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Abstract 

This paper present an effective optimization algorithm for Optimal Power Flow (OPF) in 

electrical power systems. Fractional Order Darwinian Particle Swarm Optimization (FODPSO) 

algorithm is modified with constraint threshold limitation mechanism to acheive OPF. Results 

of the proposed method are compared on a part of 13 bus-bar 154 kV Eastern Anatolia 

Transmission System and on a 14 bus-bar IEEE test system. In addition, the transmission 

system is modeled by DigSilent software to analyse without taking any risk that may occur in 

real systems. Thus, optimal parameter settings can be recommended for real time transmission 

system.  
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1. INTRODUCTION 

 

Energy is still a prominent agenda of all countries with today's increasing population and fast developing 

industry. Power losses are gradually increasing due to reasons such as the increasing demand for energy 

over the world, the increase of malfunctions due to overloaded power system equipment, failure to 

optimize load flow due to variable supply/demand, lack of the necessary engineering works in power 

system equipment and adequate maintenance [1]. Due to such problems, the tendency towards alternative 

and new energy sources has increased. In addition, it is essential to do revisions in current energy systems 

to operate efficiently and ensure energy continuity. In these revisions, the most serious one is to rearrange 

the system to make good load flow analysis. In electrical energy systems, OPF is a serious issue for 

power system engineers. OPF ensures that the power system is stable by choosing the optimum 

parameters for total energy cost, active power losses, and voltage limit values in bus-bars. 

 

Solution of the OPF problem includes the minimization of the active power loss under constraint of the 

electrical power systems [2]. Several optimization techniques have been using for OPF in the literature 

[3]. Some of them can be summarized as; Aderyani and Karami used artificial bee colony algorithm for 

OPF [4]. Bouchekara studied on using black-hole-based optimization approach [5]. Some others have 

used different meta-heuristic optimization algorithms for the solution of different electrical power system 

problems [6-9]. 

 

One of the most promising meta-heuristic optimization algorithms, PSO, is suitable for further 

improvement. Thus, many optimization techniques based on PSO were reported so far. FODPSO 

algorithm is the most recent one that is used for several engineering solutions [10-12]. FODPSO, benefits 

from evolutionary concept of Darwinian and distinct features of fractional calculus that is mostly used in 

engineering area in the last decades. This paper proposes to combine FODPSO algorithm with constraint 
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threshold mechanism that is vital in high power electrical systems. So, the proposed algorithm provides 

better results. 

 

In this paper, power flow optimization has been studied using the modified FODPSO and VPSO 

algorithms for a part of east Anatolian 154 kV energy transmission system. The results are used to reduce 

power loses by conducting reactive power compensation. In addition, the result of optimization is used in 

the virtual model of the power system, obtained by DigSilent software, to simulate the real time system. 

In the virtual model, load flow analyses were carried on for two scenarios and results are discussed. Then 

the proposed optimization algorithms were utilized on standard 14 bus-bars IEEE test system to show the 

effectiveness of the proposed algorithm over the existing ones in the literature and results were discussed. 

Further sections of the paper are organized as follows; 

 

Section 2 provides the model of the part of East Anatolian 154 kV transmission system and 14 bus-bars 

IEEE test system. Section 3 and 4 introduces FODPSO algorithm with constraint threshold mechanism 

and VPSO algorithm respectively. In Section 5, formulation of optimal power flow is given and the 

constraints for the objective function are described. Section 6 gives a case study and finally section 7 

provides some concluding remarks. 

 

2. MODEL OF ELECTRICAL OF SYSTEM 

 

This section presents models of a real time system and a test system that is widely used for power 

transmission analysis.   

 

2.1. A part of East Anatolian 154 kV Transmission System 

 

Single line scheme of a part of east Anatolian 154 kV energy transmission system is shown in Figure 1. 

Real time data of the transmission system is listed in Table 1. Generation/consumption data of the bus-

bars are obtained from the average values of Table 1, as shown in Table 2. One can see from Figure 1 that 

the bus-bars, 1, 3, 6, 10, 11, 13 are connected to power generation centers. System is modeled with the 

assumption that all bus-bars include power consumptions.  

