′ be two Leibniz algebras. A split extension of L by L′ is a short
exact sequence

in Lbnz with a Leibniz algebra morphism s : L→ E such that ps = 1L. Here, note
that p is surjective and ker p = i. Given a split extension of L by L′, we get derived
actions of L on L′ defined by

x ·m = [s(x),m]

m · x = [m, s(x)]

for any x ∈ L and m ∈ L′. Let a split extension
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is given. Then by using the bijection

θ : L′ × L −→ E
(m,x) 7−→ m+ s(x)

we can define a Leibniz algebra structure on L′ × L as follows:
[(m,x) , (n, y)] = ([m,n] +m · y + x · n, [x, y])

for all x, y ∈ L and m,n ∈ L′. The inverse of the function θ is defined by
θ−1 : E −→ L′ × L

e 7−→ θ−1(e) = (e− sp(e), p(e))
for all e ∈ E. Thus L′ × L cartesian product set becomes a Leibniz algebra which
is called semi-direct product of Leibniz algebras and denoted by L′ o L.
For any Leibniz algebra L, the obvious action of L on itself corresponds to the

extension

where i(l) = (l, 0), p(l, l1) = l1 and s(l) = (0, l).
Now, we can give the definition of crossed modules of Leibniz algebras due to

Porter [28].

Definition 4. [28] Let L0 and L1 be two Leibniz algebras. Given a split extension

of L0 by L1 and a Leibniz algebra morphism ∂ : L1 → L0, ∂ is called a crossed
module if (1L1 , ∂) and (∂, 1L0) are both split extension morphisms in Lbnz.

A crossed module is denoted by (L1, L0, ∂). It is more practical to have a de-
scription in terms of actions and Leibniz bracket. We recall the definitions from [1]
and [29].

Proposition 5. A crossed module of Leibniz algebras is a Leibniz algebra morphism
∂ : L1 → L0 with actions of L0 on L1 satisfying the following conditions for all
l0 ∈ L0 and l1, l′1 ∈ L1

(LXM1) ∂ (l0 · l1) = [l0, ∂ (l1)] , ∂ (l1 · l0) = [∂ (l1) , l0] ,
(LXM2) l1 · ∂

(
l1
′) =

[
l1, l1

′] , ∂ (l1′) · l1 =
[
l1
′, l1
]
.
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Proposition 6. If (L1, L0, ∂) is a crossed module, then ker ∂ is an Abelian Leibniz
algebra.

Proof. It can easily be shown by using the crossed module condition (LXM2). 2

For any two crossed module (L1, L0, ∂) and (M1,M0, δ) let f1 : L1 → M1 and
f0 : L0 → M0 be two Leibniz algebra morphisms. Then (f1, f0) is called a crossed
module morphism if the following conditions hold for all l0 ∈ L0 and l1 ∈ L1:

i. f0 ◦ ∂ = δ ◦ f1,
ii. f1 (l0 · l1) = f0 (l0) · f1 (l1),
iii. f1 (l1 · l0) = f1 (l1) · f0 (l0)

Thus the category XMod(Lbnz) of Leibniz crossed modules can be constructed.
The objects of this category are Leibniz crossed modules and morphisms are crossed
module morphisms.
A groupoid is a category in which every morphism is an isomorphism. Let G be

a groupoid. We write Ob(G) for the set of objects of G and write G for the set of
morphisms. We also identify Ob(G) with the set of identities of G and so an element
of Ob(G) may be written as x or 1x as convenient. We write d0, d1 : G → Ob(G)
for the source and target maps, and, as usual, write G(x, y) for d−10 (x)∩d−11 (y), for
x, y ∈ Ob(G). The composition h ◦ g of two elements of G is defined if and only if
d0(h) = d1(g), and so the map (h, g) 7→ h◦g is defined on the pullback Gd0×d1G of
d0 and d1. The inverse of g ∈ G(x, y) is denoted by g−1 ∈ G(y, x). If x ∈ Ob(G),
we write StGx for d

−1
0 (x) and call the star of G at x.

