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Abstract  Öz 

Konya Basin, a key agro-ecosystem in Turkey, is 

increasingly vulnerable to desertification. This study 

assesses vegetation dynamics and climatic drivers between 

2000 and 2025 using the Google Earth Engine platform. 

MODIS time-series (NDVI and SAVI) were analyzed to 

map long-term trends, and medium-resolution Landsat data 

identified degradation hotspots. Our results reveal an 

apparent contradiction. The basin shows a subtle greening 

trend, particularly in croplands (+0.0042 NDVI units yr⁻¹). 

However, medium-resolution Landsat data simultaneously 

indicate degradation hotspots covering a total of 3471.93 

km². Croplands account for 21.4% of these areas, and about 

70% occur below 1000 m, where groundwater-dependent 

irrigation is most intense. Climatic drivers clarify this 

dynamic. A significant warming trend of 0.05 °C yr⁻¹ (p = 

0.0102) was detected, while vegetation correlated 

positively with precipitation (r = 0.50, p < 0.01) but showed 

no significant relationship with temperature (r = 0.09, p = 

0.66). Spatial maps confirmed precipitation control in 

northern rainfed grasslands and temperature stress in 

irrigated southern plains. This multi-scale approach shows 

that basin-wide averages can be misleading, as modest 

greening coexists with local degradation. The findings 

emphasize the need for spatially explicit data to guide 

targeted land and water management policies to mitigate 

desertification risks in this vital region. 

 Türkiye'nin önemli bir agro-ekosistemi olan Konya 

Havzası, çölleşmeye karşı giderek daha savunmasız hale 

gelmektedir. Bu çalışma, Google Earth Engine platformu 

kullanılarak 2000 ve 2025 yılları arasındaki bitki örtüsü 

dinamiklerini ve iklimsel etkenleri değerlendirmektedir. 

Uzun vadeli eğilimleri haritalamak için MODIS zaman 

serileri (NDVI ve SAVI) analiz edilmiş ve orta 

çözünürlüklü Landsat verileriyle bozulma odak noktaları 

belirlenmiştir. Bulgularımız bir çelişkiyi ortaya 

koymaktadır; zira havza, özellikle tarım arazilerinde 

(+0.0042 NDVI birimi/yıl) hafif bir yeşillenme eğilimi 

gösterirken, Landsat verileri toplam 3471.93 km² alana 

yayılan bozulma odakları olduğunu göstermektedir. Bu 

alanların %21.4'ünü tarım arazileri oluşturmakta ve 

yaklaşık %70'i, yeraltı suyuna dayalı sulamanın en yoğun 

olduğu 1000 m'nin altındaki rakımlarda meydana 

gelmektedir. İklimsel etkenler bu dinamiği 

netleştirmektedir. Anlamlı bir ısınma eğilimi (0.05 °C/yıl; 

p = 0.0102) tespit edilirken, bitki örtüsü yağışla pozitif 

korelasyon göstermiş (r = 0.50, p < 0.01) ancak sıcaklıkla 

anlamlı bir ilişki sergilememiştir (r = 0.09, p = 0.66). 

Mekansal haritalar, kuzeydeki yağışa bağımlı otlaklarda 

yağış kontrolünü ve güneydeki sulu tarım ovalarında 

sıcaklık stresini doğrulamıştır. Bu çok ölçekli yaklaşım, 

mütevazı bir yeşillenmenin yerel bozulmayla bir arada 

bulunması nedeniyle havza geneli ortalamalarının yanıltıcı 

olabileceğini göstermektedir. Bulgular, bu hayati bölgedeki 

çölleşme risklerini azaltmak için hedefe yönelik arazi ve su 

yönetimi politikalarına rehberlik edecek mekansal olarak 

ayrıntılı verilere duyulan ihtiyacı vurgulamaktadır. 