 

2.2. IEEE 14 Bus-bars Test System 
 

In order to show the effectiveness of the proposed FODPSO approach, standard 14 bus-bars IEEE test 

system is used [13]. In the test system, the limits of the voltage is assumed in between 0.95 – 1.05 pu and 

the voltage angle limits are in between -45 ° and + 45° as in Fig 2.  
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Figure 1. Single line scheme of power system 
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 Table 1. Data for 154 kV single line scheme of power system 

  Load Generator Generator 

Bus 

No 

Bus 

Code P  Q  

 

P(min) 

 

P(max) Q(min) Q(max) 

1 1 14 MW 4 MVAR - - - - 

2 0 10 MW 3 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

3 2 15 MW 3 MVAR 0 MW 17 MW -4 MVAR 4 MVAR 

4 0 40MW 4 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

5 0 44 MW 4 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

6 2 38 MW 2 MVAR 0 MW 40 MW -20 MVAR 20 MVAR 

7 0 40 MW 7 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

8 0 5 MW 0.5 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

9 0 30 MW 4 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

10 2 10 MW 2 MVAR 0 MW 30 MW -10 MVAR 20 MVAR 

11 2 30 MW 6 MVAR 100 MW 140 MW -50 MVAR 18 MVAR 

12 0 70 MW 5 MVAR 0 MW 0 MW 0 MVAR 0 MVAR 

13 2 15 MW 5 MVAR 65 MW 200 MW 20 MVAR 40 MVAR 

  * Bus code 1= slack buses, 2= generation buses, 0= load buses 

 

 Table 2. Data for 154 kV transmission system 

nl nr R pu X pu 

 

½ B pu 

 

Tap 

1 2 0.0292 pu 0.0871 pu 0.01730 pu 1 

2 3 0.0356 pu 0.1142 pu 0.01955 pu 1 

2 4 0.0493 pu 0.1583 pu 0.02710 pu 1 

3 13 0.0308 pu 0.0921 pu 0.01825 pu 1 

4 5 0.0121 pu 0.0389 pu 0.00667 pu 1 

4 6 0.0102 pu 0.0312 pu 0.00593 pu 1 

4 7 0.0422 pu 0.1354 pu 0.06579 pu 1 

7 8 0.0088 pu 0.0255 pu 0.00485 pu 1 

7 9 0.0179 pu 0.0477 pu 0.00985 pu 1 

9 10 0.0050 pu 0.0423 pu 0.01400 pu 1 

9 11 0.0445 pu 0.1427 pu 0.02440 pu 1 

11 12 0.0538 pu 0.1727 pu 0.0296 pu 1 

 

 
Figure 2. Single line scheme of 14 bus-bars IEEE test system [13] 
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3. FODPSO ALGORITHM WITH CONSTRAINT THRESHOLD MECHANISM  

 

Particle Swarm Optimization (PSO), well-known algorithm for decades [14], has been utilized in many 

engineering area. PSO basically benefits from the concept of swarm intelligence. It forms a system in 

which non-native, interacting agents of complex characteristics form coherent, global and functional 

patterns of common behavior [15]. In traditional PSO, candidate solutions are called particles. These 

particles get the best solution by circulating the search field and interacting with neighboring particles. In 

the PSO algorithm the best global solution, obtained in the whole swarm, is updated in each iteration. All 

of the particles use this information to recognize the position of the particle and try to approximate it. In 

order to model the particle, each particle in tth iteration, moves in a multidimensional space according to 

the position (𝒙𝒏
𝒔 ) and velocity (𝒗𝒏

𝒔 ). These values vary depending on 𝒙𝟏𝒏

𝒔 , known as local best, and 𝒙𝟐𝒏

𝒔 , 

known as global best. This dependence is expressed as, 

 

𝑣𝑛
𝑠[𝑡 + 1] = 𝑤𝑣𝑛

𝑠[𝑡] + ∑ 𝑝𝑖𝑟𝑖(𝑥𝑖𝑛

𝑠 [𝑡] − 𝑥𝑛
𝑠[𝑡])

2

𝑖=0
                                                                               (1) 

 

𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] +  𝑣𝑛[𝑡 + 1]                                                                                              (2) 

 

Where, 𝑤 is weight of inertia, 𝑝 is the local best and 𝑟 is the global best.  

 

Darwinian PSO (DPSO), presented by Tillett et al. in [16], is an evolutionary algorithm that expands the 

PSO by natural selection or by surviving those with high fitness values in order to increase its ability to 

escape from the local optimum. Although the DPSO performs better than the PSO, the computational 

complexity appears as a disadvantage. Pires et al. combines the advantages of fractional order 

computation concept with DPSO to improve convergence ability of DPSO algorithm and they propose 

Fractional Order DPSO (FODPSO) in [17].  

