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1. INTRODUCTION AND PRELIMINARIES

The notion of distance is as old as the history of humanity and it was first properly formu-
lated by Euclid. Basically, Euclidean distance is defined to measure the space (or gap, or inter-
val) between two points as the length of the straight line segment connecting them. Indeed, the
notion of metric, axiomatically formulated by Maurice Fréchet [38], is a generalization form of
the Euclid distance. On the other hand, the name is due to Felix Hausdorff [40].

It is evident that the notion of the metric is the corner stone of the the field of real analy-
sis, complex analysis and functional analysis Taking the key role of the notion of the metric
in mathematics and hence in quantitative sciences, it has been extended and generalized in
several distinct directions by many authors. Consequently, several version, adaptation, exten-
sion and generalization of metric has been reported in the literature, for instance, 2-metric,
D-metric, G-metric, S-metric, set-valued metric, fuzzy metric, symmetric, quasi-metric, partial
metric, b-metric, ultrametric, dislocated metric, modular metric, Hausdorff metric, cone metric,
multiplicative metric, and so on. It is worthy of note that not all these generalizations are real
generalization, see e.g. [4, 9, 36, 37, 46, 55, 76].

Clearly, it is not possible to consider all these notions in a short survey. In this work, we
restrict ourselves on the merging of one of the most interesting generalization of a notion of
metric, namely b-metric. Before state the definition of b-metric, we recall the notion of (stan-
dard) metric for the sake of self-containment.

Definition 1.1. For a nonempty set M , a (standard) metric is a function m : M ×M → R+
0 = [0,∞)

such that
(M0) m(x, y) ≥ 0 (nonnegativity),
(M1) x = y ⇒ m(x, y) = 0 (self-distance),
(M2) m(x, y) = 0⇒ x = y (indistancy),
(M3) m(x, y) = m(y, x) (symmetry), and
(M4) m(x, y) ≤ m(x, z) +m(z, y) (triangularity),
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for all x, y, z ∈M . Here, the ordered pair (M,m) is called a (standard) metric space.

Indeed, the notion of the metric can be expressed in two axioms, as follows.
(a1) x = y ⇒ m(x, y) = 0 (self-distance),
(a2) m(x, y) ≤ m(x, z) +m(y, z) (triangularity),

for all x, y, z ∈ M . It is clear that (M0)-(M4) are obtained from (a1) and (a2). On the other
hand, we separately state the axioms to explain and emphasize the nature how one can at-
tempt to generalize the notion of standard metric. For instance, the axioms (M0), (M2)-(M4)
yield dislocated metric (also known as metric-like), the axioms (M0)-(M3) provide the notion
of symmetric. It is clear that the removing any conditions from (M0)-(M4) propose a new no-
tion.

In this study, we focus on an interesting generalization of the standard metric, so-called,
b-metric. This metric was popular after the interesting papers of Czerwik [34, 35] and it has
been attracted attention of the several researchers. Indeed, this notion was considered earlier
by different authors, e.g. Bourbaki [29], Bakhtin [17], Heinhonen [44], Berinde [18] and so on.

What follows we recall the notion of b-metric.

Definition 1.2. ( [17], [35]) Let M be a set and let s ≥ 1 be a given real number. A function d :
M ×M → R+

0 is said to be a b-metric if the following conditions are satisfied:
(bMo) d(x, y) ≥ 0 (nonnegativity),
(bM1) x = y ⇒ d(x, y) = 0 (self-distance),
(bM2) d(x, y) = 0⇒ x = y (indistancy),
(bM3) d(x, y) = d(y, x), (symmetry),
(bM4) d(x, z) ≤ s[d(x, y) + d(y, z)], (weakened triangularity).

for all x, y, z ∈ M . Furthermore, the ordered pair (M,d) is called a b-metric space. We abbreviate the
concept of the b-metric space as bMS.

As it is expected that each b-metric forms a metric by letting s = 1. On the other hand, the
converse is not case.

Example 1.1. (See e.g. [29].) Let M = Lp[0, 1] be the collections of all real functions x(t) such that∫ 1

0
|x(t)|pdt <∞, where t ∈ [0, 1] and 0 < p < 1. For the function d : M ×M → R+

0 defined by

b(x, y) := (

∫ 1

0

|x(t)− y(t)|pdt)1/p, for each x, y ∈ Lp[0, 1],

the ordered pair (M, b) forms a b-metric space with s = 21/p.

Example 1.2. Let X be a set with the cardinal card(X) ≥ 3. Suppose that M = X1∪X2 is a partition
of X such that card(X1) ≥ 2. Let s > 1 be arbitrary. Then, the functional d : M ×M → [0,∞)
defined by:

d(x, y) :=

 0, x = y
2s, x, y ∈M1

1, otherwise.

is a b-metric on X with coefficient s > 1.

Example 1.3. (See e.g. [29].) Let p ∈ (0, 1) and let

M = lp(R) =

{
x = {xn} ⊂ R such that

∞∑
n=1

|xn|p <∞

}
.
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Define d(x, y) : M ×M → [0,∞) by

d(x, y) =

( ∞∑
n=1

|xn − yn|p
)1/p

.

Then (X, d) is a b-metric space with s = 21/p.

The special case of the example above can be the following:

Example 1.4. Let M = R. The function d : R× R→ [0,∞) defined as

(1.1) d(x, y) = |x− y|2,
is a b-metric on R. Clearly, the first two conditions are satisfied. For the third condition, we have

|x− y|2 = |x− z + z − y|2 = |x− z|2 + 2|x− z||z − y|+ |z − y|2
≤ 2[|x− z|2 + |z − y|2],

since
2|x− z||z − y| ≤ |x− z|2 + |z − y|2.

Example 1.5. Let M={0, 1, 2} and d : M × M → R+ such that d (0, 1) = d (1, 0) = d (0, 2) =
d (2, 0) = 1, d (1, 2) = d (2, 1) = α ≥ 2, d (0, 0) = d (1, 1) = d (2, 2) = 0. Then

d (x, y) ≤ α

2
[d (x, z) + d (z, y)] , for x, y, z ∈M.

Example 1.6. Let E be a Banach space and 0E be the zero vector of E. Let P be a cone in E with
int(P ) 6= ∅ and � be a partial ordering with respect to P . Let X be a non-empty set. Suppose the
mapping d : X ×X → E satisfies:
(M1) 0 � d(x, y) for all x, y ∈ X ,
(M2) d(x, y) = 0 if and only if x = y,
(M3) d(x, y) � d(x, z) + d(z, y), for all x, y ∈ X ,
(M4) d(x, y) = d(y, x) for all x, y ∈ X ,

then d is called cone metric on X , and the pair (X, d) is called a cone metric space (CMS).
Let E be a Banach space and P be a normal cone in E with the coefficient of normality denoted by K.

Let D : X ×X → [0,∞) be defined by D(x, y) = ||d(x, y)||, where d : X ×X → E is a cone metric
space. Then (X,D) is a b-metric space with constant s := K ≥ 1.

The basic topological properties (convergence, completeness, etc.) have been observed by
the mimic of the standard metric versions. Next, we recollect some essential notions together
with the basic observations. Each b-metric d on a non-empty set M have a topology τd that was
generated by the family of open balls

Bd(x, ε) = {y ∈M : |d(x, y)− d(x, x)| < ε, } for all x ∈M and ε > 0.

In the frame of the b-metric (M,d), a given sequence {xn} converges to a point x ∈M if the
following limit exists

lim
n→∞

d(xn, x) = 0.

As it is expected, a sequence {xn} is said to be Cauchy if the following limit

(1.2) L = lim
n→∞

d(xn, xm) = 0.

Furthermore, a pair (M,d) is called complete b-metric space if for each Cauchy sequence
{xn} is convergent, that is, there is some x ∈M such that

(1.3) lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(xn, xm).
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Let (M,d1) and (K, d2) be b-metric spaces. A mapping T : M → K is called continuous if

lim
n→∞

d1(xn, x) = 0 = lim
n,m→∞

d1(xn, xm),

then we have
lim
n→∞

d2(Txn, Tx) = 0 = lim
n,m→∞

d2(Txn, Txm).

Definition 1.3. Let (M,d) be a b-metric space and S be a subset of M . We say S is open subset of M ,
if for all x ∈ M there exists r > 0 such that Bd(x, r) ⊆ S. Also, F ⊆ X is a closed subset of M if
(M\F ) is a open subset of M .

