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Abstract

The generalized varying coe�cient partially linear model (GVCPLM)
enjoys the �exibility of the generalized varying coe�cient model and
the parsimony and interpretability of the generalized linear model. Sta-
tistical inference of GVCPLM is restricted with a condition that the
components of varying and constant coe�cients are known in advance.
Alternatively, the current study is focused on the structure's identi�-
cation of varying and constant coe�cient for GVCPLM and it is based
on the spline basis approximation and the group SCAD. This is proved
that the proposed method can consistently determine the structure of
the GVCPLM under certain conditions, which means that it can accu-
rately choose the varying and constant coe�cients precisely. Simulation
studies and a real data application are conducted to assess the in�nite
sample performance of the proposed method.

Keywords: Group variable selection, Group SCAD, Selection consistency, Struc-

ture identi�cation.

Mathematics Subject Classi�cation (2010): 62J07, 62G05, 62G08.

Received : 01.04.2016 Accepted : 22.09.2016 Doi : 10.15672/HJMS.201614821897

∗School of Statistics, Qufu Normal University, Qufu, Shandong 273165, China, Email:
wmqwxl@hotmail.com
†School of Statistics, Qufu Normal University, Qufu, Shandong 273165, China, Email:

wang_qstj@hotmail.com
‡Nuclear Institute for Food and Agriculture (NIFA), 446, Peshawar, Pakistan, Email:

aminkanju@gmail.com
�Corresponding Author.



1042

1. Introduction

Semiparametric regression models have received great attention in many contempo-
rary statistical studies because it combines the �exibility of nonparametric regression
and the parsimony and interpretability of parametric regression. Considering a general
speci�cation of semiparametric models, the generalized varying coe�cient partially lin-
ear model (GVCPLM) is investigated as an extension of the generalized linear model
(McCullagh and Nelder, 1989)[22] and the generalized varying coe�cient model (GVCM)
(Hastie and Tibshirani 1993[4]; Cai, Fan, and Li 2000[2]).

Let Y be a response variable and its conditional expectation given by the covariate T
and X = (X1, X2, . . . , Xp)

> is de�ned via a known link function g,

g (E(Y |X, T )) = g(µ) =
∑
j∈S1

βjXj +
∑
j∈S2

γj(T )Xj ,(1.1)

where S1 and S2 are mutually exclusive and complementary subsets of {1, . . . , p}, {βj , j ∈
S1} are the regression coe�cients of covariates, and {γj(T ), j ∈ S2} are unspeci�ed
smooth functions. The index variable T is a variable related to time or age in various
research �elds and it's interaction with other predictors is very important. We assume
T ∈ [0, 1] for simplicity. The variance of Y is a function of the mean, that is,

Var(Y |X, T ) = V (µ),

where V (·) is a known function. A lot of research work on variable selection and estima-
tion for the GVCPLM has already been done such as Lam and Fan (2008)[12], Li and
Liang (2008)[14], Lu (2008)[21], and Hu and Cui (2010)[5]. When the link function g
is identity then the GCVPLM can be simpli�ed into the semiparametric partially linear
varying coe�cient model (Li et al. 2002[13]; Xia, Zhang and Tong 2004[29]; Ahmad,
Leelahanon and Li 2005[1]; Kai, Li and Zou 2011[11]; Li, Lin and Zhu 2012[16]).

It is worth mentioning that all the existing results are based on an important pre-
condition that the linear part and the varying coe�cient part are known in advance.
However, this condition is usually unreasonable because in real application it is not clear
whether the regression coe�cients are dependent on the index variable or not. Statis-
tically, treating constant coe�cients as varying reduces estimation e�ciency. Cai, Fan,
and Li (2000)[2] determined constant coe�cients based on the hypothesis testing. For the
varying coe�cient model, Xia, Zhang and Tong (2004)[29] developed a cross-validation
procedure for judging constant and varying coe�cients. Hu and Xia (2012)[6] developed
a shrinkage method based on the adaptive Lasso to identify the constant coe�cients.
Structure's identi�cation in both additive and varying-coe�cient models have been stud-
ied by many researchers (Zhang, Cheng and Liu 2011[30]; Tang, et al. 2012[25]; Wang and
Kulasekera 2012[26]; Lian, Chen and Yang 2012[18]; Lian, Liang and Ruppert 2015[20];
Lian, et al. 2014[19]). This work is motivated from the studies of Huang et al. (2012)[8]
and Wang and Song (2013)[28]. Huang et al. (2012)[8] proposed a semiparametric model
pursuit method for determining the linear and nonlinear e�ects in covariates for the
partially linear model. Wang and Song (2013)[28] studied the identi�cation of varying
coe�cients and constant coe�cients for partially linear varying coe�cient models using
the group SCAD. Both of them used the pro�le least squares method to study the theory.
Our work is a natural extension of Wang and Song (2013)[28] to more general types of
responses using the quasi-likelihood. In addition, the proof of theocratical studies with
quasi-likelihood is a challenging job.

Therefore, in this paper, we focused on the identi�cation of the varying coe�cients
and constant coe�cients of the GVCPLM, which can be embed into a GVCM. Using
the spline method to estimate the varying coe�cients, we transform the identi�cation
of the structure of the GVCPLM into a group variable selection problem. We apply
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the group smoothly clipped absolute deviation (SCAD) penalty to identify the varying
coe�cients and the constant coe�cients. Under some regular conditions, we prove that
this method can consistently determine the structure of the GVCPLM, which means that
it can accurately choose the varying coe�cient components and the constant components.
Furthermore, we demonstrate the convergence rate of the oracle estimator when the true
model is known in advance. Simulation studies are conducted to evaluate the �nite
sample performance of the proposed method. The applicability of the proposed method
is illustrated through a real data analysis on Burn Data (Cai, Fan and Li, 2000[2]).