 

Nowadays, Fractional Order Calculus (FOC) is widely used in many engineering problems due to long 

memory and heredity effect [18]. Riemann-Liouville, Caputo and Grünwald-Letnikov integro-differential 

equations are the most famous expressions used for the application of fractional order concept in many 

engineering solutions. The Grünwald-Letnikov fractional order differential equation, can be expressed as 

[19], 

 

𝐷𝛼[𝑥(𝑡)] = lim
ℎ→0

[
1

ℎ𝛼 ∑
(−1)𝑘𝛤(𝛼+1)𝑥(𝑡−𝑘ℎ)

𝛤(𝑘+1)𝛤(𝛼−𝑘+1)

∞

𝑘=0
]                                                                                    (3) 

 

Where, 𝛼 is the order of fractional derivative, ℎ is sampling interval and 𝛤(. ) defines Euler’s Gamma 

function. FODPSO seeks a solution to the problem of early convergence of swarms in traditional PSO. 

Similar to the DPSO, the FODPSO algorithm also wipes out swarms from the solution pool, which is 

optimal before time. It also creates new swarm groups from particles with the best solution to provide an 

environment in which information is inherently shared. Couceiro and Ghamisi [18] compared FODPSO 

with conventional PSO and DPSO and clearly demonstrated its superiority in many respect. The main 

feature that distinguishes FODPSO from the DPSO algorithm is that the velocity is determined by 

fractional order computation. When the weight of inertia is assumed as 𝑤 = 1 for speed computation in 

Eq. (1), the following equation can be obtained, 

 

𝑣𝑛
𝑠[𝑡 + 1] = 𝑣𝑛

𝑠[𝑡] + ∑ 𝑝𝑖𝑟𝑖(𝑥𝑖𝑛

𝑠 [𝑡] − 𝑥𝑛
𝑠[𝑡])

2

𝑖=0
                                                                                 (4) 

 
The Eq. (4) can be reorganized as, 

 

𝑣𝑛
𝑠[𝑡 + 1] − 𝑣𝑛

𝑠[𝑡] = ∑ 𝑝𝑖𝑟𝑖(𝑥𝑖𝑛

𝑠 [𝑡] − 𝑥𝑛
𝑠[𝑡])

2

𝑖=0
                                                                                 (5) 
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One can easily see that the expression 𝑣𝑛[𝑡 + 1] − 𝑣𝑛[𝑡] defines a derivative in discrete form. If one 

define the order of fractional derivative in Eq. 3 as 𝛼 = 1, following equation can be obtained.  

 

𝐷𝛼[𝑣𝑛
𝑠[𝑡 + 1]] = ∑ 𝑝𝑖𝑟𝑖(𝑥𝑖𝑛

𝑠 [𝑡] − 𝑥𝑛
𝑠[𝑡])

2

𝑖=0
                                                                                       (6) 

 

Based on the concept of the fractional derivative, the derivation of the velocity specified in the DPSO can 

be generalized to a real number between 0 and 1. Thus, a smoother variation and longer memory effect 

can be obtained. Therefore, when using the fractional approach in Eq. (3), the Eq. (6) can be rewritten as, 

 

𝑣𝑛
𝑠[𝑡 + 1] = − ∑

(−1)𝑘𝛤(𝛼+1)𝑣𝑛
𝑠 [𝑡+1−𝑘𝑇]

𝛤(𝑘+1)𝛤(𝛼−𝑘+1)

∞

𝑘=0
+ ∑ 𝑝𝑖𝑟𝑖(𝑥𝑖𝑛

𝑠 [𝑡] − 𝑥𝑛
𝑠[𝑡])

2

𝑖=0
                                        (7) 

 

As seen, DPSO is a special form of FODPSO for α = 1 (no memory).  

 

This paper aims to achieve better solution for the load flow analysis under strict constraints of the 

electrical power system. Because, constraints in high power electrical energy systems are very seriously 

affecting the system performance, hazards and malfunctions. In order to eliminate negative effects of 

exceeding limits in constraints, this paper combines the FODPSO algorithm with constraint threshold 

mechanism and proposes FODPSO with Constraint Threshold (FODPSO-CT) algorithm. FODPSO-CT 

algorithm eliminates particles that do not satisfy fitness function within the specified threshold of the 

constraints. This constraint threshold mechanism increases the reliability of the solutions. The algorithm 

assumes the objective function, constraint functions and minimum-maximum values as variables. 