A groupoid G is transitive (resp. simply transitive, 1-transitive and totally in-
transitive) if G(x, y) 6= ∅ (resp. G(x, y) has no more than one element, G(x, y) has
exactly one element and G(x, y) = ∅) for all x, y ∈ Ob(G) such that x 6= y.

3. Internal categories in Lbnz

Definition 7. Let C be an arbitrary category with pullbacks. An internal category
C in C is a category in which the initial and final point maps d0, d1 : C → Ob(C),
the object inclusion map ε : Ob(C)→ C and the partial composition ◦ : Cd0×d1C →
C, (a, b) 7→ a ◦ b are the morphisms in the category C.

Let G be an internal category in C. If there exist a morphism g′ ∈ G such that
g ◦ g′ = εd1(c) and g′ ◦ g = εd0(c) for all morphisms g ∈ G, then G is called an
internal groupoid and g′ is called the inverse of g which is denoted by g−1.
Let G be an internal category in the category Lbnz of Leibniz algebras. Then G

and Ob(G) are Leibniz algebras and the structural maps (d0, d1, ε, ◦) are Leibniz
algebra morphisms. Note that the operation ◦ being a Leibniz algebra morphism
implies that

(h ◦ g) + (h′ ◦ g′) = (h+ h′) ◦ (g, g′)

[h ◦ g, h′ ◦ g′] = [h, h′] ◦ [g, g′]
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for all g, g′, h, h′ ∈ G such that d1 (g) = d0 (h) and d1 (g′) = d0 (h′). These identities
are called interchange laws. An application of the interchange laws is that the
composition can be expressed by the addition as follows: for g, h ∈ G such that
d1 (g) = d0 (h)

h ◦ g = (h+ 0) ◦ (εd1(g) + (−εd1(g) + g))

= (h ◦ εd1(g)) + (0 ◦ (−εd1(g) + g))

= h− εd1(g) + g

and similarly h ◦ g = g − εd1(g) + h.
Clearly, one can see that any internal category in Lbnz is an internal groupoid.

Indeed, for any g ∈ G,
εd0(g) = h ◦ g
εd0(g) = h− εd1(g) + g

h = εd0(g)− g + εd1(g)

so h = g−1 = εd0(g)− g + εd1(g) is the inverse morphism of g. Hence, we will use
internal groupoid instead of internal category.
For other maps, we can give the following lemma.

Lemma 8. Let G be an internal groupoid in Lbnz. Then for all x, y ∈ Ob(G) and
g, g′ ∈ G

i. d0 ([g, g′]) = [d0 (g) , d0 (g′)],
ii. d1 ([g, g′]) = [d1 (g) , d1 (g′)],
iii. ε ([x, y]) = [ε (x) , ε (y)], i.e. 1[x,y] =

[
1x, 1y

]
,

iv. [g, g′]
−1

=
[
g−1, (g′)

−1
]
.

Example 9. Every Abelian Leibniz algebra L is an internal groupoid in Lbnz where
algebra of objects Ob(L) is trivial, i.e. singleton.

Example 10. Let L be a Leibniz algebra. Then L×L becomes an internal groupoid
in Lbnz where algebra of object is L. Here d0(l, l′) = l, d1(l, l′) = l′, ε(l) = (l, l)
and the composition (l′, l′′) ◦ (l, l′) = (l, l′′) for all l, l′, l′′ ∈ L.

Proposition 11. Let G be an internal groupoid in Lbnz. Then StG0 = ker d0 is
an ideal of G.

Proof. It can be shown by an easy calculation. 2

Following lemmas are special cases given in [28] where the category of groups
with operations is the category Lbnz of Leibniz algebras.