Keywords: Desertification, Remote sensing, NDVI/SAVI, 

Climate-vegetation relationships, Hotspot analysis 

 Anahtar kelimeler: Çölleşme, Uzaktan algılama, 

NDVI/SAVI, İklim-vejetasyon ilişkileri, Hotspot analizi 

1 Introduction 

Desertification, defined as land degradation in arid, semi-

arid, and dry sub-humid areas resulting from climatic 

variations and human activities, poses a critical threat to 

global food security, biodiversity, and ecosystem services 

[1]. The IPCC estimates that desertification affects over 2.7 

billion people worldwide, with semi-arid regions particularly 

vulnerable due to their sensitivity to climate change and 

land-use pressures [2]. Covering ~40% of Earth’s land 

surface, these regions face rising temperatures, erratic 

precipitation, and human-induced pressures like overgrazing 

and intensive agriculture, leading to soil erosion, 

productivity decline, and ecosystem resilience loss [3]. 

Remote sensing has become indispensable for monitoring 

such vast areas, with vegetation indices like NDVI and SAVI 

(reducing soil background effects in sparse vegetation; [4]) 

widely used to track dynamics and detect hotspots. Global 

studies consistently link these indices to climatic factors, for 
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example, NDVI-precipitation correlations in Central Asia 

[5], temperature-driven land cover shifts, such as biome 

replacements in Mediterranean mountains [6], and NDVI-

LST associations in Saudi Arabia [7], revealing greening–

degradation contradictions in Argentina [8], Iraq [9], 

Australia [10], the Sahel [11], and China [12, 13]. 

The Konya Basin, a semi-arid closed basin in central 

Turkey, mirrors these global dynamics. Covering ~50,000 

km², it is one of the country’s most important grain-

producing regions, yet is increasingly threatened by drought, 

soil erosion, and groundwater depletion [14]. Remote 

sensing studies highlight its vulnerability: long-term 

warming trends of +1–2 °C have been linked to vegetation 

stress (~10–15%) [15]; DInSAR analyses revealed land 

subsidence of up to 5 cm/year due to aquifer over-extraction 

[16]; MODIS- and index-based drought monitoring indicates 

increasing frequency and severity of drought events in the 

Konya Basin in recent decades [17]; furthermore, recent 

analyses confirm a significant intensification of 

meteorological, hydrological, and especially groundwater 

drought across the basin, directly linking it to unsustainable 

water management practices [18]; long-term Landsat 

analyses report substantial reductions (~20–25%) in lentic 

system surface areas [19]; these hydrological changes have 

been directly associated with increased water abstraction for 

agriculture, leading to severe consequences such as rising 

salinity in lakes and the loss of critical waterbird and fish 

populations [20]; and Sentinel-1 SAR time-series studies 

demonstrate clear links between crop backscatter dynamics 

and reduced vegetation vigor during drought years [21]. 

These findings confirm the basin’s susceptibility to 

desertification but remain fragmented in scope. 

Despite these contributions, a research gap persists in 

integrating multi-sensor and multi-scale data for a holistic 

assessment of land degradation in the Konya Basin over 

recent decades [22, 23]. Previous work has focused on single 

drivers or scales, without systematically investigating 

whether apparent greening trends at the basin level mask 

localized degradation hotspots. This gap is critical, as 

aggregate NDVI averages can obscure spatial heterogeneity 

and fail to inform targeted interventions [24, 25]. 

International examples illustrate the importance of multi-

scale approaches for disentangling climatic and 

anthropogenic contributions: Central Asia [25], the Sahel 

[11], and Iran [26]. Global assessments also suggest that 

roughly 20–30% of degradation is linked to human activities 

[27]. These findings highlight the need for a basin-scale 

framework in Konya that explicitly separates climatic 

variability from human drivers. 

This study addresses this gap by conducting a 

comprehensive, multi-scale analysis of vegetation dynamics 

in the Konya Basin from 2000 to 2025. Specifically, we aim 

to: (1) quantify long-term spatial–temporal trends in 

vegetation health using MODIS-derived NDVI and SAVI; 

(2) analyze their relationships with precipitation and 

temperature; and (3) identify medium-resolution (30 m) 

degradation hotspots using Landsat data and evaluate their 

distribution across land cover types. By integrating macro-

scale (MODIS) and micro-scale (Landsat) analyses, this 

research offers a novel perspective on desertification drivers 

and provides a robust evidence base for sustainable land and 

water management policies in one of Turkey’s most vital 

agricultural regions.  