Random swarm and swarm groups are created in between the minimum and maximum values for each 

variable in the objective and constraint functions. Constraints need to be tested to ensure the reliability of 

the result obtained for an objective function with constraints. To ensure confidence testing, the constraint 

function value of each particle in the swarm groups, created in between the minimum and maximum 

values for each variable, is measured. If the value is not in the desired range, the particle is removed from 

the group. The fitness value for each particle remaining in the group is calculated. If the group has the 

best local solution, the best solution is updated. If the group has not reached to the best solution, the group 

is penalized and removed from the solution pool. This process results in producing a group and particle 

with the best value. Pseudo code and flow chart of FODPSO-CT algorithm is provided in Figure 3 and 

Figure 4 respectively. The constraint threshold mechanism is given in green color in both pseudo code 

and in flowchart. 

 

4. VECTOR PSO ALGORITHM 

 

VPSO algorithm is a modified form of PSO, in which each swarm adjusts its own position according to 

the other swarm groups. It is assumed that swarms (S1, S2,…,SM) intend to optimize fitness functions at the 

same time. Velocity and the position functions of VPSO algorithms can be defined respectively as 

following [20], 

 

𝑉
İ

[𝑗]
(𝑡 + 1) = 𝑘[𝑗] ∗ [𝑤𝑖

[𝑗]
∗ 𝑉𝑖

[𝑗]
(𝑡) + 𝑐𝑝

[𝑗]
∗ 𝑟1 ∗ {𝑃

İ

[𝑗]
− 𝑆𝑖

[𝑗]
(𝑡)} + 𝑐𝑔

[𝑗]
∗ 𝑟2 + {𝑃𝑔𝑏

[𝑘]
− 𝑆𝑖

[𝑗]
(𝑡)}]       (8)   

 

𝑆𝑖
[𝑗]

(𝑡 + 1) = 𝑆𝑖
[𝑗]

(𝑡) + 𝑉𝑖
[𝑗]

(𝑡 + 1)                                                                                                (9) 
 

Where, 𝑆𝑖
𝑗
(𝑡) is current position, 𝑉𝑖

𝑗(𝑡) is velocity, 𝑃𝑖
𝑗
(𝑡) is the first best position, 𝑃𝑔𝑏(𝑡) is the global 

best, 𝑐𝑝 is cognitive learning coefficient, 𝑐𝑔 is social learning coefficient, 𝑟1 and 𝑟2 are random numbers 

in between (0-1) [20]. This paper uses VPSO algorithm to verify and compare the result of proposed 

FODPSO-CT algorithm. 
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Initialize List[S]  (Swarm Groups).  (Set default values =>vn
s[1], xn

s[1], X1
s[1], X2

s[1] ) 

Loop (Main Program) 

For each S in List [S] 

Initialize swarms in S (Go to Initialize Swarms) 

Calculate group (Go to Calculate Swarm Group Function )  

Spawn new groups from the group 

Kill ‘failed’ groups 

End 

Until iteration 

Function (Calculate Swarm Group) 

For each particle n in S 

Calculate and sum the constraints of n 

If sum of the constraints value doesn’t get better 

Kill ‘failed’ swarm 

End 

For each particle n in S 

Calculate the fitness of n 

Find out the best distribution of fitness 

           Update X1
s[t], X2

s[t] 

           Update vn
s[t+1] with fractional calculate 

           Update xn 
s[t+1] 

If group S gets better 

Reward group by extending its life and spawning new groups 

            Else 

Punish group by reduce its life and possibly killing particle 

End 

Return 

Function (Initialize Swarm) 

For 1 to N    (N = Population ) 

For 1 to N_PAR  (N_PAR = Swarm count) 

Swarms [i] = rand(1,1) * ( XMAX - XMIN ) + XMIN  

End 

End 

Return Swarms 

Figure 3. Pseudocode of FODPSO-CT algorithm 
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 Figure 4. Flowchart of FODPSO-CT algorithm 

 

5. FORMULATION OF OPTIMAL POWER FLOW  

 

Load flow analysis gives information about amplitude, phase angle, active and reactive power of bus-bars 

in a power system. Thus, stability, loading, power loss, supply/demand balance of the power system can 

be analyzed.  Therefore, OPF in the power system is critical. One can generalize OPF problem under the 

constraints of the power system as following [21], 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑝 (𝑥, 𝑢)                                                                                         (10) 
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟(𝑥, 𝑢) = 0                                                                                                                       (11) 
 

𝑎𝑛𝑑 𝑠(𝑥, 𝑢) ≤ 0                                                                                                                                  (12) 

 

Where, 𝑝 (𝑥, 𝑢) is the cost function of OPF, 𝑟 (𝑥, 𝑢) is equality constraints, 𝑠 (𝑥, 𝑢) is inequality 

constraints, 𝑢 is control variable and 𝑥 is state variable. The control and state variable can be defined as in 

Eqs. 13 and 14, respectively. 

