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Abstract 

In this study, we introduce a new distribution based on the inverted exponential distribution 

called as “Alpha Power Inverted Exponential” distribution. Some of the statistical properties are 

provided such as hazard rate function, quantile function, skewness, kurtosis, and order statistics. 

Model parameters are obtained by the maximum likelihood. We prove empirically importance 

and flexibility of the new distribution in modeling with real data applications.  
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1. INTRODUCTION 

 

In spite of the fact that there are many statistical distributions in literature, it is always possible to develop 

both more flexible and more suitable specific real world scenarios. In statistics, the exponential 

distribution widely used to describe the time between events in a Poisson process. It plays an important 

role only with continuous memoryless random distribution. On the other hand, it has a constant failure 

rate. It is rare to see an event that has a constant failure rate. The exponential distribution becomes 

unsuitable for modeling real life situations in engineering, mechanical and electronic systems, business, 

insurance etc. with bathtub and inverted bathtub failure rates. The inverted bathtub hazard rate describes 

the relative failure rate which initially increases, come to a head after some time, and so decreases over 

time. To make up this disadvantage, Keller and Kamath [1] introduced inverted exponential (IE) 

distribution which have the inverted bathtub hazard rate. Then, it was studied in detail as a lifetime model 

[2]. In the life distribution, the random variable 1X
Y

  possesses IE distribution when the random 

variable Y has an exponential distribution. 

 

The IE distribution is commonly used for analyzing biology, engineering and medicine [3]. Afterwards, 

many authors have proposed distributions using the IE distribution in statistical literature. Bayes 

estimators of the parameter and reliability function of the IE distribution were obtained by Singh et al. [4]. 

Dey [5] derived Bayes estimators of the parameter for the IE distribution. Abouammoh and Alshingiti [6] 

proposed a generalized IE (GIE) distribution. Oguntunde et al. [7] proposed exponentiated GIE (EGIE) 

distribution and Singh et al. [8] obtained the maximum likelihood and Bayes estimators of the parameters 

of for the GIE distribution. Other studies are Kumaraswamy inverse exponential (KIE) distribution by 

Oguntunde et al. [9], transmuted inverse exponential (TIE) distribution by Oguntunde et al. [10] and 

Weibull inverse exponential (WIE) distribution by Oguntunde [11]. 
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The probability density function (pdf) of the IE distribution is given as follows: 
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and corresponding cumulative distribution function (cdf) as follows: 
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where 0   is the scale parameter. 

 

There have been many methods to obtain more flexible distributions (see Lee et al. [13]). In recent years, 

Mahdavi and Kundu [12] have proposed a new method called as Alpha Power Transformation (APT) for 

introducing an extra parameter to a family of distributions. This parameter provides more flexibility to the 

proposed family. Mahdavi and Kundu [12] used APT method to the exponential distribution and obtain 

the alpha power exponential (APE) distribution.  Dey et al. [14] proposed a three-parameter distribution, 

known as alpha power transformed generalized exponential (αPTGE) distribution. Dey et al. [15] 

introduced alpha power transformed Weibull (APTW) distribution which contains APE distribution for

l =1 and alpha power transformed Rayleigh (APTR) distribution l = 2 .  

 

Let  f x  and  F x  be the pdf and the cdf of a continuous random variable X, respectively. The APT 

of  F x
 
for x R  is defined as follows: 
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and the corresponding pdf as follows: 
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The APT of survival function  APTS x  and the hazard rate function  APTh x
 
are, respectively, given by 
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and 
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In this study, we propose Alpha Power Inverted Exponential (APIE) distribution motivated by IE 

distribution and the APT method that mentioned above in Section 2. In section 2, statistical properties of 

the APIE distribution are obtained including skewness, kurtosis, order statistics, survival, hazard rate and 

quantile functions. Section 4 provides the maximum likelihood estimation of model parameters and real 
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data is used to evaluate the performance of the proposed distribution. Finally, the study is completed in 

Section 5. 

