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Öz 

Bu çalışmada yüksek boyutlu veri setlerinde boyut indirgemeyi ve indirgenen modellerin tahmin performansını artırmayı 

hedefleyen K-Ortalamalar kümeleme temelli bir özellik seçimi yöntemi önerilmektedir. Önerilen yöntemde her bir bağımsız 

değişken özellik olarak tanımlanmaktadır. Tanımlanan bu özellikler K-Ortalamalar kümeleme algoritmasıyla kümelenir, her 

kümeden kümeyi temsil düzeyi en yüksek olan özellik seçilerek hafızaya alınır. Sonraki adımda hafızaya alınan yani kümeleri 

temsil eden bu özellikler ile çok değişkenli doğrusal regresyon, Ridge regresyon ve LASSO regresyon yöntemleri kullanılarak 

regresyon modelleri oluşturulur. Gerçekleştirilen boyut indirgeme işlemi çoklu bağlantı sorununu azaltmaktadır. Ayrıca 

önerilen indirgenmiş çok değişkenli doğrusal regresyon modeli, indirgenmiş Ridge regresyon modeli ve indirgenmiş LASSO 

regresyon modeli, çok değişkenli regresyon yöntemiyle karşılaştırılmıştır. c Elde edilen bulgular, önerilen boyut indirgeme 

modellerinin yüksek boyutlu veri ortamlarında hem etkinlik hem de verimlilik açısından kayda değer performans sergilediğini 

kanıtlamaktadır. 

Anahtar Kelimeler: K-Ortalamalar kümeleme, Özellik seçimi, Makine Öğrenmesi, Çok değişkenli regresyon  

 

Abstract 

This study proposes a K-Means Cluster based feature selection method that aims to reduce the dimensionality of high-

dimensional data sets and improve the prediction performance of the reduced models. In the proposed method, each 

independent variable is defined as a feature. These defined features are clustered using the K-Means algorithm, and the 

feature with the highest cluster representation level is selected from each cluster and stored in memory. In the next step, 

regression models are created using multivariate linear regression, Ridge regression, and LASSO regression methods with 

these features stored in memory, which represent the clusters. The dimension reduction process reduces the multicollinearity 

problem. Additionally, the proposed reduced multivariate linear regression model, reduced Ridge regression model, and 

reduced LASSO regression model were compared with the multivariate regression method. In comparison based on actual 

data, the reduced models showed an improvement of 10% to 38% over the unreduced model according to the OMYH criterion 

and an improvement of 8% to 50% according to the HKOK criterion. The findings demonstrate that the proposed dimension 

reduction models exhibit remarkable performance in terms of both effectiveness and efficiency in high-dimensional data 

environments. 

Keywords: K-Means clustering, Feature selection, Dimension reduction, Machine learning, Multivarite regression 

 

 

I. GİRİŞ 
Günümüzde sağlık hizmetlerinden eğitim sistemlerine, finansal analizlerden perakende ve üretim süreçlerine kadar 

geniş bir yelpazede yüksek boyutlu veri setleri karşımıza çıkmaktadır. Ortaya çıkan bu veri setleri yüzlerce, hatta 

binlerce bağımsız değişkenin bir arada değerlendirilmesi sonucunda hem çoklu bağlantı (multicollinearity) 

sorununa hem de modelin genel performansını olumsuz etkileyen birçok problemin oluşmasına zemin hazırlar. 

Çoklu bağlantı belirtilerinden biri olan değişkenler arasındaki yüksek korelasyon, model katsayılarının 

belirsizleşmesine, modelin tahmin değerlerinin yanlış olmasına ve sonuçların güvenilirliğinin azalmasına yol açar 

[1]. Bu koşullar altında, gereksiz veya bilgi katkısı düşük değişkenlerin elenmesi hem modelin yorumlanabilirliğini 

artırmak hem de aşırı öğrenme (overfitting) riskini azaltmak için kaçınılmaz bir gereklilik haline gelir [2]. Özellik 

seçimi, tam da bu noktada, modele dahil edilecek değişken alt kümesinin dikkatli bir biçimde belirlenmesini 

sağlayarak veri boyutunun indirgenmesine, model eğitim sürecindeki hesaplama maliyetinin düşürülmesine ve 

öngörü doğruluğunun istatistiksel anlamlılık düzeylerinde iyileştirilmesine olanak sağlar [3, 4]. 

https://orcid.org/0009-0006-7021-3185
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Bu sayede, büyük ölçekli veri ortamlarında hem model 

verimliliği hem de genelleme yeteneği kayda değer 

ölçüde artırılmış olur. Özellik seçimi, çeşitli alanlardaki 

araştırmacılar arasında yaygın olarak tercih edilen bir 

yöntem haline gelmiştir. Saeys, ve ark. 

