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Abstract

This article is concerned with estimations for longitudinal partial linear
models with covariate that is measured with error. We propose a gen-
eralized empirical likelihood method by combining correction attenua-
tion and quadratic inference functions. The method takes into account
the within-subject correlation without involving direct estimation of
nuisance parameters in the correlation matrix. We de�ne a general-
ized empirical likelihood-based statistic for the regression coe�cients
and residual adjusted empirical likelihood for the baseline function.
The empirical log-likelihood ratios are proven to be asymptotically chi-
squared, and the corresponding con�dence regions are then constructed.
Compared with methods based on normal approximations, the gener-
alized empirical likelihood does not require consistent estimators for
the asymptotic variance and bias. Furthermore, a simulation study is
conducted to evaluate the performance of the proposed method.
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1. Introduction

Longitudinal data analysis has attracted considerable research interest and a large num-
ber of inference methods have been proposed in the literature. Consider data from n
subjects with ni observations in the ith subject (i = 1, . . . , n) for a total of N =

∑n
i=1 ni.

Let Yij and Xij , Tij respectively be the response variable and the covariates of the jth
observation (j = 1, . . . , ni) in the ith ,where Xij is a p × 1 vector and Tij is a scalar or
time. Zeger and Diggle [28] proposed a semiparametric regression model of the form

(1.1) Yij = XT
ijβ + g(Tij) + εij , i = 1, . . . , n, j = 1, . . . , ni.

where β is a p×1 vector of unknown regression coe�cients associated with covariate Xij ,
g(t) is an unknown smooth function, εij is random error with E(εij |Xij , Tij) = 0 and
σ2
ε(t) = E(ε2

ij |Tij = t). We assume, without loss of generality, that Tij are all scaled into
closed interval [0, 1]. We assume further that the observations from di�erent subjects are
independent.
Model (1.1) is especially useful for longitudinal data analysis as the level of response often
depends on time in a nonlinear pattern. Many authors have studied models in the form of
(1.1), see for example, He et al. [8], You et al. [27] and Xue and Zhu [24], among others.
Zeger and Diggle [28] used a semiparametric mixed model to analyse the CD4 cell num-
bers in HIV seroconverters where g(t) is estimated by a kernel smoother. A major aspect
of longitudinal data is the within-subject correlation among the repeated measurements.
Ignoring this within-subject correlation causes a loss of e�ciency in general problems.
Using a working correlation matrix with a small set of nuisance parameters α, the gen-
eralized estimating equations (GEE) estimator of the regression coe�cients proposed by
Liang and Zeger [13] are consistent even when the working correlation structure is mis-
speci�ed. However, Crowder [4] established that there are di�culties with estimating the
nuisance parameters α and that in some simple cases, consistent estimators of α do not
always exist. To avoid the drawback, Qu et al. [18] introduced a method of quadratic
inference functions (QIF). It avoids estimating the nuisance correlation structure param-
eters by assuming that the inverse of working correlation matrix can be approximated
by a linear combination of several known basis matrices. The QIF can e�ciently take
the within-cluster correlation into account and is more e�cient than the GEE approach
when the working correlation is misspeci�ed. Bai et al. [2] extended the QIF method
to the semiparametric partial linear model. Dziak et al. [6] gave an overview on QIF
approaches for longitudinal data. Owen [15] introduced a nonparametric method of in-
ference - an empirical likelihood (EL) mathod. The EL uses only the data to determine
the shape and orientation of a con�dence region and does not use the estimator of the
asymptotic covariance. Hence, EL is indeed appealing for the construction of con�dence
region.
Owen [17] provided a comprehensive account of empirical likelihood and its properties.
For longitudinal data, You et al. [27] constructed a block empirical likelihood method for
partially linear regression models with longitudinal data. Xue and Zhu [24] considered
the same model, and they provided the EL inference for the baseline function as well as
the regression coe�cients.
In many practical situations, there often exist covariate measurement errors. Some re-
cently related works include Cui and Chen [5], Liang et al. [11], Liu [14], and Zhao and
Xue [29], among others. Zhao and Xue [29] investigated empirical likelihood inferences
for semiparametric varying-coe�cient partially linear EV models. Liu [14] considered the
asymptotic normality for the partially linear EV models with longitudinal data. Yang
et al. [26] investigated the empirical likelihood of varying coe�cient errors-in-variables
models with longitudinal. A common feature of these articles is that the data dependence
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within each subject is not taken into consideration. To consider the within correlation,
Tian et al. [22] proposed a generalized empirical likelihood (GEL) method by combining
quadratic inference functions for generalized linear model with longitudinal data. Tian et
al. [21] discussed the variable selection for the partial linear EV model with longitudinal
data when some covariates are measured with errors.
We propose a modi�ed generalized empirical log-likelihood ratio function for the regres-
sion coe�cients and a residual-adjusted empirical likelihood for the baseline function, the
empirical log-likelihood ratios are proven to be asymptotically chi-squared. The follow-
ing three desired features are worth mentioning. First, the method directly incorporates
within-subject correlation into model building, but does not require estimation of the
nuisance parameters associated with the correlation. Second, the modi�ed generalized
empirical log-likelihood ratio function eliminate the e�ects of measurement errors on pa-
rameter estimation. Third, by using the residual adjusted EL ratio, undersmoothing for
estimating the baseline function is avoided.
The outline of this paper is organized as follows. In Section 2, we de�ne a generalized
empirical log-likelihood ratio for regression coe�cients and investigate its asymptotic
properties. In Section 3, we discuss the empirical likelihood inference for nonparametric
function. In Section 4, we conduct a simulation study to compare the �nite sample
properties of these suggested estimators. We also apply our method to analyze an AIDS
clinical trial dataset in Section 5. The proofs of theorems appear in the Appendix.