A mapping ϕ : [0,∞)→ [0,∞) is called a comparison function if it is increasing and ϕn(t)→ 0,
n → ∞, for any t ∈ [0,∞). We denote by Φ, the class of the comparison function ϕ : [0,∞) →
[0,∞). For more details and examples, see e.g. [20, 71]. Among them, we recall the following
essential result.

Lemma 1.1. (Berinde [20], Rus [71]) If ϕ : [0,∞)→ [0,∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
(2) ϕ is continuous at 0;
(3) ϕ(t) < t, for any t > 0.

Later, Berinde [20] introduced the concept of (c)-comparison function in the following way.

Definition 1.4. (Berinde [20]) A function ϕ : [0,∞)→ [0,∞) is said to be a (c)-comparison function
if

(c1) ϕ is increasing,

(c2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk such that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

The notion of a (c)-comparison function was improved as a (b)-comparison function by
Berinde [19] in order to extend some fixed point results to the class of b-metric space.

Definition 1.5. (Berinde [19]) Let s ≥ 1 be a real number. A mapping ϕ : [0,∞)→ [0,∞) is called a
(b)-comparison function if the following conditions are fulfilled

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk such that

sk+1ϕk+1(t) ≤ askϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

We denote by Ψb for the class of (b)-comparison function ϕ : [0,∞) → [0,∞). It is evident
that the concept of (b)-comparison function reduces to that of (c)-comparison function when
s = 1.

The following lemma has a crucial role in the proof of our main result.

Lemma 1.2. (Berinde [18]) If ϕ : [0,∞) → [0,∞) is a (b)-comparison function, then we have the
following

(1) the series
∞∑
k=0

skϕk(t) converges for any t ∈ R+;
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(2) the function bs : [0,∞) → [0,∞) defined by bs(t) =

∞∑
k=0

skϕk(t), t ∈ [0,∞), is increasing

and continuous at 0.

Remark 1.1. By the Lemma 1.2, we conclude that every (b)-comparison function is a comparison func-
tion and hence, by the Lemma 1.1, any (b)-comparison function φ satisfies φ(t) < t.

We denote with Ψ the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∞∑

n=1

ψn(t) < ∞ for each t > 0 It is clear that if Ψ ⊂ Φ (see e.g. [43]) and hence, by Lemma 1.1

(3), for ψ ∈ Ψ we have ψ(t) < t, for any t > 0.
In this short survey, we collect the interesting fixed point theorems for single valued map-

ping in the frame of complete b-metric space. This survey can be considered the collection the
attractive results in [3, 11, 24].

2. FIXED POINT OF α-ψ-CONTRACTIVE MAPPINGS

We start this section by recalling the definition of α-ψ-contractive and α-orbital admissible
mappings introduced in [75].

Definition 2.6. (Samet et al. [75]) Let (M,d) be a metric space and T : M →M be a given mapping.
We say that T is an α-ψ-contractive mapping if there exist two functions α : M ×M → [0,∞) and
ψ ∈ Ψ such that

(2.4) α(x, y)d(T (x), T (y)) ≤ ψ(d(x, y)), for all x, y ∈M.

Remark 2.2. If T : M → M satisfies the Banach contraction principle, then T is an α-ψ-contractive
mapping, where α(x, y) = 1 for all x, y ∈M and ψ(t) = kt for all t ≥ 0 and some k ∈ [0, 1).

Definition 2.7. (Samet et al. [75]) Let T : M → M and α : M ×M → [0,∞). We say that T is
α-admissible if

x, y ∈M, α(x, y) ≥ 1 =⇒ α(T (x), T (y)) ≥ 1.

Let FT (X) be the class of fixed points of a self-mapping T defined on a non-empty set X ,
that is, FT (X) = {x ∈M : T (x) = x}.
Example 2.7. (Samet et al. [75]) Let M = (0,+∞). Define T : M → M and α : M ×M → [0,∞)
by

(1) T (x) = ln(x), for all x ∈M and α(x, y) =

{
2, if x ≥ y;
0, if x < y.

Then T is α-admissible.

(2) T (x) =
√
x, for all x ∈M and α(x, y) =

{
ex−y, if x ≥ y;
0, if x < y.

Then T is α-admissible.

Example 2.8. Let (M,�) be a partially ordered set and d be a metric onX such that (M,d) is complete.
Let T : M →M be a nondecreasing mapping with respect to�, that is x, y ∈M, x � y =⇒ Tx � Ty.
Suppose that there exists x0 ∈M such that x0 � Tx0. Define the mapping α : M ×M → [0,∞) by

α(x, y) =

{
1 if x � y or x � y,
0 otherwise.

Then, T is α-admissible. Since there exists x0 ∈ M such that x0 � Tx0, we have α(x0, Tx0) ≥ 1. On
the other hand, for all x, y ∈M , from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.
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Thus T is α−admissible.

Theorem 2.1. (Samet et al. [75]) Let (M,d) be a complete metric space and T : M → M be an
α-ψ-contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ FT (X).

Theorem 2.2. (Samet et al. [75]) Let (M,d) be a complete metric space and T : M → M be an
α-ψ-contractive mapping satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as n → ∞,
then α(xn, x) ≥ 1 for all n.

Then, T has a fixed point, that is, there exists x∗ ∈ FT (X).

In what follows we recollect the concept of triangular α-admissible mapping.

Definition 2.8. [52] A self-mapping T : M →M is called triangular α-admissible if

(T1) T is α− admissible,
(T1) α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1, x, y, z ∈M.

First of all, we refine the notion of α-admissible mapping by proposing the notion of α-
orbital admissible as follows.

Definition 2.9. [68] Let T : M → M be a self-mapping and α : M ×M → [0,∞) be a function.
Then T is said to be α-orbital admissible if

(T3) α(x, Tx) ≥ 1⇒ α(Tx, T 2x) ≥ 1.

Analogously, we refine the notion of triangular α-admissible mapping by proposing the
notion of triangular α-orbital admissible in the following way.

Definition 2.10. [68] Let T : M → M be a self-mapping and α : M ×M → [0,∞) be a function.
Then, T is said to be triangular α-orbital admissible if T is α-orbital admissible and

(T4) α(x, y) ≥ 1 and α(y, Ty) ≥ 1⇒ α(x, Ty) ≥ 1.

As it was mentioned in [68], each α-admissible mapping is an α-orbital admissible mapping
and each triangular α-admissible mapping is a triangular α-orbital admissible mapping. The
converse is false, see e.g. ( [68], Example 7).

Definition 2.11. [68] Let (M,d) be a b-metric space and α : X ×M → M be a function. X is said
α-regular, if for every sequence {xn} in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as
n→∞, there exists a subsequence {xn(k)} of {xn} with α(xn(k), x) ≥ 1 for all k.

Lemma 2.3. [68] Let T : M → M be a triangular α-orbital admissible mapping. Assume that there
exists x0 ∈ M such that α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn+1 = Txn for each n ∈ N0.
Then we have α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.

First we give the following definition as a generalization of Definition 2.6.
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Definition 2.12. Let (M,d) be a b-metric space and T : M →M be a given mapping. We say that T is
an α-ψ-contractive mapping of type-(b) if there exist two functions α : M ×M → [0,∞) and ψ ∈ Ψb

such that

(2.5) α(x, y)d(T (x), T (y)) ≤ ψ(d(x, y)), for all x, y ∈ X.

Our first main result is the following.

Theorem 2.3. Let (M,d) be a complete b-metric space with constant s > 1. Let T : M → M be an
α-ψ-contractive mapping of type-(b) satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) T is continuous.
Then the fixed point equation (3.15) has a solution, that is, there exists x∗ ∈ Ff (X).

Proof. Let x0 ∈ M such that α(x0, T (x0)) ≥ 1 (such a point exists from condition (ii)). Define
the sequence {xn} in X by

xn+1 = T (xn), for all n ∈ N ∪ {0}.
If xn = xn+1 for some n ∈ N ∪ {0}, then x∗ = xn is a fixed point for T and the proof finishes.
Hence we assume that

(2.6) xn 6= xn+1 for all n ∈ N ∪ {0}.
Since T is α-orbital admissible, we have:

α(x0, x1) = α(x0, T (x0)) ≥ 1 =⇒ α(T (x0), T (x1)) = α(x1, x2) ≥ 1.