[5], Chandrashekar ve Sahin [6], Li ve ark. [7] J., 

Khaire ve Dhanalakshmi [8], Yang ve ark. [9] ve Guyon 

ve Elisseeff [2] tarafından özellik seçim yöntemleri üç 

ana başlık altında toplanmıştır. Birinci ana başlık, filtre 

yöntemleri olup, değişkenlerin korelasyon katsayısı, 

ki-kare testi, bilgi kazancı gibi bağımsız istatistiki 

ölçütler temelinde sıralanarak en yüksek puanlıların 

seçilmesini öngörür [6]. İkinci ana başlık olan 

sarmalayıcı (wrapper) yöntemleri; belirli bir öğrenme 

algoritmasını dış döngü şeklinde kullanarak farklı alt 

kümelerin performansını karşılaştırır ve en uygun alt 

küme yapısını ileri-geri seçim, boşluk arama vb. iteratif 

olarak belirler [10]. Üçüncü ana başlık ise gömülü 

(embedded) yöntemlerdir; bu yöntemler, özellik seçme 

işlemini modelin öğrenme mekanizmasının bir parçası 

haline getirerek hem tahmin doğruluğunu hem de 

modelin genelleme yeteneğini yükseltir. Özellikle 

Tibshirani [11] tarafından önerilen En Küçük Mutlak 

Küçülme ve Seçim Operatörü (Least Absolute 

Shrinkage and Selection Operator, LASSO) yöntemi, 

regresyon katsayılarına L1 ceza terimi uygulayarak 

gereksiz değişkenlerin ağırlık matrisinden 

uzaklaştırılmasını sağlar. Zou ve Hastie [12] tarafından 

tanımlanan Elastic Net ise L1 ve L2 normlarının 

birlikte kullanıldığı ceza terimiyle hem değişken 

seçimini hem de model kararlılığını eş zamanlı olarak 

gerçekleştirir. Bu yaklaşımlar, ceza terimi kullanan 

doğrusal modellerde gereksiz değişkenleri ağırlık 

matrisinden uzaklaştırmaktadır [13]. Ayrıca, Breiman 

[14] tarafından geliştirilen Rasgele Orman (Random 

Forest) yöntemi, topluluk öğrenmesi kapsamında 

birden çok karar ağacı kullanarak değişken önemine 

dayalı seçim mekanizmalarıyla öne çıkan özellikleri 

belirlemeyi mümkün kılar. Friedman [15] ise Gradyan 

Güçlendirme Makinesi (Gradient Boosting Machine) 

yaklaşımıyla, zayıf öğrenicileri ardışık olarak 

birleştirerek her adımda değişken ağırlıklarını 

güncellemek suretiyle güçlü tahmin modelleri 

oluşturur. Böylece gömülü yöntemler, özellik seçimini 

ön işleme adımından çıkartıp modelin parametre 

optimizasyonu süreciyle bütünleştirerek hem 

hesaplama verimliliği sağlar hem de aşırı öğrenme 

riskini azaltır.  

 

Çoğu geleneksel filtre yöntemi her bir özelliği bağımsız 

ele almakta ve bu nedenle karmaşık etkileşimleri göz 

ardı ederek çoklu bağlantı sorununu tam olarak 

giderememektedir [16]. Minimum Artıklık Maksimum 

İlgililik (Minimum Redundancy Maximum Relevance, 

mRMR), özellikle yüksek boyutlu veri setlerinde 

kullanılan ve her bir özelliğin hedef değişkenle olan 

ilişkisini Karşılıklı Bilgi (Mutual Information, MI) 

ölçütüyle değerlendirerek maksimum alaka ve 

minimum fazlalık ilkelerine dayanan bir filtre tabanlı 

özellik seçimi yöntemidir. Sınıflayıcıdan bağımsız 

olarak çalışması ve hesaplama açısından görece verimli 

olması nedeniyle yaygın olarak tercih edilmektedir. 

Ancak mRMR, yalnızca birinci dereceden ilişkileri 

dikkate alması sebebiyle değişkenler arası karmaşık 

bağıntıları ve çoklu bağlantı (multicollinearity) gibi 

yapısal sorunları göz ardı edebilir; ayrıca MI 

hesaplamalarının sürekli değişkenler üzerinde yüksek 

hesaplama maliyeti doğurabileceği bilinmektedir [17]. 

Bilgi Kazancı (Information Gain,  IG) yöntemi, her bir 

özelliği hedef değişkenle olan bağımsız ilişkisine göre 

değerlendirerek sıralayan bir diğer filtre yaklaşımıdır 

[18]. Bu yöntemin temel sınırlılıklarından biri, yalnızca 

bireysel bilgi katkısını dikkate alması nedeniyle 

özellikler arası korelasyonu göz ardı etmesidir. Bu 

durum, yüksek derecede ilişkili (çoklu bağlantılı) 

özelliklerin birlikte seçilmesine ve böylece modele 

fazladan ve yinelenen bilgi taşınmasına neden olabilir. 