2. Empirical likelihood for the regression coe�cients

2.1. Known measurement error covariance matrix. For model (1.1), the covari-
ates Xij are not always observable without error. If Xij are measured with error, instead
of observing Xij , we observe

(2.1) Wij = Xij + Uij .

where Uij , i = 1, . . . , n, j = 1, . . . , ni, are measurement errors. As in Liang et al.
[11], we assume that Uij are independent and identically distributed, independent of
{Yij , Xij , Tij , εij}. Although this assumption is not the weakest possible condition, it is
imposed to facilitate the technical proofs, and it can be satis�ed in many applications.
We suppose that E(Uij) = 0, cov(Uij) = Σu.
From the model (1.1), we have E(Yij |Tij) = E(XT

ij |Tij)β + g(Tij). For the sake of de-

scriptive convenience, we denote Yi = (Yi1, Yi2, . . . , Yini)
T , and Xi, Ui, Ti,Wi in a similar

fashion. g(Ti) = (g(Ti1) . . . , g(Tini))
T , mX(t) = E(Xij |Tij = t), mY (t) = E(Yij |Tij = t),

mW (t) = E(Wij |Tij = t), Ỹi = ϕ(Tij)(Yi − mY (Ti)), X̃i = ϕ(Tij)(Xi − mX(Ti)),

W̃i = ϕ(Tij)(Wi−mW (Ti)), where ϕ(·) is a bounded nonnegative weight function with a
compact support [a, b] ∈ [0, 1]. Motivated by Liang et al. [11], we construct the modi�ed
generalized auxiliary random vectors

(2.2) Zi(β) = W̃T
i V
−1
i (Ỹi − W̃iβ) + E(UTi V

−1
i Ui)β,

where Vi is an arbitrarily speci�ed working covariance matrix with nuisance parameters α.

Following Liang and Zeger [13], the matrix Vi is often modeled as A
1/2
i R(α)A

1/2
i , where

Ai = diag{var(Yi1), . . . , var(Yini)}, R(α) is some working correlation which involves a
small number of nuisance parameters α. By Qu et al. [18], we model the inverse of the
working correlation R−1(α) by the class of matrices

(2.3)
s∑

k=1

akMk,
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where M1, . . . ,Ms are known matrices and a1, . . . , as are unknown constants. This is
a su�ciently rich class that accommodates, or at least approximates, the correlation
structures most commonly used. Substituting (2.3) to (2.2) and using the idea of QIF,
we need not to �nd the estimators of parameters a = (a1, a2, . . . , as) by optimizing some
function of the information matrix. Instead, we de�ne the �extend" generalized auxiliary
random vectors

(2.4) Z̃i(β) =


W̃T
i A
−1/2
i M1A

−1/2
i (Ỹi − W̃iβ) +D

(1)
i β

...

W̃T
i A
−1/2
i MsA

−1/2
i (Ỹi − W̃iβ) +D

(s)
i β

 ,

where D
(k)
i = E(UTi A

−1/2
i MkA

−1/2
i Ui), k = 1, . . . , s. Note that E(Z̃i(β)) = 0 if β is the

true parameter. Therefore, using such information, we can de�ne a generalized empirical
log-likelihood ratio function l(β). If β is the true parameter, l(β) can be shown to be
asymptotically distributed as a chi-square with ps degrees of freedom.
However, the formula above cannot be applied directly, because mY (Ti),mW (Ti) are
unknown. Using kernel estimate method, the estimators of mY (Ti) and mW (Ti) are,
respectively, de�ned by

(2.5) m̂W (t) =

n∑
i=1

ni∑
j=1

ωij(t)Wij , m̂Y (t) =

n∑
i=1

ni∑
j=1

ωij(t)Yij

where

(2.6) ωij(t) = Kh(Tij − t)

/
n∑
k=1

ni∑
l=1

Kh(Tkl − t)

h is a bandwidth, K(·) is a kernel function and Kh(·) = K(·/h). Therefore, an estimator
of Zi(β),

(2.7) Ẑi(β) =


ŴT
i A
−1/2
i M1A

−1/2
i (Ŷi − Ŵiβ) +D

(1)
i β

...

ŴT
i A
−1/2
i MsA

−1/2
i (Ŷi − Ŵiβ) +D

(s)
i β

 ,

where Ŷi = ϕ(Ti)(Yi − m̂Y (Ti)), and Ŵi = ϕ(Ti)(Wi − m̂W (Ti)). Then a modi�ed
generalized empirical log-likelihood ratio function for β is de�ned as

(2.8) l̂(β) = −2 max
p1,...,pn

{
n∑
i=1

log(npi)

∣∣∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piẐi(β) = 0

}
.

For any given β, a unique value for l̂(β) exists, we assume that 0 is inside the convex hull

of the points (Ẑ1(β), . . . , Ẑn(β)) (Owen, [15]). By the Lagrange multiplier method, l̂(β)
can be represented as

(2.9) l̂(β) = 2

n∑
i=1

log(1 + λT Ẑi(β)),

where λ = λ(β) is a ps× 1 vector that solves

(2.10)
1

n

n∑
i=1

Ẑi(β)

1 + λT Ẑi(β)
= 0.

The following Theorem 2.1 gives that l̂(β) is asymptotically distributed as a chi-square
with ps degrees of freedom.
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2.1. Theorem. Suppose that the regularity conditions C1−C6 in the Appendix hold. If
β is the true parameter, then

l̂(β)
L−→ χ2

ps,

where
L−→ represents the convergence in distribution, and χ2

ps means the chi-square dis-
tribution with ps degrees of freedom.

Let χ2
ps(1−α) be the 1−α quantile of χ2

ps for any 0 < α < 1. By using Theorem 2.1,
we obtain an approximate 1− α con�dence region for β, de�ned by

Cα(β) = {β| l̂(β) ≤ χ2
ps(1− α)}.

We may maximize {−l̂(β)} to obtain an estimator of the parameter β, say β̂, called as
the generalized maximum empirical likelihood estimator (GMELE). Denote

(2.11) Γ = lim
n→∞

1

n

n∑
i=1

E


X̃T
i A
−1/2
i M1A

−1/2
i X̃i

...