By induction, we get

(2.7) α(xn, xn+1) ≥ 1, for all n ∈ N ∪ {0}.
Applying the inequality (2.5) with x = xn−1 and y = xn, and using (2.7), we obtain:

d(xn, xn+1) = d(T (xn−1), T (xn)) ≤ α(xn−1, xn)d(T (xn−1), T (xn)) ≤ ψ(d(xn−1, xn)).

By induction, we get

(2.8) d(xn, xn+1) ≤ ψn(d(x0, x1)), for all n ∈ N ∪ {0}.
From (2.8) and using the triangular inequality, for all p ≥ 1, we have:

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + ...+ sp−2d(xn+p−3, xn+p−2)

+sp−1d(xn+p−2, xn+p−1) + spd(xn+p−1, xn+p)

≤ sψn(d(x0, x1)) + s2ψn+1(d(x0, x1)) + ...+ sp−2ψn+p−3(d(x0, x1))

+sp−1ψn+p−2(d(x0, x1)) + sp−1ψn+p−1(d(x0, x1))

= 1
sn−1 [snψn(d(x0, x1)) + sn+1ψn+1(d(x0, x1)) + ...+ sn+p−2ψn+p−2(d(x0, x1))

+sn+p−1ψn+p−1(d(x0, x1))].

Denoting Sn =

n∑
k=0

skψk(d(x0, x1)), n ≥ 1 we obtain:

(2.9) d(xn, xn+p) ≤ 1

sn−1
[Sn+p−1 − Sn−1], n ≥ 1, p ≥ 1.
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Due to the assumption (2.6) together with Lemma 1.2, we conclude that the series
n∑

k=0

skψk(d(x0, x1))

is convergent. Thus there exists S = lim
n→∞

Sn ∈ [0,∞). Regarding s ≥ 1 and by (2.9), we ob-

tain that {xn}n≥0 is a Cauchy sequence in the b-metric space (M,d). Since (M,d) is complete,
there exists x∗ ∈ M such that xn → x∗ as n → ∞. From the continuity of T , it follows that
xn+1 = T (xn) → T (x∗) as n → ∞. By the uniqueness of the limit, we get x∗ = T (x∗), that is,
x∗ is a fixed point of T . �

In the following theorem, we able omit the continuity hypothesis of T by adding a new
condition.

Theorem 2.4. Let (M,d) be a complete b-metric space with constant s > 1. Let T : M → M be an
α-ψ-contractive mapping of type-(b) satisfying the following conditions:

(i) T is α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, T (x0)) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M as n → ∞,
then α(xn, x) ≥ 1 for all n.

Then the fixed point equation (3.15) has a solution.

Proof. Following the proof of Theorem 2.3, we know that {xn} is a Cauchy sequence in the
complete b-metric space (M,d). Then, there exists x∗ ∈ M such that xn → x∗ as n → ∞. On
the other, hand from (2.7) and the hypothesis (iii), we have

(2.10) α(xn, x
∗) ≥ 1, for all n ∈ N.

Now, using the triangular inequality, (2.5) and (2.10), we get

d(T (x∗), x∗) ≤ s[d(T (x∗), T (xn)) + d(xn+1, x
∗)]

≤ s[α(xn, x
∗)d(T (x∗), T (xn)) + d(xn+1, x

∗)]
≤ s[ψ(d(xn, x

∗)) + d(xn+1, x
∗)].

Letting n → ∞, since ψ is continuous at t = 0, we obtain d(T (x∗), x∗) = 0, that is x∗ =
T (x∗). �

To assure the uniqueness of the fixed point, we will consider the following hypothesis.

(H) : for all x, y ∈M, there exists z ∈M such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Theorem 2.5. Adding condition (H) to the hypotheses of Theorem 2.3 (resp. Theorem 2.4) we obtain
uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed point of T . From (H), there exists z ∈M such that

(2.11) α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1.

Since T is α-orbital admissible, from (2.11), we get

(2.12) α(x∗, Tn(z)) ≥ 1 and α(y∗, Tn(z)) ≥ 1.

Using (2.12) and (2.5), we have

d(x∗, Tn(z)) = d(T (x∗), T (Tn−1(z))) ≤ α(x∗, Tn−1(z))d(T (x∗), T (Tn−1(z)))

≤ ψ(d(x∗, Tn−1(z))).

This imply that
d(x∗, Tn(z)) ≤ ψn(d(x∗, z)), for all n ∈ N.
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Then, letting n→∞, we have

(2.13) Tn(z)→ x∗.

Similarly, using (2.12) and (2.5), we get

(2.14) Tn(z)→ y∗ as n→∞.
Using (2.13) and (2.14), the uniqueness of the limit gives us x∗ = y∗. This finishes the proof. �

Remark 2.3. Theorem 2.1 (respectively, Theorem 2.2) can be derived from Theorem 2.3 (respectively,
Theorem 2.4) by taking s = 1. Consequently, all results in [75] can be considered as a corollaries of our
main results.

3. ULAM-HYERS STABILITY RESULTS THROUGH THE FIXED POINT PROBLEMS

Definition 3.13. Let (M,d) be a metric space and T : M →M be an operator. By definition, the fixed
point equation

(3.15) x = T (x)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ which is increasing,
continuous at 0 and ψ(0) = 0 such that for every ε > 0 and for each w∗ ∈M an ε-solution of the fixed
point equation (3.15), i.e. w∗ satisfies the inequality

(3.16) d(w∗, T (w∗)) ≤ ε
there exists a solution x∗ ∈M of the equation (3.15) such that

d(w∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) = c · t, for each t ∈ R+, then the fixed point equation (3.15) is
said to be Ulam-Hyers stable.

For Ulam-Hyers stability results in the case of fixed point problems see M. F. Bota-Boriceanu,
A. Petruşel [23], V. L. Lazăr [60], I. A. Rus [70], I. A. Rus [72].

Regarding the Ulam-Hyers stability problem the ideas given in T. P. Petru, A. Petruşel and
J.-C. Yao [67] allow us to obtain the following result.

Theorem 3.6. Let (M,d) be a complete b-metric space with constant s > 1. Suppose that all the
hypotheses of Theorem 2.5 hold and additionally that the function β : [0,∞) → [0,∞), β(r) :=
r − sψ(r) is strictly increasing and onto. Then

(a) the fixed point equation (3.15) is generalized Ulam-Hyers stable.
(b) Fix(T ) = {x∗} and if xn ∈ M , n ∈ N are such that d(xn, T (xn)) → 0, as n → ∞, then

xn → x∗, as n→∞, i.e. the fixed point equation (3.15) is well posed.
(c) If g : M →M is such that there exists η ∈ [0,∞) with

d(T (x), g(x)) ≤ η, for all x ∈M,

then
y∗ ∈ Fix(g) =⇒ d(x∗, y∗) ≤ β−1(s · η).

Proof. (a) Since T : M →M is a Picard operator, so Fix(T ) = {x∗}. Let ε > 0 and w∗ ∈M be a
solution of (3.16), i.e,

d(w∗, T (w∗)) ≤ ε.
Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there exists
w∗ ∈M such that α(x∗, w∗) ≥ 1, we obtain:

d(x∗, w∗) = d(T (x∗), w∗) ≤ s[d(T (x∗), T (w∗)) + d(T (w∗), w∗)]
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≤ s[α(x∗, w∗)d(T (x∗), T (w∗)) + ε] ≤ s[ψ(d(x∗, w∗)) + ε].

Therefore,

β(d(x∗, w∗)) := d(x∗, w∗)− sψ(d(x∗, w∗)) ≤ s · ε =⇒ d(x∗, w∗) ≤ β−1(s · ε).

Consequently, the fixed point equation (3.15) is generalized Ulam-Hyers stable.

(b) Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there
exists xn ∈M such that α(x∗, xn) ≥ 1, we obtain:

d(xn, x
∗) ≤ s[d(xn, T (xn)) + d(T (xn), x∗)] = s[d(xn, T (xn)) + d(T (xn), T (x∗))]

≤ s[d(xn, T (xn)) + α(xn, x
∗)d(T (xn), T (x∗))] ≤ s[d(xn, T (xn)) + ψ(d(xn, x

∗))].

Therefore

β(d(xn, x
∗)) := d(xn, x

∗)− sψ(d(xn, x
∗)) ≤ sd(xn, T (xn))→ 0 as n→∞

=⇒ d(xn, x
∗)→ 0 as n→∞ =⇒ xn → x∗, as n→∞.