Dolayısıyla IG, çoklu bağlantı problemini doğrudan ele 

almadığı için yüksek boyutlu ve korelasyonlu veri 

yapılarında etkin bir özellik seçimi sağlamaktan uzaktır 

[5]. Korelasyon tabanlı Özellik Seçimi 

(Correlation-based Feature Selection, CFS) gruplar 

arası ilişkileri dikkate alsa da çoklu bağlantı sorununu 

tek başına giderememektedir [19]. 

 

Bu çalışma özellik seçimini veri setindeki değişkenler 

arasındaki benzerlik ilişkilerine dayanarak 

gerçekleştiren bir filtreleme yaklaşımıdır. Tüm 

bağımsız değişkenler ‘özellik’ olarak tanımlanmış ve 

K-Ortalamalar kümeleme [20] algoritmasıyla birbirine 

benzer davranış sergileyen özellikler kümelenmiştir. 

Her kümeden küme merkezine en yakın konumdaki 

değişken seçilerek elde edilen indirgenmiş özellik 

kümeleri, Çok Değişkenli Doğrusal Regresyon 

(ÇDDR) [21], Ridge regresyon [22] ve LASSO 

regresyon [11] modellerinin eğitiminde kullanılmıştır. 

Böylece boyut indirgeme adımının yalnızca veri 

yapısına dayalı olarak uygulandığı ve modele ek bir 

cezalandırma mekanizması eklemediği açıkça ortaya 

konmuştur. Buna ek olarak, çalışmada kullanılan 

verilerdeki çoklu doğrusal bağlantı düzeyindeki 

azalmayı ortaya koymak amacıyla, özellik seçimi adımı 

uygulanmadan önce ve uygulandıktan sonra koşul 

indeksi analizi gerçekleştirilmiştir [28, 29].  

 

Çalışmada kullanılan veri setlerinden ilki, R 

programının ‘base’ paketinde bulunan, otomobil 

özelliklerini içeren ‘mtcars’ veri setidir. Bu veri seti 32 

gözlem ve 11 bağımsız değişkenden oluşmaktadır ve 

analizlerde bağımlı değişken olarak ‘mpg’ değişkeni 

kullanılmaktadır. İkinci veri seti, R programının ‘rattle’ 

paketinde yer alan ‘Wine’ veri setidir [30]. Bu veri 
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setinde 178 gözlem ve 14 değişken yer almakta ve 

‘proline düzeyi’ bağımlı değişken olarak ele 

alınmaktadır. Üçüncü olarak kullanılan veri seti ‘fat’ 

Faraway [23] veri setidir. Bu veri seti 252 bireye ait 18 

antropometrik ölçüm içermekte olup özellikle bilek 

çevresi ölçümü dikkate alınmaktadır. Dördüncü ve 

beşinci veri setleri ise kontrollü koşullarda oluşturulan 

simülasyon verilerinden oluşmaktadır. Bu veri setleri, 

önerilen yöntemin hem gerçek hem de sentetik veriler 

üzerindeki performansını kapsamlı bir şekilde 

değerlendirebilmek amacıyla seçilmiştir. Performans 

ölçütleri olarak Hata Kareler Ortalamasının Karekökü 

(HKOK) [24, 25] ve Ortalama Mutlak Yüzde Hata 

(OMYH) [26] kriterleri belirlenmiş olup bu sayede 

modellerin hem mutlak hem de göreceli hata düzeyleri 

objektif biçimde karşılaştırılmıştır. Bu çalışmanın 

ikinci bölümünde, önerilen yöntemin algoritması 

detaylı şekilde sunulmuştur. Üçüncü bölümde, 

yöntemin farklı gerçek veri setleri ve simülasyon 

verileri üzerindeki performansı değerlendirilmiş ve 

çoklu bağlantı problemine ilişkin koşul indeksi analizi 

sonuçları yorumlanmıştır. Son olarak, dördüncü 

bölümde elde edilen bulgular tartışılmış ve genel 

sonuçlara yer verilmiştir. 

 

II. YÖNTEM 
Adım 1. Parametrelerin Belirlenmesi 

c: Küme sayısı 

Test_Size: Test seti oranı 

Validation_Size: Doğrulama seti oranı 

Train_Size: Test seti oranı ve doğrulama oranı 

girildiğinde otomatik olarak girilmiş olacaktır. (1- 

Test_Size + Validation_Size) 

Adım 2. Verinin Bölünmesi 

Veri seti, girilen parametre oranlarına göre rastgele 

olarak eğitim (train), doğrulama (validation) ve test alt 

kümelerine ayrılır. 

