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Abstract

Konya Basin, a key agro-ecosystem in Turkey, is
increasingly vulnerable to desertification. This study
assesses vegetation dynamics and climatic drivers between
2000 and 2025 using the Google Earth Engine platform.
MODIS time-series (NDVI and SAVI) were analyzed to
map long-term trends, and medium-resolution Landsat data
identified degradation hotspots. Our results reveal an
apparent contradiction. The basin shows a subtle greening
trend, particularly in croplands (+0.0042 NDVT units yr ).
However, medium-resolution Landsat data simultaneously
indicate degradation hotspots covering a total of 3471.93
km?. Croplands account for 21.4% of these areas, and about
70% occur below 1000 m, where groundwater-dependent
irrigation is most intense. Climatic drivers clarify this
dynamic. A significant warming trend of 0.05 °C yr! (p =
0.0102) was detected, while vegetation correlated
positively with precipitation (r=0.50, p < 0.01) but showed
no significant relationship with temperature (r = 0.09, p =
0.66). Spatial maps confirmed precipitation control in
northern rainfed grasslands and temperature stress in
irrigated southern plains. This multi-scale approach shows
that basin-wide averages can be misleading, as modest
greening coexists with local degradation. The findings
emphasize the need for spatially explicit data to guide
targeted land and water management policies to mitigate
desertification risks in this vital region.

Keywords: Desertification, Remote sensing, NDVI/SAVI,
Climate-vegetation relationships, Hotspot analysis

1 Introduction

Desertification, defined as land degradation in arid, semi-
arid, and dry sub-humid areas resulting from climatic
variations and human activities, poses a critical threat to
global food security, biodiversity, and ecosystem services
[1]. The IPCC estimates that desertification affects over 2.7
billion people worldwide, with semi-arid regions particularly
vulnerable due to their sensitivity to climate change and
land-use pressures [2]. Covering ~40% of Earth’s land
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Tiirkiye'nin 6nemli bir agro-ekosistemi olan Konya
Havzasi, ¢ollesmeye karsi giderek daha savunmasiz hale
gelmektedir. Bu ¢aligma, Google Earth Engine platformu
kullanilarak 2000 ve 2025 yillart arasindaki bitki ortiisii
dinamiklerini ve iklimsel etkenleri degerlendirmektedir.
Uzun vadeli egilimleri haritalamak i¢cin MODIS zaman
serileri (NDVI ve SAVI) analiz edilmis ve orta
¢oziintirliklii Landsat verileriyle bozulma odak noktalari
belirlenmigstir.  Bulgularimiz  bir  ¢eliskiyi  ortaya
koymaktadir; zira havza, ozellikle tarim arazilerinde
(+0.0042 NDVI birimi/y1l) hafif bir yesillenme egilimi
gosterirken, Landsat verileri toplam 3471.93 km? alana
yayilan bozulma odaklar1 oldugunu gdstermektedir. Bu
alanlarin  %21.4'Unii tarim arazileri olusturmakta ve
yaklasik %70'1, yeralt1 suyuna dayali sulamanin en yogun
oldugu 1000 m'nin altindaki rakimlarda meydana
gelmektedir. Iklimsel etkenler bu dinamigi
netlestirmektedir. Anlamli bir 1sinma egilimi (0.05 °C/y1l;
p = 0.0102) tespit edilirken, bitki ortiisii yagisla pozitif
korelasyon gostermis (r = 0.50, p < 0.01) ancak sicaklikla
anlaml bir iliski sergilememistir (r = 0.09, p = 0.66).
Mekansal haritalar, kuzeydeki yagisa bagimli otlaklarda
yagis kontroliinii ve giineydeki sulu tarim ovalarinda
sicaklik stresini dogrulamistir. Bu ¢ok oOlgekli yaklagim,
miitevazi bir yesillenmenin yerel bozulmayla bir arada
bulunmasi nedeniyle havza geneli ortalamalarinin yaniltic
olabilecegini gdstermektedir. Bulgular, bu hayati bélgedeki
¢Ollesme risklerini azaltmak i¢in hedefe yonelik arazi ve su
yonetimi politikalarina rehberlik edecek mekansal olarak
ayrmtili verilere duyulan ihtiyaci vurgulamaktadir.