So, the fixed point equation (3.15) is well posed.

(c) Since T is α-ψ-contractive mapping of type-(b) and since x∗ ∈ Fix(T ), from (H) there
exists x ∈M such that α(x∗, x) ≥ 1, we obtain:

d(x, x∗) ≤ s[d(x, T (x)) + d(T (x), x∗)] = s[d(x, T (x)) + d(T (x), T (x∗))]

≤ s[d(x, T (x)) + α(x, x∗)d(T (x), T (x∗))] ≤ s[d(x, T (x)) + ψ(d(x, x∗))].

Therefore
β(d(x, x∗)) := d(x, x∗)− sψ(d(x, x∗)) ≤ s · d(x, T (x)).

So, we have the following estimation

(3.17) d(x, x∗) ≤ β−1(s · d(x, T (x))).

Writing (3.17) for x := y∗ we get:

d(x∗, y∗) ≤ β−1(s · d(y∗, T (y∗))) = β−1(s · d(s(y∗), T (y∗))) =⇒ d(x∗, y∗) ≤ β−1(s · η).

�

4. NON UNIQUE FIXED POINTS ON b-METRIC SPACES

In this section, inspired by the well-known non-unique fixed point of Ćirić, we state and
prove some new non-unique fixed point theorems in the setting of b-metric spaces. Our results
improve the existence results in the literature, see e.g. [33,49,50,65]. We shall start to this section
by recalling the notion of orbitally continuous.

Definition 4.14. A mapping T on b-metric space (M,d) is said to be orbitally continuous if limi→∞ Tni(x) =
z implies limi→∞ T (Tni(x)) = Tz. A b-metric space (M,d) is called T -orbitally complete if every
Cauchy sequence of the form {Tni(x)}∞i=1, x ∈M converges in (M,d).

Remark 4.4. It is evident that orbital continuity of T yields orbital continuity of Tm for any m ∈ N.

Theorem 4.7. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). If there is ψ ∈ Ψ such that

(4.18) min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ ψ(d(x, y)),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .
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Proof. For an arbitrary x ∈M , we shall construct an iterative sequence {xn} as follows:

(4.19) x0 := x and xn = Txn−1 for all n ∈ N.

We suppose that

(4.20) xn 6= xn−1 for all n ∈ N.

Indeed, if for some n ∈ N we have the inequality xn = Txn−1 = xn−1, then, the proof is
completed. By substituting x = xn−1 and y = xn in the inequality (4.18), we derive that

(4.21) min{d(Txn−1, Txn), d(xn−1, Txn−1), d(xn, Txn)}
−min{d(xn−1, Txn), d(Txn−1, xn)} ≤ ψ(d(xn−1, xn)).

It implies that

(4.22) min{d(xn, xn+1), d(xn, xn−1)} ≤ ψ(d(xn−1, xn)).

Since ψ(t) < t for all t > 0, the case d(xn, xn−1) ≤ ψ(d(xn−1, xn)) is impossible. Thus, we have

(4.23) d(xn, xn+1) ≤ ψ(d(xn−1, xn)).

Applying Remark 1.1 recurrently, we find that

(4.24) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

By Lemma 1.2, we deduce that

(4.25) lim
n→∞

d(xn+1, xn) = 0.

In what follow we shall prove that the sequence {xn} is Cauchy.
Consider d(xn, xn+k) for k ≥ 1. By using the triangle inequality (b3) again and again, we get

the following approximation

(4.26)

d(xn, xn+k) ≤ s[d(xn, xn+1) + d(xn+1, xn+k)]
≤ sd(xn, xn+1) + s{s[d(xn+1, xn+2) + d(xn+2, xn+k)]}
= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xn+k)
...
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .
+ sk−1d(xn+k−2, xn+k−1) + sk−1d(xn+k−1, xn+k)
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .
+ sk−1d(xn+k−2, xn+k−1) + skd(xn+k−1, xn+k),

since s ≥ 1. Combining (4.24) and (4.26) we derive that

(4.27)

d(xn, xn+k) ≤ sψn(d(x0, x1)) + s2ψn+1d(x0, x1) + . . .
+ sk−1ψn+k−2(d(x0, x1)) + skψn+k−1(d(x0, x1))

=
1

sn−1
[snψn(d(x0, x1)) + sn+1ψn+1d(x0, x1) + . . .

+ sn+k−2ψn+k−2(d(x0, x1)) + sn+k−1ψn+k−1(d(x0, x1))].

Consequently, we have

(4.28) d(xn, xn+k) ≤ 1

sn−1
[Pn+k−1 − Pn−1] , n ≥ 1, k ≥ 1,
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where Pn =

n∑
j=0

sjψj(d(x0, x1)), n ≥ 1. From Lemma 1.2, the series
∞∑
j=0

sjψj(d(x0, x1)) is con-

vergent and since s ≥ 1, upon taking limit n→∞ in (4.28) we get

(4.29) lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

1

sn−1
[Pn+k−1 − Pn−1] = 0.

We conclude that the sequence {xn} is Cauchy in (M,d).
Owing to the construction xn = Tnx0 and the fact that (X, p) is T -orbitally complete, there

is z ∈ M such that xn → z. Due to the orbital continuity of T, we conclude that xn → Tz.
Hence z = Tz which terminates the proof. �

Corollary 4.1. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). If there exists k ∈ [0, 1) such that

(4.30) min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

If we take s = 1 in the previous corollary, we get the famous non-unique fixed point theorem
of Ćirić.

Corollary 4.2. [Non-unique fixed point theorem of Ćirić [33]] Let T be an orbitally continuous
self-map on the T -orbitally complete standard metric space (M,d). If there is k ∈ [0, 1) such
that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈M, then for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Remark 4.5. Regarding the Example 1.6, we deduce that the analog of Ćirić non-unique fixed point
theorem, Corollary 4.2, in the setting of cone metric space with normal cone, is still valid (see e.g. [50]).

Theorem 4.8. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d).

Suppose there exist real numbers a1, a2, a3, a4, a5 and a self mapping T : M → M satisfies the
conditions

(4.31) 0 ≤ a4 − a2
a1 + a2

< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5

(4.32) a1d(Tx, Ty)+a2
[
d(x, Tx)+d(y, Ty)

]
+a3[d(y, Tx)+d(x, Ty)] ≤ a4d(x, y)+a5d(x, T 2x)

hold for all x, y ∈M . Then, T has at least one fixed point.

Proof. Take x0 ∈M be arbitrary. Construct a sequence {xn} as follows:

(4.33) xn+1 := Txn n = 0, 1, 2, ...

When we substitute x = xn and y = xn+1 on the inequality (4.32), it implies that
(4.34)

a1d(Txn, Txn+1) + a2
[
d(xn, Txn) + d(xn+1, Txn+1)

]
+ a3[d(xn+1, Txn) + d(xn, Txn+1)]

≤ a4d(xn, xn+1) + a5d(xn, T
2xn)

for all a1, a2, a3, a4, a5 that satisfy (4.31). Due to (4.33), the statement (4.34) turns into
(4.35)

a1d(xn+1, xn+2) + a2
[
d(xn, xn+1) + d(xn+1, xn+2)

]
+ a3[d(xn+1, xn+1) + d(xn, xn+2)]

≤ a4d(xn, xn+1) + a5d(xn, xn+2).
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By a simple calculation, one can get

(4.36) (a1 + a2)d(xn+1, xn+2) + (a3 − a5)d(xn, xn+2) ≤ (a4 − a2)d(xn, xn+1)

which implies

(4.37) d(xn+1, xn+2) ≤ kd(xn, xn+1),

where k = a4−a2

a1+a2
. Due to (4.31), we have 0 ≤ k < 1. Taking account of (4.37), we get inductively

(4.38) d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ · · · ≤ knd(x0, x1).

We shall prove that (xn)n∈N is a Cauchy sequence.

d(xn, xn+p) ≤ s · d(xn, xn+1) + s2 · d(xn+1, xn+2) + . . .+ sp−2 · d(xn+p−3, xn+p−2)+

+ sp−1 · d(xn+p−2, xn+p−1) + sp · d(xn+p−1, xn+p)

≤ s · kn · d(x0, x1) + s2 · kn+1 · d(x0, x1) + . . .+

+ sp−2 · kn+p−3 · d(x0, x1) + sp−1 · kn+p−2 · d(x0, x1)+

+ sp · kn+p−1 · d(x0, x1)

=
1

sn · k
·
[
sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p−1 · kn+p−1 · d(x0, x1)+

+sn+p · kn+p · d(x0, x1)
]

≤ 1

sn · k
·
[
sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p · kn+p · d(x0, x1)

]
=

1

sn · k
·

n+p∑
i=n+1

si · ki · d(x0, x1)

<
1

snk
·
∞∑

i=n+1

si · ki · d(x0, x1).