Veri Matrisi: 

𝑋 = [𝑥𝑖𝑗], 𝑖 = 1, 2, … , 𝑝; 𝑗 = 1, 2, … , 𝑛 

Burada; 

𝑋: Tüm veri matrisi 

𝑝: Özellik (değişken) sayısı 

𝑛: Toplam gözlem sayısı 

şeklinde tanımlanır. 

Eğitim seti (Training Set): 

𝑋𝑒ğ𝑖𝑡𝑖𝑚 = [𝑥𝑖𝑗], 𝑖 = 1, 2, … , 𝑝;  𝑗 = 1, 2, … , 𝑛𝑒ğ𝑖𝑡𝑖𝑚 

Doğrulama seti (Validation Set): 

𝑋𝑑𝑜ğ𝑟𝑢𝑙𝑎𝑚𝑎 = [𝑥𝑖𝑗], 𝑖 = 1, 2, … , 𝑝; 

𝑗 = 1, 2, … , 𝑛𝑑𝑜ğ𝑟𝑢𝑙𝑎𝑚𝑎  

Test seti (Test Set): 

𝑋𝑡𝑒𝑠𝑡 = [𝑥𝑖𝑗], 𝑖 = 1, 2, … , 𝑝; 𝑗 = 1, 2, … , 𝑛𝑡𝑒𝑠𝑡 

Adım 3. Özellik seçimi için K-Ortalamalar kümeleme 

yöntemi 

Adım 3.1. Tüm bağımsız değişkenler transpoze edilir. 

Adım 3.2. Başlangıçta küme merkezleri rasgele olarak 

belirlenir. 

𝑣𝑘
(0)

, 𝑘 = 1, 2, … , 𝑐             

Burada c küme sayısını temsil etmektedir. 

Adım 3.3. Nesnelerin kümelere atanması: 

 Bağımsız değişkenler ile küme merkezleri arasındaki 

Öklid uzaklıkları hesaplanır (alternatif olarak 

Manhattan uzaklığı veya Minkowski uzaklığı da 

kullanılabilir). Hesaplama için kullanılan Öklid 

uzaklığı formülü; 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1                                   (1) 

şeklindedir.  

 Her nesne, uzaklığı en küçük olan kümeye atanır. 

Adım 3.4. Küme merkezleri güncellenir:  

Her küme için, o kümeye atanan tüm veri noktalarının 

ortalaması hesaplanır. Yeni ortalamalar, yeni küme 

merkezleri olur. 

𝑐𝑘 =
1

𝑛𝑘
∑ 𝑥𝑖

𝑛𝑘
𝑖=1                                                           (2) 

Burada; 

𝑐𝑘: k. kümenin merkezi 

𝑛𝑘: k. kümedeki veri noktalarının sayısı 

𝑥𝑖: k. kümeye atanan i. veri noktası 

olarak tanımlanır. 

Adım 4. Her küme için en iyi temsilci özellik belirlenir. 

Önceki aşamada oluşturulan özellik kümeleri içinde, 

her bir değişkenin ait olduğu küme merkezi ile Öklid 

uzaklığı hesaplanır. Her küme için bu mesafe 

ölçümlerinden en düşük değeri veren değişken, ilgili 

kümenin en iyi temsilcisi olarak seçilir. 
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Her küme k için o kümedeki özellikler arasından 

𝑗𝑘 = arg min
1≤𝑗≤𝑝

𝑑𝑘𝑗                                                 (3) 

ifadesiyle en küçük 𝑑𝑘𝑗 değerini veren 𝑗𝑘 indeksi 

bulunur. Buradaki 𝑑𝑘𝑗 k. küme merkezi ile j. özelliğin 

(değişkenin) vektörü arasındaki Öklid uzaklığını, 𝑗𝑘 ise 

k. küme için “küme merkezine en küçük uzaklığa 

sahip” değişkenin indeksini ifade eder.  

Adım 5. Modellerin kurulumu: 

Seçilen değişkenlerle Çok Değişkenli Doğrusal 

Regresyon (ÇDDR), İndirgenmiş Çok Değişkenli 

Doğrusal Regresyon (İÇDDR), İndirgenmiş Ridge 

Regresyon (İRR) ve İndirgenmiş LASSO Regresyon 

(İLR) modelleri kurulur. 

Doğrulama/Test seti kullanılarak her bir model için 

tahmin yapılır. 

Doğrusal regresyon amaç fonksiyonu: 

𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑛
𝑖=1 }                     (4) 

şeklindedir.  

Ridge regresyon amaç fonksiyonu: 

𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
+ 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1

𝑛
𝑖=1 }  (5)                    

şeklindedir. 

