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Abstract 

The bootstrap method firstly was introduced by Efron in 1979 as a general method for assessing the statistical 

accuracy of an estimator. Bootstrap is a computer-based resampling approach and a nonparametric statistical 

inference method. In this study, the use of the Bootstrap method in the parameter estimation of the linear regression 

is introduced and given a sample application on a real data set. In addition, if the data set contains outliers the effect 

that occurs in parameter estimation is examined. Confidence intervals and standard errors have been identified for 

various bootstrap repetitions numbers. As a result, it has been found that even 200 bootstrap repetations may suffice 

to obtain proper results. 
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1.Introduction 

Linear regression is one of the most popular statistical 

techniques used in many fields, including engineering 

and technological research. The model for linear 

regression is given as 

 

Y = Xβ + ϵ          (1) 

 

where Y is an nx1 vector of outcomes variable, X is an 

nxk matrix of independent variables, 𝜷 is a kx1 vector 

of unknown parameter and  is an nx1 random error 

term. Error term of  is independent and identically 

distributed.  It is well known that if the error terms are 

normally distributed in the regression model (Eq.1), the  

ordinary least squares (OLS) is the best choice in 

estimating parameters [2]. According to OLS method,  

unknown regression coefficients can be estimated by 

Eq. (2). 

 

β̂ = (XTX)−1XTY                (2) 

 

A typical problem in the applied statistic is related to the 

estimation of an unknown θ parameter. There are two 

important questions to answer about this: 1) Which θ ̂ 

estimation should be used? 2) Let's say we choose a 

certain θ ̂, how do we decideif this is the right estimator? 

Bootstrap is a general methodology where to answer the 

second question [3]. 

The scientific and statistical inference is clearly built on 

parametric models and often gives good results. 

However, the limited scope of parametric models in 

modern science and the increasing complexity of the 

studied system pose a risk of incorrect identification of 

the model. For this reason, alternation based techniques 

(such as bootstrap recalling) are needed [4]. 
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It is more convenient to use the Bootstrap method 

because there is no assumption in classical methods 

when the assumptions required are not fulfilled. It was 

determined that the bootstrap method is superior to the 

variance analysis in cases where the sample volume is 

too small or the sample distribution is not normal. In 

addition, the results obtained by using the conventional 

statistical methods and the results of the bootstrap 

method are similar [5]. 

A technical term for a sample summary number is 

sample statistic. For example, the sample means, a 

summary statistic will variate from sample to another 

sample and a statistician would like to know the 

magnitude of this variation around the corresponding 

population parameter. This is then used in assessing 

‘tolerance’ or ‘margin of errors’. The entire picture of all 

possible values of a sample statistics presented in the 

form of a probability distribution is called a sampling 

distribution. A general heuristic method can be applied 

to any kind of sample statistics. Sometimes, however, 

the researcher may want to implement his own method 

to avoid technical complications. Bootstrap is such a 

method, For example, sample selection from a 

population is repeated and the sampling distribution can 

be generated by the statistics calculated from these 

samples. But there may not always be a real population 

at all. The logic behind bootstrapping is to extract this 

information from the "proxy population" at hand[6].  

The use of the bootstrap method in regression models 

has become widespread in recent years. For example, 

Bootstrap methods for dependent data (such as time 

series) are discussed in [7]. The bootstrap application is 

discussed in the functional linear regression and used to 

create pointwise confidence intervals by Gonzàlez-

Manteiga & Martinez-Calvo [8].  In the nonparametric 

regression, the bootstrap approach was used in 

confidence intervals [9]. Takma and Atıl  [5] found that 

in their studies, hypothesis testing with classical 

methods, confidence intervals and the results of 

applying them in regression analysis were similar to 

those of the bootstrap method. 

A two-step bootstrap model averaging approach has 

been used to characterize the choice of explanatory 

variables in a linear regression [10]. The study of Okutan 

[11] showed that the use of the bootstrap method can 

give more realistic results than estimating the variance 

of the OLS estimator for the linear regression model. 

Amiri and Zwanzig [12] proposed a family of tests based 

on the bootstrap method about some coefficients of 

variation and examine its properties using Monte Carlo 

simulations. In another study, Amiri and von Rosen 

[13], attempted to depict the applicability of the 

bootstrap method than the conventional methods of the 

contingency table. In their study, they shows that 

nonparametric bootstrap method can be used to improve 

the result.  The study of Baydılı & Sığırlı [14] found that 

among the most widely used test for homogeneity of 

variance, was the bootstrap Levene median test with the 

best performance. The performances of bootstrap-t and 

percentile bootstrap methods are compared in terms of 

type 1 error rates by using a different number of 

bootstrap replications, trimming proportions and 

population distributions [15].   Amiri and Modarres [16], 

explore the use of bootstrap for testing independence of 

two categorical variables. In some study, the Jacknife-

after-Bootstrap were used as as a diagnostic tool in 

linear regression models [17,18] and in logistic 

regression model [19].  