 

𝑢𝑇 = [𝑃𝐺𝑦 … 𝑃𝐺𝑁𝐺  , 𝑉𝐺1 … 𝑉𝐺𝑁𝐺  , 𝑄𝐶1 … 𝑄𝐶𝑁𝐶]                                                                                 (13) 

 

Where, 𝑃𝐺 is active power generation in production bus-bars,  𝑉𝐺 is voltage of the bus-bars in the power 

system, 𝑄𝐶 is shunt capacitors in the power system, 𝑁𝐺  and 𝑁𝐶  represents number of generators and Volt 

Ampere Reactive (VAR) compensators, respectively. 

 

𝑥𝑇 = [𝑃𝐺𝑥 , 𝑉𝐿1 ··· 𝑉𝐿𝑁𝐿, 𝑄𝐺1 ··· 𝑄𝑄𝑁𝐺]                                                                                               (14) 
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Where, 𝑁𝐿  is loading bus-bars. The objective function to be minimized in this study is as given in Eqs. 15 

and 16. These equations express the minimization of active power loses. In the study, the minimization of 

the active power loss is repeated by adding capacitor banks and the two cases are compared [21]. 

 

𝑝 = 𝑓𝑖                                                                                                                                     (15) 
 

𝑓𝑖 = ∑ [𝑔𝑘 (𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖. 𝑉𝑗. 𝑐𝑜𝑠(ѳ(𝑖,𝑗)))]𝑁𝑖
𝑘=1                                                                     (16) 

 

Where, 𝑁𝑖 is number of lines, 𝑔𝑘 is conductivity of line 𝑘, 𝑉𝑖 and 𝑉𝑗 is the amplitude of voltages of the 

bus-bars 𝑖 and 𝑗, respectively located at the end of line 𝑘. ѳ(𝑖,𝑗) is voltage angle between bus-bars 𝑖 and 𝑗. 

The problem is to minimize Eq. 16 satisfying the equality constraints in Eqs. 17, 18 and, inequality 

constraints in Eqs. 19-22 [4, 6, 21]. 

 

The equality constraints 𝑟 (𝑥, 𝑢) can be defined as following, 

 

𝑃𝐺,𝑖 − 𝑃𝑙𝑜𝑎𝑑,𝑖 − 𝑉𝑖 ∑ [𝑉𝑗(𝑔ℎ(𝑖,𝑗). 𝑐𝑜𝑠(ѳ(𝑖,𝑗)) + 𝑏ℎ(𝑖,𝑗). 𝑠𝑖𝑛(ѳ(𝑖,𝑗))] = 0 𝑁𝑏
𝑗=1                                         (17) 

 

𝑄𝐺,𝑖 + 𝑄𝑐𝑖 − 𝑄𝑙𝑜𝑎𝑑,𝑖 − 𝑉𝑖 ∑ [𝑉𝑗(𝑔ℎ(𝑖,𝑗). 𝑠𝑖𝑛(ѳ(𝑖,𝑗)) − 𝑏ℎ(𝑖,𝑗). 𝑐𝑜𝑠(ѳ(𝑖,𝑗))] = 0 𝑁𝑏
𝑗=1                              (18) 

 
The inequality constraints 𝑠(𝑥, 𝑢) can be defined as following, 

 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥     𝑖 = 1,2, … 𝑁𝑏                                                                                                   (19) 

 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥    𝑖 = 1,2, … 𝑁𝑔                                             (20) 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥    𝑖 = 1,2, … 𝑁𝑔                                               (21) 

 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖

max.   𝑖 = 1,2, … 𝑁𝐶                                  (22) 

 
Where, 𝑁𝑔 is the number of voltage controlled bus-bars, 𝑁𝐶  is the number of shunt capacitors, 𝑁𝑏 is the 

number of bus-bars, 𝑃𝐺𝑖 is the active power in the ith bus-bar, 𝑄𝐺𝑖 is the reactive power in the ith  bus-bars, 

𝑓𝑖 is the total active power loss, 𝑃𝑙𝑜𝑎𝑑,𝑖 is the active power at the bus-bar i, 𝑄𝑙𝑜𝑎𝑑,𝑖 is the reactive power at 

the bus-bars i, 𝑄𝑐𝑖 is the shunt capacitor value to be added to bus-bar i, where loads are located, 𝑉𝑖 is the 

voltage of bus-bars i, 𝑉𝑗 is the voltage of bus-bars j, 𝑔ℎ(𝑖,𝑗) is the conductance value between i and j bus-

bars, 𝑏ℎ(𝑖,𝑗) is the admittance value between i and j bus-bars, ѳ(𝑖,𝑗) is the phase difference between i and j 

bus-bars. 