2 Materials and Methods 

2.1 Study Area  

This study focuses on the Konya Closed Basin, a semi-

arid agro-ecosystem in the Central Anatolia region of Turkey 

(Figure 1; 38°-39° N, 32°-33° E). Covering approximately 

50,000 km², the basin is one of the country's most significant 

agricultural regions, primarily for grain production, with 

annual precipitation averaging 300-400 mm and a 

continental climate featuring hot, dry summers. The analysis 

was defined for the primary growing season (April-

September) to capture vegetation dynamics during its most 

active phase. According to the ESA WorldCover dataset 

(2020), the basin's land cover is dominated by cropland 

(~60%), followed by grassland (~25%) and bare/sparse 

vegetation (~10%). Topographically, a significant portion of 

agricultural activity is concentrated in the plains at elevations 

below 1000 m, which are also most susceptible to 

environmental pressures such as groundwater depletion and 

soil erosion [22, 28, 29] 

 

 

Figure 1. The study area, Konya Basin, showing (a) the 

topographic context from the SRTM Digital Elevation 

Model and (b) a true-color Sentinel-2 satellite composite 

2.2 Data Acquisition  

All remote sensing and climate data were acquired and 

processed using the Google Earth Engine (GEE) cloud 

computing platform [30]. The datasets used in this study are 

summarized in Table 1. For long-term vegetation trend 

analysis (2000–2025), we used the MODIS Terra/Aqua 16-

Day L3 Global 250m product (MOD13Q1) for NDVI at 250 

m resolution and the 8-Day L3 Global 500m Surface 

Reflectance product (MOD09A1) at 500 m resolution to 

calculate SAVI [31]. Medium-resolution hotspot analysis 

(2013–2025) was conducted using Landsat 8/9 Level 2, 

Collection 2, Tier 1 data at 30 m resolution [32]. Climatic 

variables were derived from the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) daily 

dataset at 0.05° (~5 km) resolution for precipitation [33] and 

the ERA5-Land daily aggregated dataset at 0.1° (~11 km) 

resolution for mean 2-meter air temperature [34]. Land cover 

and topographic analysis was supported by the 2020 ESA 

WorldCover 10m land cover map [35] and the 30m SRTM 

Digital Elevation Model [36]. 
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Table 1. Summary of datasets used in the study. 

Data Type Dataset Name / Source Spatial 

Resolution 

Temporal 

Resolution 

Period Purpose 

Vegetation Index (NDVI) MODIS/061/MOD13Q1 250 m 16-day 2000-2025 Long-term trend analysis 

Vegetation Index (SAVI) MODIS/061/MOD09A1 500 m 8-day 2000-2025 Long-term trend analysis 

Medium-Res Vegetation LANDSAT/LC08/C02/T1_L2 30 m 16-day 2013-2025 Hotspot detection 

Precipitation UCSB-CHG/CHIRPS/DAILY ~5.5 km Daily 2000-2025 Climate correlation analysis 

Temperature ECMWF/ERA5_LAND/DAILY_AGGR ~11 km Daily 2000-2025 Climate correlation analysis 

Land Cover ESA/WorldCover/v100 10 m 2020 (static) 2020 Stratification of results 

Elevation USGS/SRTMGL1_003 30 m Static N/A Contextual analysis 

 

2.3 Data Processing  

We performed data preprocessing to generate analysis-

ready annual time-series for the growing season. MODIS 

products underwent rigorous quality control using their 

respective Quality Assessment (QA) bands (SummaryQA 

for MOD13Q1 and StateQA for MOD09A1) to mask pixels 

contaminated by clouds, aerosols, or poor-quality 

observations (e.g., SummaryQA.eq(0)). The Normalized 

Difference Vegetation Index (NDVI) was calculated using 

the surface reflectance (ρ) values of the Near-Infrared (NIR) 

and Red bands, as given in Equation 1 [37]: 
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To account for soil background effects in sparsely 

vegetated areas, the Soil-Adjusted Vegetation Index (SAVI) 

was also calculated using Equation 2 [4]: 
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where L is a soil adjustment factor, set to 0.5 for semi-

arid regions. Similarly, Landsat 8/9 data were masked for 

clouds using the QA_PIXEL band before NDVI calculation. 