The present study explores the theoretical reasoning 

behind the bootstrap for linear regression analysis. We 

consider the nonparametric approaches. In this study, 

estimation of unknown beta coefficients in Linear 

Regression by the Bootstrap method is discussed. 

Bootstrap is a computer-based re-sampling approach. 

Bootstrap is a nonparametric statistical inference 

approach. More traditional distribution is used instead of 

assumptions and asymptotic results. Because the 

distribution assumptions are not required, the bootstrap 

allows for more accurate inference if the data 

distribution is unknown or the sample size is small. 

The article is organized as follows. The bootstrap 

method, backgroud and its implementation are treated in 

Section 2. Section 3 includes the method and 

information about the real data which are used. In 

section 4 gives results for bootstrap resampling method 

to estimates parameters of linear regression. Finally, the 

last section summarizes the conclusions of the study. 

 

2.The Bootstrap Method Background 

The bootstrap method emerged with Efron 's 1979 

horizon opening article.The Bootstrap method requires 

a few assumptions, It does not contain complex 

mathematical formulas but has a strong mathematical 

background and was popular in the 80's with computer 

usage [20].  

Bootstrap uses the sample data to estimate the relevant 

properties of the population. It empirically constructs 

the sampling distribution of a statistic by resampling. 

The resampling procedure is in parallel with sample 

withdrawal from the population. A bootstrap sample is a 

sample withdrawal (selected by n times replacement) 

from the original sample. 

 
Figure 1: A schematic diagram for the Bootstrap [21] 

𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) original sample  
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𝑥∗ = (𝑥1
∗, 𝑥2

∗, … . , 𝑥𝑛
∗ ) bootstrap sample 

For example, if  n=7 then we can get two bootstrap 

samples, such as 

𝑥∗1 = (𝑥5, 𝑥7, 𝑥5, 𝑥6, 𝑥4, 𝑥1, 𝑥3) and 

𝑥∗2 = (𝑥2, 𝑥1, 𝑥6, 𝑥7, 𝑥7, 𝑥4, 𝑥5) [21] 

There are two main types of bootstrap: Parametric and 

Nonparametric. In parametric bootstrap: We know that 

F belongs to a family of parametric distributions, and we 

only want to estimate this parameter from the sample. 

We are sampling F samples to estimate the parameter. In 

nonparametric bootstrap: We do not know the shape of 

F, and we estimate it from the empirical distribution we 

obtain from the data (ie from F̂). The general Bootstrap 

algorithm is as follows: 

1.producting x* bootstrap sample (size n) from �̂�𝑛 

2.calculating θ̂∗ statistic fort this sample 

3. Repeating B times  step 1 and 2  

As a result the θ̂∗ = (θ̂1
∗ , θ̂2

∗ , θ̂3
∗ , … . . , θ̂B

∗ ) obtained. 

Thus, the desired quantity is calculated. 

Estimate of bootstrap standart error (SE)given by 

equation (3);    

 

𝑆𝐸(𝐵) = √
  ∑(�̂�𝑖

∗−𝜃∗(.))2 

𝐵
        (3) 

 

Where �̂�𝑖
∗ (i=1,2,…, B), is the bootstrap value of the ith 

sample and 𝜃∗(. ) =
 1 

𝐵
∑ �̂�𝑖

∗. 

 

3.Materials and Methods  

Regression coefficients were estimated using hormone 

data. By resampling the residuals then the  𝑦𝑖
∗ values 

were calculated. Finally, coefficients with (𝑦𝑖
∗, 𝑥𝑖) 

points were fitted. The bootstrap replicate is taken as        

B = 50, 100, 200, 500, 1000, 2000, 5000 and means and 

standard errors of the coefficientsfor each B numbers 

were calculated. The result is that the bootstrap 

coefficients were compared with the OLS (original) 

coefficients. 

 Data: The hormone data were taken from Efron & 

Tibshirani [21]. A medical device has been tested on n 

= 27 subjects to give continuous anti-inflammatory 

hormone. The dependent variable yi is the amount of 

hormone remaining in the device after wearing. The 

independent variable is the usage time of the device 

(wear-out) in hours. 

Algorithm for Bootstrap regression: 

1. By applying OLS to the (xi, yi) data, the coefficients 

β̂0 and β̂1 were estimated. Residuals are calculated with 

ûi = yi − ŷi 
2. A sample of n = 27 was selected with resampling from 

residuals, yi
∗ = β̂0 + β̂1xi + ûi

∗ values were calculated. 

3. β̂o
∗  and β̂1

∗  estimates were obtained using (yi
∗, xi). 

4. Steps 2 and 3 were repeated B times. 

5. For each B situation, mean and standard errors were 

calculated for  β̂0 and β̂1.  