 

6. CASE STUDY 

 

In this study, two cases have been studied to demonstrate the effectiveness of the FODPSO-CT algorithm 

for OPF. In the first case, a section of the 13 bus-bars east Anatolian transmission system is studied, while 

14 bus-bars IEEE test system is used for reliability testing in the second case. In order to see the 

effectiveness of the proposed OPF solution, the result of two cases are used in the virtual model and 

simulated. Both of FODPSO-CT and VPSO algorithms are used for case studies. Simulation results are 

discussed and commentated for application on a real time power system. 

 

6.1. Case 1: Load Flow Analysis of 154 kV East Anatolia Transmission System 

 

For this case, the proposed FODPSO-CT and VPSO algorithms are used for OPF in a part of 154 kV east 

Anatolia transmission systems given in Figure 1. In the figure, the bus-bars 3, 6, 10, 11, 13 are generation 

bus-bars, while bus-bars 1 is slack bus-bars. Other bus-bars are used as consumption bus-bars. Voltages 

in all bus-bars are limited in between 0.95 pu and 1.05 pu. The aim of the optimization algorithms is to 
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achieve OPF by minimizing power loses. The active and reactive power values of the generation bus-bars 

are obtained using FODPSO-CT and VPSO algorithms in a power system. Reactive Power Compensation 

(RPC) can further reduce active power losses. Values of active power lose before and after RPC are listed 

in Tables 3. The virtual model represents the real power system, given in Figure 1, as a whole. Thus, 

Results of optimization for OPF can be correctly simulated on the virtual model. Values in Tables 1 and 2 

are used in the virtual model, obtained by DigSilent software, to simulate real time behavior of the power 

system and results are given in Table 3. Bus-bar added capacitor bank values are as shown in Table 4. As 

seen from Table 3, the active power loss of the real time system is 30.92 MW. As one can see from 

Tables 3 that active power loss before RPC is found as 23.33 MW for the proposed FODPSO-CT, while 

24.39 MW for VPSO algorithm. In VPSO, an improvement was observed from active power losses of 

30.92 MW (real time) to 24.39 MW. In FODPSO-CT, an improvement from 30.92 MW to 23.33 MW 

was observed. The FODPSO-CT algorithm provides a further improvement of 1.06 MW according to 

VPSO. Then, RPC was performed by adding capacitor banks to bus-bars to increase voltage stability. In 

this case, the value of the power loss after RPC is 28.55 MW in virtual model of the real system. The 

power loss was decreased from 28.55 MW to 21.87 MW for FODPSO-CT algorithm while 22.93 MW 

was observed for VPSO algorithm.  In this case FODPSO-CT algorithm also performs better results. As 

seen from Table 3, voltage values of the bus-bars are in between the desired voltage limits for FODPSO-

CT algorithm.  Thus, the voltage stability of the power system is ensured by OPF. 

 

 Table 3. Optimization results for OPF values of 154kV power system before and after RPC 