Lemma 12. Let G be an internal groupoid in Lbnz. If g1 ∈ ker d0 and g2 ∈ ker d1,
then

[g1, g2] = [g2, g1] = 0.
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Proof. Assume that g1 ∈ ker d0 and g2 ∈ ker d1. So compositions g1 ◦ ε(0) and
ε(0) ◦ g2 are defined, where ε(0) = 0 the identity element of addition operation and
hence, of bracket operation. Then,

[g1, g2] = [g1 ◦ 0, 0 ◦ g2]
= [g1, 0] ◦ [0, g2] (by interchange law)

= 0 ◦ 0

= 0

2

Lemma 13. Let G be an internal groupoid in Lbnz. If g1 ∈ ker d0, then we have

[g1, εd1(g)] = [g1, g]

and
[εd1(g), g1] = [g, g1] .

Proof. Since g1 ∈ ker d0 and g− εd1(g) ∈ ker d1, one can prove the assertion of the
Lemma by using Lemma 12. 2

Let G and H be two internal groupoids in Lbnz. An internal groupoid morphism
(internal functor) f : G → H is a morphism of underlying groupoids and Leibniz
algebra morphism on both the algebra of morphisms and the algebra of objects. So,
we can construct the category of internal groupoids in Lbnz. This category may be
denoted by Cat(Lbnz) or Gpd(Lbnz).
In [28] it has been proven that for any category C of groups with operations the

category of internal categories within C and the category of crossed modules in C
are equivalent. Following theorem is the special case for C = Lbnz.

Theorem 14. The category XMod(Lbnz) of crossed modules in the category of
Leibniz algebras and the category Cat(Lbnz) of internal categories (groupoids) in
the category of Leibniz algebras are naturally equivalent.

Proof. We give a sketch of proof and leave the details to the reader. Let G be an
internal groupoid in Lbnz. Then ker d0 and Ob(G) are both Leibniz algebras and
the restriction of the final point map

d1 : ker d0 → Ob(G)

is a Leibniz algebra morphism. Moreover Ob(G) acts on ker d0 by the maps

Ob(G)× ker d0 −→ ker d0
(x, g) 7−→ x · g = [ε(x), g]

and
ker d0 ×Ob(G) −→ ker d0

(g, x) 7−→ g · x = [g, ε(x)]

These are derived actions, since these are obtained from the split extension
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Here we note that
ker d0 oOb(G) ∼= G.

Also (ker d0,Ob(G), d1) is a crossed module. Indeed,

i. for all x ∈ Ob(G) and g ∈ ker d0

d1(g · x) = d1 ([g, ε(x)])

= [d1(g), d1(ε(x))]

= [d1(g), x]

and similarly

d1(x · g) = d1 ([ε(x), g])

= [d1(ε(x)), d1(g)]

= [x, d1(g)]

ii. for all g, g1 ∈ ker d0

g · d1(g1) = [g, ε(d1(g1))]

= [g, g1]

and similarly

d1(g1) · g = [ε(d1(g1)), g]

= [g1, g]

This construction defines a functor, η, from the category Cat(Lbnz) of inter-
nal categories in the category of Leibniz algebras to the category XMod(Lbnz) of
crossed modules in the category of Leibniz algebras.

η : Cat(Lbnz) −→ XMod(Lbnz)

Conversely, let (L1, L0, ∂) be a crossed module of Leibniz algebras. Then (L1 o L0, L0, d0, d1, ε, ◦)
becomes an internal groupoid in Lbnz, where d0(l1, l0) = l0, d1(l1, l0) = ∂(l1) + l0,
ε(l0) = (0, l0), the composition

(l′1, l
′
0) ◦ (l1, l0) = (l′1 + l1, l0)

for l′0 = ∂(l1)+ l0 and the inverse (l1, l0)
−1 = (−l1, ∂(l1)+ l0). Now we need to show

that these structural maps are Leibniz algebra morphisms. For all (l1, l0), (l
′
1, l
′
0) ∈