LASSO Regresyon amaç fonksiyonu: 

𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
+ 𝜆 ∑ ⌊𝛽𝑗⌋𝑝

𝑗=1
𝑛
𝑖=1 }  (6) 

şeklindedir. Buradaki; 

𝛽𝑗: Katsayılar 

𝜆: Ceza (Penalty) parametresi 

olarak tanımlanır.  

Adım 6. Performans Değerlendirmesi 

Her model için denklem (7) ve (8) kullanılarak 

performans değerleri hesaplanır. 

𝐻𝐾𝑂𝐾 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                 (7) 

𝑂𝑀𝑌𝐻 =
1

𝑛
∑ ⌊

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
⌋𝑛

𝑖=1                                         (8) 

Burada; 

𝑦𝑖: Gerçek gözlem değeri 

𝑦̂𝑖: Modelin tahmin değeri 

𝑛: Gözlem sayısı 

olarak tanımlanır [27]. 

 

III. DEĞERLENDİRME  
Tablo 1, K-Ortalamalar kümeleme tabanlı özellik 

seçimi yönteminin kullanıldığı beş ayrı veri setine 

ilişkin özellik sayısı (p), bağımlı değişken, gözlem 

sayısı (n), test seti uzunluğu ve ele alınacak küme 

sayılarını ayrıntılı biçimde sunmaktadır. İlk veri seti 

olarak değerlendirilen ‘mtcars’ (n = 32, p = 11) 

üzerinde, motorlu taşıtların mil başına galon (mpg) 

değeri tahmin edilmek üzere küme sayısı (c) 2 ile 5 

aralığında ızgara arama metoduyla optimize edilmiş; 

veri setinin %20’sini oluşturan yedi gözlem, model 

performansının değerlendirilmesi için test kümesi 

olarak ayrılmıştır. İkinci veri seti olarak ele alınan 

‘Wine’ veri setinde (n = 178, p = 14), şaraplardaki 

‘proline düzeyi’ bağımlı değişken olarak belirlenmiş; c, 

2 ile 7 aralığında ızgara arama yöntemi ile optimize 

edilmiş ve modelin performansını ölçmek üzere 18 

gözlem test kümesi olarak ayrılmıştır. Üçüncü veri seti, 

R’nin ‘faraway’ kütüphanesinden ‘fat’ (n = 252, p = 18) 

veri seti olup bilek ölçümü (wrist) tahmini için c, 2 ile 

9 aralığında ızgara arama yöntemi ile optimize 

edilmiştir; bu aşamada 25 gözlem (%10) test kümesi 

olarak kullanılmıştır. Dördüncü ve beşinci veri setleri 

ise, kendi içerisinde ilişkili değişkenlerin senaryolarını 

modellemek amacıyla yapay simülasyonlarla 

üretilmiştir. İlk veri seti, n = 300 gözlem ve p = 300 

özellik, ikinci veri seti ise n = 500 gözlem ve p = 400 

özelliğe sahip veri setleridir. İlk simülasyon 

senaryosunda küme sayısı (2, 150), ikinci senaryoda ise 

(2, 200) aralığında ızgara arama yöntemiyle optimize 

edilmiş; her yinelemede ilgili veri setinin %10’u (ilk 

senaryoda 30, ikinci senaryoda 50 gözlem) test verisi 

olarak ayrılarak yöntemlerin genelleme yeteneği 

karşılaştırılabilir hale getirilmiştir. Böylece, orta 

boyutlu gerçek veri örneklerinden yüksek boyutlu 

simülasyon senaryolarına kadar, özellik sayısının ve 

kümeleme parametresinin model performansına etkisi 

hem OMYH hem de HKOK gibi objektif hata 

ölçütleriyle sistematik olarak değerlendirilmiştir.
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Tablo 1. Beş Veri Setinde Uygulanan K-Ortalamalar Tabanlı Özellik Seçimi Sonuçları 

Veri Seti 
Özellik 

Sayısı 
Bağımlı 

Değişken 

c 

Aralığı 

Gözlem 

Sayısı 
Test Seti 
Uzunluğu 

mtcars 11 mpg (2, 5) 32 7 

Wine 14 Propline (2, 7) 178 18 

fat 18 wrist (2, 9) 252 25 

Simülasyon Verisi 1 300 y (2, 150) 300 30 

Simülasyon Verisi 2 400 y (2, 200) 500 30 

Tablo 2. Yöntemlerin Ortalama Mutlak Yüzde Hata (OMYH) Sonuçları 

 

Tablo 3. Yöntemlerin Hata Kareler Ortalamasının Karekökü (HKOK) Sonuçları 

Veri Seti Optimal c ÇDDR İÇDDR İRR İLR 

mtcars 5 6.5521 2.8834 1.7131 2.0095 

Wine 7 216.2393 198.7030 218.1752 214.7946 

fat 6 0.6715 0.4646 0.4414 0.4517 

Simülasyon Verisi 1 148 371.5158 1.8178 1.8289 1.4089 

Simülasyon Verisi 2 177 87.6107 1.4231 1.4472 1.2993 

 