Monte Carlo simulation was used to resample residuals. 

Microsoft Excel was used for all calculations. 

 

4.Results 

Ordinary least squares parameter estimates using 

original hormone data were calculated. Some statistics 

for OLS estimates were given in Table 1. Predicted yi 

outcome variable and the residuals are given in Table 2. 

 

 

Table 1: OLS regression estimates for the original sample 

 
 

OLS coeff. 

 

Std.Error 

 

t 

 

p-value 

95% CI 

Low 

 

High 

Intercept 34.167528 0.867197 39.3999 <0.00001 32.3815 35.9535 

Hrs -0.057555 0.004464 -12.8683 <0.00001 -0.06664 -0.04825 

  

 R2=.86883 Adj-R2=.863584   SSexp=936,5355, SSres=141.3911  F=165.593  p<0.0001 White Homoscedasticity 

test: Test statistic: TR^2 = 4,167089, with p-value = P(Chi-square(2) > 4,167089) = 0,124488 

 

 

Table 2 and Table 3 show that OLS and bootstrap 

parameter estimates respectively. The parameter 

estimates obtained by applying OLS to the original data 

are 34.16752817 for intercept and -0.05745463 for 

slope. In the bootstrap method, it is seen that even in 50 

repetations, very good results are obtained. As the 

number of repetitions increases, it is clear that the 

bootstrap estimates are closer to the original estimates. 

For B = 200 bootstrap repetations,  parameter estimates 

and standard errors obtained as �̂�0
∗ = 34.156546 

(.83349107) ; �̂�1
∗ = -.0573257 (.00423444). These 

estimates are very close to the ordinary least squares 

estimates. This shows that 200 repetations for bootstrap  

in simple linear regression, may be enough for a good 

estimate. 

 

5. Conclusions 

In this study, parameter estimation for linear regression 

using the bootstrap method and one application with real 

data set were introduced. The results of the article 

demonstrate the bootstrap method which one of a 

resampling approach in estimating the linear regression 

parameters. To show the applicability, the real data (
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hormone data) were used to assess the performance of 

the method. The bootstrap repetations number were 

taken as B=50, 100, 200, 500, 1000, 2000 and 5000. 

Regression coefficients obtained from original 

observations and bootstrap regression coefficients were 

found to be close to each other. It seems that estimates 

are close enough even when the bootstrap is B = 50-100 

repeated. The result is that the requisite recount in the 

bootstrap regression by re-sampling residues can be 

taken as 200. As a result, because the bootstrap method 

uses a nonparametric technique, it can be reliably used 

as an alternative to the OLS in situations where 

parametric conditions are violated. 

 

  

Table 2: Caption of table Predicted yi outcomes and the residualsusing original data 

Hrs (xi) Amount (yi) Predicted Residuals 

99 25.8 28.48034 -2.680344602933 

152 20.5 25.43569 -4.935690771958 

293 14.3 17.33576 -3.035762655591 

155 23.2 25.26335 -2.063351875865 

196 20.6 22.90805 -2.308053629262 

53 31.1 31.12287 -0.022874343024 

184 20.9 23.59741 -2.697409213634 

171 20.9 24.34421 -3.444211096703 

52 30.4 31.18032 -0.780320641722 

376 16.3 12.56772 3.732280136313 

385 11.6 12.0507 -0.450703175409 

402 11.8 11.07412 0.725883902451 

29 32.5 32.50159 -0.001585511768 

76 32 29.80161 2.198390527021 

296 18 17.16342 0.836576240502 

151 24.1 25.49314 -1.393137070656 

177 26.5 23.99953 2.500466695483 

209 25.8 22.16125 3.638748253807 

119 28.8 27.33142 1.468581371020 

188 22 23.36762 -1.367624018843 

115 29.7 27.5612 2.138796176229 

88 28.9 29.11225 -0.212253888607 

58 32.8 30.83564 1.964357150464 

49 32.5 31.35266 1.147340462185 

150 25.4 25.55058 -0.150583369353 

107 31.7 28.02077 3.679225786648 

125 28.5 26.98674 1.513259163206 

 

. 

 

Table 3. The bootstrap parameter estimates obtained by resampling residues. 

Number of 

repetitions (B) 
Mean (std.Error) of �̂�𝟎

∗  Mean (std.Error) of �̂�𝟏
∗  

50 34.283072  (.71022693) -.0583396 (.00385206) 

100 34.139065  (.87071901) -.0557362 (.00447734) 

200 34.156546  (.83349107) -.0573257 (.00423444) 

500 34.158258 (.79678649) -.0574234 (.00407645) 

1000 34.187013   (.84154165) -.0575513 (.00424061) 

2000 34.164888 (.83637047) -.0574991 (.00434638) 

5000 34.166802  (.83576703) -.0574207 (.00431041) 
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