The rest of the paper is organized as follows. Section 2 proposes the group SCAD
approach and gives the theoretical results. Section 3 illustrates the performance of the
proposed approach by simulation studies and a real data analysis. Some concluding
remarks are presented in Section 4. The technical details are provided in the Appendix.

2. Identi�cation for the GVCPLM via Penalty

The observed data for the ith subject or unit is (Xi, Ti, Yi), i = 1, 2, . . . , n, where Xi =
(Xi1, Xi2, . . . , Xip)

>. The GVCPLM can be embedded into the GVCM (Hastie and
Tibshirani, 1993[4])

g (E(Yi|Xi, Ti)) = g(µi) =

p∑
j=1

φj(Ti)Xij .(2.1)

If some of φj
,s are constants, then the model (2.1) becomes the GVCPLM (1.1). There-

fore, our target is to determine which φj
,s are constants and which are not. We de-

compose φj into a constant component and a function component, that is, φj(Ti) =
βj+γj(Ti). For the unique identi�cation of the βj and γj(Ti), we assume that Eγj(Ti) = 0.
Obviously, this decomposition is unique with βj = Eφj(Ti) and γj(Ti) = φj(Ti) −
Eφj(Ti).

2.1. Spline Approximation. Let 0 = ξ0 < ξ1 < · · · < ξMn+1 = 1 be a partition of
[0, 1] intoMn+1 subintervals Ik = [ξk−1, ξk), k = 1, . . . ,Mn, and IMn+1 = [ξMn , 1], where
Mn = O(nι). Here, 0 < ι < 0.5 is a positive number such that max1≤k≤Mn+1 |ξk−ξk−1| =
O(n−ι). Denote Sm as the space of splines of degree m at all knots. The function s in
this space possesses the following properties (Schumaker (1981)[24], page 108, de�nition
4.1):

(1) s is a polynomial of degree m− 1 in any subinterval;
(2) If m ≥ 2, s is m− 2 times continuously di�erential on [0, 1].

There exists a normalized B-spline basis function {Bk(t), 1 ≤ k ≤ qn} of Sm, where
qn = Mn +m, is the dimension of the space. Hence, for any γnj ∈ Sm, we have

γnj(t) =

qn∑
k=1

αjkBk(t), 1 ≤ j ≤ pn.

Under reasonable smoothness conditions, the function part γj can be approximated by
the spline functions in Sm. If αjk = 0 for 1 ≤ k ≤ qn, then φj is a constant. Thus the
problem becomes variable selection of groups {αjk, 1 ≤ k ≤ qn}.

2.2. Approach. Here, only the conditional mean and variance of the response are spec-
i�ed, so the usual likelihood is not available. We apply the (negative) quasi-likelihood
function, which is de�ned by

Q(µ, y) =

∫ y

µ

y − s
V (s)

ds
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and the negative quasi-likelihood of the collected data {(Xi, Ti, Yi), i = 1, 2, . . . , n} is

`n(βn,αn) =

n∑
i=1

Q

(
g−1

(
pn∑
j=1

βnjXij +

pn∑
j=1

qn∑
k=1

αjkBk(Ti)Xij

)
, Yi

)
,

where βn = (βn1, . . . , βnpn)>, αn = (α>n1, . . . ,α
>
npn)> with αnj = (αj1, . . . , αjqn)>.

Here pn indicates the dependence of p on n. Consider the penalized quasi-likelihood
objective function

`n(βn,αn) + n

pn∑
j=1

pλ(‖αnj‖Aj ),(2.2)

where ‖αnj‖Aj = (α>njAjαnj)
1/2 and Aj = (akl)qn×qn is a matrix with entries akl =∫ 1

0
Bk(t)Bl(t)dt. In this paper, we apply the SCAD penalty advocated by Fan and Li

(2001), which is de�ned by the derivative p′λ(θ) = λ{I(θ ≤ λ) + I(θ > λ)(aλ− θ)+/[(a−
1)λ]} with a > 2 and (t)+ = tI(t > 0). As suggested by Fan and Li (2001)[3], we use
a = 3.7. Denote λ by λn to emphasize the dependency of λ on n.

De�ne ‖s‖ = (
∑d
j=1 s

2
j )

1/2 for any vector s ∈ Rd. For any function f(t) on [0, 1],

denote ‖f‖2 = (
∫ 1

0
f2(t)dt)1/2, whenever the integral exists. For any square matrix

G, denote the smallest and largest eigenvalue of G as ρmin(G) and ρmax(G), respec-
tively. For convenience, let X = (X1, . . . ,Xn)>, where Xi = (Xi1, . . . , Xipn)>. De-
note Z = (Z1, . . . ,Zn)>, where Zi = (Z>i1, . . . ,Z

>
ipn)> is a 1 × pnqn matrix and Zij =

(B1(Ti)Xij , . . . , Bqn(Ti)Xij)
>. Then the objective function (2.2) can be rewritten as

L(βn,αn;λn)

=

n∑
i=1

Q
(
g−1

(
X>i βn + Z>i αn

)
, Yi
)

+ n

pn∑
j=1

pλn(‖αnj‖Aj ).(2.3)

The minimizer of (2.3) is de�ned by (β̂n, α̂n) = arg minβn,αn L(βn,αn;λn). Thus the
estimator of γj(t) is γ̂nj(t) =

∑qn
k=1 α̂jkBk(t), 1 ≤ j ≤ pn.

The set of indices of coe�cients that are estimated to be constants in the regression

model (1.1) is Ŝ1 , {j : ‖α̂nj‖Aj = 0}. Then we have

γ̂nj(t) = 0, j ∈ Ŝ1 and γ̂nj(t) =

qn∑
k=1

α̂jkBk(t), j /∈ Ŝ1.

Hence, for j /∈ Ŝ1, φ̂nj(t) = β̂nj + γ̂nj(t) and for j ∈ Ŝ1, φ̂nj(t) = β̂nj .