X̃T
i A
−1/2
i MsA

−1/2
i X̃i

 ,

(2.12) Σ =

 Σ11 · · ·Σ1s

...
. . .

...
Σs1 · · ·Σss

 ,

where for k,m = 1, . . . , s,

Σkm = lim
n→∞

1

n

n∑
i=1

{E[(Xi −mX(Ti))
TΨiA

−1/2
i MkA

−1/2
i (Ψiεi − Uiβ)]

[(Xi −mX(Ti))
TΨiA

−1/2
i MmA

−1/2
i (Ψiεi − Uiβ)]T

+ E(UTi A
−1/2
i MkA

−1/2
i Ψiεi)(U

T
i A
−1/2
i MmA

−1/2
i Ψiεi)

T

+ E(−UiA−1/2
i MkA

−1/2
i Uiβ +D

(k)
i β)

(−UiA−1/2
i MmA

−1/2
i Uiβ +D

(m)
i β)T .

where Ψi = diag{ψ(Ti1), · · · , ψ(Tini)}. If the matrix Σ and ΓTΣ−1Γ are invertible, then

we can obtain the asymptotic normality for β̂ in the following Theorem.

2.2. Theorem. Suppose that the regularity conditions C1 − C6 in the Appendix hold.
Then when n→∞, we have

√
n(β̂ − β)

L−→ N(0,Σβ),

where Σβ = [ΓTΣ−1Γ]−1.

To apply Theorem 2.2 to construct the con�dence region of β, we give the consistent
estimator of Σβ , say Σ̂β = [Γ̂T Σ̂−1Γ̂]−1, where

(2.13) Γ̂ =
1

n

n∑
i=1


ŴT
i A
−1/2
i M1A

−1/2
i Ŵi −D(1)

i

...

ŴT
i A
−1/2
i MsA

−1/2
i Ŵi −D(s)

i

 ,

(2.14) Σ̂ =
1

n

n∑
i=1

Ẑi(β)Ẑi(β)T .
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Therefore, by Theorem 2.2, we have

(2.15) Σ̂
−1/2
β

√
n(β̂ − β)

L−→ N(0, Ip),

where Ip is an identity matrix of order p. Using Theorem 10.2d in Arnold [1] to obtain

(2.16) (β̂ − β)TnΣ̂−1
β (β̂ − β)

L−→ χ2
p.

Therefore, the con�dence region of β can be constructed by using (2.15) or (2.16).

2.2. Estimated measurement error covariance matrix. Generally, the covariance
matrix Σu is unkown and must be estimated. We further assume longitudinal data is
a balance data, that is ni = m. For unbalanced data, we can use the multiple groups
analysis (Shao et al. [20]). The usual method of doing so (Carroll et al. [3], Ch3) is by

partial replication, so that we observe W
(r)
i = Xi + U

(r)
i , r = 1, . . . ,mi. For notation

convenience, we consider here only the case that mi = 2. Let W̄i is the sample mean
of the replicates, and Ūi in a similar fashion. Then a consistent, unbiased moments

estimator for D
(k)
i is

(2.17) D̂
(k)
i = n−1

n∑
i=1

2∑
r=1

(W
(r)
i − W̄i)

TA
−1/2
i MkA

−1/2
i (W

(r)
i − W̄i),

The estimator of Zi(β) changes only slightly to accommodate the replicates, becoming

(2.18) Ẑ∗i (β) =


ˆ̄WTA

−1/2
i M1A

−1/2
i (Ŷi − ˆ̄Wβ) + D̂

(1)
i β/2

...
ˆ̄WTA

−1/2
i MsA

−1/2
i (Ŷi − ˆ̄Wβ) + D̂

(s)
i β/2

 ,

where ˆ̄W = ψ(Ti)(W̄i − m̂W̄ (Ti)) and m̂W̄ (Ti) is the kernel estimate of m̂W (Ti) based
on the data (W̄i, Ti). The empirical likelihood ratio function for β may be de�ned as

(2.19) l̂∗(β) = −2 max
p1,...,pn

{
n∑
i=1

log(npi)

∣∣∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piẐ
∗
i (β) = 0

}
.

We may maximize {−l̂∗(β)} to obtain maximum empirical likelihood estimator β̂∗ of β.
Similarly, we have the following theorem.

2.3. Theorem. Under the general conditions of Theorem 2.1, and β is the true param-
eter, then

l̂∗(β)
L−→ χ2

ps.

2.4. Theorem. Under the general conditions of Theorem 2.2, the estimator β̂∗ is con-
sistent and asymptotically normal with covariance matrix [ΓTΣ−1

∗ Γ]−1,

Σ∗ =

 Σ∗11 · · ·Σ∗1s
...
. . .

...
Σ∗s1 · · ·Σ∗ss

 ,
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where for k,m = 1, . . . , s,

(2.20)

Σ∗km = lim
n→∞

1

n

n∑
i=1

{E[(Xi −mX(Ti))
TA
−1/2
i MkA

−1/2
i (εi − Ūiβ)]

[(Xi −mX(Ti))
TA
−1/2
i MmA

−1/2
i (εi − Ūiβ)]T

+ E(ŪTi A
−1/2
i MkA

−1/2
i εi)(Ū

T
i A
−1/2
i MmA

−1/2
i εi)

T

+ E(−ŪiA−1/2
i MkA

−1/2
i Ūiβ +

1

2
D

(k)
i β)

(−ŪiA−1/2
i MmA

−1/2
i Ūiβ +

1

2
D

(m)
i β)T .

With the replication data, the standard error estimators of β̂∗ can also be derived (Liang,
[12]). We omit details here.

3. Inference based on empirical likelihood for the nonparametric

function

We assume from now on that t0 is an interior point of [0, 1]. Also, we suppose that the
time points Tij , i = 1, . . . , n, j = 1, . . . , ni, are independent and have identical distribution
with common density function f(t). Introduce the following auxiliary random vectors

(3.1) η̂i(g(t0)) =

ni∑
j=1

[Yij −WT
ij β̂ − g(t0)]Kh(Tij − t0).