 

2. APIE DISTRIBUTION 

 

Motivated by APT method, we obtain APIE distribution. The random variable X has a two-parameter 

APIE distribution if the cdf of X for x>0 as follows: 
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and the corresponding pdf is obtained as 
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where 0  , 0   are scale and shape parameters, respectively. 

 

Figure 1 shows the density function of the APIE distribution for several values of parameters. 

 

Figure 1. The pdf of the APIE distribution for different parameter values 

 

f(
x)
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As seen in Figure 1, the pdf of APIE is flexible and has various shapes for the several values of 

parameters. 

 

3. MAIN PROPERTIES 

 

3.1. Survival and Hazard Rate Functions 

 

Now, we will provide the survival and hazard rate functions of the APIE distribution. The survival 

function of the APIE distribution for x>0 is given as 
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Other important characteristic of the APIE distribution is the hazard rate function which is given by 
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Here,   and indicate the scale parameter and shape parameter, respectively. 

 

Plots of hazard rate function for the APIE distribution are shown in Figure 2 for some values of 

parameters. 

 
Figure 2. The hazard rate function of the APIE distribution for different parameter values 

 



958 Ceren UNAL, Selen CAKMAKYAPAN, Gamze OZEL/ GU J Sci, 31(3): 954-965 (2018) 

 
 

As seen in Figure 2 the hazard rate function of the APIE distribution is flexible for different values of 

parameters. 

 

3.2. Quantile Function 
 

Quantile function is important in statistics and this function is described by the inverse of the cdf given by 
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Let  F x u . Then, from Equation (7), we have 
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Therefore, the quantile function of the APIE distribution is defined as 
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where u ~ Uniform(0,1).  The 𝑝𝑡ℎ quantile function of X~APIE(λ,α) distribution is shown below 
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In particular, the first three quantiles, 1 2 3, ,Q Q Q for the APIE distribution, are obtained by setting u=0.25 

(25th Percentile), u=0.50 (50th Percentile) and u=0.75 (75th Percentile), in Equation (13), respectively. The 

median  2Q  is obtained from Equation (13) by substituting u=0.5. Therefore, the median is obtained for 

the APIE distribution as follows: 
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Here, 25th percentile and 75th percentile are given by, respectively, 
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3.3. Skewness and Kurtosis 
 

The coefficient of skewness is a measure of symmetry and the coefficient of kurtosis is also a measure of 

whether the data are heavy tailed or thin tailed. The Bowley’s skewness [17] is based on quartiles as 

follows:  
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and the Moors’ kurtosis [18] is given below 
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where  .Q  represents the quantile function.  

 

Note that the Bowley’s skewness and the Moors’ kurtosis can be obtained by  Q u  which is given in 

Equation (13).  

 

It is important to state that the distribution is symmetric for S = 0. When S > 0, the distribution is 

positively (right-skewed). For S < 0, the distribution is left-skewed (negatively-skewed). Similarly, as 

long as K increases the tail of the distribution brings about heavier. A normal distribution has kurtosis 

exactly 3. If compared to a normal distribution, when  3 3K K   its tails are longer (shorter) and 

central peak is higher (lower).  

 

Table 1. Skewness and kurtosis of the APIE distribution for different parameter values 

Parameters 
Skewness Kurtosis Median 25th Per. 75th Per. 