2.3. Asymptotic Results. Let µ be a non-negative integer and υ ∈ (0, 1] such that

r = µ + υ > 0.5. Let H be the class of functions h on [0, 1] whose µ-th derivative h(µ)

exists and satis�es a Lipschitz condition of order υ, |h(µ)(t1) − h(µ)(t2)| ≤ C|t1 − t2|υ,
for 0 ≤ t1, t2 ≤ 1, where C is a positive constant. The order of the polynomial spline
m ≥ µ+ 1.

In order to study the consistency of the identi�cation for the GVCPLM and the con-
vergence rate of estimators of varying coe�cients, we �rst de�ne the oracle estimator.
Denote the true value of the varying coe�cient φj(t) by φ0j(t), and φ0j(t) = β0j +γ0j(t).
Let β0 = (β01, . . . , β0pn)> and γ0(Ti) = (γ01(Ti), . . . , γ0pn(Ti))

>, for i = 1, 2, . . . , n. We
have ‖γ0j‖2 = 0 for j ∈ S1. Let kn be the cardinality of S1, the number of linear compo-
nents in the model. Let dn be the cardinality of S2, the number of varying coe�cients
in the model with kn + dn = pn. Suppose that γ0j(t) ∈ H, j ∈ S2. For j ∈ S2, according
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to the condition (A1) and Corollary 6.21 in Schumaker (1981)[24], there exists a vector
αn0j = (α0j1, . . . , α0jqn)> satisfying that ‖γ0j(t)−

∑qn
k=1 α0jkBk(t)‖2 = O(q−rn ). De�ne

(β̃n, α̃n) = arg min
βn,αn

{
n∑
i=1

Q
(
g−1

(
X>i βn + Z>i αn

)
, Yi
)

: αnj = 0, j ∈ S1

}
.

They are the oracle estimators of βn and αn assuming the constant coe�cients were
known in advance. Let Z2i = (Zij , j ∈ S2)>, α2n = (α>nj , j ∈ S2)> and α20 = (α>n0j , j ∈
S2)>. Denote Z2 = (Z2i, i = 1, . . . , n)>. We should note that the oracle estimator can
not be obtained in application. Here, we use it to study the theoretical properties. Hence,
the oracle estimator of γj(t) is

γ̃nj(t) = 0, j ∈ S1 and γ̃nj(t) =

qn∑
k=1

α̃jkBk(t), j ∈ S2.

Write φ̃nj(t) = β̃nj + γ̃nj(t) for j ∈ S2.
For simplicity, de�ne ql(x, y) = ∂l/∂xlQ(g−1(x), y) for l = 1, 2, 3. So we have

q1(x, y) = −(y − g−1(x))ρ1(x) and q2(x, y) = ρ2(x)− (y − g−1(x))ρ′1(x),

where ρl(x) = [dg−1(x)/dx]l/V (g−1(x)). To give the asymptotic results, the following
regularity assumptions are used.

(A1) The covariate T has a continuous density and there exist constants C1 and C2

such that the density function f of T satis�es 0 < C1 ≤ f(t) ≤ C2 < ∞ for all
t ∈ [0, 1].

(A2) The covariates |Xij | (1 ≤ i ≤ n, 1 ≤ j ≤ pn) are bounded away from zero and
in�nity.

(A3) The eigenvalues of X>X/n are bounded away from zero and in�nity. The eigen-
values of

∑n
i=1 q2(X>i β0 + Z>i α0, Yi)XiX

>
i /n are bounded away from zero and

in�nity.
(A4) E[q1(X>1 β0 + Z>1 α0, Y1)]2 < ∞, E[q2(X>1 β0 + Z>1 α0, Y1)]2 < ∞ and c <

q2(X>1 β0 + X>1 γ0(T1), Y1) < C for some constants C > c > 0.
(A5) E[q3(·, Y1)]2 is bounded.
(A6) p2n/n→ 0, d2nq

2
n/n→ 0, pnd

2
nq
−2r
n → 0 and d3nq

−2r+1
n → 0.

(A7)
√

(pn + dnqn)/n+ dnq
−r
n � λn � infj∈S2 ‖γ0j(t)‖2, where two sequences an �

bn means an = o(bn).

Conditions (A1-A5) are regular conditions in the studies about semiparametric statis-
tical inference (Lam and Fan, 2008[12]; Huang, Horowitz andWei 2010[7]; Lian, 2012[17]).
From the condition (A3), it is easy to know that all eigenvalues of qnZ>Z/n are bounded
away from zero and in�nity (Lemma A.1 in Huang, Wu and Zhou, 2004[9]). Conditions
(A6) and (A7) seem to be complex, we discuss them carefully. Suppose that an optimal

qn = O(n1/(2r+1)), pn = O(nc1) and dn = O(nc2) for some 0 < c2 < c1 < 1. Then the
condition (A6) becomes 2c1 < 1, c1 + 2c2 < 2r/(2r + 1) and 3c2 < (2r − 1)/(2r + 1).
If infj∈S2 ‖γ0j(t)‖2 ≥ Mn−c3 for some constants M > 0 and c3 ≥ 0, λn = n−c4 with
c4 > 0, then the condition (A7) becomes

n(c1−1)/2 + nc2−r/(2r+1) � n−c4 � n−c3 ,

which is equivalent to c3 < c4 < min{(1− c1)/2, r/(2r + 1)− c2}.

2.1. Theorem. Suppose that conditions (A1-A6) hold, then we have

(i) ‖β̃n − β0‖ = OP (
√

(pn + dnqn)/n+ dnq
−r
n ).

(ii) ‖α̃n −α0‖ = OP (
√

(pn + dnqn)/n+ dnq
−r
n ).
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Furthermore, ∑
j∈S2

‖φ̃nj(t)− φ0j(t)‖22 = OP
(
(pn + dnqn)/n+ d2nq

−2r
n

)
.