Anahtar Kkelimeler: Collesme, Uzaktan algilama,
NDVI/SAVI, iklim-vejetasyon iliskileri, Hotspot analizi

surface, these regions face rising temperatures, erratic
precipitation, and human-induced pressures like overgrazing
and intensive agriculture, leading to soil erosion,
productivity decline, and ecosystem resilience loss [3].
Remote sensing has become indispensable for monitoring
such vast areas, with vegetation indices like NDVI and SAVI
(reducing soil background effects in sparse vegetation; [4])
widely used to track dynamics and detect hotspots. Global
studies consistently link these indices to climatic factors, for
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example, NDVI-precipitation correlations in Central Asia
[5], temperature-driven land cover shifts, such as biome
replacements in Mediterranean mountains [6], and NDVI-
LST associations in Saudi Arabia [7], revealing greening—
degradation contradictions in Argentina [8], Iraq [9],
Australia [10], the Sahel [11], and China [12, 13].

The Konya Basin, a semi-arid closed basin in central
Turkey, mirrors these global dynamics. Covering ~50,000
km? it is one of the country’s most important grain-
producing regions, yet is increasingly threatened by drought,
soil erosion, and groundwater depletion [14]. Remote
sensing studies highlight its vulnerability: long-term
warming trends of +1-2 °C have been linked to vegetation
stress (~10-15%) [15]; DInSAR analyses revealed land
subsidence of up to 5 cm/year due to aquifer over-extraction
[16]; MODIS- and index-based drought monitoring indicates
increasing frequency and severity of drought events in the
Konya Basin in recent decades [17]; furthermore, recent
analyses confirm a significant intensification of
meteorological, hydrological, and especially groundwater
drought across the basin, directly linking it to unsustainable
water management practices [18]; long-term Landsat
analyses report substantial reductions (~20-25%) in lentic
system surface areas [19]; these hydrological changes have
been directly associated with increased water abstraction for
agriculture, leading to severe consequences such as rising
salinity in lakes and the loss of critical waterbird and fish
populations [20]; and Sentinel-1 SAR time-series studies
demonstrate clear links between crop backscatter dynamics
and reduced vegetation vigor during drought years [21].
These findings confirm the basin’s susceptibility to
desertification but remain fragmented in scope.

Despite these contributions, a research gap persists in
integrating multi-sensor and multi-scale data for a holistic
assessment of land degradation in the Konya Basin over
recent decades [22, 23]. Previous work has focused on single
drivers or scales, without systematically investigating
whether apparent greening trends at the basin level mask
localized degradation hotspots. This gap is critical, as
aggregate NDVI averages can obscure spatial heterogeneity
and fail to inform targeted interventions [24, 25].
International examples illustrate the importance of multi-
scale approaches for disentangling climatic and
anthropogenic contributions: Central Asia [25], the Sahel
[11], and Iran [26]. Global assessments also suggest that
roughly 20-30% of degradation is linked to human activities
[27]. These findings highlight the need for a basin-scale
framework in Konya that explicitly separates climatic
variability from human drivers.

This study addresses this gap by conducting a
comprehensive, multi-scale analysis of vegetation dynamics
in the Konya Basin from 2000 to 2025. Specifically, we aim
to: (1) quantify long-term spatial-temporal trends in
vegetation health using MODIS-derived NDVI and SAVI;
(2) analyze their relationships with precipitation and
temperature; and (3) identify medium-resolution (30 m)
degradation hotspots using Landsat data and evaluate their
distribution across land cover types. By integrating macro-
scale (MODIS) and micro-scale (Landsat) analyses, this

research offers a novel perspective on desertification drivers
and provides a robust evidence base for sustainable land and
water management policies in one of Turkey’s most vital
agricultural regions.