An estimated empirical log-likelihood ratio function for g(t0) can be de�ne by

(3.2) l̃(g(t0)) = −2 max
p1,...,pn

{
n∑
i=1

log(npi)

∣∣∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂i(g(t0)) = 0

}
.

We can also maximize {−l̃(g(t0))} to obtain the maximum empirical likelihood estimator
of g(t0), says ĝ(t0). It can be proved that

(3.3) ĝ(t0) =

n∑
i=1

ni∑
j=1

ωij [Yij −WT
ij β̂] + oP ((Nh)−1/2),

where ωij is de�ned in (2.6). If we de�ne that

(3.4) b(t0) = h
5/2
0 [g′(t0)f ′(t0) + (1/2)g′′(t0)f(t0)]

∫ 1

−1

u2K(u)du,

(3.5) v2(t0) = σ2
ε,u,δ(t0)f(t0)

∫ 1

−1

K2(u)du,

where σ2
ε,u,δ(t0) = E[(εij − UTijβ)2|Tij = t0] and h0 is the constant satisfying Condition

C1 in the Appendix. The following theorem gives the asymptotical property of ĝ(t0).

3.1. Theorem. Suppose that the regularity conditions C1 − C6 in the Appendix hold,
Then

√
Nh[ĝ(t0)− g(t0)]− b(t0)(f(t0))−1 L−→ N(0, σ2(t0)),

where σ2(t0) = v2(t0)(f(t0))−2, b(t0) and v2(t0) are de�ned in (3.4)and (3.5).
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Similar to Xue and Zhu [24], we can show that if we substitute Condition C1 in Theorem
3.1, with Nh2/ logN → ∞ and Nh5 → 0, that is, if undersmoothing is adopted, then
the biased term b(t0) vanished asymptotically. Denote that

(3.6) f̂(t0) =
1

Nh

n∑
i=1

ni∑
j=1

Kh(Tij − t0),

(3.7) v̂2(t0) =
1

Nh

n∑
i=1

η̂2
i (ĝ(t0)).

Then, a consistent estimator of σ2(t0) can be given by σ̂2(t0) = v̂2(t0)/(f̂(t0))2.
If we de�ne that

(3.8) b̂(t0) =
1√
Nh

n∑
i=1

ni∑
j=1

[ĝ(Tij)− ĝ(t0)]Kh(Tij − t0).

from the Lemma 6.7 in Appendix, b̂(t0) is a consistent estimator b(t0). Then, an approx-
imate 1− α con�dence interval for g(t0) can be given by

ĝ(t0)− (Nh)−1/2b̂(t0)(f̂(t0))−1 ± zα/2(Nh)−1/2σ̂(t0),

where zα/2 is the 1− α/2 quantile of the standard normal distribution.

Theorem 3.1 together Lemma 6.6 in the Appendix, implies that l̃(g(t0)) is asymptotically
non-central chi-squared if optimal bandwidth is used, and this increases the di�culty of
the study. In a manner similar to Xue and Zhu [24], we can adjust the weighted residuals
η̂i{g(t0)} and then obtain an adjusted empirical likelihood ratio without undersmoothing.
Introduce the auxiliary random vectors

η̂∗i {g(t0)} = η̂i{g(t0)} −
ni∑
j=1

[ĝ(Tij)− ĝ(t0)]Kh(Tij − t0).

A residual-adjusted generalized empirical likelihood ratio can be de�ned as

l̃∗(g(t0)) = −2 max

{
n∑
i=1

log(npi)

∣∣∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂
∗
i (g(t0)) = 0

}
.

Then, the asymptotic result of l̃∗(g(t)) is stated in the following theorem.

3.2. Theorem. Suppose that the regularity conditions C1−C6 in the Appendix hold, if
g(t0) is the true value of the baseline function, we have

l̃∗(g(t0))
L−→ χ2

1.

Applying Theorem 3.2, the approximate 1 − α con�dence interval for g(t) is de�ned as

Ĩα(g(t0)) = { g(t) | l̃∗(g(t0)) ≤ χ2
1(1− α)}.

4. Simulation studies

We simulated data from the semiparametric regression model

Yij = X1ijβ1 +X2ijβ2 + sin(πTij/2 + π/2) + εij , i = 1, . . . , n; j = 1, . . . , 5,

where β1 = β2 = 1, n = 100, X1ij ∼ N(1, 1), X2ij ∼ N(2, 1), Tij ∼ U(−1, 1), and error
vector εi = (εi1, . . . , εi5)T ∼ N(0, σ2corr(εi, ρ)), where σ2 = 0.6, ρ = 0.5 and corr(εi, ρ)
is a known correlation matrix with parameter ρ used to determine the strength of with-
subject dependence. Here we consider εij has the compound symmetry (CS) correlation.
Considering the measurement error modelsW1ij = X1ij+U1ij ,W2ij = X2ij+U2ij , where
U1ij ∼ N(0, 0.04), U2ij ∼ N(0, 0.04).
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For each simulated dataset, we computed the empirical likelihood ratio and the estimators
of β and g(t). The kernel function was taken to be K(u) = 0.75(1− u2)+ and the cross-
validation bandwidth hCV was obtained by minimizing

CV (h) =
1

n

n∑
i=1

ni∑
j=1

{Yij −XT
ij β̂[i] − ĝ[i](tij)}2,

where ĝ[i](·) and β̂[i] are estimators of g(·) and β which are computed with all of the
measurements but not the ith subject. We experimented with bandwidths around the
selected values, and the results did not change signi�cantly. To estimate the variance of
Uij , we generated duplicate samples of Wij .

FIGURE 1

Figure 1: The averages of 95% con�dence regions for (β1, β2).