Proof. Let δn =
√
pn/n+pnq

−r
n . It su�ces to show that for any given ε > 0, there exists

a large constant C such that

Pr

{
inf
‖u‖=C

`n(β0 + δnu1,α20 + δnu2) > `n(β0,α20)

}
≥ 1− ε,(2.4)

where u = (u>1 ,u
>
2 )> with u1 being pn × 1 vector and u2 being dn × 1 vector . (2.4)

implies that with probability at least 1 − ε, there exists a local minimum in the ball

{β0 + δnu1 : ‖u1‖ ≤ C}. That is, there exists a local minimizer such that ‖β̃n − β0‖ =

OP (
√
pn/n+pnq

−r
n ). Due to the convexity of `n(·), β̃n is the global minimizer. Similarly,

‖α̃2n −α20‖ = OP (
√
pn/n+ pnq

−r
n ).

Let θ0 = (β>0 ,α
>
20)>, Wi = (X>i ,Z

>
2i)
> and m0i = X>i β0 + Z>2iα20 = W>

i θ0, then
W = (X,Z2) and m0 = W>θ0. By some calculation, we have

`n(β0 + δnu1,α20 + δnu2)− `n(β0,α20)

=

n∑
i=1

Q
(
g−1

(
X>i (β0 + δnu1) + Z>2i(α20 + δnu2)

)
, Yi
)

−
n∑
i=1

Q
(
g−1

(
X>i β0 + Z>2iα20

)
, Yi
)

= δn

n∑
i=1

q1(m0i, Yi)(X
>
i u1 + Z>2iu2) +

δ2n
2

n∑
i=1

q2(m0i, Yi)(X
>
i u1 + Z>2iu2)2

+
δ3n
6

n∑
i=1

q3(m∗i , Yi)(X
>
i u1 + Z>2iu2)3

4
= In1 + In2 + In3,

where m∗i is between m0i and m0i + δnW
>
i u.

For In1, let q1(m0,Y ) = (q1(m01, Y1), . . . , q1(m0n, Yn))>, then

‖In1‖2 = δ2n‖q1(m0,Y )>Wu‖2

≤ δ2n‖PWq1(m0,Y )‖2‖Wu‖2,

where PW = W(W>W)−1W> is a projection matrix. By the condition (A3), it is easy
to show that all the eigenvalues of W>W/n are bounded away from zero and in�nity.
Hence, ‖Wu‖2 = O(n‖u‖2). In addition,

‖PWq1(m0,Y )‖2

= ‖PW [q1(Xβ0 + Xγ0(T ),Y ) + q1(Xβ0 + Zα0,Y )− q1(Xβ0 + Xγ0(T ),Y )]‖2

≤ 2‖PWq1(Xβ0 + Xγ0(T ),Y )‖2

+2‖PW [q1(Xβ0 + Zα0,Y )− q1(Xβ0 + Xγ0(T ),Y )]‖2

4
= Jn1 + Jn2,

where Xγ0(T ) =
(
X>1 γ0(T1), . . . ,X>n γ0(Tn)

)>
. By the condition (A4), we have

Jn1 = OP (tr(PW )) = OP (pn + dnqn).
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For Jn2, letB(Ti) = Diag(B1(Ti)
>, . . . ,Bpn(Ti)

>) withBj(Ti) = (Bj1(Ti), . . . , Bjqn(Ti))
>

Jn2 ≤ 2

n∑
i=1

[
q1(X>i β0 + Z>i α0, Yi)− q1(X>i β0 + X>i γ0(Ti), Yi)

]2
≤ 4

n∑
i=1

q22(X>i β0 + X>i γ0(Ti), Yi)
[
X>i (γ0(Ti)−B(Ti)α0)

]2
+4

n∑
i=1

q23(m̃i, Yi)
[
X>i (γ0(Ti)−B(Ti)α0)

]4
= OP (nd2nq

−2r
n ),

where m̃i is between X>i β0 + Z>i α0 and X>i β0 + X>i γ0(Ti). In fact, by the condition
(A4)

E

{
n∑
i=1

q22(X>i β0 + X>i γ0(Ti), Yi)
[
X>i (γ0(Ti)−B(Ti)α0)

]2}

≤M
n∑
i=1

‖Xi‖2E‖γ0(Ti)−B(Ti)α0‖2

= O(nd2nq
−2r
n ),

and

E

{
n∑
i=1

q23(m̃i, Yi)
[
X>i (γ0(Ti)−B(Ti)α0)

]4}

≤M
n∑
i=1

‖Xi‖4E‖γ0(Ti)−B(Ti)α0‖4

= O(nd4nq
−4r
n ) = o(nd2nq

−2r
n )

Hence, |In1| = OP
(
nδn(

√
(pn + dnqn)/n+ dnq

−r
n )
)
‖u‖.

For In2, by the condition (A3), we have

In2 ≥ 2δ2n

n∑
i=1

q2(m0i, Yi)(W
>
i u)2

≥ Mnδ2n‖u‖2.

For In3, by the condition (A6), we have

|In3| ≤ δ3n

n∑
i=1

|q3(m∗i , Yi)| · |W>
i u|3

≤ Mδ3n(
√
pn + dnqn )‖u‖

n∑
i=1

(W>
i u)2

≤ Mnδ3n(
√
pn + dnqn )‖u‖3.

Hence, In2 dominates all of the items uniformly when a su�ciently large C is chosen. As
In2 is positive, this completes the proof of Theorem 2.1.
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Next, we prove

∑
j∈S2

‖γ̃nj(t)− γ0j(t)‖22

≤ 2
∑
j∈S2

‖γ̃nj(t)−Bj(t)
>α0j‖22 + 2

∑
j∈S2

‖Bj(t)
>α0j − γ0j(t)‖22

= OP
(
(q−1
n (pn + dnqn)/n+ d2nq

−2r−1
n ) + dnq

−2r
n

)
= OP

(
(pn + dnqn)/n+ d2nq

−2r
n

)
.