The precedent inequality is

d(xn, xn+p) <
1

snk
·
∞∑

i=n+1

si · ki · d(x0, x1). −→ 0 as n −→∞.

Thus (xn)n∈N is a Cauchy sequence.
As in the proof of previous theorem, regarding the construction xn = Tnx0 together with the

fact that (X, p) is T -orbitally complete, there is z ∈ M such that xn → z. Again by the orbital
continuity of T, we deduce that xn → Tz. Hence z = Tz. �

Theorem 4.8 is still valid in the context of standard metric space.

Corollary 4.3. (See [49]) Let T be an orbitally continuous self-map on the T -orbitally complete standard
metric space (M,d).

Suppose there exist real numbers a1, a2, a3, a4, a5 and a self mapping T : M → M satisfies the
conditions

(4.39) 0 ≤ a4 − a2
a1 + a2

< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5

(4.40) a1d(Tx, Ty)+a2
[
d(x, Tx)+d(y, Ty)

]
+a3[d(y, Tx)+d(x, Ty)] ≤ a4d(x, y)+a5d(x, T 2x)

hold for all x, y ∈M . Then, T has at least one fixed point.
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Remark 4.6. As we discuss in Remark 4.5, we obtain the analog of Theorem 4.8 in the context of cone
metric spaces. More precisely, again taking Example 1.6 into account, one can derive that Corollary 4.3
is also still fulfilled in the setting of cone metric space with normal cone (see e.g. [49]).

Theorem 4.9. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists ψ ∈ Ψ such that

(4.41) P (x,y)−Q(x,y)
R(x,y) ≤ ψ(d(x, y)),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Proof. As in the proof of Theorem 4.7, we shall construct an iterative sequence {xn}, for an
arbitrary initial value x ∈M :

(4.42) x0 := x and xn = Txn−1 for all n ∈ N.

As it is discussed in the proof of Theorem 4.7, we suppose

(4.43) xn 6= xn−1 for all n ∈ N.

By substituting x = xn−1 and y = xn in the inequality (4.41), we derive that

(4.44) P (xn−1,xn)−Q(xn−1,xn)
R(xn−1,xn)

≤ ψ(d(xn−1, xn)),

where

P (xn−1, xn) = min{d(Txn−1, Txn)d(xn−1, xn), d(xn−1, Txn−1)d(xn, Txn)},
Q(xn−1, xn) = min{d(xn−1, Txn−1)d(xn−1, Txn), d(xn, Txn)d(Txn−1, xn)},
R(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn)}.

Due to axioms of b-metric space , we find that

(4.45)
d(xn, xn+1)d(xn−1, xn)

min{d(xn−1, xn), d(xn, xn+1)}
≤ ψ(d(xn−1, xn)),

If R(xn−1, xn) = d(xn, xn+1), then, the inequality (4.45) turns into

(4.46) d(xn−1, xn) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn),

which is a contraction, since ψ(t) < t for all t > 0. Accordingly, we deduce that

(4.47) d(xn, xn+1) ≤ ψ(d(xn−1, xn)).

Applying Remark 1.1 recurrently, we find that

(4.48) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

By Lemma 1.2, we deduce that

(4.49) lim
n→∞

d(xn+1, xn) = 0.

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 4.7.
�
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Corollary 4.4. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists k ∈ [0, 1) such that

(4.50) P (x,y)−Q(x,y)
R(x,y) ≤ kd(x, y),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Corollary 4.5. [Nonunique fixed point of Achari [1]] Let T be an orbitally continuous self-map
on the T -orbitally complete standard metric space (M,d). Suppose that there exists k ∈ [0, 1)
such that

(4.51) P (x,y)−Q(x,y)
R(x,y) ≤ kd(x, y),

for all x, y ∈M, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},
Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},
R(x, y) = min{d(x, Tx), d(y, Ty)}.

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of
T .

Theorem 4.10. Let T be an orbitally continuous self-map on the T -orbitally complete b-metric space
(M,d). Suppose that there exists k ∈ [0, 1) such that

(4.52) m(x, y)− n(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈M, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},
n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of T .

Proof. By following the lines in the proof of Theorem 4.7, we shall formulate an recursive se-
quence {xn}, for an arbitrary initial value x ∈M :

(4.53) x0 := x and xn = Txn−1 for all n ∈ N.

Regarding the analysis in the proof of Theorem 4.7, we assume that

(4.54) xn 6= xn−1 for all n ∈ N.

By replacing x = xn−1 and y = xn in the inequality (4.52), we observe that

(4.55) m(xn−1, xn)− n(xn−1, xn) ≤ kd(xn−1, Txn−1)d(xn, Txn),

where
m(xn−1, xn) = min{[d(Txn−1, Txn)]2, d(xn−1, xn)d(Txn−1, Txn), [d(xn, Txn)]2},
n(xn−1, xn) = min{d(xn−1, Txn−1)d(xn, Txn), d(xn−1, Txn)d(xn, Txn−1)}.

By utilizing the above inequality, we get that

(4.56) m(xn−1, xn) ≤ kd(xn−1, xn)d(xn, xn+1),
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wherem(xn−1, xn) = min{[d(xn, xn+1)]2, d(xn−1, xn)d(xn, xn+1)}.Notice that the casem(xn−1, xn) =
d(xn−1, xn)d(xn, xn+1) is impossible. Indeed, in this case, since ψ(t) < t for all t > 0, the in-
equality (4.56) turns into

(4.57) d(xn−1, xn)d(xn, xn+1) ≤ kd(xn−1, xn)d(xn, xn+1)

It is a contradiction since k < 1. Appropriately, we infer that

(4.58) [d(xn, xn+1)]2 ≤ kd(xn−1, xn)d(xn, xn+1)

which is equivalent to

(4.59) d(xn, xn+1) ≤ kd(xn−1, xn).

Recurrently, we find that

(4.60) d(xn, xn+1) ≤ knd(x0, x1).

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 4.8. �

Theorem 4.8 is still valid in the context of standard metric space.

Corollary 4.6. [Nonunique fixed point of Pachpatte [65]] Let T be an orbitally continuous
self-map on the T -orbitally complete standard metric space (M,d). Suppose that there exists
k ∈ [0, 1) such that

(4.61) m(x, y)− n(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈M, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},
n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

with R(x, y) 6= 0. Then, for each x0 ∈M the sequence {Tnx0}n∈N converges to a fixed point of
T .

Remark 4.7. One can deduce the analog of Theorem 4.10 in the context of cone metric spaces as it
mentioned in Remark 4.5.

5. ON GENERALIZED α− ψ-GERAGHTY CONTRACTIVE MAPPING

Now, we are ready to state and prove our main results. Let Ψ be set of all increasing and
continuous functions ψ : [0,∞) → [0,∞) with ψ−1({0}) = {0}. Let F be the family of all
nondecreasing functions β : [0,∞)→ [0, 1s ) which satisfy the condition

(5.62) lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0,

for some s ≥ 1.

Definition 5.15. Let (M,d) be a b-metric space and T : M → M be a self-map. We say that T is a
generalized α−ψ-Geraghty contractive mapping whenever there exist α : M ×M → [0,∞) and some
L ≥ 0 such that for

(5.63) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}

(5.64) and N(x, y) = min{d(x, Tx), d(y, Tx)},
we have

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)) + Lφ(N(x, y)),(5.65)

for all x, y ∈M , where β ∈ F and ψ, φ ∈ Ψ.
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Remark 5.8. Since the functions belonging toF are strictly smaller than 1
s , the expression β(ψ(E(x, y)))

in (5.65) can be estimated as

β(ψ(E(x, y))) <
1

s
for any x, y ∈M with x 6= y.

Theorem 5.11. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point.

Proof. Let x0 ∈ M be such that α(x0, Tx0) ≥ 1. We construct an iterative sequence {xn} such
that

xn+1 = Txn, n ∈ N0.