L1 o L0
d0 ([(l1, l0), (l

′
1, l
′
0)]) = d0 (([l1, l

′
1] + l1 · l′0 + l0 · l′1, [l0, l′0]))

= [l0, l
′
0]

= [d0(l1, l0), d0(l
′
1, l
′
0)] ,
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d1 ([(l1, l0), (l
′
1, l
′
0)]) = d1 (([l1, l

′
1] + l1 · l′0 + l0 · l′1, [l0, l′0]))

= ∂ ([l1, l
′
1] + l1 · l′0 + l0 · l′1) + [l0, l

′
0]

= ∂ [l1, l
′
1] + ∂(l1 · l′0) + ∂(l0 · l′1) + [l0, l

′
0]

= [∂(l1), ∂(l′1)] + [∂(l1), l
′
0] + [l0, ∂(l′1)] + [l0, l

′
0]

= [∂(l1), ∂(l′1) + l′0] + [l0, ∂(l′1) + l′0]

= [∂(l1),+l0, ∂(l′1) + l′0]

= [d1(l1, l0), d1(l
′
1, l
′
0)]

ε ([l0, l
′
0]) = (0, [l0, l

′
0])

= ([0, 0] + [0, l′0] + [l0, 0] , [l0, l
′
0])

= [(0, l0), (0, l
′
0)]

= [ε(l0), ε(l
′
0)]

To see that the composition is a Leibniz algebra morphism, we need to verify the
interchange law for bracket operation. Let (l1, l0), (l

′
1, l
′
0), (l

′′
1 , l
′′
0 ), (l′′′1 , l

′′′
0 ) ∈ L1oL0

such that (l1, l0), (l
′
1, l
′
0) and (l′′1 , l

′′
0 ), (l′′′1 , l

′′′
0 ) are composable, i.e. l′0 = ∂(l1) + l0

and l′′′0 = ∂(l′′1 ) + l′′0 . Then
[
(l
′
1, l
′
0) ◦ (l1, l0), (l

′′′
1 , l
′′′
0 ) ◦ (l′′1 , l

′′
0 )
]
=
[
(l
′
1 + l1, l0), (l

′′′
1 + l

′′
1 , l
′′
0 )
]

=
([
l
′
1 + l1, l

′′′
1 + l

′′
1

]
+
(
l
′
1 + l1

)
· l′′0 + l0 ·

(
l
′′′
1 + l

′′
1

)
,
[
l0, l
′′
0

])
=
([
l
′
1, l
′′′
1

]
+
[
l1, l
′′′
1

]
+
[
l
′
1, l
′′
1

]
+
[
l1, l
′′
1

]
+ l
′
1 · l
′′
0 + l1 · l

′′
0 + l0 · l

′′′
1 + l0 · l

′′
1 ,
[
l0, l
′′
0

])
=
([
l
′
1, l
′′′
1

]
+ ∂(l1) · l

′′′
1 + l

′
1 · ∂(l

′′
1 ) +

[
l1, l
′′
1

]
+ l
′
1 · l
′′
0 + l1 · l

′′
0 + l0 · l

′′′
1 + l0 · l

′′
1 ,
[
l0, l
′′
0

])
=
([
l
′
1, l
′′′
1

]
+ (∂(l1) + l0) · l

′′′
1 + l

′
1 · (∂(l

′′
1 ) + l

′′
0 ) +

[
l1, l
′′
1

]
+ l1 · l

′′
0 + l0 · l

′′
1 ,
[
l0, l
′′
0

])
=
([
l
′
1, l
′′′
1

]
+ l
′
0 · l
′′′
1 + l

′
1 · l
′′′
0 +

[
l1, l
′′
1

]
+ l1 · l

′′
0 + l0 · l

′′
1 ,
[
l0, l
′′
0

])
=
([
l
′
1, l
′′′
1

]
+ l
′
0 · l
′′′
1 + l

′
1 · l
′′′
0 ,

[
l
′
0, l
′′′
0

])
◦
([
l1, l
′′
1

]
+ l1 · l

′′
0 + l0 · l

′′
1 ,
[
l0, l
′′
0

])
=
[
(l
′
1, l
′
0), (l

′′′
1 , l
′′′
0 )