2 Materials and Methods

2.1 Study Area

This study focuses on the Konya Closed Basin, a semi-
arid agro-ecosystem in the Central Anatolia region of Turkey
(Figure 1; 38°-39° N, 32°-33° E). Covering approximately
50,000 km?, the basin is one of the country's most significant
agricultural regions, primarily for grain production, with
annual precipitation averaging 300-400 mm and a
continental climate featuring hot, dry summers. The analysis
was defined for the primary growing season (April-
September) to capture vegetation dynamics during its most
active phase. According to the ESA WorldCover dataset
(2020), the basin's land cover is dominated by cropland
(~60%), followed by grassland (~25%) and bare/sparse
vegetation (~10%). Topographically, a significant portion of
agricultural activity is concentrated in the plains at elevations
below 1000 m, which are also most susceptible to
environmental pressures such as groundwater depletion and
soil erosion [22, 28, 29]

Topographic View (SRTM) Satellite Imagery (Sentinel-2)

(a) (b)

Figure 1. The study area, Konya Basin, showing (a) the
topographic context from the SRTM Digital Elevation
Model and (b) a true-color Sentinel-2 satellite composite

2.2 Data Acquisition

All remote sensing and climate data were acquired and
processed using the Google Earth Engine (GEE) cloud
computing platform [30]. The datasets used in this study are
summarized in Table 1. For long-term vegetation trend
analysis (2000-2025), we used the MODIS Terra/Aqua 16-
Day L3 Global 250m product (MOD13Q1) for NDVI at 250
m resolution and the 8-Day L3 Global 500m Surface
Reflectance product (MOD09A1) at 500 m resolution to
calculate SAVI [31]. Medium-resolution hotspot analysis
(2013-2025) was conducted using Landsat 8/9 Level 2,
Collection 2, Tier 1 data at 30 m resolution [32]. Climatic
variables were derived from the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) daily
dataset at 0.05° (~5 km) resolution for precipitation [33] and
the ERAS5-Land daily aggregated dataset at 0.1° (~11 km)
resolution for mean 2-meter air temperature [34]. Land cover
and topographic analysis was supported by the 2020 ESA
WorldCover 10m land cover map [35] and the 30m SRTM
Digital Elevation Model [36].
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Table 1. Summary of datasets used in the study.
Data Type Dataset Name / Source Spatial Temporal Period Purpose
Resolution Resolution
Vegetation Index (NDVI) MODIS/061/MOD13Q1 250 m 16-day 2000-2025 Long-term trend analysis
Vegetation Index (SAVI) MODIS/061/MODO09A1 500 m 8-day 2000-2025 Long-term trend analysis
Medium-Res Vegetation LANDSAT/LCO08/C02/T1_L2 30 m 16-day 2013-2025 Hotspot detection
Precipitation UCSB-CHG/CHIRPS/DAILY ~5.5 km Daily 2000-2025 Climate correlation analysis
Temperature ECMWF/ERAS LAND/DAILY AGGR ~11 km Daily 2000-2025 Climate correlation analysis
Land Cover ESA/WorldCover/v100 10 m 2020 (static) 2020 Stratification of results
Elevation USGS/SRTMGL1 003 30 m Static N/A Contextual analysis
vegetation-climate relationships, pixel-wise Pearson's

2.3 Data Processing

We performed data preprocessing to generate analysis-
ready annual time-series for the growing season. MODIS
products underwent rigorous quality control using their
respective Quality Assessment (QA) bands (SummaryQA
for MOD13Q1 and StateQA for MOD09A1) to mask pixels
contaminated by clouds, aerosols, or poor-quality
observations (e.g., SummaryQA.eq(0)). The Normalized
Difference Vegetation Index (NDVI) was calculated using
the surface reflectance (p) values of the Near-Infrared (NIR)
and Red bands, as given in Equation 1 [37]:

(p ViR~ Pred )
(P + Pred)

NDVI = 1)

To account for soil background effects in sparsely
vegetated areas, the Soil-Adjusted Vegetation Index (SAVI)
was also calculated using Equation 2 [4]:

(p iR ~ Pred )
(P + Prea +1£)

SAVI = x(1+1) )

where L is a soil adjustment factor, set to 0.5 for semi-
arid regions. Similarly, Landsat 8/9 data were masked for
clouds using the QA_PIXEL band before NDVI calculation.
For all datasets, annual composites were created for each
year from 2000 to 2025 by calculating the mean (for NDVI,
SAVI, temperature) or sum (for precipitation) of all high-
quality observations within the April-September growing
season. Processing used a 250 m scale and 1el3 maxPixels
limit to ensure computational efficiency.