For all datasets, annual composites were created for each 

year from 2000 to 2025 by calculating the mean (for NDVI, 

SAVI, temperature) or sum (for precipitation) of all high-

quality observations within the April–September growing 

season. Processing used a 250 m scale and 1e13 maxPixels 

limit to ensure computational efficiency. 

2.4 Trend and Correlation Analysis 

We applied pixel-wise linear regression to the 26-year 

time-series of annual MODIS-derived NDVI and SAVI 

composites to quantify the rate and direction of vegetation 

change (e.g., NDVI units per year). The slope (β) was 

calculated as given in Equation 3: 

 

2

( )( )

( )

i i

i

x x y y

x x


 − −
=

 −
 (3) 

 

where xi is time (years 2000-2025) and yi is NDVI/SAVI, 

with significance tested at α=0.05 [38]. To investigate 

vegetation-climate relationships, pixel-wise Pearson's 

correlation was conducted between annual NDVI/SAVI and 

precipitation/temperature composites. The correlation 

coefficient (r) was computed as given in Equation 4: 
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with p-values for significance (p<0.05). Analysis was 

stratified by land cover class using the ESA WorldCover 

map to assess variations across cropland, grassland, and 

bare/sparse vegetation [35]. 

2.5 Medium-Resolution Hotspot Analysis 

To identify areas of recent, severe degradation, a hotspot 

analysis was performed using the 30m resolution Landsat 8/9 

data. A continuous NDVI change map (ΔNDVI) was created 

by subtracting the mean growing season NDVI of an early 

period (2013–2015) from that of a late period (2023–2025), 

as given in Equation 5: 

 

Δ
late early

NDVI NDVI NDVI= −  (5) 

 

Based on the statistical distribution of this change map, a 

data-driven threshold was established at the 10th percentile 

of all negative change values (-0.0885) to classify pixels 

undergoing significant degradation as "hotspots" [38]. 

Hotspot areas were calculated in km² and stratified by land 

cover class (ESA WorldCover) and elevation (SRTM) to 

quantify human activity impacts, with significance tested at 

α=0.05. 

2.6 Statistical Validation 

The statistical significance of the basin-wide temporal 

trends and correlations was calculated in Python from the 

exported summary CSV file. Linear regression was used to 

determine the p-value for the long-term temperature trend. 

Pearson's correlation coefficient (r), as defined in Equation 

4, was used to assess the strength and significance of the 

relationships between annual vegetation indices and climatic 

variables. The significance of the correlation coefficient was 

tested using a t-statistic as given in Equation 6: 

 

2

2

1

r n
t

r

−
=

−
 (6) 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1690-1699 

A. E. Karkınlı 

 

1693 

Several sources of uncertainty were identified and 

acknowledged in this study. The primary source is the spatial 

resolution mismatch between the datasets used: moderate-

resolution vegetation (250–500 m), coarse-resolution 

climate data (~5–11 km), and high-resolution land cover (10 

m) and hotspot (30 m) data. This was addressed by 

aggregating summary statistics for basin-wide analysis and 

by acknowledging this limitation in the interpretation of 

pixel-level results. A second source of uncertainty is the use 

of a static 2020 land cover map for stratifying trends over a 

26-year period, which does not account for potential land use 

conversions. Finally, the medium-resolution hotspot analysis 

was constrained by the temporal availability of Landsat 8/9 

data (post-2013), limiting a longer-term historical 

comparison of degradation at this scale. These limitations 

were considered during the discussion of the results. 

3 Results and Discussion  

3.1 Long-Term Temporal Trends and Climatic 

Relationships 

The basin-wide temporal analysis for the growing season 

(April–September) from 2000 to 2025 reveals distinct trends 

in key environmental variables. As illustrated in Figure 2, 

both mean NDVI and SAVI exhibit a gradual increasing 

trend over the 2000–2025 period, indicating a subtle basin-

wide greening. This positive trend is modest in magnitude 

and spatially heterogeneous, consistent with the land-cover 

specific trends shown in Figure 6 (e.g., croplands display the 

most pronounced positive trend, ≈ +0.0042 NDVI units yr⁻¹). 