If there exists an n0 such that Txn0
= xn0

for some n0, then xn0
is a fixed point of T which

completes the proof. Thus, without loss of generality, we assume that

(5.66) xn 6= xn+1 for all n ∈ N0.

The mapping T is triangular α-orbital admissible, by Lemma 2.3, we have

α(xn, xn+1) ≥ 1, for all n ∈ N0.(5.67)

By taking x = xn−1 and y = xn in the inequality (5.65) together with the inequality (5.67) and
regarding that ψ is an increasing function, we obtain

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn)) ≤ α(xn−1, xn)ψ(s3d(Txn−1, Txn))(5.68)

≤ β(ψ(M(xn−1, xn)))ψ(M(xn−1, xn)) + Lφ(N(xn−1, xn)),

for all n ∈ N, where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),
d(xn−1, Txn) + d(xn, Txn−1)

2s
}

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2s
}

= max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1)

2s
}

and

N(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn−1)}(5.69)

= min{d(xn−1, xn), d(xn, xn)} = 0.

Since
d(xn−1, xn+1)

2s
≤ s[d(xn−1, xn) + d(xn, xn+1)]

2s
≤ max{d(xn−1, xn), d(xn, xn+1)},

then we get

M(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}.(5.70)

Taking (5.70) and (5.69) into account, (5.68) yields that

ψ(d(xn, xn+1)) ≤ ψ(s3d(xn, xn+1)) ≤ α(xn−1, xn)ψ(s3d(xn, xn+1))(5.71)

≤ β(ψ(M(xn−1, xn))ψ(max{d(xn−1, xn), d(xn, xn+1)}).
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If for some n ∈ N, we have max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then by (5.71) and
Remark 5.8, we get

ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn))ψ(d(xn, xn+1) <
1

s
ψ(d(xn, xn+1) < ψ(d(xn, xn+1),(5.72)

which is a contradiction. Thus, from (5.71) we conclude that

ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn)))ψ(d(xn−1, xn)) <
1

s
ψ(d(xn−1, xn)) < ψ(d(xn−1, xn)),

(5.73)

for all n ∈ N. Hence {ψ(d(xn, xn+1))} is a non-negative decreasing sequence. Since ψ is increas-
ing, so the sequence {d(xn, xn+1)} is non-increasing. Consequently, there exists δ ≥ 0 such that
lim
n→∞

d(xn, xn+1) = δ. We claim that δ = 0. Suppose, on the contrary that

lim
n→∞

d(xn, xn+1) = δ > 0.(5.74)

Since s ≥ 1, the inequality (5.73) can be estimated as
1

s
ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1)) ≤ β(ψ(M(xn−1, xn)))ψ(d(xn−1, xn)).(5.75)

Regarding (5.66), the inequality (5.75) implies that

1

s

ψ(d(xn, xn+1))

ψ(d(xn−1, xn))
≤ β(ψ(M(xn−1, xn))) <

1

s
.

It yields that lim
n→∞

β(ψ(M(xn−1, xn))) =
1

s
. Since β ∈ F , then lim

n→∞
ψ(M(xn−1, xn)) = 0. We

deduce that
lim

n→∞
ψ(d(xn, xn+1)) = 0.

Thus, regarding the fact that d(xn, xn+1)→ δ and the continuity of ψ, we derive that ψ(δ) = 0.
Since ψ−1({0}) = {0}, soδ = 0, which is a contradiction. Thus, we have

lim
n→∞

d(xn, xn+1) = 0.(5.76)

Now, we claim that

lim
m,n→∞

d(xn, xm) = 0.

Assume on the contrary that exist ε > 0 and subsequences {xmi
}, {xni

} of {xn}with ni > mi ≥
i such that

d(xmi
, xni

) ≥ ε.(5.77)

Additionally, corresponding to mi, we may choose ni such that it is the smallest integer satis-
fying (5.77) and ni > mi ≥ i. Thus, we have

d(xmi , xni−1) < ε.(5.78)

From (5.77) and the triangle inequality, we obtain

ε ≤ d(xni , xmi) ≤ sd(xni , xni+1) + sd(xni+1 , xmi)

≤ sd(xni
, xni+1

) + s2d(xni+1
, xmi+1

) + s2d(xmi+1
, xmi

).(5.79)

Letting i→∞ and regarding (5.76), the inequality (5.79) yields that
ε

s2
≤ lim sup

i→∞
d(xni+1

, xmi+1
).(5.80)
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By Lemma 2.3, recall that

α(xmi , xni) ≥ 1.(5.81)

Consequently, by (5.65) we have

ψ(d(xni+1
, xmi+1

)) = ψ(d(Txni
, Txmi

))(5.82)

≤ ψ(s3 d(Txni , Txmi)) ≤ α(xmi , xni)ψ(s3d(Txni , Txmi))

≤ β(ψ(M(xni , xmi)))ψ(M(xni , xmi)) + Lφ(d(xmi , Txni))),

where

M(xni , xmi) = max{d(xni , xmi), d(xni , Txni), d(xmi , Txmi),
d(xni , Txmi) + d(xmi , Txni)

2s
}

(5.83)

= max{d(xni , xmi), d(xni , xni+1), d(xmi , xmi+1),
d(xni

, xmi+1
) + d(xmi

, xni+1
)

2s
},

and

N(xni
, xmi

) = min{d(xni
, Txni

), d(xmi
, Txni

)} = min{d(xni
, xni+1), d(xmi

, xni+1)}.

Notice that

d(xni
, xmi+1

) + d(xmi
, xni+1

)

2s
≤
s[d(xni

, xmi
) + d(xmi

, xmi+1
)] + s[d(xmi

, xni
) + d(xni

, xni+1
)]

2s

(5.84)

and

d(xni
, xmi

) ≤ s[d(xni
, xni−1) + d(xni−1, xmi

)] < sd(xni
, xni−1) + sε.(5.85)

Taking (5.78), (5.84) and (5.85) into account, we find that

lim sup
i→∞

M(xni , xmi) ≤ sε, and(5.86)

lim
i→∞

N(xni
, xmi

) = 0.(5.87)

By taking the upper limit as i→∞ and regarding the condition (T4) together with the expres-
sions (5.80), (5.86) and (5.87), the inequality (5.82) becomes

1

s
ψ(sε) ≤ ψ(sε) ≤ lim sup

i→∞
ψ(s3 d(xni+1

, xmi+1
))

≤ lim sup
i→∞

α(xmi
, xni

))ψ(s3d(xni+1
, xmi+1

))

= lim sup
i→∞

α(xmi , xni)ψ(s3d(Txni , Txmi))

≤ lim sup
i→∞

[β(ψ(M(xni
, xmi

)))ψ(M(xni
, xmi

)) + Lφ(N(d(xni
, xmi

)))]

≤ ψ(sε) lim sup
i→∞

β(ψ(M(xni , xmi)))

≤ 1

s
ψ(sε).

Then lim sup
i→∞

β(ψ(M(xni
, xmi

))) =
1

s
. Due to the fact β ∈ F , we have

lim sup
i→∞

ψ(M(xni
, xmi

)) = 0.
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Thus, we conclude that
lim
i→∞

ψ(d(xni
, xmi

)) = 0.

Therefore, by continuity of ψ and the fact that ψ−1({0}) = {0}, so

lim
i→∞

d(xni
, xmi

) = 0,(5.88)

which is a contradiction with respect to (5.77). We deduce that {xn} is a Cauchy sequence in
(M,d). Since (M,d) is a complete b-metric space, there exists x∗ ∈ M such that lim

n→∞
xn = x∗.

The mapping T is continuous and it is obvious that Tx∗ = x∗. �

We replace the continuity of the mapping T in the above theorem by a suitable condition on
X .

Theorem 5.12. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) X is α-regular.
Then T has a fixed point.

Proof. Following the lines in the proof of Theorem 5.11, we conclude that lim
n→∞

xn = x∗. If X is

α-regular, then since α(xn, xn+1) ≥ 1, so there exists a subsequence {xnk
} of {xn} such that

α(xnk
, x∗) ≥ 1,(5.89)

for all k. By triangular inequality

d(x∗, Tx∗) ≤ sd(x∗, xnk+1) + sd(xnk+1, Tx
∗)

= sd(x∗, xnk+1) + sd(Txnk
, Tx∗).