2.4 Trend and Correlation Analysis

We applied pixel-wise linear regression to the 26-year
time-series of annual MODIS-derived NDVI and SAVI
composites to quantify the rate and direction of vegetation
change (e.g., NDVI units per year). The slope (B) was
calculated as given in Equation 3:

2 =00 =7)
Y(x,-x)

B (3)

where Xx; is time (years 2000-2025) and y; is NDVI/SAVI,
with significance tested at a=0.05 [38]. To investigate

correlation was conducted between annual NDVI/SAVI and
precipitation/temperature  composites. The correlation
coefficient (r) was computed as given in Equation 4:

S, -DW, -7
J2x, -2 2y, - )

“4)

with p-values for significance (p<0.05). Analysis was
stratified by land cover class using the ESA WorldCover
map to assess variations across cropland, grassland, and
bare/sparse vegetation [35].

2.5 Medium-Resolution Hotspot Analysis

To identify areas of recent, severe degradation, a hotspot
analysis was performed using the 30m resolution Landsat 8/9
data. A continuous NDVI change map (ANDVI) was created
by subtracting the mean growing season NDVI of an early
period (2013-2015) from that of a late period (2023-2025),
as given in Equation 5:

ANDVI = NDVI,, ~ NDVI (5)

early

Based on the statistical distribution of this change map, a
data-driven threshold was established at the 10th percentile
of all negative change values (-0.0885) to classify pixels
undergoing significant degradation as "hotspots" [38].
Hotspot areas were calculated in km? and stratified by land
cover class (ESA WorldCover) and elevation (SRTM) to
quantify human activity impacts, with significance tested at
0=0.05.

2.6 Statistical Validation

The statistical significance of the basin-wide temporal
trends and correlations was calculated in Python from the
exported summary CSV file. Linear regression was used to
determine the p-value for the long-term temperature trend.
Pearson's correlation coefficient (r), as defined in Equation
4, was used to assess the strength and significance of the
relationships between annual vegetation indices and climatic
variables. The significance of the correlation coefficient was
tested using a t-statistic as given in Equation 6:

=t (6)
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Several sources of uncertainty were identified and
acknowledged in this study. The primary source is the spatial
resolution mismatch between the datasets used: moderate-
resolution vegetation (250-500 m), coarse-resolution
climate data (~5—11 km), and high-resolution land cover (10
m) and hotspot (30 m) data. This was addressed by
aggregating summary statistics for basin-wide analysis and
by acknowledging this limitation in the interpretation of
pixel-level results. A second source of uncertainty is the use
of a static 2020 land cover map for stratifying trends over a
26-year period, which does not account for potential land use
conversions. Finally, the medium-resolution hotspot analysis
was constrained by the temporal availability of Landsat 8/9
data (post-2013), limiting a longer-term historical
comparison of degradation at this scale. These limitations
were considered during the discussion of the results.

3 Results and Discussion

3.1 Long-Term Temporal Trends and Climatic
Relationships

The basin-wide temporal analysis for the growing season
(April-September) from 2000 to 2025 reveals distinct trends
in key environmental variables. As illustrated in Figure 2,
both mean NDVI and SAVI exhibit a gradual increasing
trend over the 2000-2025 period, indicating a subtle basin-
wide greening. This positive trend is modest in magnitude
and spatially heterogeneous, consistent with the land-cover
specific trends shown in Figure 6 (e.g., croplands display the
most pronounced positive trend, = +0.0042 NDVI units yr!).
However, medium-resolution analyses identify localized
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areas of substantial decline (hotspots) that are masked by
these basin-scale averages, allowing a basin-wide greening
signal to coexist with severe local degradation.

This slight basin-wide greening occurs alongside a
statistically significant increase in mean growing-season
temperature (0.05 °C yr''; p=10.0102). Total growing-season
precipitation, in contrast, shows pronounced inter-annual
variability but does not exhibit a clear long-term directional
trend over the analysis period.