Tablo 4. Koşul İndeksi Analizi Sonuçları 

 mtcars Wine fat Simülasyon Verisi 1 Simülasyon Verisi 2 

Önce 15.5583 9.9640 208.6360 2123.5120 28.2518 

Sonra 6.6618 2.3671 8.8049 6.1636 4.5655 

 

Tablo 2’de beş farklı veri seti için K-Ortalamalar 

kümeleme tabanlı özellik seçimi ve ızgara arama (Grid 

Search) yöntemiyle elde edilen optimum küme sayısı 

(c) ve bu c değeri altında Çok Değişkenli Doğrusal 

Regresyon (ÇDDR), İndirgenmiş Çok Değişkenli 

Doğrusal Regresyon (İÇDDR), İndirgenmiş Ridge 

Regresyon (İRR) ve İndirgenmiş LASSO Regresyon 

(İLR) yöntemlerine ilişkin OMYH sonuçları 

özetlenmektedir. Tablo 2’de, her bir veri setindeki en 

düşük OMYH sonucunu veren yöntem kalın ve siyah 

bir biçimde vurgulanmıştır. ‘mtcars’ veri setinin c = 5 

için, ÇDDR modelin 0.2191’lik OMYH’sini İÇDDR 

modelde 0.1499’a (%31.6 iyileşme) düşürmüştür. Bu 

süreçte K-Ortalamalar kümeleme tabanlı İÇDDR, 

değişken boyutunu azaltarak hem aşırı uyum riskini 

düşürmüş hem de hata oranını anlamlı biçimde 

iyileştirmiştir. Ardından İRR (0.0819) ve İLR (0.0936) 

yöntemleri, seçilen beş değişken üzerindeki katsayıları 

ceza terimleriyle yeniden düzenleyerek ek hata düşüşü 

sağlamış; özellikle İRR %62.6’ya varan 

iyileştirmesiyle, küçük örneklem ve sınırlı değişken 

yapısının etkilerine karşı dayanıklılık verdiğini 

göstermiştir. ‘Wine’ veri seti üzerinde c = 7 ile 

indirgeme uygulandığında, ÇDDR modelinin 

0.2550’lik OMYH değeri İÇDDR’de 0.2415’e 

düşmüştür; bu da boyut indirgemenin orta ölçekli veri 

setlerinde dahi tutarlı fayda sunduğunu ortaya 

koymuştur. Ancak İRR (0.2688) ve İLR (0.2661) 

düzenlemelerinde, test örneklem büyüklüğü ve model 

karmaşıklığı arasındaki denge gereği, ceza terimlerinin 

Veri Seti Optimal c ÇDDR İÇDDR İRR İLR 

mtcars 5 0.2191 0.1499 0.0819 0.0936 

Wine 7 0.2550 0.2415 0.2688 0.2661 

fat 6 0.0278 0.0206 0.0194 0.0203 

Simülasyon Verisi 1 148 1.0658 0.4787 0.4898 0.4030 

Simülasyon Verisi 2 175 0.9929 1.1144 0.9571 11.5301 
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bazen İÇDDR’den daha yüksek hata üretmesi dikkat 

çekmektedir. 

 

‘fat’ veri seti üzerinde yapılan analizde, c = 6 için, 

İÇDDR model, ÇDDR’nin 0.0278’lik OMYH’sini 

0.0206’ya (%25 iyileşme) düşürmüştür. Burada İRR 

(0.0194) ve İLR (0.0203) modelleri, aralarındaki çok 

küçük performans farkıyla, orta boyutlu çoklu 

regresyonda K-Ortalamalar kümeleme ve uygun 

değişken seçiminin güçlü bir temel sunduğunu teyit 

etmiştir. 

 

Simülasyon Verisi 1’de c = 148 değeri için İLR, 

ÇDDR’nin 1.0658’lik OMYH’sini 0.4030’a (%62.2’lik 

iyileştirme) düşürmüştür. Buna karşın özellik seçimi 

sonrasında kurulan cezasız İÇDDR (0.4787) ve ceza 

terimi içeren İRR (0.4898) yüksek boyutlu uzayın 

karmaşık gürültü yapısına karşı değişken setini İLR 

kadar kararlı biçimde tutamamış ve hata oranını 

artırmıştır. 

 

Simülasyon Verisi 2’de ise c = 148 için İRR model, 

ÇDDR modelde 0.9929 olan OMYH’yi 0.9571’e 

(%3.61 iyileşme) düşürmüştür. İÇDDR (1.1144) ve 

İLR (11.5301) modeller ise yüksek boyutlu gürültüyü 

tamamen sıfırlayamamış, İRR yaklaşımının sağladığı 

temel başarıyı aşamamıştır. 