Hence,
∑
j∈S2

‖φ̃nj(t)− φ0j(t)‖22 = OP
(
(pn + dnqn)/n+ d2nq

−2r
n

)
. �

This theorem gives the convergence rate of the oracle estimator. If pn is bounded,
each component in (2.1) is second order di�erentiable (r = 2) and take qn = O(n1/5),

then the convergence rate in Theorem 2.1 is n−4/5, which is the optimal convergence rate
in nonparametric regression.

2.2. Lemma. Suppose that 1/(qn(a− 1)) is less than the smallest eigenvalue of∑n
i=1 q2(X>i β0 + Z>i α0, Yi)ZiZ

>
i /n, so we have (βn,αn) is the solution of (2.3) if and

only if

(1)
∑n
i=1 q1(X>i βn + Z>i αn, Yi)Xij = 0, for j = 1, 2, . . . , pn,

(2)
∑n
i=1 q1(X>i βn + Z>i αn, Yi)Zij = 0 and ‖αnj‖Aj ≥ aλn, for j ∈ S2,

(3) ‖
∑n
i=1 q1(X>i βn + Z>i αn, Yi)Zij‖ ≤ nλn and ‖αnj‖Aj < λn, for j ∈ S1.

This lemma is a direct extension of Theorem 1 in Kim et al. (2008)[10] to the case of
quasi-likelihood. Thus, we omit the proof of this lemma.

2.3. Theorem. (Selection Consistency). Suppose that 1/(qn(a − 1)) is less than the

smallest eigenvalue of
∑n
i=1 q2(X>i β0+Z>i α0, Yi)ZiZ

>
i /n. Under conditions (A1)�(A7),

we have

Pr(β̂n = β̃n, α̂n = α̃n)→ 1.

Consequently, Pr(Ŝ1 = S1)→ 1.

Proof. Since 1/(qn(a− 1)) is less than the smallest eigenvalue of∑n
i=1 q2(X>i β0 +Z>i α0, Yi)ZiZ

>
i /n, the objective function (2.3) is a convex function, so

we only need to show that (β̃n, α̃n) satis�es equations (1)-(3) of Lemma 2.2. By the

de�nition of (β̃n, α̃n), it is easy to know (1) holds, and
∑n
i=1 q1(X>i β̃n+Z>i α̃n, Yi)Zij =

0 for j ∈ S2. Next, we verify ‖α̃nj‖Aj ≥ aλn, for j ∈ S2. In fact,

‖α̃nj‖Aj = ‖γ̃nj(t)− γ0j(t) + γ0j(t)‖2
≥ min

j∈S2

‖γ0j(t)‖2 − ‖γ̃nj(t)− γ0j(t)‖2.

By the condition (A7), we have minj∈S2 ‖γ0j(t)‖2 � λn and ‖γ̃nj(t)− γ0j(t)‖2 � λn, so
(2) holds.
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Since ‖α̃nj‖Aj = 0, for j ∈ S1, so ‖αnj‖Aj < λn, for j ∈ S1. Furthermore,

n∑
i=1

q1(X>i β̃n + Z>i α̃n, Yi)Zij

=

n∑
i=1

q1(X>i β0 + X>i γ0(Ti), Yi)Zij

+

n∑
i=1

q2(X>i β0 + X>i γ0(Ti), Yi)Zij(Z
>
i α̃n −X>i γ0(Ti))

+
1

2

n∑
i=1

q3(·, Yi)Zij(Z>i α̃n −X>i γ0(Ti))
2

4
= IIn1 + IIn2 + IIn3.

First, for IIn1, by conditions (A2) and (A4), and Lemma 6.1 of Zhou, Shen and Wolf
(1998)[31], we have

Pr

(
max
j∈S1

∥∥∥∥∥
n∑
i=1

q1(X>i β0 + X>i γ0(Ti), Yi)Zij

∥∥∥∥∥ > nλn/3

)

≤ 9kn
n2λ2

n

E

∥∥∥∥∥
n∑
i=1

q1(X>i β0 + X>i γ0(Ti), Yi)Zij

∥∥∥∥∥
2

≤ 9kn
n2λ2

n

qn∑
k=1

{
n∑
i=1

E
[
q21(X>i β0 + X>i γ0(Ti), Yi)X

2
ijB

2
jk(Ti)

]}

=
9kn
n2λ2

n

O(n) = O
(
pn/(nλ

2
n)
)

= o(1),

For IIn2, by conditions (A2), (A3) and (A4),∥∥∥∥∥
n∑
i=1

q2(X>i β0 + X>i γ0(Ti), Yi)Zij(Z
>
i α̃n −X>i γ0(Ti))

∥∥∥∥∥
2

=

qn∑
k=1

[
n∑
i=1

q2(X>i β0 + X>i γ0(Ti), Yi)Bjk(Ti)XijX
>
i (B(Ti)α̃n − γ0(Ti))

]2

≤
qn∑
k=1

[
n∑
i=1

q22(X>i β0 + X>i γ0(Ti), Yi)B
2
jk(Ti)X

2
ij

][
n∑
i=1

(Z>i α̃n −X>i γ0(Ti))
2

]
= OP (n)OP

(
n((pn + dnqn)/n+ d2nq

−2r
n )

)
By the condition (A7),∥∥∥∥∥

n∑
i=1

q2(X>i β0 + X>i γ0(Ti), Yi)Zij(Z
>
i α̃n −X>i γ0(Ti))

∥∥∥∥∥ = op(nλn)

Similarly, we obtain IIn3 = oP (nλn). Hence (3) holds. �

This theorem shows that the proposed estimator can correctly distinguish constant
e�ects and varying e�ects with probability approaching 1. Hence, the proposed estimator
enjoys the oracle property in the sense that it is the same as the oracle estimator assuming
the identity of constants and varying coe�cients were known in advance.
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2.4. Computation. To solve the minimizer of (2.2), we use the local quadratic ap-
proximation (LQA) proposed by Fan and Li (2001)[3]. For a given u0 6= 0, the penalty
function can be locally approximated by a quadratic function as

[pλn(|u|)]′ = p′λn
(|u|)sgn(u) ≈ {p′λn

(|u0|)/|u0|}u,

namely,

pλn(|u|) ≈ pλn(|u0|) +
1

2
{p′λn

(|u0|)/|u0|}(u2 − u2
0).

