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Abstract 

In this paper, for the first time we defined and studied a new two parameter lifetime model by 

using the T-X method, called the Log-Gamma Rayleigh distribution. This distribution can be 

considered as a new generalization of the Gamma distribution and the Rayleigh distribution. We 

obtain some of its mathematical properties. Some structural properties of the new distribution 

are studied. Maximum likelihood estimation method is used for estimating the model 

parameters. An application to real data set is given to show the flexibility and potentiality of the 

new model. 
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1. INTRODUCTION 

 

Eugene et al. [6] for the first time introduced the beta-generated family of distributions. They noted that 

the probability density function pdf of the beta random variable and the cumulative distribution function 

CDF of any distribution are between 0 and 1. The beta-generated random variable X is defined with the 

following CDF and pdf 

 
( )

0

( ) ( )
F x

G x b t dt                                                                   (1) 

 

and 

 

                                                 
1 11

( ) ( ) ( )[1 ( )]
( , )

g x f x F x F x
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where b(t) is the pdf of the beta random variable with parameters  and  , F(x) and f(x) are the CDF 

and the pdf of any random variable. 

 

Many authors derived and studied many beta-generated distributions in the literature, for example beta-

Gumbel (Nadarajah and Kotz, [12]), beta-Weibull (Famoye et al. [7]), beta-exponential (Nadarajah and 

Kotz, [13]), beta-gamma (Kong et al., [8]), beta-Pareto (Akinsete et al., [1]), beta-generalized exponential 

(Barreto-Souza et al., [5]), beta-generalized Pareto (Mahmoudi, [10]), and beta-Cauchy (Alshawarbeh, et 

al., [2]). 

http://dergipark.gov.tr/gujs
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Alzaatreh et al. [3] presented a new general method for generating new distributions, called T-X family of 

distributions. This method depending on replace the beta pdf in (1) with a pdf of any continuous random 

variable and applying a function W(F(x)) that satisfies the following conditions:  
1- “W(F(x))  [a, b].”  
2- “W(F(x)) is differentiable and monotonically non-decreasing.” 

3- “W(F(x)) → a as x →and  W(F(x)) → b as  x → .”                          

 

Let X be a random variable with pdf f (x) and CDF F(x), and let T be a continuous random variable with 

pdf r(t) and CDF R(t) defined on [a, b] for −∞ < a < b < ∞. Alzaatreh et al. [3] defined the CDF and pdf 

of a new family of distributions as 

 

                    

( ( ))

( ) ( ) { ( ( ))}
W F x

a

G x r t dt R W F x                                              (2) 

 

and  

 

         ( ) [ ( ( ))] [ ( ( ))]
d

g x W F x r W F x
dx

  

 

Recently, Amini et al. [4] introduced two new general families of continuous distributions called log 

gamma- generated families(LG-G) of distributions as follows: 

For any continuous parent distribution F(x) of a random variable X with corresponding parent pdf f(x), 

the two new LG-G families are given with the following two pdfs: 
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and 
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where (.) is the complete gamma function. 

 

Note that the log gamma- generated families which introduced by Amini et al. [4] are two special cases 

from T-X method defined by Alzaatreh et al. [3]. Take the W(F(x)) = (1 − F(x)) in (2), and let the random 

variable T follows the log-gamma distribution with the following CDF and pdf 
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( ) ( log ) , 0 1 , , 0
( )
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                               (3) 
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                                 (4) 

 

From (2), (3) and (4) we will define the log-gamma -X family based on T-X method with the following 

CDF and pdf 
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and 
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where (.,.)  is the lower incomplete gamma function defined by  

 

1

0

( , )
x

ux e u du      

 

Merovci and Elbatal [11] defined and studied a generalization of the Rayleigh distribution called the 

Weibull Rayleigh distribution (WR). In this paper we present a new generalization of the Gamma 

distribution and the Rayleigh distribution called the Log-Gamma Rayleigh distribution. 

 

2. THE LOG-GAMMA - RAYLEIGH DISTRIBUTION (LGR) 

 

If the random variable X have the Rayleigh distribution with pdf and CDF given, respectively, by 

 

“

2

22
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   ”                                        (7) 

 

and 
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                                                    (8) 

 

then using (5), (6), (7) and (8) the log-gamma - Rayleigh distribution (LGR) is defined with CDF 
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The corresponding pdf of the LGR is  

 

                   “

2
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2

1

2 2
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” 

 

The LGR distribution has the following special cases: 

1) When 1   , the gamma distribution is obtained as 
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where                                                               
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2) When 1    , the Rayleigh distribution in (7) and (8) is obtained. 