The relationships between basin-wide annual vegetation
indices and climatic factors were quantified using Pearson
correlation (Figure 3). NDVI shows a moderate, statistically
significant positive correlation with precipitation (r=0.5017,
p = 0.009), confirming moisture availability as an important
driver of inter-annual vegetation variability. By contrast, the
basin-wide correlation between NDVI and temperature is
weak and not statistically significant (r = 0.0902, p =
0.6611). This spatial heterogeneity is evident in the pixel-
wise correlation maps (Figure 5), which reveal moderate to
strong positive NDVI-precipitation correlations in
northern/rainfed areas and localized negative NDVI-
temperature associations in irrigated southern plains.

The long-term MODIS time-series indicate a subtle
basin-scale greening trend in NDVI and SAVI between 2000
and 2025, occurring concurrently with a statistically
significant warming trend and strong inter-annual
precipitation variability. However, because this greening is
modest and spatially uneven, basin-scale averages alone can
obscure critical local declines, a point that is directly
addressed by the medium-resolution Landsat hotspot
analysis in Section 3.3.

Mean Growing Season SAVI

2000 2004 2008 2012

Year
(b)

2016 2020 2024

Mean Growing Season Temperature

s s & #° S
Year
(d)

5

P

Figure 2. Basin-wide time series of key environmental variables in the Konya Basin during the growing season (2000—-2025)
derived from MODIS (NDVI/SAVI), CHIRPS (Precipitation), and ERA5-Land (Temperature) data: (a) annual mean NDVI,
(b) annual mean SAVI, (c) total precipitation, and (d) mean temperature
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Figure 3. Relationships between basin-wide mean NDVI and climatic factors during the growing season (2000-2025): (a)

NDVI vs. precipitation and (b) NDVI vs. temperature.

3.2 Spatial Patterns of Vegetation Change

The spatial analysis of vegetation dynamics reveals
significant heterogeneity in degradation and greening
patterns across the Konya Basin. The pixel-wise linear trend
slopes for NDVI and SAVI are presented in Figure 4. Both
indices show widespread areas of positive slopes (greening)
across the basin, particularly in peripheral highland regions.
Localized negative slopes (degradation) are concentrated in
the central and southern plains where agricultural activities

NDVI Trend (Annual Change)

; 3 g v
-0.0100 -0.0075 -0.0050 -0.0025

0.0000

dominate land use. The SAVI trend map closely mirrors
these results.

The spatial correlation maps (Figure 5) further elucidate
vegetation—climate  interactions. A  strong positive
correlation between NDVI and precipitation is evident in the
northern and peripheral grasslands, which are predominantly
rainfed ecosystems. In contrast, correlations between NDVI
and temperature are largely negative in the irrigated southern
agricultural plains.

SAVI Trend (Annual Change)

(b)
-

' v " d
0.0025 0.0050 0.0075 0.0100

Trend Slope (Index change per year)

Figure 4. Spatial distribution of vegetation trends in the Konya Basin from 2000 to 2025 calculated from the MODIS
(MOD13Q1 and MODO09A1) time-series: (a) NDVI trend slope and (b) SAVI trend slope.
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Figure 5. Spatial correlation between NDVI and climatic factors in the Konya Basin (2000-2025): (a) correlation with

precipitation and (b) correlation with temperature.

The spatial trend and correlation analyses demonstrate
that the Konya Basin exhibits a heterogeneous
environmental dynamic: widespread but modest greening
coexists with concentrated degradation hotspots. This spatial
paradox underlines the importance of integrating basin-wide
trends with fine-scale assessments to fully capture the
desertification risk landscape.

3.3 Impact of Land Use and Medium-Resolution
Degradation Hotspots

Land use emerges as a key factor shaping vegetation
dynamics. As shown in Figure 6, cropland areas exhibit the
most pronounced positive NDVI trend compared to
grasslands and bare/sparse vegetation zones. This greening
trend in croplands is consistent with the basin-wide increase
of = +0.0042 NDVI units yr'. At the same time, medium-
resolution analyses reveal that localized degradation persists,
particularly within intensively managed agricultural zones.