λ α 

0.5 2 0.4815 1.7679 2.1471 1.0157 5.3801 

3 0.4817 1.7683 2.4997 1.1550 6.3442 

7 0.4795 1.7613 3.3951 1.5286 8.7013 

20 0.4769 1.7530 4.7537 2.1398 12.1348 

2 2 0.4815 1.7679 8.5884 4.0630 21.5203 

3 0.4817 1.7683 9.9990 4.6201 25.3771 

7 0.4795 1.7613 13.5807 6.1145 34.8052 

20 0.4769 1.7530 19.0148 8.5593 48.5395 

3 2 0.4815 1.7679 12.8826 6.0945 32.2804 

3 0.4817 1.7683 14.9985 6.9301 38.0656 

7 0.4795 1.7613 20.3711 9.1718 52.2078 

20 0.4769 1.7530 28.5222 12.8389 72.8093 

7 2 0.4815 1.7679 30.0594 14.2206 75.3210 

3 0.4817 1.7683 34.9966 16.1703 88.8199 

7 0.4795 1.7613 47.5326 21.4008 121.8184 

20 0.4769 1.7530 66.5519 29.9576 169.8884 

 

The skewness, kurtosis, median and 𝑄1, 𝑄3 of the APIE distribution for the several values of the 

parameters are listed in Table 1. Table 1 indicates that skewness and kurtosis are positive for all values of 

parameters. For α=2, α=3, the kurtosis and skewness increase whereas these values decrease for α=7 and 

α=20. The kurtosis and skewness do not vary for all attempted values of parameters. Note that the APIE 

distribution is right skewed and leptokurtic for all values of the parameters. 
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3.4. Order Statistics 

 

Order statistics are encountered though many areas of statistical theory and practice. Let 1 2, ,..., nX X X  be 

a random sample from any APIE distribution. Let :i nX  indicate the 
thi  order statistics. Now, we derive the 

pdf of the 
thi  order statistics  : 1i nX i n   for APIE distribution given by 
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where  f x  and  F x  are given in Equation (8) and (7), respectively. Therefore, the pdf for the 
thi  

order statistics becomes 
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From Equation (14), for i=1, the pdf of the minimum order statistics of the APIE distribution is shown as 
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and likewise, the pdf of the maximum order statistics  i n  of the APIE distribution as follows: 
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4. APPLICATION 

 

In this section, we perform two applications of the APIE model to prove empirically its potentiality. We 

used two data sets that were pre-modeled by different distribution. Then, we provide a comparison of fits 

of other competitive models. So as to compare the fits of the APIE model with other competing 

distributions, we consider Akaike Information Criteria (AIC), Corrected Akaike Information Criteria 

(CAIC), Bayesian Information Criteria (BIC), Hannan-Quinn (HQIC), and log-likelihood (LL). 

 

The data sets are modelled with different distributions in some previous studies. These distributions are 

the weighted Lindley (WL), Lindley (L) distributions from Shanker et al. [19]; three-parameter weighted 

Lindley (TPWL) distribution from Shanker et al. [20];  IE, generalized inverted exponential (GIE), 

inverse Rayleigh (IR) distributions from Sharma et al. [22] and Singh et al. [21] and  inverse Lindley (IL) 

distribution from Sharma et al. [22]. 

The first data set describes the survival times of 55 patients. These patients who treated radiotherapy 

suffer from Head and Neck cancer disease. This data set which is reported by Efron [23] and descriptive 

statistics are given in Table 2 and 3, respectively. 
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Table 2. The first data set 

6.537 10.42 14.48 16.10 22.70 3441.55 4245.28 49.40 53.62 63 64 83 84 91 108 112 129 133 133 139 

140 140 146 149 154 157 160 160 165 146 149 154 157 160 160 165 173 176 218 225 241 248 273 277 

297 405 417 420 440 523 583 594 1101 1146 1417 

 

Table 3. Descriptive statistics for the first data set 

Data 1 
Mean Median Mode St. D. Variance Skewness Kurtosis 25th P. 75th P. 

375.2 157 160 737.4 543750.2 4.22 18.859 112 277 

 

It can be noticed from Table 3 that the first data set is right-skewed and leptokurtic with regard to the 

coefficients of skewness and kurtosis. 

 

The goodness-of-fit statistics and the MLEs of parameters are presented in Tables 4 and 5, respectively.  