More speci�cally, we take the initial value α0
nj with ‖α0

nj‖Aj > 0, j = 1, . . . , pn. The
penalty term can be approximated as

pλn(‖αnj‖Aj ) ≈ pλn(‖α0
nj‖Aj ) +

1

2
{p′λn

(‖α0
nj‖Aj )/‖α0

nj‖Aj}(‖αnj‖
2
Aj
− ‖α0

nj‖2Aj
).

Hence, removing the irrelevant constants, (2.2) becomes

L(βn,αn;λn) =
n∑
i=1

Q
(
g−1

(
X>i βn + Z>i αn

)
, Yi
)

+ n/2α>nΣλn(α0
n)αn,

where

Σλn(α0
n) = diag

{
p′λn

(‖α0
nj‖Aj )

‖α0
nj‖Aj

Aj , j = 1, . . . , pn

}
.

The Newton-Raphson iterative algorithm is used to �nd the solution.
Several tuning parameter's selection procedures are available in the literature such

as cross-validation, generalized cross-validation, AIC and BIC. As Wang, Li and Tsai
(2007)[27],Huang, Wei and Ma (2012)[8], and Li, Xue and Lian (2012)[15], we use BIC
(Schwarz, 1978[23]) to select the tuning parameter for each method. The BIC is de�ned
by

BIC(λ) = 2`n(β̂n, α̂n) + qndfλ logn,

where (β̂n, α̂n) is the minimizer of the equation (2.2) for a given λ and dfλ is the number
of varying coe�cients.

3. Numerical Examples

To examine the �nite sample performance of the proposed method, we conduct sim-
ulation studies for the logistic regression model and Poisson regression model. We also
present an analysis of a real data.
Example 1. In this example, we generate the data from the following model

logit[Pr(Yi = 1|xi, Ti)] =

pn∑
j=1

βj(Ti)Xij , i = 1, 2, . . . , n,

where xi = (Xij , j = 1, . . . , pn)> with Xij being generated from standard normal distri-
bution N(0, 1). The index variable Ti is uniformly distributed over [0, 1]. We consider
pn = 4 and 6. When pn = 4, the true coe�cients β1(Ti) = 2, β2(Ti) = 1, β3(Ti) =
2T 3

i + 4T 2
i − 4Ti and β4(Ti) = 2 sin(2πTi). Thus, the number of constant coe�cients

is 2 and the number of varying coe�cients is 2. When pn = 6, the true coe�cients
β1(Ti) = 2, β2(Ti) = 1, β3(Ti) = −2, β4(Ti) = −1, β5(Ti) = 2T 3

i + 4T 2
i − 4Ti and

β6(Ti) = 2 sin(2πTi). That is, the number of constant coe�cients is 4 and the num-
ber of varying coe�cients is 2. In the following simulation, we use cubic B-spline to
approximate each function. As suggested by Lian (2012)[17], we �x the number of basis
functions with qn = 5. The sample size n is set to be 500, 600 and 700. For each case,
100 replications are conducted.
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The simulation results are presented in Tables 1�3. We compare the performance
of the SCAD and Lasso. Table 1 shows the number of times each component selected
as a varying coe�cient based on 100 replications. Table 2 gives the average number
of varying coe�cients being selected (NVC) and the average number of true varying
coe�cients being selected (NTVC). In Table 3, we present the root mean squared errors
for all component functions, which is de�ned by

RMSE(j) =

√√√√ 1

1000

1000∑
i=1

[β̂j(ti)− βj(ti)]2, j = 1, . . . , pn,

where {ti, i = 1, . . . , 1000} is a grid equally spaced on [0, 1]. Enclosed in parentheses are
the corresponding standard errors.

From Table 1 and Table 2, we can make the following observations: Table 1 shows
that the group SCAD was more accurate than the group Lasso in identifying the varying
coe�cients and the constant coe�cients. Table 2 indicates that the group SCAD seems
to select less number of varying coe�cients than the Lasso especially for the smaller
sample size. The reason may be that the Lasso always tends to keep more variables. In
Table 3, we can see that, the proposed method with the group SCAD has the smaller
mean square errors than the group Lasso for the constant coe�cients, and is similar
with the oracle estimator. It is valuable to note that both the group SCAD estimators
and the group Lasso estimators of the varying coe�cients could outperform the oracle
estimators for the varying coe�cients. This can be explained by that some shrinkage is
bene�cial to reducing over�tting and improving stability. Overall, the proposed method
with the group SCAD is e�ective in distinguishing the constant coe�cients from the
varying coe�cients in the simulation models. Figure 1 shows the estimated varying
coe�cient functions along with the true function components from the group SCAD and
group Lasso. The estimated coe�cient functions are computed based on the mean of α̂n
in 200 runs when n = 700 and pn = 4. We can see that the SCAD performs better than
the Lasso.