OPF values before RPC OPF values after RPC 

 
FODPSO-CT DigSilent VPSO FODPSO-CT DigSilent VPSO 

P1Ge 16,862 MW 7.6 MW 14.98 MW 10.722 MW 5.2 MW 14.989 MW 

P3Ge 17 MW 17 MW 17 MW 17 MW 17 MW 17 MW 

P6Ge 40 MW 40 MW 39.99 MW 40 MW 40 MW 40 MW 

P10Ge 30 MW 30 MW 30 MW 30 MW 30 MW 30 MW 

P11Ge 117.39 MW 117.39 MW 135.33 MW 122 MW 117.4 MW 140 MW 

P13Ge 163.068 MW 179.93 MW 148.08 MW 162.95 MW 179.9 MW 141.96 MW 

Q1Ge 3.7657 MVAR 54 MVAR 14.74 MVAR 0 MVAR 21.1 MVAR 14.268 MVAR 

Q3Ge 19.379 MVAR 19.37 MVAR 4 MVAR 3.57 MVAR 19.4 MVAR 1.762 MVAR 

Q6Ge 4.3407 MVAR 4.340 MVAR 9.09 MVAR 6.6 MVAR 4.3 MVAR 8.45 MVAR 

Q10Ge 17.267 MVAR 17.26 MVAR 12.75 MVAR 10.69 MVAR 17.3 MVAR 
12.6487 

MVAR 

Q11Ge 12.578 MVAR 12.57 MVAR 7.37 MVAR 
-37.13 

MVAR 
12.6 MVAR 7.214 MVAR 

Q13Ge 3.7657 MVAR 3.765 MVAR -1.36 MVAR 13 MVAR 3.8 MVAR -10.35 MVAR 

V1 0.98909 pu 1 pu 1 pu 1.0393 pu 1pu 1 pu 

V2 0.99073 pu 0.98 pu 0.9833 pu 1.016 pu 0.99pu 0.9837 pu 

V3 0.95363 pu 1.02 pu 0.98 pu 1.0118 pu 1.03 pu 0.99 pu 

V4 0.9823 pu 0.9 pu 0.98 pu 1.0061 pu 0.96 pu 0.98 pu 

V5 1.0294 pu 0.89 pu 0.973 pu 1.006 pu 0.95 pu 0.973 pu 

V6 0.99504 pu 0.9 pu 0.99 pu 1.0008 pu 0.96 pu 0.99 pu 

V7 1.0055 pu 0.89 pu 0.9839 pu 0.98962 pu 0.96 pu 0.983 pu 

V8 0.99744 pu 0.89 pu 0.9834 pu 1.0037 pu 0.97 pu 0.983 pu 

V9 0.99294 pu 0.89 pu 0.9926 pu 1.0083 pu 0.98 pu 0.992 pu 

V10 0.9935 pu 0.91 pu 1 pu 1.0473 pu 0.99 pu 1 pu 

V11 0.99001 pu 0.89 pu 1 pu 0.97635 pu 0.99 pu 1 pu 

V12 1.0144 pu 0.84 pu 0.948 pu 0.98705 pu 0.95 pu 0.946 pu 

V13 0.95449 pu 1.056 pu 1.01 pu 0.98903 pu 1.06 pu 1.01 pu 

P 

demand 
361 MW 361 MW 361 MW 361 MW 361 MW 361 MW 

Ptotal 

loss 
23.33 MW 30.92 MW 24.39 MW 21.87 MW 28.55 MW 22.93 MW 



841 Ozan AKDAG et al / GU J Sci, 31(3): 831-844 (2018) 

 

  *Ge= Generator  

  

 Table 4. Bus-bars added capacitor bank values 

Bus-bars added capacitor bank values 

Bus-bars no INJ FODPSO-CT INJ Digsilent INJ VPSO 

1    

2 -3.7 MVAR 0 MVAR -1 MVAR 

3    

4 6.36 MVAR 0 MVAR 0.2 MVAR 

5 6.85 MVAR -7.1 MVAR -0.5 MVAR 

6    

7 8.74 MVAR -3.7 MVAR -1 MVAR 

8 7.7 MVAR -6.4 MVAR -0.05 MVAR 

9 3.75 MVAR -1.6 MVAR 1 MVAR 

10    

11    

12 7.74 MVAR -4 MVAR -1 MVAR 

13    

 

Table 4 shows the values of the capacitors to be added to the load bus-bars (2, 4, 5, 7, 8, 9, 12). Reactive 

power consumption, which can be regulated by adding capacitor banks, is essential for efficiency of load 

flow in the transmission system. In this study, active power losses in the power system have been reduced 

by adding capacitor banks. 

 

Figure 5 demonstrates the decrease of cost function of the proposed FODPSO-CT and VPSO algorithms 

for OPF. Figure 5 shows that the FODPSO-CT algorithm reaches to the optimal solution nearly at 70th 

iteration. Figure 6 shows the results of FODPSO-CT and VPSO algorithms for 20 trials. Standard 

deviation of 20 trials for FODPSO-CT, which is 1.43, reveals that the algorithm produces consistent 

results. However FODPSO-CT algorithm presents better results than VPSO algorithm for the decrease of 

cost function and average total power loss values in 20 trial in the Figs. 5 and 6. 