Letting k tends to infinity

d(x∗, Tx∗) ≤ lim inf
k→∞

sd(Txnk
, Tx∗).(5.90)

Having ψ ∈ Ψ, (5.89) and (5.90), so

ψ(s2d(x∗, Tx∗)) ≤ lim
k→∞

ψ(s3d(Txnk
, Tx∗)) ≤ lim

k→∞
α(xnk+1

, x∗)ψ(s3d(Txnk
, Tx∗))

≤ lim
k→∞

[β(ψ(M(xnk
, x∗)))ψ(M(xnk

, x∗)) + Lφ(N(xnk
, x∗))].(5.91)

We have

M(xnk
, x∗) = max{d(xnk

, x∗), d(xnk
, Txnk

), d(x∗, Tx∗),
d(xnk

, Tx∗) + d(x∗, Txnk
)

2s
}

= max{d(xnk
, x∗), d(xnk

, xnk+1
), d(x∗, Tx∗),

d(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
},

and

N(xnk
, x∗) = min{d(xnk

, Txnk
), d(x∗, Txnk

)}
= min{d(xnk

, xnk+1
), d(x∗, xnk+1

)}.

Recall that
d(xnk

, Tx∗) + d(x∗, xnk+1
)

2s
≤
sd(xnk

, x∗) + sd(x∗, Tx∗) + d(x∗, xnk+1
)

2s
.
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Then, by (5.76), we get that

lim sup
k→∞

d(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
≤ d(x∗, Tx∗)

2
.

When k tends to infinity, we deduce

lim
k→∞

M(xnk
, x∗) = d(x∗, Tx∗),

and

lim
k→∞

N(xnk
, x∗) = 0.

Since β(ψ(M(xnk
, x∗))) ≤ 1

s
,∀k ∈ N so by (5.91)

ψ(s2d(x∗, Tx∗)) ≤ 1

s
ψ(d(x∗, Tx∗)) ≤ ψ(d(x∗, Tx∗)).

Since ψ ∈ Ψ, so the above holds unless d(x∗, Tx∗) = 0, that is, Tx∗ = x∗ and x∗ is a fixed point
of T . �

For the uniqueness of a fixed point of a generalized α − ψ contractive mapping, we will
consider the following hypothesis.

(H) For all x, y ∈ Fix(T ), either α(x, y) ≥ 1 or α(y, x) ≥ 1.
Here, Fix(T ) denotes the set of fixed points of T .

Theorem 5.13. Adding condition (H) to hypotheses of Theorem 5.11 (respectively, Theorem 5.12 ), we
obtain uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed points of T . Then we have, it is obvious that
M(x∗, y∗) = d(x∗, y∗) and N(x∗, y∗) = 0. So

ψ(d(x∗, y∗)) ≤ ψ(s3d(Tx∗, Ty∗))

≤ α(x∗, y∗)ψ(s3d(Tx∗, T y∗))

≤ β(ψ(M(x∗, y∗)))ψ(M(x∗, y∗)) + Lφ(N(x∗, y∗))

<
1

s
ψ(d(x∗, y∗)) ≤ ψ(d(x∗, y∗)),

which is contradiction. �

Definition 5.16. Let (M,d) be a b-metric space and T : M → M be a self-map. We say that T is a
generalized α−ψ-Geraghty contractive mapping of type (B) whenever there exists α : M×M → [0,∞)
such that for

(5.92) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}

we have

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(5.93)

for all x, y ∈M , where β ∈ F and ψ ∈ Ψ.

By verbatim of the proofs of Theorem 5.11, Theorem 5.12 and Theorem 5.13, we get the
following results:
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Theorem 5.14. Let (M,d) be a complete b-metric space and T : M → M be a generalized α − ψ-
Geraghty contractive mapping of type (B) such that
(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) either T is continuous or X is α-regular.
Then T has a fixed point.

Theorem 5.15. Adding condition (H) to hypotheses of Theorem 5.14, we obtain uniqueness of the fixed
point of T .

Example 5.9. Let X be the set of Lebesgue measurable functions on [0, 1] such that∫ 1

0

|x(t)|dt < 1.

Define d : M ×M → [0,∞) by

d(x, y) = (

∫ 1

0

|x(t)− y(t)|dt)2.

Then, d is a b-metric on X with s = 2.
The operator T : M →M is defined by

Tx(t) =
1

4
ln(1 + |x(t)|).

Consider the mappings α : M ×M → [0,∞), β : [0,∞)→ [0, 12 ) and
ψ : [0,∞)→ [0,∞) defined by

α(x, y) =

{
1 if x(t) ≥ y(t),∀t ∈ [0, 1],
0 otherwise.

ψ(t) = t and β(t) =
(ln(1 +

√
t))2

2t
.

Evidently, ψ ∈ Ψ and β ∈ F . Moreover, T is a triangular α-orbital admissible mapping and α(1, T1) ≥
1.
Now, we shall prove that T is a generalized α − ψ-Geraghty contractive mapping. In fact, for all
t ∈ [0, 1], we have

√
α(x(t), y(t))ψ(s3d(Tx(t), T y(t))) ≤

√
23(

∫ 1

0

|Tx(t)− Ty(t)|dt)2

≤ 2
√

2

∫ 1

0

|1
4
ln(1 + |x(t)|)− 1

4
ln(1 + |y(t)|)|dt

=
1√
2

∫ 1

0

|ln(
1 + |x(t)|
1 + |y(t)|

)|dt

=
1√
2

∫ 1

0

|ln(1 +
|x(t)| − |y(t)|

1 + |y(t)|
)|dt

≤ 1√
2

∫ 1

0

|ln(1 + |x(t)| − |y(t)|)|dt
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By Lemma 8.4 (given in Appendix), we get∫ 1

0

|ln(1 + |x(t)| − |y(t)|)|dt ≤ ln(

∫ 1

0

(1 + |x(t)− y(t)|)dt) = ln(1 +

∫ 1

0

|x(t)− y(t)|dt).

Therefore √
α(x(t), y(t))ψ(s3d(Tx(t), T y(t))) ≤ 1√

2
ln(1 +

∫ 1

0

|x(t)− y(t)|dt)

≤ 1√
2
ln(1 +

√
d(x, y)).

So, we obtain

α(x(t), y(t))ψ(s3d(Tx(t), Ty(t))) ≤ 1

2
(ln(1 +

√
d(x, y)))2

≤ 1

2
(ln(1 +

√
E(x, y)))2

=
(ln(1 +

√
E(x, y)))2

2E(x, y)
E(x, y)

= β(ψ(E(x, y))) ψ(E(x, y)).

Thus, by Theorem 5.14, we see that T has a fixed point.

6. CONSEQUENCES

In this section, we shall demonstrate that several existing results in the literature can be
easily concluded from Theorem 5.13.

6.1. Standard fixed point theorems in b-metric. By taking α(x, y) = 1 in Theorem 5.13, for all
x, y ∈M , we obtain immediately the following fixed point theorem.

Corollary 6.7. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X . If there exists L ≥ 0 such that for all x, y ∈M ,

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)) + Lφ(N(x, y)),(6.94)

where β ∈ F , ψ, φ ∈ Ψ and

(6.95) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
},

(6.96) and N(x, y) = min{d(x, Tx), d(y, Tx)},
then T has a unique fixed point.

By taking α(x, y) = 1 in Theorem 5.15, for all x, y ∈M , we obtain immediately the following
fixed point result.

Corollary 6.8. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X such that for all x, y ∈M ,

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(6.97)

where β ∈ F , ψ ∈ Ψ and

(6.98) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}.
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Then T has a unique fixed point.

If we put α(x, y) = 1,∀x, y ∈ M , L = 0 and ψ(t) = t in Theorem 5.13, we may state the
following result.

Corollary 6.9. Let (M,d) be a complete b-metric space with s ≥ 1 and T : M → M be a mapping on
X such that for all x, y ∈M ,

s3d(Tx, Ty) ≤ β(E(x, y))E(x, y)

where β ∈ F and

(6.99) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}.

Then, T has a unique fixed point.

If we take s = 1 and β(t) = 1
t+1 for t > 0 in Corollary 6.9, we deduce the following result.

Corollary 6.10. Let (M,d) be a complete metric space and T : M →M be a mapping on X such that
for all x, y ∈M ,

d(Tx, Ty) ≤ E(x, y)

1 + E(x, y)
.

Then T has a unique fixed point.