Table 1. Number of times each component was selected as a varying
coe�cient in the 100 replications for the logistic model.

pn n Method β1 β2 β3 β4 β5 β6

4 500 SCAD 5 2 48 100

Lasso 18 24 89 98

600 SCAD 4 0 54 100

Lasso 22 27 95 100

700 SCAD 2 2 58 100

Lasso 21 31 98 100

6 500 SCAD 3 1 4 0 30 91

Lasso 2 6 4 4 65 83

600 SCAD 2 1 2 0 31 97

Lasso 3 5 1 6 76 89

700 SCAD 0 0 0 0 46 99

Lasso 2 5 2 7 88 97



1052

Table 2. Model selection results for the logistic model

pn n Method NVC NTVC

4 500 SCAD 1.55 (0.657) 1.48 (0.502)

Lasso 2.29 (0.913) 1.87 (0.393)

600 SCAD 1.58 (0.572) 1.54 (0.501)

Lasso 2.44 (0.891) 1.95 (0.219)

700 SCAD 1.62 (0.565) 1.58 (0.496)

Lasso 2.50 (0.847) 1.98 (0.141)

6 500 SCAD 1.29 (0.795) 1.21 (0.591)

Lasso 1.64 (1.000) 1.48 (0.772)

600 SCAD 1.33 (0.682) 1.28 (0.514)

Lasso 1.80 (0.841) 1.65 (0.672)

700 SCAD 1.45 (0.520) 1.45 (0.520)

Lasso 2.01 (0.703) 1.85 (0.435)
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Table 3. The root of average mean square error of each component
for the logistic model.

pn n SCAD Lasso Oracle

4 500 β1 0.218 (0.272) 0.363 (0.223) 0.157 (0.126)

β2 0.121 (0.181) 0.226 (0.152) 0.100 (0.080)

β3 1.003 (0.320) 0.884 (0.157) 1.152 (0.153)

β4 2.053 (0.162) 1.737 (0.216) 2.053 (0.145)

600 β1 0.212 (0.247) 0.335 (0.201) 0.176 (0.129)

β2 0.103 (0.082) 0.229 (0.128) 0.096 (0.079)

β3 0.998 (0.245) 0.912 (0.165) 1.142 (0.119)

β4 2.051 (0.128) 1.773 (0.203) 2.063 (0.120)

700 β1 0.166 (0.138) 0.311 (0.186) 0.147 (0.113)

β2 0.130 (0.124) 0.222 (0.149) 0.112 (0.083)

β3 0.971 (0.213) 0.892 (0.132) 1.107 (0.104)

β4 2.056 (0.118) 1.786 (0.187) 2.069 (0.111)

6 500 β1 0.253 (0.292) 0.350 (0.221) 0.222 (0.162)

β2 0.185 (0.258) 0.212 (0.157) 0.150 (0.110)

β3 0.303 (0.460) 0.351 (0.170) 0.219 (0.210)

β4 0.142 (0.109) 0.200 (0.131) 0.144 (0.102)

β5 0.930 (0.302) 0.802 (0.136) 1.144 (0.157)

β6 2.003 (0.263) 1.590 (0.148) 2.083 (0.173)

600 β1 0.230 (0.205) 0.358 (0.164) 0.193 (0.146)

β2 0.159 (0.161) 0.210 (0.107) 0.145 (0.122)

β3 0.235 (0.234) 0.353 (0.158) 0.189 (0.165)

β4 0.147 (0.105) 0.201 (0.113) 0.132 (0.103)

β5 0.913 (0.254) 0.793 (0.048) 1.137 (0.137)

β6 2.007 (0.203) 1.589 (0.104) 2.049 (0.143)

700 β1 0.190 (0.156) 0.335 (0.165) 0.177 (0.152)

β2 0.128 (0.114) 0.183 (0.100) 0.124 (0.113)

β3 0.168 (0.138) 0.348 (0.148) 0.163 (0.133)

β4 0.126 (0.092) 0.192 (0.107) 0.121 (0.090)

β5 0.961 (0.241) 0.805 (0.053) 1.131 (0.126)

β6 2.025 (0.150) 1.617 (0.099) 2.052 (0.125)
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Figure 1. The estimated coe�cient functions by the group SCAD
(dashed line, green color) and the group Lasso (dotted line, blue color)
and true coe�cient functions (solid line)

Example 2. We consider the Poisson regression model with the true conditional mean
function being

E(Yi|xi, Ti) = exp

(
pn∑
j=1

βj(Ti)Xij

)
, i = 1, 2, . . . , n.

We set pn = 4 and 6. For pn = 4, let β1(Ti) = 1, β2(Ti) = 0.5, β3(Ti) = 2Ti(1 −
Ti), β4(Ti) = sin(2πTi). For pn = 6, let β1(Ti) = 1, β2(Ti) = 0.5, β3(Ti) = −1, β4(Ti) =
−0.5, β5(Ti) = 2Ti(1−Ti), β6(Ti) = sin(2πTi). The other aspects of the simulation set-up
are the same as in Example 1. The simulation results for this example shown in Tables
4-6 demonstrate a similar e�ect as that of Example 1. Figure 2 shows the estimated
varying coe�cient functions along with the true function components from the group
SCAD and group Lasso. The estimated coe�cient functions are given based on the same
setting of Figure 1. We can see that β3(·) is under �tting for both the SCAD and Lasso.
However, the estimations of β4(·) are very close to the true curve.
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Table 4. Number of times each component was selected as a varying
coe�cient in the 100 replications for the Poisson model.

pn n Method β1 β2 β3 β4 β5 β6

4 500 SCAD 13 12 85 100

Lasso 24 18 86 100

600 SCAD 20 13 91 100

Lasso 38 24 93 100

700 SCAD 21 10 98 100

Lasso 43 20 97 100

6 500 SCAD 33 14 35 13 82 100

Lasso 33 13 35 8 74 100

600 SCAD 24 7 24 12 92 100

Lasso 28 11 26 17 88 100

700 SCAD 26 9 22 11 96 100

Lasso 25 12 29 15 94 100

Table 5. Model selection results for the Poisson model

pn n Method NVC NTVC

4 500 SCAD 2.10 (0.732) 1.85 (0.359)