 

 

 
Figure 5. Cost function of FODPSO-CT and 

VPSO 

 
Figure 6. 20 trials of FODPSO-CT and VPSO 

 

6.2. Case2: Load Flow Analysis of 14 Bus-Bars IEEE Test System 

 

In this case study, the effectiveness of the proposed FODPSO-CT algorithm is demonstrated by 

comparing with the algorithms in the literature, using standard 14 bus-bars IEEE Test System. All values 

of the test system coincide with the literature [22]. Table 5 gives the results of commonly used 

optimization algorithms and the proposed FODPSO-CT algorithm. As seen, the FODPSO-CT algorithm 

achieves 2.96 MW power loss that is the best result in Table 5. The FODPSO-CT algorithm also keeps 

the voltage profiles within the specified thresholds that result in minimizing active and reactive power 
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loses. More stable power distribution will be provided in the power system when the losses are 

minimized.   

 

 Table 5. Result of OPF for 14-Bus-bars IEEE Test System 

 FODPSO-CT VPSO PSO[22] MPSO[22] ABC[22] FSS[22] GSA[22] 

V1 1.06 pu 1.06 pu 1.06 pu 1.06 pu 1.06 pu 1.06 pu 1.06 pu 

V2 1.045 pu 1.045 pu 1.045 pu 1.044 pu 1.044 pu 1.044 pu 1.04 pu 

V3 1.01 pu 1.01 pu 1.01 pu 1.011 pu 1.011 pu 1.011 pu 1.01 pu 

V4 1.0129 pu 1.0035 pu 0.979 pu  0.956 pu 0.996 pu 0.977 pu 0.926 pu 

V5 1.0282 pu 1.0066 pu 0.9653 pu 1.004 pu 0.971 pu 0.932 pu 0.98 pu 

V6 1.07 pu 1.025 pu 1.07 pu 1.072 pu 1.07 pu 1.07 pu  1.07 pu 

V7 0.99007 pu 1.017  pu 0.969 pu 0.982 pu 0.99 pu 0.95 pu 0.974 pu 

V8 1.09 pu 1.017 pu 1.09 pu 1.09 pu 1.09 pu 1.09 pu 1.09 pu 

V9 1.0365 pu 1.0136 pu 0.953 pu 0.912 pu 0.941 pu 0.976 pu 1.007 pu 

V10 1.0248 pu 1.0079 pu 0.952 pu 0.941 pu 0.925 pu 0.969 pu 1.001 pu 

V11 1.0047 pu 1.0128 pu 0.952 pu 0.954 pu 1.003 pu 0.93 pu 1.004 pu 

V12 1.0222 pu 1.0097 pu  0.981 pu 0.94 pu 0.917 pu 0.938 pu 0.973 pu 

V13 1.03 pu 1.005 pu 0.919 pu 0.933 pu 0.912 pu 0.937 pu 0.964 pu 

V14 0.99405 pu  0.991 pu 0.96 pu 0.945 pu 0.985 pu 0.995 pu 1.006 pu 

Ptotalloss 2.96 MW 6.25 MW 9.91 MW 8.5 MW 6.46 MW 7.84 MW 3.27 MW 

 

7. RESULTS and CONCLUSIONS 

 

In power systems, threshold values of the voltage and power is vitally important.  In this study, the 

FODPSO-CT algorithm is proposed by modifying the FODPSO algorithm for the optimal solution of the 

engineering problems, such as the power system, where the threshold values are vital. The paper 

demonstrates that the FODPSO-CT algorithm gives satisfactory results for the system that is highly 

dependent to strictly specified constraints. This algorithm has been successfully applied to the OPF study. 

Then the proposed algorithm is compared with VPSO and some other algorithms in the literature that are 

widely preferred for OPF solutions. The algorithm is applied to a part of 13 bus-bar east Anatolian power 

system and 14 bus-bar IEEE test system. The optimization results are also used in virtual model of the 

transmission systems that is obtained by using DigSilent power systems modeling software and the power 

flow was simulated.  

 

As a result of the optimization with the proposed FODPSO-CT algorithm, an active power loss of 21.87 

MW was obtained in the power system. This value is 22.93 MW for VPSO algorithm. Furthermore, the 

optimization result with FODPSO-CT in 14 bus-bar IEEE test system is compared with other 

optimization algorithms in the literature. The proposed FODPSO-CT algorithm performed a load flow 

with an active power loss of less than 0,31 MW from the GSA algorithm which gives the closest result to 

the proposed algorithm, as given in Table 5. As a result, a more optimal power flow was obtained with 

FODPSO-CT in both cases. 
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