]
◦
[
(l1, l0), (l

′′
1 , l
′′
0 )
]

This shows that the composition ◦ is a morphism of Leibniz algebras. Thus
L1 o L0 becomes an internal groupoid on L0 in Lbnz. Above construction also
defines a functor, δ, from the category XMod(Lbnz) of crossed modules in the
category of Leibniz algebras to the category Cat(Lbnz) of internal categories in the
category of Leibniz algebras.

δ : XMod(Lbnz) −→ Cat(Lbnz)

It is straightforward to show that these functors, η and δ, gives a natural equivalence
between the categories XMod(Lbnz) and Cat(Lbnz), i.e. ηδ ' 1XMod(Lbnz) and
δη ' 1Cat(Lbnz). 2

Coverings and actions of internal groupoids in Lbnz

First we will recall the definitions of coverings over groupoids from [3].
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Definition 15. (cf. [3]) Let p : G̃ → G be a morphism of groupoids. Then p is
called a covering morphism and G̃ a covering groupoid of G if for each x̃ ∈ Ob(G̃)
the restriction StG̃x̃→ StGp(x̃) is bijective.

Assume that p : G̃→ G is a covering morphism. Then we have a lifting function
Sp : Gd0 ×Ob(p) Ob(G̃)→ G̃ assigning to the pair (a, x) in the pullback Gd0 ×Ob(p)
Ob(G̃) the unique element b of StG̃x̃ such that p(b) = a. Clearly Sp is inverse
to (p, d0) : G̃ → Gd0 ×Ob(p) Ob(G̃). So it is stated that p : G̃ → G is a covering
morphism if and only if (p, d0) is a bijection [6].

Definition 16. An internal groupoid morphism p : G̃→ G is a covering morphism
if and only if (p, d0) : G̃→ Gd0 ×Ob(p) Ob(G̃) is an isomorphism in Lbnz.

A covering morphism p : G̃ → G is called transitive if both G̃ and G are tran-
sitive. A transitive covering morphism p : G̃ → G is called universal if for every
covering morphism q : H̃ → G there is a unique morphism of groupoids p̃ : G̃→ H̃
such that qp̃ = p (and hence p̃ is also a covering morphism), this is equivalent to
that for x̃, ỹ ∈ Ob(G̃) the set G̃(x̃, ỹ) has not more than one element.

Remark 17. Since for an internal groupoid G in Lbnz, the star StG0 is also a
Leibniz algebra, we have that if p : G̃ → G is a covering morphism of internal
groupoids, then the restriction of p to the stars StG̃0̃→ StG0 is an isomorphism in
Lbnz.

Let p : G̃ → G and q : G′ → G be two coverings of G. A morphism f : G̃ → G′

of coverings is a morphism of internal groupoids in Lbnz such that qf = p, i.e.
following diagram is commutative.

Hence we can construct the category of covering internal groupoids of an internal
groupoid G in Lbnz which has covering morphisms of G as objects and has mor-
phisms of coverings as morphisms. This category will be denoted by CovCat(Lbnz)/G.
Recall that an action of a groupoid G on a set S via a function ω : S → Ob(G)

is a function Gd0 ×ω S → S, (g, s) 7→ g • s satisfying the usual rules for an action:
ω(g • s) = d1(g), 1ω(s) • s = s and (h ◦ g) • s = h • (g • s) whenever h ◦ g and
g • s are defined. A morphism f : (S, ω) → (S′, ω′) of such actions is a function
f : S → S′ such that w′f = w and f(g • s) = g • f(s) whenever g • s is defined.
This gives a category GpdAct(G) of actions of G on sets. For such an action, the
action groupoid G n S is defined to have object set S, morphisms the pairs (g, s)
such that d0(g) = ω(s), source and target maps d0(g, s) = s, d1(g, s) = g • s, and
the composition

(g′, s′) ◦ (g, s) = (g ◦ g′, s)
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whenever s′ = g•s. The projection q : GnS → G, (g, s) 7→ s is a covering morphism
of groupoids and the functor assigning this covering morphism to an action gives an
equivalence of the categories GpdAct(G) and GpdCov/G. Following equivalence of
the categories was given in [8].