Lasso 2.28 (0.842) 1.86 (0.349)

600 SCAD 2.24 (0.740) 1.91 (0.288)

Lasso 2.55 (0.821) 1.93 (0.256)

700 SCAD 2.29 (0.656) 1.98 (0.141)

Lasso 2.60 (0.752) 1.97 (0.171)

6 500 SCAD 2.77 (1.118) 1.82 (0.386)

Lasso 2.63 (1.244) 1.74 (0.441)

600 SCAD 2.59 (0.805) 1.92 (0.273)

Lasso 2.70 (1.020) 1.88 (0.327)

700 SCAD 2.64 (0.847) 1.96 (0.197)

Lasso 2.75 (0.869) 1.94 (0.239)
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Table 6. The root of average mean square error of each component
for the Poisson model.

pn n SCAD Lasso Oracle

4 500 β1 0.033 (0.025) 0.041 (0.028) 0.028 (0.022)

β2 0.034 (0.029) 0.038 (0.031) 0.034 (0.024)

β3 0.168 (0.025) 0.174 (0.028) 0.430 (0.030)

β4 0.970 (0.033) 0.949 (0.040) 1.013 (0.036)

600 β1 0.029 (0.024) 0.033 (0.025) 0.028 (0.024)

β2 0.029 (0.028) 0.034 (0.029) 0.032 (0.026)

β3 0.168 (0.021) 0.176 (0.026) 0.425 (0.028)

β4 0.972 (0.036) 0.953 (0.037) 1.005 (0.030)

700 β1 0.028 (0.020) 0.033 (0.021) 0.031 (0.022)

β2 0.028 (0.022) 0.031 (0.025) 0.032 (0.023)

β3 0.171 (0.024) 0.178 (0.025) 0.428 (0.027)

β4 0.974 (0.029) 0.958 (0.030) 1.003 (0.028)

6 500 β1 0.025 (0.019) 0.029 (0.022) 0.030 (0.025)

β2 0.025 (0.017) 0.027 (0.020) 0.030 (0.025)

β3 0.022 (0.018) 0.025 (0.019) 0.030 (0.023)

β4 0.021 (0.015) 0.023 (0.016) 0.034 (0.027)

β5 0.167 (0.018) 0.168 (0.018) 0.438 (0.046)

β6 0.965 (0.037) 0.943 (0.037) 1.004 (0.033)

600 β1 0.019 (0.014) 0.022 (0.017) 0.030 (0.024)

β2 0.020 (0.016) 0.022 (0.017) 0.033 (0.025)

β3 0.017 (0.014) 0.020 (0.015) 0.031 (0.020)

β4 0.021 (0.016) 0.022 (0.016) 0.029 (0.022)

β5 0.166 (0.012) 0.168 (0.013) 0.432 (0.034)

β6 0.972 (0.030) 0.951 (0.030) 1.011 (0.028)

700 β1 0.017 (0.014) 0.019 (0.014) 0.025 (0.020)

β2 0.018 (0.014) 0.020 (0.014) 0.027 (0.021)

β3 0.016 (0.012) 0.019 (0.013) 0.031 (0.020)

β4 0.019 (0.014) 0.019 (0.014) 0.028 (0.021)

β5 0.166 (0.012) 0.167 (0.012) 0.429 (0.032)

β6 0.979 (0.025) 0.959 (0.026) 1.010 (0.031)
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Figure 2. The estimated coe�cient functions by the group SCAD
(dashed line, green color) and the group Lasso (dotted line, blue color)
and true coe�cient functions (solid line)

Example 3. We now apply the methodology proposed in this paper to analyze a data set
compiled by the General Hospital Burn Center at the University of Southern California.
The dataset consists of 981 observations. The binary response variable Y is 1 for those
victims who survived their burns and 0 otherwise, the variable T in this application
represents age and three covariates were considered including X1 = sex, X2 = log(burn
area +1), binary variable X3 = oxygen (0 normal, 1 abnormal). We scale the covariate
T to [0, 1]. The intercept term is added and the following logistic varying coe�cient
regression model is considered

logit[Pr(Y = 1|X1, X2, X3, T )] = φ0(T ) + φ1(T )X1 + φ2(T )X2 + φ3(T )X3.

We are interested in examining whether the regression coe�cients vary over di�er-
ent ages. Cubic B-splines with six basis functions are also used to approximate each
coe�cient. The �nial model obtained by the SCAD method is

logit[Pr(Y = 1|X1, X2, X3, T )] = φ0(T )− 0.1268X1 + φ2(T )X2 − 0.3163X3.

The Lasso method gives the model

logit[Pr(Y = 1|X1, X2, X3, T )] = φ0(T )− 0.1593X1 − 2.8479X2 − 0.3633X3.

Cai, Fan and Li (2000)[2] gave the analysis about this data. They obtained that the
coe�cient functions φ1(T ) and φ3(T ) were independent of age. This result is the same as
that given by the SCAD in this paper. Figure 3 plots the estimated coe�cient functions
of φ0 and φ2 from the group SCAD and group Lasso approaches.

To examine the prediction performance of the SCAD and Lasso, we randomly chose
700 observations as training data to �t the model, and the remaining 281 observations
are used as test data. This whole process is repeated 100 times. The prediction accuracy
of these two methods are shown in Figure 4. From the box plots in Figure 4, we can see
that the SCAD method performs better than the Lasso method.
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4. Conclusions

In this paper, the structure of the GVCPLM is identi�ed using the group SCAD and
it is proved that the varying coe�cients and constant coe�cients can identify consis-
tently with probability tending to one under certain regularity conditions. Furthermore,
the convergence rate of the proposed estimator is obtained and the model selection is
considered only.
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