However, medium-resolution analyses identify localized 

areas of substantial decline (hotspots) that are masked by 

these basin-scale averages, allowing a basin-wide greening 

signal to coexist with severe local degradation. 

This slight basin-wide greening occurs alongside a 

statistically significant increase in mean growing-season 

temperature (0.05 °C yr⁻¹; p = 0.0102). Total growing-season 

precipitation, in contrast, shows pronounced inter-annual 

variability but does not exhibit a clear long-term directional 

trend over the analysis period. 

The relationships between basin-wide annual vegetation 

indices and climatic factors were quantified using Pearson 

correlation (Figure 3). NDVI shows a moderate, statistically 

significant positive correlation with precipitation (r = 0.5017, 

p = 0.009), confirming moisture availability as an important 

driver of inter-annual vegetation variability. By contrast, the 

basin-wide correlation between NDVI and temperature is 

weak and not statistically significant (r = 0.0902, p = 

0.6611). This spatial heterogeneity is evident in the pixel-

wise correlation maps (Figure 5), which reveal moderate to 

strong positive NDVI–precipitation correlations in 

northern/rainfed areas and localized negative NDVI–

temperature associations in irrigated southern plains. 

The long-term MODIS time-series indicate a subtle 

basin-scale greening trend in NDVI and SAVI between 2000 

and 2025, occurring concurrently with a statistically 

significant warming trend and strong inter-annual 

precipitation variability. However, because this greening is 

modest and spatially uneven, basin-scale averages alone can 

obscure critical local declines, a point that is directly 

addressed by the medium-resolution Landsat hotspot 

analysis in Section 3.3. 

 

 

Figure 2. Basin-wide time series of key environmental variables in the Konya Basin during the growing season (2000–2025) 

derived from MODIS (NDVI/SAVI), CHIRPS (Precipitation), and ERA5-Land (Temperature) data: (a) annual mean NDVI, 

(b) annual mean SAVI, (c) total precipitation, and (d) mean temperature 
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Figure 3. Relationships between basin-wide mean NDVI and climatic factors during the growing season (2000–2025): (a) 

NDVI vs. precipitation and (b) NDVI vs. temperature. 

 

3.2 Spatial Patterns of Vegetation Change 

The spatial analysis of vegetation dynamics reveals 

significant heterogeneity in degradation and greening 

patterns across the Konya Basin. The pixel-wise linear trend 

slopes for NDVI and SAVI are presented in Figure 4. Both 

indices show widespread areas of positive slopes (greening) 

across the basin, particularly in peripheral highland regions. 

Localized negative slopes (degradation) are concentrated in 

the central and southern plains where agricultural activities 

dominate land use. The SAVI trend map closely mirrors 

these results. 

The spatial correlation maps (Figure 5) further elucidate 

vegetation–climate interactions. A strong positive 

correlation between NDVI and precipitation is evident in the 

northern and peripheral grasslands, which are predominantly 

rainfed ecosystems. In contrast, correlations between NDVI 

and temperature are largely negative in the irrigated southern 

agricultural plains. 

 

 

Figure 4. Spatial distribution of vegetation trends in the Konya Basin from 2000 to 2025 calculated from the MODIS 

(MOD13Q1 and MOD09A1) time-series: (a) NDVI trend slope and (b) SAVI trend slope. 
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Figure 5. Spatial correlation between NDVI and climatic factors in the Konya Basin (2000–2025): (a) correlation with 

precipitation and (b) correlation with temperature. 

The spatial trend and correlation analyses demonstrate 

that the Konya Basin exhibits a heterogeneous 

environmental dynamic: widespread but modest greening 

coexists with concentrated degradation hotspots. This spatial 

paradox underlines the importance of integrating basin-wide 

trends with fine-scale assessments to fully capture the 

desertification risk landscape. 

3.3 Impact of Land Use and Medium-Resolution 

Degradation Hotspots 

Land use emerges as a key factor shaping vegetation 

dynamics. As shown in Figure 6, cropland areas exhibit the 

most pronounced positive NDVI trend compared to 

grasslands and bare/sparse vegetation zones. This greening 

trend in croplands is consistent with the basin-wide increase 

of ≈ +0.0042 NDVI units yr⁻¹. At the same time, medium-

resolution analyses reveal that localized degradation persists, 

particularly within intensively managed agricultural zones. 