Table 4. The goodness-of-fit statistics for the first data set 

Distribution AIC CAIC BIC HQIC   LL 

APIE 757.2254 757.4567 761.3463 758.8306 376.613 

IE 773.3742 773.4494 775.4346 774.1767 385.687 

GIE 773.1815 773.4127 777.3024 770.1445 384.591 

IR 840.1341 840.2094 842.0660 838.6152 419.067 

L 765.75 765.82 767.81 764.2312 381.875 
 

Table 5. The MLEs for the first data set 

Distribution Estimated Parameters 

APIE 51.58173, 23.77790 

IE 59.12589 

GIE 0.7770681, 49.2410155 

IR 741.3652 

L 0.008804 

 

On the basis of Table 4, it is quite obvious that APIE distribution provides the overall best fit. For this 

reason, the proposed distribution can be selected as an adequate distribution when comparing to other 

distributions to explain the first data set.  

 

The empirical density function and density function of the APIE distribution are showed in Figure 3. It is 

quite clear from Figure 3 that the APIE model is suitable for the first data set. 

 

 

Figure 3. Plots of empirical cdf and APIE distribution cdf for the first data set. 
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The second data set shown in Table 6 includes 44 survival times of patients get Head and Neck cancer 

disease. Patients are treated using a combination of radiotherapy and chemotherapy (RT+CT). The second 

data used in this paper was given by Efron [23].  

 

The data set and its descriptive statistics are presented in Table 6 and Table 7, respectively. 

 

Table 6. The second data set 

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 68.46 78.26 74.47 81.43 84 92 94 110 

112 119 127 130 133 140 146 155 159 173 179 194 195 209 249 281 319 339 432 469 519 633 725 

817 1776 

 

Table 7. Descriptive statistics for the second data set 

Data 2 
Mean Median Mode St. D. Variance Skewness Kurtosis 25th P. 75th P. 

223.5 128.5 12.2 305.4 93286.4 3.504 15.387 64.71 239 

 

It can be noticed from Table 7 that the second data set is also right-skewed and leptokurtic with the 

coefficients of skewness and kurtosis. 

 

The performance of the compared distributions are demonstrated in Table 8. The result shows that when 

the compare with the other distribution, the APIE distribution has the lowest values of AIC, BIC, CAIC, 

HQIC and the highest value of LL. From the result, we conclude that the APIE distribution is a very 

flexible distribution to model right-skewed data sets. 

 

Table 8. The goodness-of-fit statistics for the second data set 

Distribution AIC CAIC BIC HQIC LL 

APIE 562.8453 563.138 566.4137 559.7090 279.423 

IE 571.0622 572.8689 572.8689 569.4935 284.531 

GIE 572.4309 572.7226 576.0443 569.2930 284.215 

IL 690.2096 690.3052 691.9938 688.6415 344.105 

IR 962.7151 962.8112 964.4993 961.1475 480.358 

TPWL 569.4500 570.05 568.3803 564.7445 281.725 

 

The MLEs of parameters for the second data set is presented in Table 9. 

 

Table 9. The MLEs for the second data set 

Distribution Estimated Parameters 

APIE 2.191138, 61.800462 

IE 75.3793 

GIE 1.1799, 83.8998 

IL 77.6755 

IR 2547.4170 

TPWL 0.0047801, 0.0484017,  -0.077115  

 

The cumulative density functions of the empirical distributions and APIE distribution are demonstrated in 

Figure 4. As is seen from Figure 4, the APIE model can be chosen for the second data set. 
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Figure 4. Plot of empirical cdf and APIE distribution cdf for the second data set 

 

5. CONCLUSION 

 

In this study, the Alpha Power Inverted Exponential (APIE) distribution is obtained. Some important 

statistical properties of the APIE distribution are obtained including survival, hazard rate and quantile 

functions, skewness, kurtosis. As seen from the plots of the hazard rate function the proposed distribution 

could be useful to model data sets with increasing and decreasing failure rates. Then, we provide two real 

data application and show that the APIE distribution is the better than the other compared distributions for 

the right-skewed data sets. 
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