Hence the log-gamma - Rayleigh distribution can be considered as a generalization of the gamma and 

Rayleigh distributions. 

 

If we set 
2





 , then the CDF of the  LGR can be written as 
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and, the corresponding pdf of the LGR is given by 

 

“

2

2
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1( ) ( ) , 0 , , 0
( ) 2

x

x x
g x e x



 
 




  


”                            (10) 

 

“Figures 1 and 2 illustrates some of the possible shapes of the pdf and CDF of LGR for selected values of 

the parameters  and  , respectively” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Density function ( ; , )g x   of the  LGR 

 

The graphs in Figure 1 indicate that the LGR is unimodal. 
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Figure 2. Cumulative function ( ; , )G x   of the  LGR 

 

Some remarks of LGR: 

1) If a random variable Y follows the log-gamma distribution with parameters  and , then the random 

variable  
2 1

log( )X
Y

   follows the LGR. 

2) If a random variable Z follows the gamma distribution with parameters  and , then the random 

variable    
2

X Z


  follows the LGR. 

 

2.1. Survival and Hazard Functions 

 

The survival function of the LGR is 
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“The hazard rate function and reversed hazard rate function of the LGR will be” 
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Figures 3 and 4 illustrates some of the possible shapes of the survival and hazard rate function of LGR for 

selected values of the parameters   and  , respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Survival function ( ; , )S x   of the  LGR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Hazard function ( ; , )H x   of the  LGR 

 

2.2. Quantile Function, Median, and Simulation 

 

The quantile function for the LGR distribution is given as 

  

 

1

2
12

( ) ,(1 ) ( )Q p p  


 
   
 

 

 

where 
1(.,.) 

 is the inverse incomplete gamma function implemented in most used 

mathematical software's (see Pinho et al. [14]).  

Proof: By inverting (9) 
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Let ( )G x p where 0 1p   . Then the quantile function is 
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Consequently, the median of LGR will be 
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“Let 𝑈 be a uniform variate on the unit interval (0,1). Thus by means of the inverse transformation 

method, we consider the random variable 𝑋 given by”: 

 

 

1

2
12

,(1 ) ( )X U  


 
   
 

                                                 (11) 

 

This follows the LGR. 

 

3. MOMENTS AND MOMENT GEENERATING FUNCTION 

 

In this section, the non-central moments, the central moments, incomplete moments, and moment 

generating function of the LGR are computed. 

 

Theorem 3.1: If 𝑋 is a random variable distributed as a LGR, then the   non-central moment is given by 
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Therefore, the variance of LGR is given by 
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Using the relations, the skewness and kurtosis can be calculated as  

  

2

2
2

1

0

( ) ( )
( ) 2

x

r r x x
E X x e dx



 









2
12

0

2

1
2

0

2

1 2 1
( )

( )

2

( )

( )
2 2

( )

r
r

r u

r

r
u

r

E X u xu e du
x

u e du

r






  







 


 


 



 
  
  

 
 
 


 
 

  
 







975 Samir ASHOUR et al.  / GU J Sci, 31(3): 967-983 (2018) 

“

3 2 3
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and             
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Table 1. First four non-central moments, skewness and kurtosis of the LGR distribution for various 

values of parameters 

Kurtosis Skewness 4  3  2  1      

  

7084 663.642 66.689 7.507 0.00025 

0.5  

  

  

1.66 0.237 28330 1877 133.379 10.617 0.0005 

  

63750 3448 200.068 13.003 0.00075 

  

113300 5309 266.758 15.014 0.001 

  

8394 747.467 71.754 7.766 0.00025 

0.6  

  

  

1.734 0.321 33570 2114 143.508 10.983 0.0005 

  

75540 3884 215.262 13.451 0.00075 

  

134300 5980 287.016 15.532 0.001 

  

10830 882.021 78.294 7.993 0.00025 

0.7 

  

  

1.898 0.472 43310 2495 156.588 11.303 0.0005 

  

97440 4583 234.882 13.844 0.00075 

  

173200 7056 313.175 15.985 0.001 

  

14780 1058 84.139 8.011 0.00025 

 0.8 

  

  

2.289 0.722 59130 2993 168.278 11.33 0.0005 

  

133100 5499 252.417 13.876 0.00075 

  

236500 8466 336.556 16.023 0.001 

  

21460 1251 84.025 7.386 0.00025 

0.9  

  

  

3.542 1.215 85830 3537 168.049 10.445 0.0005 

  

193100 6499 252.074 12.793 0.00075 

  

343300 10010 336.099 14.772 0.001 

 

Table 1 reveals that the skewness and kurtosis depend on the shape parameter .  