The Landsat-based hotspot analysis provides a more 

detailed perspective on recent vegetation change, 

summarized in Table 2. A total of 3471.93 km² was 

identified as experiencing significant degradation between 

2013–2015 and 2023–2025 [as described in Section 2.5]. 

Croplands account for 741.52 km² (21.4% of the total 

degraded area), grasslands for 168.92 km² (4.9%), and 

bare/sparse vegetation for 142.46 km² (4.1%). 

The spatial distribution of these hotspots is visualized in 

Figure 7, demonstrating that vegetation decline is not 

randomly distributed but is concentrated in specific 

agricultural parcels and irrigation schemes, particularly in 

the southern and central plains. 

These results indicate that widespread greening and 

concentrated degradation hotspots coexist within the Konya 

Basin, underscoring the importance of integrating basin-

wide averages with medium-resolution analyses. 

 

 

Figure 6. Trends in mean growing season NDVI (2000–

2025), disaggregated by major land cover classes. 

 

Table 2. Distribution of medium-resolution degradation 

hotspots across land cover classes in the Konya Basin. 

Land Cover Class 
Hotspot Area  

(km²) 

Percentage of Total 

Hotspots (%) 

Cropland 741.524 21.358 

Grassland 168.919 4.865 

Bare/Sparse Vegetation 142.461 4.103 
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Figure 7. Spatial distribution of medium-resolution 

degradation hotspots identified using Landsat NDVI data 

for 2013–2025 

3.4 Discussion 

The results of this study provide compelling evidence of 

a complex environmental dynamic in the Konya Basin 

between 2000 and 2025. A subtle, basin-wide greening trend 

appears to mask acute, localized degradation that is driven 

by intensive agricultural activities. The spatial analyses 

reveal that while croplands exhibit the strongest positive 

long-term NDVI trend (≈ +0.0042 units yr⁻¹), they also 

contain a disproportionately high share of degradation 

hotspots (741.52 km²; 21.4% of the total). This apparent 

contradiction underscores the critical role of scale in 

vegetation monitoring: basin-wide averages suggest 

improvement, whereas medium-resolution data expose areas 

of severe decline. 

The temporal analysis indicates a clear warming trend, 

with mean growing-season temperatures increasing by an 

average of 0.05 °C per year, statistically significant at p = 

0.0102. This aligns with regional climate projections for 

Central Anatolia, which identify temperature rise as a 

primary driver of increased aridity [39, 40]. The basin-wide 

correlation analysis supports a complex relationship: NDVI 

showed a moderate positive correlation with precipitation (r 

= 0.5017, p = 0.009), confirming the region’s dependence on 

moisture, while the basin-wide correlation with temperature 

was not statistically significant (r = 0.09, p = 0.66). However, 

spatial correlation maps clarified this discrepancy, revealing 

strong positive NDVI–precipitation relationships in northern 

rainfed areas and localized negative NDVI–temperature 

associations in irrigated southern croplands. 

These findings suggest that the drivers of vegetation 

dynamics in the Konya Basin are heterogeneous. This 

dynamic is consistent with findings from other semi-arid 

regions in Turkey; for example, [41], in their study on land 

cover-temperature relationships in Kayseri, found that bare 

soil areas significantly increased land surface temperatures, 

providing a supporting framework for explaining the 

temperature stress observed in the intensively cultivated 

agricultural plains of Konya. Rainfed ecosystems primarily 

respond to inter-annual precipitation variability, while 

irrigated croplands are more vulnerable to rising 

temperatures and unsustainable groundwater extraction. The 

identification of 3471.93 km² of severe degradation, 

concentrated in the southern and central plains and 

predominantly below 1000 m elevation, strongly supports 

this interpretation. This pattern indicates stress driven by 

unsustainable resource use, consistent with subsidence 

studies in semi-arid basins [42, 43]. 

The paradox of widespread greening coexisting with 

localized degradation has also been reported in other semi-

arid regions, including the Sahel, Central Asia, and parts of 

China [44, 45]. In the Konya Basin, agricultural 

intensification and CO₂ fertilization may contribute to the 

observed basin-scale greening [46], while land and water 

management practices drive the emergence of degradation 

hotspots. This dual process illustrates why reliance on basin-

wide NDVI averages alone can be misleading, as they 

conceal critical vulnerabilities in agricultural landscapes. 