Proposition 18. (cf. [8]) The categories GpGpdCov/G and GpGpdAct(G) are
equivalent.

Definition 19. Let G be an internal groupoid in Lbnz. An action of the internal
groupoid G on a Leibniz algebra L via ω consists of a Leibniz algebra morphism
ω : L→ Ob(G) from L to the algebra of objects Ob(G) and a Leibniz algebra mor-
phism

Gd0×ωL −→ L
(g, l) 7−→ g • l,

which is called action, satisfying
i. ω(g • l) = d1(g),
ii. 1ω(l) • l = l,
iii. (h ◦ g) • l = h • (g • l) ,
whenever h ◦ g and g • l are defined.
Note that the action being a Leibniz algebra morphism implies the following so

called interchange laws:

(g • l) + (g′ • l′) = (g + g′) • (l + l′)

[(g • l), (g′ • l′)] = [g, g′] • [l, l′]

for all g, g′ ∈ G and l, l′ ∈ L, whenever both sides are defined.
The notion of an internal diagram on an internal category in a category with

finite limits introduced in [16] and given in [11] for an arbitrary category of groups
with operations. Let G be an internal groupoid within a category C of groups with
operations. An internal diagram F on G consists of an object γ0 : F0 → Ob(G)
of the slice category C/Ob(G) and a morphism e : G ×Ob(G) F0 → F0 such that
γ0e = d1π1, e(ε× 1) = 1F0 , and e(1× e) = e(m× 1) : G×Ob(G) G×Ob(G) F0 → F0.
Obviously, internal diagrams and internal groupoid actions are the same.
A morphism f : (L, ω) → (L′, ω′) of such actions is a morphism f : L → L′ of

Leibniz algebras such that ω′f = ω. This gives a category ActCat(Lbnz)(G) of actions
of G on Leibniz algebras.
For an action of G on a Leibniz algebra L via ω, the action groupoid GnL has

a Leibniz algebra structure defined by

(g, l) + (g′, l′) = (g + g′, l + l′),

[(g, l), (g′, l′)] = ([g, g′] , [l, l′])

and with this operations Gn L becomes an internal groupoid in Lbnz.

Proposition 20. Let G be an internal groupoid in Lbnz. The categories CovCat(Lbnz)/G
and ActCat(Lbnz)(G) are equivalent.
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Proof. Let p : G̃→ G be a covering morphism in Cat(Lbnz). Then G acts on Ob(G̃)

via p0 : Ob(G̃)→ Ob(G) by

Gd0×p0 Ob(G̃) −→ Ob(G̃)
(g, x̃) 7−→ g • x̃ = d1(g̃),

where g̃ is the unique lifting of g with initial point x̃. It is easy to verify that
this map is an action and a Leibniz algebra morphism, since p is a Leibniz algebra
morphism.
Conversely, let G acts on a Leibniz algebra L via ω : L→ Ob(G). Then q : Gn

L → G, (g, l) 7→ g is a covering morphism in Cat(Lbnz). It is straightforward to
confirm that these constructions define the intended natural equivalence. 2

Example 21. Let G be an internal groupoid in Lbnz. Then 1G : G → G is a
covering morphism in Cat(Lbnz). The corresponding action to 1G is constructed
as follows: G acts on Ob(G) via 1Ob(G) : Ob(G)→ Ob(G) where the action is

Gd0×1Ob(G) Ob(G) −→ Ob(G)
(g, x) 7−→ g • x = d1(g).