 

Tablo 3’te yer alan sonuçlar incelendiğinde, beş farklı 

veri seti için küme sayısı göz önünde bulundurularak 

yöntemlerin HKOK sonuçları verilmiştir. Tablo 3’te, 

her bir veri seti için En düşük HKOK sonucunu veren 

yöntem kalın ve siyah bir biçimde vurgulanmıştır. 

 

‘mtcars’ veri seti üzerinde gerçekleştirilen analizde, 

ÇDDR’nin HKOK’si 6.5521 olarak bulunurken, 

yalnızca beş özelliğin seçildiği İÇDDR modelinde bu 

değer 2.8834’e düşürerek hatada %56 oranında anlamlı 

bir iyileşme sağlamıştır. Ardından İRR, HKOK’yi 

1.7131’e, İLR ise 2.0095’e indirgemiştir ki bu durum, 

küçük örneklem boyutuna sahip ve orta büyüklükte 

değişken seti içeren yapılarda önce boyut indirgeme 

yapılmasının, sonrasında ceza terimli yöntemlerle 

genelleme performansını daha da artırmanın etkili bir 

strateji olduğunu göstermektedir. 

 

‘Wine’ veri seti bağlamında, ÇDDR’nin HKOK’si 

216.2393 iken İÇDDR modeli 198.7030’a gerilemiş ve 

hata yaklaşık %8.2 oranında azalmıştır. İRR 

uygulandığında HKOK 218.1752’ye yükselmiş; 

İLR’de ise 214.7946 değerine ulaşmıştır. Bu sonuçlar, 

orta boyutlu değişken kümeleri söz konusu olduğunda 

K-Ortalamalar kümeleme tabanlı özellik seçiminin 

tutarlı bir avantaj sağladığını, ancak ceza terimli 

yöntemlerin ek faydasının örneklem ve değişken 

dengesiyle sınırlı kalabileceğini ortaya koymaktadır. 

‘fat’ veri seti üzerinde ÇDDR HKOK’si 0.6715 iken, 

İÇDDR’de 0.4646 düzeyine; İRR’de 0.4414, İLR’de 

ise 0.4517 seviyesine inmiştir. Özellikle ÇDDR ile İRR 

modeli arasında elde edilen yaklaşık %34.3’lük düşüş, 

orta boyutlu çoklu regresyon problemlerinde ÇDDR 

tabanlı boyut indirgeme ve hemen ardından kontrollü 

düzenleme stratejisinin birlikte güçlü bir temel 

oluşturduğunu doğrulamaktadır. 

 

Simülasyon Verisi 1‘de, ÇDDR HKOK’si 371.5158 

iken İÇDDR’de 1.8178’e (%99.5 azalma) gerilemiş; 

İRR ve İLR modelleri ise sırasıyla 1.8289, 1.4089 

değerleriyle benzer ya da daha düşük hatalar üretmiştir. 

Özellikle İLR, İÇDDR modeline kıyasla %22.5’lik bir 

azalma sağlayarak, p = n koşullarında öncelikle özellik 

sayısının azaltılmasının zorunlu olduğunu, ardından ise 

düzenleme yöntemlerinin modelin genelleme 

yeteneğini güçlendirdiğini göstermektedir. 

 

Simülasyon Verisi 2 için ÇDDR’nin HKOK’si 

87.6107; İÇDDR’nin 1.4231; İRR’nin 1.4472; İLR’nin 

ise 1.2993 olarak bulunmuştur. ÇDDR ile İLR 

modelleri arasındaki elde edilen %98’lik hata düşüşü 

ve ceza terimli yöntemlerle sağlanan ek iyileştirmeler, 

aşırı gürültülü ve yüksek boyutlu veri setlerinde boyut 

indirgeme ve ardından düzenleme yaklaşımlarının 

model performansını dengeli ve anlamlı biçimde 

geliştirdiğini ortaya koymaktadır. 

 

Tablo 4, bu çalışmada ele alınan veri setleri için, özellik 

seçimi uygulanmadan önceki tam model ile K-

Ortalamalar kümeleme tabanlı indirgeme uygulanmış 

modelin koşul indeksi değerlerini karşılaştırmaktadır. 

Koşul indeksi, tasarım matrisinin sayısal olarak ne 

ölçüde iyi koşullandığını özetleyen bir ölçüt olup, 

genellikle 10–30 arası değerler zayıf, 30–100 arası 

değerler orta–güçlü düzeyde, 100’ün üzerindeki 

değerler ise aşırı düzeyde çoklu doğrusal bağlantı 

problemine işaret etmektedir. 