0.90 0.95 1.00 1.05 1.10

0.
90

0.
95

1.
00

1.
05

beta1

be
ta

2

   

   *

GEL
NA

For the con�dence region of β, two methods were compared: the generalized empirical
likelihood (GEL) and the normal approximation (NA) in terms of coverage accuracy
and area of the con�dence region with 1000 simulation runs. The simulation results are
presented in Figure 1. Figure 1 shows that the GEL gives smaller con�dence region than
the NA method. The coverage probability for the GEL is 0.943, while that for the NA
is 0.939. This also shows the GEL has higher accuracy than the NA for the con�dence
region.

FIGURE 2
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Figure 2:The 95% con�dence intervals and coverage probabilities for g(t). The left panel

shows the pointwise con�dence intervals and the true curve (solid curve) for g(t). The rig-

ht panel is for coverage probabilities.
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Figure 2 depicts the performance of the residual-adjusted GEL and the NA in terms of
95% pointwise con�dence intervals. From Figure 2, the residual-adjusted GEL clearly
performs better than the NA because the associated con�dence intervals have uinformly
higher coverage accuracies and shorter average lengths.

5. A real example

We now illustrate the proposed procedures in this paper through analysis of a data set
from the Multi-Center AIDS Cohort study. The data set contains the human immunod-
e�ciency virus (HIV) status of 283 homosexual men who were infected with HIV during
a follow-up period between 1984 and 1991. The original design was to collect the mea-
surements for all individuals semiannually. More details of the study design and medical
implications can be found in Kaslow et al. [10]. Some authors have analyzed the same
dataset using varying coe�cient and semiparametric models; see for example Wu et al.
[23], Huang et al. [9] and Fan and Li [7]. Their analysis aimed to describe the trend
of the mean CD4 percentage depletion over time and to evaluate the e�ects of cigarette
smoking, pre-HIV infection CD4 percentage and age at HIV infection on the mean CD4
percentage after the infection. The results of the hypothesis testing of Huang et al. [9]
indicate that, at signi�cance level 0.05, only the baseline function varies over time and
preCD4 has a constant e�ect over time; neither smoking nor age has a signi�cant impact
on mean CD4 percentage. This motivates us to use model (1.1) for this dataset.
We considered two covariates: X1ij , the individual's smoking status, which is taken to
be 1 if the individual ever smoked cigarettes or 0 if never smoked cigarettes after HIV
infection; and X2ij , the centered variable for pre-infection CD4 percentage. For the pur-
pose of demonstration and simplicity, the possible e�ects of other available covariates are
omitted. The response variable Y (tij) is the individual's CD4 percentage measured, and
both X1ij and X2ij are independent. We assume that observation times are independent
of covariates because they are not signi�cantly related to the two covariates. The X2ij

are measured with error (Liang et al. [11]), We consider the following semiparametric
regression model:

Y (tij) = β1X1ij + β2X2ij + g(tij) + ε(tij),W2ij = X2ij + U2ij ,
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where W2ij are the observed CD4 cell counts, and g(tij), the baseline CD4 percentage,
represents the mean CD4 percentage t years after infection for a non-smoker with average
pre-infection CD4 percentage, and β1 and β2 describe the e�ects for cigarette smoking
and pre-infection CD4 percentage, respectively, on the post-infection CD4 percentage.
We assumed that the measurement errors U2ij are independent and normally distributed
with mean zero and variance σ2

uu. as in Yang et al.[25], we conduct a sensitivity analysis
by taking σ2

uu = 0, which naively ignores measurement error, σ2
uu = 0.068 and σ2

uu =
0.154.

FIGURE 3

Figure 3:AIDS study: Estimates of (β1, β2) and the averages of 95% con�dence rigions

based on the normal approximation (NA) and residual-adjusted generalized empirical li-

kelihood (GEL). The left panel for σ2
uu = 0, the middle panel for σ2

uu = 0.068 and the r-

ight panel for σ2
uu = 0.135.
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We computed the generalized empirical likelihood ratios for (β1, β2) under �rst-order
autoregressive correlation matrix, and the estimators for g(t) by using the Epanechnikov
kernel and the cross-validated bandwidth hcv = 0.38. The 95% con�dence regions for
(β1, β2) reported in Figure 3, and it shows that the generalized empirical likelihood again
works better than the normal approximation. For σ2

uu = 0, σ2
uu = 0.068 and σ2

uu = 0.135
, the estimated values of β2 are 0.3063, 0.3248, 0.3456, respectively. As expected, we
�nd a somewhat stronger positive association between the pre-infection CD4 percentage
and the percentage of CD4 cells when the possibility of measurement error is taken into
account.

FIGURE 4
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Figure 4:AIDS study: The solid curve represents the estimated curve of the baseline fun-

ction and the dotted line indicate the 95% pointwise con�dence intervals for baseline func-

tion, based on the residual-adjusted empirical likelihood.
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The curve of the estimated baseline function and the corresponding 95% pointwise con-
�dence intervals for the case of σ2

uu = 0 is shown in Figure 4. The results for the other
cases of σ2

uu = 0.143 and σ2
uu = 0.194 are similar and are therefore not shown. From

Figure 4, we �nd that the mean baseline CD4 percentage for the population decreases
rather quickly at the beginning of HIV infection, but the rate of decrease appears to be
slowing down four years after the infection. The �ndings basically agree with that which
was discovered by the local linear �tting method of Fan and Li [7] and Xue and Zhu [24].
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6. Appendix.

For convenience and simplicity, let c denote a positive constant that may be di�erent at
each appearance throughout this paper. Before we state one of the main results, we note
the following regularity conditions.

C1. The bandwidth satis�es h = h0N
−1/5 for some constant h0 > 0.

C2. The kernel K(·) is a symmetric probability density function, and is twice con-
tinuously di�erentiable on its support set [−1, 1].

C3. supx,0≤t≤1E(ε4
ij |Xijr = x, Tij = t) <∞, sup0≤t≤1E(U4

ij |Tij = t) <∞, E(X4
ijr) <

∞ for i = 1, . . . , n, j = 1, . . . , ni, and r = 1, . . . , p, where Xijr is the rth compo-
nent of Xij .