The Landsat-based hotspot analysis provides a more
detailed perspective on recent vegetation change,
summarized in Table 2. A total of 3471.93 km? was
identified as experiencing significant degradation between
2013-2015 and 2023-2025 [as described in Section 2.5].
Croplands account for 741.52 km? (21.4% of the total
degraded area), grasslands for 168.92 km? (4.9%), and
bare/sparse vegetation for 142.46 km? (4.1%).

The spatial distribution of these hotspots is visualized in
Figure 7, demonstrating that vegetation decline is not
randomly distributed but is concentrated in specific
agricultural parcels and irrigation schemes, particularly in
the southern and central plains.

These results indicate that widespread greening and
concentrated degradation hotspots coexist within the Konya
Basin, underscoring the importance of integrating basin-
wide averages with medium-resolution analyses.

Mean NDVI Trend by Land Gover Class (2000-2025)
Lane: Cavar Class
& Graplnd
Grassard
»  Bare Sparse Wegetalion
s

ean Growing Season NDVI

2000 05 o s 2020 2025
Year

Figure 6. Trends in mean growing season NDVI (2000—
2025), disaggregated by major land cover classes.

Table 2. Distribution of medium-resolution degradation
hotspots across land cover classes in the Konya Basin.

Hotspot Area Percentage of Total
Land Cover Class (km?) Hotspots (%)
Cropland 741.524 21.358
Grassland 168.919 4.865
Bare/Sparse Vegetation 142.461 4.103
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Medi ion Degradati pots (NDVI Change < -0.0885)

I Degradalion Holspol {(NDVI Change < -0.09}
Kanya Province Boundary

Figure 7. Spatial distribution of medium-resolution
degradation hotspots identified using Landsat NDVI data
for 2013-2025

3.4 Discussion

The results of this study provide compelling evidence of
a complex environmental dynamic in the Konya Basin
between 2000 and 2025. A subtle, basin-wide greening trend
appears to mask acute, localized degradation that is driven
by intensive agricultural activities. The spatial analyses
reveal that while croplands exhibit the strongest positive
long-term NDVI trend (= +0.0042 units yr'), they also
contain a disproportionately high share of degradation
hotspots (741.52 km?; 21.4% of the total). This apparent
contradiction underscores the critical role of scale in
vegetation monitoring: basin-wide averages suggest
improvement, whereas medium-resolution data expose areas
of severe decline.

The temporal analysis indicates a clear warming trend,
with mean growing-season temperatures increasing by an
average of 0.05 °C per year, statistically significant at p =
0.0102. This aligns with regional climate projections for
Central Anatolia, which identify temperature rise as a
primary driver of increased aridity [39, 40]. The basin-wide
correlation analysis supports a complex relationship: NDVI
showed a moderate positive correlation with precipitation (r
=0.5017, p=0.009), confirming the region’s dependence on
moisture, while the basin-wide correlation with temperature
was not statistically significant (r =0.09, p=0.66). However,
spatial correlation maps clarified this discrepancy, revealing
strong positive NDVI-precipitation relationships in northern
rainfed areas and localized negative NDVI-temperature
associations in irrigated southern croplands.

These findings suggest that the drivers of vegetation
dynamics in the Konya Basin are heterogeneous. This
dynamic is consistent with findings from other semi-arid
regions in Turkey; for example, [41], in their study on land
cover-temperature relationships in Kayseri, found that bare
soil areas significantly increased land surface temperatures,
providing a supporting framework for explaining the

temperature stress observed in the intensively cultivated
agricultural plains of Konya. Rainfed ecosystems primarily
respond to inter-annual precipitation variability, while
irrigated croplands are more vulnerable to rising
temperatures and unsustainable groundwater extraction. The
identification of 3471.93 km? of severe degradation,
concentrated in the southern and central plains and
predominantly below 1000 m elevation, strongly supports
this interpretation. This pattern indicates stress driven by
unsustainable resource use, consistent with subsidence
studies in semi-arid basins [42, 43].