While this study provides a comprehensive remote 

sensing-based assessment, certain limitations must be 

acknowledged. The primary limitations are the spatial 

resolution mismatch between datasets and the use of a static 

land cover map. The coarse spatial resolution of climatic data 

(~5–11 km) averages temperature and precipitation over 

large areas, potentially masking localized microclimatic 

effects that influence vegetation at finer scales and thereby 

weakening the observed pixel-level correlations. Similarly, 

the use of a static 2020 land cover map for a 26-year analysis 

assumes no significant land use conversions, while the 

expansion of irrigated agriculture could have occurred, 

potentially leading to the misclassification of vegetation 

change drivers in some areas. Future research should aim to 

integrate medium-resolution climate models and historical 

land-use data to refine spatial analysis.  

 Furthermore, incorporating direct data on groundwater 

levels would allow for a quantitative link between water 

resource depletion and the observed degradation hotspots. 

Nevertheless, the spatially explicit identification of 

degradation hotspots, even within a context of subtle overall 

greening, provides valuable input for targeted land 

management interventions. This highlights the urgent need 

for sustainable water policies, such as groundwater 

monitoring and water-efficient irrigation practices, to 

mitigate desertification risks in this vital agricultural region. 

4 Conclusion 

This study provides a comprehensive, multi-sensor 

remote sensing analysis of vegetation dynamics in the Konya 

Basin from 2000 to 2025. The long-term MODIS record 

reveals a subtle but consistent basin-wide greening trend in 

NDVI and SAVI, with croplands showing the most 

pronounced positive slope (≈ +0.0042 units yr⁻¹). At the 

same time, medium-resolution Landsat analysis identified 

3471.93 km² of severe degradation hotspots, of which 21.4% 

occur in croplands and approximately 70% are concentrated 

below 1000 m elevation, where groundwater-dependent 
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irrigation is most intensive. These findings demonstrate that 

apparent greening at the basin scale can mask critical local-

scale degradation processes. 

Climatic analysis indicates a statistically significant 

warming trend of 0.05 °C yr⁻¹ (p = 0.0102), while 

precipitation exerts strong inter-annual control on vegetation 

(r = 0.5017, p = 0.009). In contrast, the basin-wide NDVI–

temperature relationship is weak and not statistically 

significant (r = 0.09, p = 0.66). Spatial correlation maps 

clarify this discrepancy, showing strong positive NDVI–

precipitation relationships in northern rainfed grasslands and 

localized negative NDVI–temperature associations in 

irrigated southern plains. Together, these results confirm that 

vegetation responses are heterogeneous, with rainfed 

systems sensitive to precipitation variability and irrigated 

croplands highly vulnerable to warming and water stress. 

The key scientific contribution of this research is the 

clear demonstration of the “greening–degradation paradox” 

in a semi-arid agro-ecosystem: modest basin-wide greening, 

partly driven by agricultural intensification and CO₂ 

fertilization, coexists with acute local degradation 

concentrated in irrigated agricultural zones. By integrating 

long-term MODIS trends with medium-resolution Landsat 

hotspot detection, this research provides robust evidence that 

basin-scale averages alone are insufficient to characterize 

desertification risk. 

The results have significant implications for regional 

policy and sustainable resource management. The spatially 

explicit identification of degradation hotspots offers a 

valuable tool for decision-makers to shift from basin-wide 

strategies to targeted interventions. To enhance resilience, 

we recommend concrete policy actions, including (1) 

establishing a basin-wide network of telemetered wells for 

real-time groundwater monitoring, and (2) providing 

targeted subsidies to accelerate the transition from flood 

irrigation to modern drip or sprinkler systems. While 

providing a strong evidence base, this study acknowledges 

limitations such as the coarse resolution of climate data and 

the use of a static land cover map. Future studies 

incorporating dynamic land-use maps and direct 

groundwater data would further refine these findings and 

strengthen the evidence base for sustainable land and water 

management in the Konya Basin. 

Similarity (iThenticate): %10 
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