C4. The density function of Tij , f(t) is bounded away from zero and in�nity uni-
formly over [0, 1], and is twice continuously di�erentiable on (0, 1).
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C5. g(t) andmX,r(t) are twice continuously di�erentiable on (0, 1) for all r = 1, . . . , p,
where mX,r(t) is the rth component of mX(t).

C6. The variance function σ2
ε,u(t) is continuous at t0.

Remark. C1 − C6 are the common conditions used in the literature. C1 ensures that
undersmoothing ĝ is not needed so that we can use data-driven approach to select the
bandwidth. In C2, the compaction by using kernels with small tails; for example, the
standard Gaussian kernel. C3 is a necessary moment condition. Smooth conditions C4
and C5 are standard conditions for nonparametric. C6 is a regularity condition.
The proofs of Theorems 2.1 and 2.2 rely on the following some lemmas.

6.1. Lemma. Suppose that conditions C1-C6 hold. Then, for any constants a and b
with 0 < a < b < 1, we have

(6.1)

sup
a≤t≤b

E[‖mW (Tij)− m̂W (Tij)‖2|Tij = t] = O(n−1h−1 + h4)

sup
a≤t≤b

E[‖g(Tij)− ĝ∗(Tij)‖2|Tij = t] = O(n−1h−1 + h4),

where ĝ∗(t) = m̂Y (t)− m̂T
W (t)β.

The proof of Lemma 6.1 is similar to that of Xue and Zhu [24] and we omit the details.

6.2. Lemma. Suppose that the regularity conditions C1-C6 hold. If β is the true param-
eter, then

(6.2)
1√
n

n∑
i=1

Ẑi(β)
L−→ N(0,Σ),

where Σ is de�ned by (2.12).

Proof. Consider the kth (k = 1, . . . , s) block of
1√
n

n∑
i=1

Ẑi(β):

1√
n

n∑
i=1

ŴT
i A
−1/2
i MkA

−1/2
i (Ŷi − Ŵiβ) +D

(k)
i β

=
1√
n

n∑
i=1

{
X̃T
i A
−1/2
i MkA

−1/2
i (Ψiεi − Uiβ) + UTi A

−1/2
i MkA

−1/2
i Ψiεi

−UiA−1/2
i MkA

−1/2
i Uiβ +D

(k)
i β

}

+
1√
n

n∑
i=1

{
X̃T
i A
−1/2
i MkA

−1/2
i Ψi[g(Ti)− ĝ∗(Ti)]

}

+
1√
n

n∑
i=1

{
[mW (Ti)− m̂W (Ti)]

TΨiA
−1/2
i MkA

−1/2
i Ψiεi

}

+
1√
n

n∑
i=1

{
UTi A

−1/2
i MkA

−1/2
i Ψi[g(Ti)− ĝ∗(Ti)]

}

− 1√
n

n∑
i=1

{
[mW (Ti)− m̂W (Ti)]

TΨiA
−1/2
i MkA

−1/2
i Uiβ

}

+
1√
n

n∑
i=1

{
[mW (Ti)− m̂W (Ti)]

TΨiA
−1/2
i MkA

−1/2
i Ψi[(g(Ti)− ĝ∗(Ti))]

}
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≡ J1 + J2 + J3 + J4 + J5 + J6.

We �rst deal with J1. Denote J1 =
1√
n

n∑
i=1

ζik, it is easy to obtain Eζik = 0 and

Cov(ζik) =E(X̃T
i A
−1/2
i MkA

−1/2
i (Ψiεi − Uiβ))

⊗
2

+ E(UTi A
−1/2
i MkA

−1/2
i Ψiεi)

⊗
2

+ E(−UiA−1/2
i MkA

−1/2
i Uiβ +D

(k)
i β)

⊗
2 + op(1)

=Σkk + op(1).

Next, we need to prove Jυ
P−→ 0, υ = 2, 3, 4, 5, 6. We �rst deal with J2. Let c

jv
ik denote

the (j, v)th element of A
−1/2
i MkA

−1/2
i . Similar to the proof of (6.1), we can get that

(6.3) sup
a≤t≤b

E

[(
g(Tij)−

n∑
k=1

nk∑
l=1

ωkl(Tij)g(Tkl)

)2∣∣∣∣Tij = t

]
= O(n−1h+ h4),

Let J2,k and X̃ij,k denote the kth (k = 1, . . . , p) component of J2 and X̃ij . From (6.3)
and Conditions C1− C4 we have

E(J2
2,k) ≤ 2n−1E

[ n∑
k=1

nk∑
l=1

( n∑
i=1

ni∑
j=1

ni∑
v=1

ψ(Tij)ωkl(Tij)X̃ij,kc
jv
ik

)
εkl

]2

+ 2n−1

E

[ n∑
i=1

ni∑
j=1

ni∑
v=1

ψ(Tij)X̃ij,kc
jv
ik

(
g(Tij)−

n∑
k=1

nk∑
l=1

ωkl(Tij)g(Tkl)

)]2

≤ c[(nh)−1 + h4] −→ 0.

Hence, we have J2 −→ 0. Then, we consider J3.

J3 =
1√
n

n∑
i=1

{
[mW (Ti)− m̂W (Ti)]

TΨiA
−1/2
i MkA

−1/2
i Ψiεi

}

=
1√
n

n∑
i=1

ni∑
j=1

ni∑
v=1

ψ2(Tij)[mW (Tij)− m̂W (Tij)]
T cjvikεij .

From Lemma 6.1 and C5 we have

E(‖J3‖2) ≤ cn−1
n∑
i=1

ni∑
j=1

ni∑
v=1

E

{
ψ(Tij)(c

jv
ik )2E(‖mw(Tij)− m̂w(Tij)‖2|Tij)

}
≤ c[(nh)−1 + h4] −→ 0.