The paradox of widespread greening coexisting with
localized degradation has also been reported in other semi-
arid regions, including the Sahel, Central Asia, and parts of
China [44, 45]. In the Konya Basin, agricultural
intensification and CO: fertilization may contribute to the
observed basin-scale greening [46], while land and water
management practices drive the emergence of degradation
hotspots. This dual process illustrates why reliance on basin-
wide NDVI averages alone can be misleading, as they
conceal critical vulnerabilities in agricultural landscapes.

While this study provides a comprehensive remote
sensing-based assessment, certain limitations must be
acknowledged. The primary limitations are the spatial
resolution mismatch between datasets and the use of a static
land cover map. The coarse spatial resolution of climatic data
(~5-11 km) averages temperature and precipitation over
large areas, potentially masking localized microclimatic
effects that influence vegetation at finer scales and thereby
weakening the observed pixel-level correlations. Similarly,
the use of a static 2020 land cover map for a 26-year analysis
assumes no significant land use conversions, while the
expansion of irrigated agriculture could have occurred,
potentially leading to the misclassification of vegetation
change drivers in some areas. Future research should aim to
integrate medium-resolution climate models and historical
land-use data to refine spatial analysis.

Furthermore, incorporating direct data on groundwater
levels would allow for a quantitative link between water
resource depletion and the observed degradation hotspots.
Nevertheless, the spatially explicit identification of
degradation hotspots, even within a context of subtle overall
greening, provides valuable input for targeted land
management interventions. This highlights the urgent need
for sustainable water policies, such as groundwater
monitoring and water-efficient irrigation practices, to
mitigate desertification risks in this vital agricultural region.

4 Conclusion

This study provides a comprehensive, multi-sensor
remote sensing analysis of vegetation dynamics in the Konya
Basin from 2000 to 2025. The long-term MODIS record
reveals a subtle but consistent basin-wide greening trend in
NDVI and SAVI, with croplands showing the most
pronounced positive slope (= +0.0042 units yr'). At the
same time, medium-resolution Landsat analysis identified
3471.93 km? of severe degradation hotspots, of which 21.4%
occur in croplands and approximately 70% are concentrated
below 1000 m elevation, where groundwater-dependent

1696



NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1690-1699
A. E. Karkinl

irrigation is most intensive. These findings demonstrate that
apparent greening at the basin scale can mask critical local-
scale degradation processes.

Climatic analysis indicates a statistically significant
warming trend of 0.05 °C yr' (p = 0.0102), while
precipitation exerts strong inter-annual control on vegetation
(r=0.5017, p = 0.009). In contrast, the basin-wide NDVI-
temperature relationship is weak and not statistically
significant (r = 0.09, p = 0.66). Spatial correlation maps
clarify this discrepancy, showing strong positive NDVI-
precipitation relationships in northern rainfed grasslands and
localized negative NDVI-temperature associations in
irrigated southern plains. Together, these results confirm that
vegetation responses are heterogeneous, with rainfed
systems sensitive to precipitation variability and irrigated
croplands highly vulnerable to warming and water stress.

The key scientific contribution of this research is the
clear demonstration of the “greening—degradation paradox”
in a semi-arid agro-ecosystem: modest basin-wide greening,
partly driven by agricultural intensification and CO:
fertilization, coexists with acute local degradation
concentrated in irrigated agricultural zones. By integrating
long-term MODIS trends with medium-resolution Landsat
hotspot detection, this research provides robust evidence that
basin-scale averages alone are insufficient to characterize
desertification risk.

The results have significant implications for regional
policy and sustainable resource management. The spatially
explicit identification of degradation hotspots offers a
valuable tool for decision-makers to shift from basin-wide
strategies to targeted interventions. To enhance resilience,
we recommend concrete policy actions, including (1)
establishing a basin-wide network of telemetered wells for
real-time groundwater monitoring, and (2) providing
targeted subsidies to accelerate the transition from flood
irrigation to modern drip or sprinkler systems. While
providing a strong evidence base, this study acknowledges
limitations such as the coarse resolution of climate data and
the use of a static land cover map. Future studies
incorporating dynamic land-use maps and direct
groundwater data would further refine these findings and
strengthen the evidence base for sustainable land and water
management in the Konya Basin.
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