 

Tablo 4’e göre, K-Ortalamalar özellik seçimi 

yapılmadan önce, özellikle ‘fat’ veri setinde (208.64) ve 

Simülasyon Verisi 1’de (2123.51) koşul indeksleri son 

derece yüksektir ve ilgili verilerde aşırı düzeyde çoklu 

doğrusal bağlantı problemi bulunduğunu 

göstermektedir. Simülasyon Verisi 2’de 28.25’lik koşul 

indeksi, eşik değerlere oldukça yakın olup belirgin bir 

çoklu doğrusal bağlantı problemi varlığına işaret 

ederken, ‘mtcars’ (15.56) ve ‘Wine’ (9.96) veri 

setlerinde ise daha düşük düzeyde bir çoklu doğrusal 

bağlantı problemi gözlenmektedir. 

Özellik seçimi sonrasında tüm veri setlerinde koşul 

indeksinin belirgin biçimde azaldığı görülmektedir: 

‘mtcars’ ve ‘Wine’ veri setleri için koşul indeksi 

sırasıyla 6.66 ve 2.37 seviyelerine gerileyerek yaklaşık 
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%57 ve %76 oranında düşmüş; ‘fat’ veri setinde 

208.64’ten 8.80’e (%95.8), Simülasyon Verisi 1’de ise 

2123.51’den 6.16’ya (%99.7) inerek başlangıçtaki aşırı 

derecede olan çoklu doğrusal bağlantılı yapıyı 

neredeyse tamamen ortadan kaldırmıştır. Simülasyon 

Verisi 2’deki koşul indeksinin 28.25’ten 4.57’ye 

düşmesi de yaklaşık %83.8’lik bir azalmaya karşılık 

gelmekte ve tasarım matrisinin belirgin biçimde daha 

iyi koşullandığını göstermektedir. 

 

Bu bulgular, hem orta boyutlu gerçek veri örneklerinde 

hem de büyük boyut yapısına sahip simülasyon 

senaryolarında, kümeleme tabanlı özellik seçiminin 

çoklu doğrusal bağlantıyı önemli ölçüde azalttığını ve 

regresyon modelleri için daha istikrarlı bir tasarım 

matrisi sağladığını ortaya koymaktadır. 

 

IV. TARTIŞMA ve SONUÇ 
Bu çalışmada, küçük örneklem veri setlerinden büyük 

karmaşık veri setlerine kadar model karmaşıklığını 

azaltmak ve tahmin performansını artırmak amacıyla 

K-Ortalamalar kümeleme tabanlı bir özellik seçimi 

yöntemi önerilmiş, seçilen değişkenler Çok Değişkenli 

Doğrusal regresyon, Ridge regresyon ve LASSO 

regresyon üzerinde test edilmiştir. Elde edilen sonuçlar, 

özellik seçimi uygulanmış modellerin özellikle HKOK 

ve OMYH performans ölçütü açısından tüm 

değişkenlerin kullanıldığı modellere kıyasla daha 

başarılı performans sergilediğini göstermektedir. 

 

K-Ortalamalar kümeleme temelli seçim, her kümeden 

yalnızca temsil gücü en yüksek özelliğin modele dahil 

edilmesi sayesinde gereksiz ve tekrarlı bilgilerin 

etkisini azaltmıştır. Bu durum, Ridge ve LASSO 

Regresyon modellerinin cezalandırma tekniği ile 

birleştiğinde, model katsayılarının kararlılığını artırmış 

ve aşırı uyum (overfitting) riskini önemli ölçüde 

düşürmüştür. Özellikle LASSO regresyonunun, seçilen 

özellikler üzerinden ek bir değişken eliminasyonu 

sağlaması, modelin sadeliğini ve yorumlanabilirliğini 

daha da artırmıştır. Sonuç olarak, önerilen yaklaşım; 

yüksek boyutlu verilerde hem boyut indirgeme hem de 

modelleme performansını iyileştirme açısından etkili 

ve uygulanabilir bir çözüm sunmaktadır. Bu çalışmada 

geliştirilen K-Ortalamalar kümeleme özellik seçimi 

yöntemi, farklı metodolojik veya uygulamalı araştırma 

alanlarına genişletilebilecek potansiyele sahiptir. 

Gelecek çalışmalarda özellik seçim sürecinin, Bulanık 

C-Ortalamalar kümeleme veya hiyerarşik kümeleme 

gibi farklı kümeleme algoritmaları ile çeşitlendirilmesi 

ve metin, görüntü, zaman serisi vb. farklı veri tipleri 

üzerinde testler yapılması, yöntemin 

genellenebilirliğini ve etkinliğini artırabilir. Ayrıca, 

seçilen özelliklerin anlamlılığına ilişkin derinlemesine 

analizlerin yapılması, yöntemin yorumlanabilirliğini 

güçlendirecektir. 
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