Similarly, we can get J4
P−→ 0, J5

P−→ 0. From Lemma 6.1 and Cauchy-Schwarz inequal-
ity, we have

E(‖J6‖) ≤ 1√
n

n∑
i=1

ni∑
j=1

ni∑
v=1

E

{
ψ(Tij)c

jv
ik [E(‖mw(Tij − m̂w(Tij))‖2|Tij)]1/2

[E(‖g(Tij)− ĝ∗(Tij)‖2|Tij)]1/2
}

≤ c
√
n[(nh)−1 + h4] −→ 0.

This implies J6
P−→ 0. So we have

1√
n

n∑
i=1

Ẑi(β) =
1√
n

n∑
i=1

ζi + o(1),
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where ςi = (ζTi1, . . . , ζ
T
is)

T . Obviously, E(ζi) = 0 and

1

n

n∑
i=1

Cov(ζi) =

 Σ11 · · ·Σ1s

...
. . .

...
Σs1 · · ·Σss

 .

The proof of Lemma 6.2 is completed. �

6.3. Lemma. Suppose that Conditions C1-C6 holds. If β is the true parameter, then

Σ̂ =
1

n

n∑
i=1

Ẑi(β)Ẑi(β)T
P−→ Σ.

Proof. We also use the notations in the proof of Lemma 6.2, and denote Ẑi,k(β) is the

kth (k = 1, . . . , s) block of Ẑi(β). A simple calculation yields

Ẑi,k(β) = ζik + I1k + I2k, Ẑi,m(β) = ζim + I1m + I2m,

where

I1k = (X̃i + Ui)
TA
−1/2
i MkA

−1/2
i Ψi[g(Ti)− ĝ∗(Ti)],

I2k = [mW (Ti)− m̂W (Ti)]
TΨiA

−1/2
i MkA

−1/2
i

[(Ψiεi − Uiβ) + Ψi(g(Ti)− ĝ∗(Ti))],
I1m = (X̃i + Ui)

TA
−1/2
i MmA

−1/2
i Ψi[g(Ti)− ĝ∗(Ti)],

I2m = [mW (Ti)− m̂W (Ti)]
TΨiA

−1/2
i MmA

−1/2
i

[(Ψiεi − Uiβ) + Ψi(g(Ti)− ĝ∗(Ti))].

Then, consider the (k,m)th block of Σ̂, k,m = 1, . . . , s,

1

n

n∑
i=1

Ẑi,k(β)Ẑi,m(β)T =
1

n

n∑
i=1

ζikζ
T
im +

1

n

n∑
i=1

I1kI
T
1m +

1

n

n∑
i=1

I2kI
T
1m

1

n

n∑
i=1

I1kI
T
2m +

1

n

n∑
i=1

I2kI
T
2m +

1

n

n∑
i=1

ζikI
T
1m

+
1

n

n∑
i=1

ζikI
T
2m +

1

n

n∑
i=1

I1kζ
T
im +

1

n

n∑
i=1

I2kζ
T
im

= U1 + U2 + U3 + U4 + U5 + U6 + U7 + U8 + U9.

By the law of large numbers, we can derive that U1
P−→ Σkm. Thus, if we can prove

Uν
P−→ 0, ν = 2, . . . , 9. For U2, let U2,rq denote its (r, q) element, and Iikr, Iimr denote

the rth component of I1k, I1m, respectly. We may use the Cauchy-Schwarz inequality to
get

|U2,rq| ≤ (
1

n

n∑
i=1

I2
ikr)

1/2(
1

n

n∑
i=1

I2
imq)

1/2.

By Lemma 6.1, we can derive that
1

n

n∑
i=1

I2
ikr

P−→ 0,
1

n

n∑
i=1

I2
imq

P−→ 0. Then, we get

U2
P−→ 0. Similarly, we can prove that Uν

P−→ 0, ν = 3, . . . , 9. This completes the proof
of Lemma 6.3. �
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6.4. Lemma. Suppose that the regularity conditions C1 − C6 hold. If β is the true
parameter, then

max
1≤i≤n

‖Ẑi(β)‖ = oP (n1/2),(6.4)

‖λ‖ = OP (n−1/2).(6.5)

Proof. According to the de�nition of Ẑi(β) and Lemma 6.2, For the kth (k

= 1, . . . , s) block of Ẑ
(k)
i (β) we have

max
1≤i≤n

‖Ẑ(k)
i (β)‖ ≤ max

1≤i≤n
‖X̃T

i A
−1/2
i MkA

−1/2
i (Ψiεi − Uiβ) + UTi A

−1/2
i Mk

A
−1/2
i Ψiεi − UiA−1/2

i MkA
−1/2
i Uiβ +D

(k)
i β‖

+ max
1≤i≤n

‖(X̃i + Ui)
TA
−1/2
i MkA

−1/2
i Ψi[g(Ti)− ĝ∗(Ti)]‖

+ max
1≤i≤n

‖[mW (Ti)− m̂W (Ti)]
TΨiA

−1/2
i MkA

−1/2
i

[(Ψiεi − Uiβ) + Ψi(g(Ti)− ĝ∗(Ti))]‖
≡ M1 +M2 +M3.

From Lemma 11.2 in Owen [17], we can obtain that M1 = oP (n1/2). By Lemma 6.1 and
Cauchy-Schwarz inequality, Mv = oP (1), v = 2, 3. This proves the �rst equation.
By Lemma 6.2, 6.3 and using the same arguments that are used in the proof of (2.14) in
Owen [16], we can prove the second equation. Then the proof follows. �

Proof. Proof of the Theorem 2.1. Applying the Taylor expansion to (2.9), and invoking
lemmas,we get that

(6.6) l̂(β) = 2

n∑
i=1

{λT Ẑi(β)− [λT Ẑi(β)]2/2}+ oP (1).

by (2.10), it follows that

0 =

n∑
i=1

Ẑi(β)

1 + λT Ẑi(β)

=

n∑
i=1

Ẑi(β)−
n∑
i=1

Ẑi(β)Ẑi(β)Tλ+

n∑
i=1

Ẑi(β)[λT Ẑi(β)]2

1 + λT Ẑi(β)
.