 

Theorem 3.2: The moment about the mean of the LGR is as follows: 
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Proof: 

Using the binomial expansion for ( )rX  , the central moments ( )rE X    for any random variable  

X  can be written as 

 



976 Samir ASHOUR et al.  / GU J Sci, 31(3): 967-983 (2018) 

0

( ) ( 1) ( )
r

r r k r k k

k

r
E X E X

k
  



 
   

 
  

 

Therefore, the central moments for the LGR random variable X can be simplified to 
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Theorem 3.3: If 𝑋 is a random variable distributed as a LGR with parameters  and  , the  
thr

incomplete moment of 𝑋 is given by: 
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where   is the lower incomplete gamma function. 

 

Theorem 3.4: “Let 𝑋 have a LGR. The moment generating function of 𝑋 denoted by ( )XM t  is given 

by” 
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Proof: 

By definition 
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Using Taylor series 
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4. MODE AND MEAN DEVIATIONS 

 

The mode of the LGR is obtained by finding the first derivate of log g(𝑥) with respect to 𝑥 and equating it 

to zero 

 

“      
2

log ( ) log( ) log( ) log ( ) ( 1) log( ) 2log( ) log(2)
2

x
g x x x


            ” 

 

“  
1 2( 1) 2 1

log ( )
d

g x x x
dx x x x

 
 

 
     ” 

 

When        log ( ) 0
d

g x
dx

             therefore        0

0

2 1
x

x





  

 

Then     

 

 

The mean deviation about the mean and the median are useful measures of variation for a population. Let 

𝜇 = 𝐸(𝑋) and M be the mean and median of the LGR, respectively. The mean deviation about the mean is 
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In a similar way, the mean deviation from the median is given by 
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5. DISTRIBUTION OF THE ORDER STATISTICS 

 

In this section, we derive closed form expressions for the pdf of the 
thr order statistic of the LGR. Let  

1 2, ,..., nX X X  be a simple random sample from LGR distribution with CDF and pdf given by (9) and 

(10), respectively. Let (1) (2) ( ), ,..., nX X X  denote the order statistics obtained from this sample. The pdf 

of the 
thr order statistic of the LGR is 
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The pdf of the largest order statistic ( )nX is therefore 
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and the pdf of the smallest order statistic (1)X is given by 
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6. PARAMETERS ESTIMATION 

 

Let 1 2, ,..., nX X X be a random sample from a LGR with parameters  and  , then the log-likelihood 

function from (10) is given by 

 

 
1 1 1

2

1

2

1 1

log ( , ) log ( ) [log log ( )] log( ) 2( 1) log( )

( 1)log ( 1)log2
2

log (2 1) log( ) log ( ) ( 1)log2
2

n n n

i i i
i i i

n

i
i

n n

i i
i i

L g x n x x

n n x

n x n n x

    


  


    

  



 

       

    

       

  



 

 

(12) 

 

The first partial derivatives of (12) are 
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“The MLE of the parameters  and  , say  and   are obtained by solving the equations 

0
 

 
 

 
 

Therefore”   
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The second derivatives with respect to  and  will be: 
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“Now we can derive the elements of the Fisher information matrix as follows” 
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then the Fisher information matrix is 
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The variance-covariance matrix of ( , )  is obtained by inverting the Fisher information matrix as 

follows:    

1
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Var Cov
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7. NUMERICAL ILLUSTRATION 

 

In this section, random numbers are generated using the CDF of the LGR distribution, and then the 

maximum likelihood estimates are obtained.  

We will generate 1000 samples of each of sizes 10, 15,…,30 from the LGR distribution for different 

values of the parameters   and  , using the CDF of LGR, and then the maximum likelihood estimates 

for each sample will be obtained, along with the mean, root of the mean square error, bias and standard 

error of those estimates. The steps of this procedure will be as the following: 

1. Set initial values for the parameters  and  . 

2. Generate 1000 samples of each of sizes 10, 15,…, 30, using (11). 
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3. Obtain the maximum likelihood estimates for  and  for the different sample sizes. 