6.2. Fixed point theorems on b-metric spaces endowed with a partial order. On the last decade,
several exciting developments have been reported in the field of existence of fixed point on met-
ric spaces endowed with partial orders see e.g. [64, 69, 81]. In this section, from Theorem 5.13
(and also from Theorem 5.15), we shall easily conclude some fixed point results on a b-metric
space endowed with a partial order. First of all, we recall some basic concepts:

Definition 6.17. Let (M,�) be a partially ordered set and T : M → M be a given mapping. We say
that T is nondecreasing with respect to � if

x, y ∈M, x � y =⇒ Tx � Ty.

Definition 6.18. Let (M,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be nondecreas-
ing with respect to � if xn � xn+1 for all n.

Definition 6.19. Let (M,�) be a partially ordered set and d be a b-metric on X . We say that (M,�, d)
is regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ M as n → ∞, there
exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

We have the following result.

Corollary 6.11. Let (M,�) be a partially ordered set and d be a b-metric on X such that (M,d) is
complete . Let T : M → M be a nondecreasing mapping with respect to �. Suppose that there exist
functions β ∈ F , ψ ∈ Ψ such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y))(6.100)

and

(6.101) E(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
},

for all x, y ∈M with x � y. Suppose also that the following conditions hold:
(i) there exists x0 ∈M such that x0 � Tx0;
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(ii) T is continuous or (M,�, d) is regular.
Then T has a fixed point. Moreover, if for all x, y ∈ Fix(T ) either x � y or y � x, we have uniqueness
of the fixed point.

Proof. Define the mapping α : M ×M → [0,∞) by

α(x, y) =

{
1 if x � y or x � y,
0 otherwise.

Clearly, T is a generalized α− ψ contractive mapping, that is,

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(E(x, y)))ψ(E(x, y)),

for all x, y ∈ M . From condition (i), we have α(x0, Tx0) ≥ 1. On the other hand, for all
x, y ∈M , from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

So T is α−admissible. In case of T is continuous, the existence of a fixed point is concluded
from Theorem 5.14. Now, assume that (M,�, d) is regular. Let {xn} be a sequence in X such
that α(xn, xn+1) ≥ 1 for all n and xn → x ∈M as n→∞. From the regularity hypothesis, there
exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k. It yields from the definition of
α that α(xn(k), x) ≥ 1 for all k. In this case, the existence of a fixed point follows from Theorem
5.14. To prove the uniqueness, let x, y ∈ M . Due to the hypothesis, we have α(x, y) ≥ 1 and
α(y, x) ≥ 1. Hence, by Theorem 5.15, we conclude the uniqueness of the fixed point. �

The following results are immediate consequences of Corollary 6.11.

Corollary 6.12. Let (M,�) be a partially ordered set and d be a b-metric on X such that (M,d) is
complete . Let T : M → M be a nondecreasing mapping with respect to �. Suppose that there exist
functions β ∈ F and ψ ∈ Ψ such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y))(6.102)

for all x, y ∈M with x � y. Suppose also that the following conditions hold:
(i) there exists x0 ∈M such that x0 � Tx0;

(ii) T is continuous or (M,�, d) is regular.
Then T has a fixed point. Moreover, if for all x, y ∈ Fix(T ) either x � y or y � x, we have uniqueness
of the fixed point.

Remark 6.9. In fact, in all results above, one can take s = 1 to conclude the existing results in the
literature.

7. APPLICATION

As an application, we consider the following integral equation

x(t) = h(t) +

∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ, ∀ t ∈ [0, 1].(7.103)

Let Ω denote the class of non-decreasing functions ω : [0,∞)→ [0,∞) verifying

(ω(t))r ≤ tr ω(tr), for all r ≥ 1 and ∀t ≥ 0.

We will analyze equation (7.103) under the following assumptions:
(a1) h : [0, 1]→ R is a continuous function,
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(a2) T : [0, 1]× R→ R is a continuous function, T (t, x) ≥ 0 and there exists ω ∈ Ω such that
for all x, y ∈ R,

|T (t, x)− T (t, y)| ≤ ω(|x− y|)
with w(tn)→ 1

2r−1 as n→∞ implies that lim
n→∞

tn = 0,

(a3) k : [0, 1] × [0, 1] → R is continuous in t ∈ [0, 1] for every ξ ∈ [0, 1] and is measurable in
ξ ∈ [0, 1] for all t ∈ [0, 1] such that k(t, x) ≥ 0 and∫ 1

0

k(t, ξ)dξ ≤ 1

23−
3
r

.

Consider the space M = C([0, 1]) of continuous functions with the standard metric given by

ρ(x, y) = sup
t∈[0,1]

|x(t)− y(t)|,∀x, y ∈ C([0, 1]).

Now, for r ≥ 1, we define

d(x, y) = (ρ(x, y))r = ( sup
t∈[0,1]

|x(t)− y(t)|)r = sup
t∈[0,1]

|x(t)− y(t)|r,∀x, y ∈ C([0, 1]).

Note that (M,d) is a complete b-metric space with s = 2r−1.

Theorem 7.16. Under assumptions (a1)−(a3), the equation (7.103) has a unique solution inC([0, 1]).

Proof. We consider the operator T : M →M defined by

T (x)(t) = h(t) +

∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ, t ∈ [0, 1].

By virtue of our assumptions, T is well defined (this means that if x ∈ M then Tx ∈ M ). Also,
for x, y ∈M , we have

|T (x)(t)− T (y)(t)| = |h(t) +

∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ − h(t)−
∫ 1

0

k(t, ξ)T (ξ, x(ξ))dξ|

≤
∫ 1

0

k(t, ξ)|T (ξ, x(ξ))− T (ξ, y(ξ))|dξ

≤
∫ 1

0

k(t, ξ)ω(|x(ξ)− y(ξ)|)dξ.

Since the function ω is non-decreasing, so

ω(|x(ξ)− y(ξ)|) ≤ ω( sup
t∈[0,1]

|x(ξ)− y(ξ)|) = ω(ρ(x, y)).

Therefore
|T (x)(t)− T (y)(t)| ≤ 1

23−
3
r

ω(ρ(x, y)).

Now, we have

d(Tx, Ty) = sup
t∈[0,1]

|T (x)(t)− T (y)(t)|r

≤ [
1

23−
3
r

ω(ρ(x, y))]r ≤ 1

23r−3
d(x, y)ω(d(x, y))

≤ 1

23r−3
ω(E(x, y))E(x, y),

that is,
s3d(Tx, Ty) ≤ β(E(x, y))E(x, y),
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where s = 2r−1 and β(t) = ω(t). Notice that, if ω ∈ F , so β ∈ F . By Corollary 6.9, equation
(7.103) has a unique solution in C[0, 1] and the proof is completed. �

8. APPENDIX

Lemma 8.4. Let (X,µ) be a measure space such that µ(X) = 1. Take f ∈ L1(X,µ) satisfying the
condition T (x) > 0 for all x ∈M . Then, ln(f) ∈ L1(X,µ) and∫

ln(f)dµ ≤ ln(

∫
f dµ).

Proof. Put g(t) := t − 1 − ln(t) and h(t) := 1 − 1
t − ln(t) for t > 0. Then, g′(t) = 1 − 1

t and
h′(t) = 1

t2 −
1
t . Clearly, notice that

g(t) ≥ g(1) = 0 and h(t) ≤ h(1) = 0 ∀ t > 0.

We deduce

(8.104) t− 1 ≥ ln(t) ≥ 1− 1

t
∀ t > 0.

Since T is measurable and ln is continuous, then ln(f) is measurable. Now, for all x ∈ M let
t = T (x)

‖f‖1 in (8.104). So, we have

1− ‖ f ‖1
T (x)

≤ ln(T (x))− ln(‖ f ‖1) ≤ T (x)

‖ f ‖1
− 1.

Since both right hand and left hand of [ln(T (x)) − ln(‖ f ‖1)] is integrable, so ln(T (x)) − ln(‖
f ‖1) is integrable. We also have∫

(ln(T (x))− ln(‖ f ‖1)dµ ≤
∫

(
T (x)

‖ f ‖1
− 1)dµ = 0.

Therefore, ∫
ln(f) dµ ≤ ln(

∫
f dµ).

�
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57(2011), 65-74.
[24] M.-F. Bota, E. Karapinar and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via alpha-psi-

contractive mapping in b-metric space, Abstract and Applied Analysis, 2013 Article Id: 825293
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