This together with Lemma 6.2-6.4 proves that

n∑
i=1

[λT Ẑi(β)]2 =

n∑
i=1

λT Ẑi(β) + oP (1).

and

λ =

{
n∑
i=1

Ẑi(β)Ẑi(β)T
}−1 n∑

i=1

Ẑi(β) + oP (n−1/2).

therefore,we have

(6.7) l̂(β) =

{
1√
n

n∑
i=1

Ẑi(β)

}T
Σ̂−1

{
1√
n

n∑
i=1

Ẑi(β)

}
+ oP (1).

This together with lemma 6.2 and 6.3 proves Theorem 2.1. �
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Proof. Proof of the Theorem 2.2. Applying the same argument as in the proof of Theorem
2.2 in Tian and Xue [22], we can prove that

β̂ − β = −[Γ̂T Σ̂−1Γ̂]−1Γ̂T Σ̂−1n−1
n∑
i=1

Ẑi(β) + oP (n−1/2),

Similarlly to the proof of Lemma 6.3, we can obtain Γ̂
P−→ Γ. Together this with Lemma

6.2, 6.4 and Slutsky's Theorem, we can prove Theorem 2.2. �

The proofs of Theorems 2.3 and 2.4 are similar to the proofs of Theorems 2.1 and 2.2,
therefore, we omit their proofs.

6.5. Lemma. Suppose that the regularity conditions C1 − C6 hold. If g(t0) is the true
value of the baseline function, then

1√
Nh

n∑
i=1

η̂i(g(t0))− b(t0)
L−→ N(0, v2(t0)).

Proof. It is easy to see that

(6.8)
1√
Nh

n∑
i=1

η̂i(g(t0))− b(t0) = S1(t0) + S2(t0) + S3(t0),

where

S1(t0) =
1√
Nh

n∑
i=1

ni∑
j=1

(εij − UTijβ)Kh(Tij − t0),

S2(t0) =
1√
Nh

n∑
i=1

ni∑
j=1

[g(Tij)− g(t0)]Kh(Tij − t0),

S3(t0) =
1√
Nh

n∑
i=1

ni∑
j=1

Kh(Tij − t0)WT
ij (β − β̂).

It is not di�cult to prove E[S1(t0)] = 0 and var[S1(t0)] = v2(t0)+o(1). We can check that
S1(t0) satis�es the conditions of the Cramer-Wold theorem and the Lindeberg condition
(Ser�ng, [19]). Therefore, we get

(6.9) S1(t0)
L−→ N(0, v2(t0)).

We can also prove that var(S2(t0)) = o(1). Thus

(6.10) S2(t0)
P−→ 0.

By Lemma 6.1 and 6.2 we can get S3(t0) = OP (h1/2). This together with (6.8)-(6.10)
proves Lemma 6.5. �

6.6. Lemma. Suppose that the regularity conditions C1 − C6 hold. If g(t) is the true
value of the baseline function, then

1

Nh

n∑
i=1

η̂2
i (g(t0))

P−→ v2(t0),

max
1≤i≤n

‖η̂i(g(t0))‖ = oP ((Nh)1/2).

Using some arguments similar to those used in the proof of Lemma 6.3 and 6.4, we can
prove Lemma 6.6. The proof is omitted.

6.7. Lemma. Suppose that the regularity conditions C1-C6 hold. Then b̂(t0)
P−→ b(t0).
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Proof. Denote ϕij(t0) = [g(Tij)− gt0)]Kh(Tij − t0) and ϕ̂ij(t0) = [ĝ(Tij)−
ĝ(t0)]Kh(Tij − t0). Then, we have

b̂(t0)− b(t0) =
1√
Nh

n∑
i=1

ni∑
j=1

[ϕ̂ij(t0)− ϕij(t0)]

+
1√
Nh

n∑
i=1

ni∑
j=1

[ϕij(t0)− (h/N)1/2b(t0)]

= M1(t0) +M2(t0).

From Conditions C1− C4 and the Taylor expansion, we have

ϕ̂ij(t0)− ϕij(t0) = {[ĝ′(t0)− g′(t0)](Tij − t0) + oP (|(Tij − t0)|2)}Kh(Tij − t0).

Using Conditions C1 and C2, we can prove that

1√
Nh

n∑
i=1

ni∑
j=1

(Tij − t0)lKh(Tij − t0) = OP (1), l = 1, 2,

and ĝ′(t0)−g′(t0)
P−→ 0. Therefore, we haveM1(t0)

P−→ 0. It is easy to proveM2(t0)
P−→

0. The proof of Lemma 6.7 is completed. �

We now turn to prove Theorems 3.1 and 3.2.

Proof. Proof of the Theorem 3.1. By direct calculation, we can obtain

√
Nh(ĝ(t0)− g(t0)) =

1√
Nh

n∑
i=1

η̂i(g(t0))

/
f̂(t0) + oP (1).

Note that f̂(t0) → f(t), almost surely. This together with Lemma 6.5 proves Theorem
3.1. �

Proof. Proof of the Theorem 3.2. It can be shown by Lemma 6.7 and direction calculation
that

1√
Nh

n∑
i=1

η̂∗i {g(t0)} =
1√
Nh

n∑
i=1

η̂i{g(t0)} − b(t0) + oP (1),(6.11)

1

Nh

n∑
i=1

η̂∗2i {g(t0)} =
1

Nh

n∑
i=1

η̂2
i {g(t0)}+ oP (1),(6.12)

max
1≤i≤n

|η̂∗i {g(t0)}| = oP {(Nh)1/2}.(6.13)

Similar to the proof of the Theorem 2.1, Theorem 3.2 can be proved by (6.11)-(6.13) and
Lemma 6.6. �
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