4. Obtain the mean, biases, root of the mean square error and standard errors for the MLE estimates for 

the different sample sizes. 

5. Repeat steps 1:4 for different values of  and  (Results are listed in Table (2)). 

 

Table 2. Means, Biases, Root of the Mean Square Errors and Standard Errors for the MLEs of LGR 

distribution for different values of parameters 

0.75   0.85   0.5   0.75   0.25   0.5   

 

n 

154.342 1.916 1.027 1.221 0.381 0.474 Mean 

10  

  

  

79.342 1.066 0.527 0.471 0.131 -0.026 Biase 

174.71 3.823 1.174 3.237 0.402 2.146 R.MSE 

15.573 0.367 0.105 0.32 0.038 0.215 S.E 

132.179 2.015 0.761 1.319 0.311 0.791 Mean 

15  

  

  

57.179 1.165 0.261 0.569 0.061 0.291 Biase 

129.533 2.37 0.704 1.439 0.263 0.8 R.MSE 

7.753 0.138 0.044 0.088 0.017 0.05 S.E 

106.606 1.371 0.632 0.724 0.276 0.466 Mean 

20  

  

  

31.606 0.521 0.132 -0.026 0.026 -0.034 Biase 

86.92 1.893 0.49 1.67 0.199 1.075 R.MSE 

4.051 0.091 0.024 0.084 0.009891 0.054 S.E 

98 1.452 0.593 0.999 0.251 0.629 Mean 

 25 

  

  

23 0.602 0.093 0.249 0.001491 0.129 Biase 

73.624 1.291 0.449 0.856 0.176 0.497 R.MSE 

2.799 0.046 0.018 0.033 0.007031 0.019 S.E 

92.286 1.253 0.547 0.683 0.233 0.385 Mean 

30  

  

  

17.286 0.403 0.047 -0.067 -0.017 -0.115 Biase 

65.814 1.315 0.388 1.252 0.142 0.864 R.MSE 

2.118 0.042 0.013 0.042 0.004708 0.029 S.E 

 

8. APPLICATION 

 

This section presents application of LGR using real data set. In this application, we obtain the maximum 

likelihood estimates of the parameters of the fitted distributions. LGR is compared with other 

distributions (Weibull Rayleigh distribution (WR), Expontiated Weibull distributions (EW) and 

Expontiated Rayleigh (ER)) based on the maximized log-likelihood, the Kolmogorov-Smirnov (K-S) test 

along with the corresponding p-value, Akaike Information Criterion (AIC), Bayesian Information Criteria 

(BIC), Anderson-Darling statistic (AD), and Cramer von Mises statistic (CM).The data set was taken 

from Crowder [6], which gives the breaking strengths of single carbon fibers of different lengths: 

 

2.247, 2.64, 2.842, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726, 3.727, 

3.728, 3.783, 3.785, 3.786, 3.898, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.216, 4.251, 

4.262, 4.326, 4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738, 

4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06  
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Table 3. Summarized results of fitting different distributions to the data set 

Model MLEs -2 log L AIC BIC KS P value AD CM 

LGR 
  6.60549 

140.266 144.266 148.353 0.056 0.994 0.155 0.023 
  0.70943 

WR 

c  0.0514 

144.45 150.45 156.579 0.109 0.508 0.684 0.114   1.93513 

  2.13298 

EW 

a  280.997        

  0.517 148.962 154.962 161.091 4.419 0 0.776 0.124 

k  
0.867        

ER 

 

  9.97416 
141.973 145.973 150.059 0.068 0.953 0.261 0.042   1.79066 

 

Because the LGR has the lowest -2logL, AIC, BIC, KS, AD and CM statistics and the largest P value in 

Table 3, it can be concluded that the LGR is a strong competitor to other distributions used here for fitting 

data set. 

 

The variance covariance matrix of the MLEs under the LGR for the data set is computed as 

 
3

1

3 4

0.026 2.747 10

2.747 10 3.184 10
I





 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The fitted densities of distributions for the data set 
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9. CONCLUSIONS 

 

This article defined a new generalization of Gamma distribution and Rayleigh distribution using the T-X 

method, called the log-gamma - Rayleigh distribution (LGR). Various properties of the distribution were 

studied. The moments, deviations from the mean and median, mode, survival function, hazard function 

and the maximum likelihood estimates of the parameters, have been investigated. The application of the 

new distribution has also been demonstrated with real life data. The results, compared with other known 

distributions, revealed that the LGR provides a better fit for modeling real life data. 
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