In this case the action groupoid

GnOb(G) = {(g, x) | d0(g) = x}
is isomorph to G as an internal groupoid in Lbnz, i.e., GnOb(G) ∼= G.

4. Covering crossed modules in Lbnz

The notion of coverings for crossed modules in the category of groups is in-
troduced in [8] (see also [20]). In a similar way, by using the equivalence of the
categories Cat(Lbnz) and XMod(Lbnz), we can interpret the notion of coverings in
XMod(Lbnz).

Definition 22. Let (L1, L0, ∂) and (L̃1, L̃0, ∂̃) be two crossed modules of Leibniz
algebras and p1 : L̃1 → L1, p0 : L̃0 → L0 be Leibniz algebra morphisms such that
(p1, p0) : (L̃1, L̃0, ∂̃) → (L1, L0, ∂) is a crossed module morphism. If p1 : L̃1 → L1
is an isomorphism of Leibniz algebras, then we say that (L̃1, L̃0, ∂̃) is a covering
crossed module of (L1, L0, ∂) and that (p1, p0) is a covering morphism of crossed
modules.

Example 23. Let (L1, L0, ∂) be a crossed module of Leibniz algebras. Then
(1L1 , 1L0) : (L1, L0, ∂)→ (L1, L0, ∂) is a covering.

Let (p1, p0) : (L̃1, L̃0, ∂̃) → (L1, L0, ∂) and (q1, q0) : (L′1, L
′
0, ∂
′) → (L1, L0, ∂) be

two coverings of (L1, L0, ∂). A morphism of coverings is a crossed module morphism
(f1, f0) : (L̃1, L̃0, ∂̃)→ (L′1, L

′
0, ∂
′) such that (q1, q0) ◦ (f1, f0) = (p1, p0), i.e. q1f1 =

p1 and q0f0 = p0. Now we can construct the category of coverings of (L1, L0, ∂)
which will be denoted by CovXMod(Lbnz)/(L1, L0, ∂).
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Proposition 24. Let (L1, L0, ∂) be a crossed module of Leibniz algebras and G be
the corresponding internal groupoid according to Theorem 14. Then the category
CovXMod(Lbnz)/(L1, L0, ∂) of coverings of (L1, L0, ∂) and the category CovCat(Lbnz)/G
covering internal groupoids of G are equivalent.

Proof. Let p : G̃ → G be a covering in Cat(Lbnz) and (L̃1, L̃0, ∂̃) be the corre-
sponding crossed modules to G̃. Then by Theorem 14, StG̃0̃ = ker d̃0 = L̃1 and
StG0 = ker d0 = L1. Since p is a covering then by Remark 17 the restriction of
p on L̃1 defines an isomorphism L̃1 ∼= L1. Hence (L̃1, L̃0, ∂̃) is a covering crossed
module of (L1, L0, ∂).
Conversely, let (p1, p0) : (L̃1, L̃0, ∂̃) → (L1, L0, ∂) be a covering of (L1, L0, ∂)

and G̃ be the corresponding internal groupoid to (L̃1, L̃0, ∂̃). Here G̃ = L̃1 o L̃0,
Ob(G̃) = L̃0 and the corresponding internal groupoid morphism is p = p1×p0 : G̃→
G. Let x ∈ L1. Since L̃1 ∼= L1 then there exist a unique x̃ ∈ L̃1 such that p1(x̃) = x.
Hence

Sp : (L1 o L0) d0×Ob(p)L̃0 −→ L̃1 o L̃0
((x,m) , m̃) 7−→ (x̃, m̃)

defines an isomorphism of Leibniz algebras. One can easily see that these con-
structions are functorial and defines a natural equivalence between the categories
CovXMod(Lbnz)/(L1, L0, ∂) and CovCat(Lbnz)/G. 2
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