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Özet: NASA Metrics Data Program (MDP), NASA tarafından yürütülen ve çeşitli yazılım projelerinden elde edilen 

metrikleri ve hata bilgilerini içeren, araştırmalarda yaygın olarak kullanılan bir veri deposudur. Çok sayıda alt kümeye 

sahip NASA MDP verilerinde, çalışmanın kapsamını sınırlamak için uygun bir alt veri kümesinin seçilmesi uygun 

olacaktır. Bu amaçla, büyük ve dengesiz veriler içermesi nedeniyle JM1 alt kümesi tercih edilmiştir. JM1 üzerinde 

yeniden örnekleme tekniklerinin makine öğrenmesi modellerinin başarımına etkileri incelenmiştir. Bu kapsamda 

SMOTE, RUS, ROSE, ADASYN, Tomek Links, ENN, Near Miss ve Borderline-SMOTE gibi aşırı örnekleme, eksik örnekleme 

ve hibrit teknikler; Naive Bayes (NB), Destek Vektör Makineleri (DVM), Lojistik Regresyon (LR), Karar Ağacı (KA) ve 

Rastgele Orman (RO) sınıflandırıcıları ile birlikte değerlendirilmiştir. Sonuçlar, yeniden örnekleme uygulanmayan 

modellerin, özellikle azınlık sınıfı olarak tanımlanan hatalı modülleri tanımada düşük başarım sergilediğini; buna karşın 

genel doğruluk metriklerinde yanıltıcı şekilde yüksek değerler elde edebildiğini göstermektedir. Öte yandan, 

SMOTE+ENN gibi hibrit ve ROSE gibi aşırı örnekleme yöntemlerinin, özellikle Rastgele Orman ve Naive Bayes 

sınıflandırıcılarıyla birlikte kullanıldığında, AUC ve F1-ölçütü gibi dengesizliğe duyarlı metriklerde anlamlı iyileşmeler 

sağladığı gözlemlenmiştir. En iyi sonuç, SMOTE+ENN yöntemiyle birlikte kullanılan Rastgele Orman modeliyle elde 

edilmiş; 0,9350 doğruluk, 0,9837 AUC ve hatasız/hatalı modüller için sırasıyla 0,9126/0,9483 F1-ölçütü değerlerine 

ulaşılmıştır. Bu bulgular, yazılım hata tahmininde sınıf dengesizliğiyle mücadelede uygun yeniden örnekleme 

stratejilerinin seçiminin ve dengesizliğe duyarlı metriklerle değerlendirme yapılmasının önemini ortaya koymaktadır. 
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The Impact of Resampling Techniques on the Performance of Software Defect Prediction Using the 
NASA Metrics Data Program Dataset 

 

Abstract: The NASA Metrics Data Program (MDP) is a widely used repository containing software metrics and defect 

data from various NASA projects. To narrow the study’s scope, the JM1 subset was selected due to its large size and 

class imbalance. The effects of resampling techniques on the performance of machine learning models were examined 

using the JM1 dataset. We evaluate several oversampling, undersampling, and hybrid resampling methods-including 

SMOTE, RUS, ROSE, ADASYN, Tomek Links, ENN, Near Miss, and Borderline-SMOTE-in conjunction with classifiers such 

as Naive Bayes (NB), Support Vector Machines (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest 

(RF). Our results indicate that models trained without any resampling often perform poorly in identifying faulty 

modules (the minority class), despite achieving deceptively high values in overall accuracy metrics. Conversely, hybrid 

methods such as SMOTE+ENN and oversampling techniques like ROSE significantly improve performance-particularly 

when used with Random Forest and Naive Bayes classifiers-based on metrics sensitive to class imbalance such as AUC 

and F1-score. The best performance is observed when combining Random Forest with SMOTE+ENN, achieving 0.9350 

accuracy, an AUC of 0.9837, and F1-scores of 0.9126 and 0.9483 for non-defective and defective modules, respectively. 

Consequently, for imbalanced software defect datasets, the selection of appropriate resampling methods and the use of 

metrics truly reflecting real-world performance are critically important. 
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1. Giriş 
Yazılımda hatalar kaçınılmazdır. Bu hataların, son 

kullanıcıya ulaşmadan önce yazılım geliştirme yaşam 

döngüsü içerisinde tespit edilip giderilmesi isten 

hedeftir. Yazılımda hata tahmini (YHT), yazılım 

geliştirme yaşam döngüsü boyunca yazılım kalitesinin 

artırılmasında ve kaynak tahsisinin optimize edilmesinde 

kritik bir rol oynamaktadır. YHT, hataya eğilimli 

modüllerin erken tespiti sayesinde, ekiplerin test 

çalışmalarını önceliklendirmesine olanak tanır, böylece 

geç aşamada gerçekleşen hata tespiti ve düzeltmelere 

ilişkin maliyetleri azaltır (Mabayoje vd., 2019; Sơn vd., 

2019; Li vd., 2018). Bu proaktif yaklaşım, yalnızca 

maliyeti azaltmakla kalmaz, aynı zamanda daha iyi risk 

değerlendirmesi ve kalite kontrolü sağlayarak etkin proje 

yönetimine de yardımcı olur (Wang vd., 2020; Hryszko 

vd., 2018). 

Yazılımda hata tahmininin doğruluğunu ve verimliliğini 

artırma çabaları, özellikle makine öğrenmesi tekniklerini 

temel alan gelişmiş tahmin modellerinin kullanımını ön 

plana çıkarmıştır (Badvath vd., 2022; Deng vd., 2020). Bu 

modeller, geçmiş proje verilerini ve çeşitli yazılım 

metriklerini analiz ederek, yazılım bileşenlerini 'hatalı' 

veya 'hatasız' olarak sınıflandırma konusunda dikkate 

değer bir yetenek sergilemektedir (Ren vd., 2014; 

Balogun vd., 2019). Yapılan bu sınıflandırma, test 

kaynaklarının en yüksek riskli modüllere odaklanmasını 

sağlayan hedefe yönelik test stratejilerinin 

uygulanmasını kolaylaştırır. Dolayısıyla, bu gelişmiş YHT 

yaklaşımları, yazılım hatalarının ekonomik yükünü 

azaltmanın yanı sıra, bakım süreçlerini daha verimli hale 

getirerek ve test için ayrılan insan gücünü optimize 

ederek genel proje üretkenliğine önemli katkılar sunar 

(Tomar vd., 2016; Hall vd., 2012). 

YHT alanında kullanılan veri setlerinin önemli bir 

özelliği, sıklıkla sınıf dengesizliği sergilemeleridir. Hatalı 

modüller genellikle hatasız modüllere kıyasla çok daha az 

sayıda bulunur. Bu durum, denetimli öğrenme 

algoritmaları için önemli zorluklar yaratır. Dengesiz veri 

setleri, modellerin çoğunluk sınıfına doğru yanlı olmasına 

ve özellikle kritik olan azınlık sınıfını (hatalı modüller) 

tespit etmede düşük başarım göstermesine neden 

olabilir. Bu yanlılık, modelin genelleme yeteneğini ciddi 

şekilde etkileyebilir (Zheng vd., 2022; Najeeb vd., 2024; 

Abdelmoumin vd., 2023; Loukili vd., 2024). Özellikle 

lojistik regresyon ve destek vektör makineleri gibi bazı 

sınıflandırıcıların, veri dengesizliğinin olumsuz etkilerine 

karşı daha hassas olduğu ve bu durumun tahmin 

doğruluğunu düşürebildiği rapor edilmiştir (Zheng vd., 

2022; Bui, 2023; Mohapatra, 2024). 

Bu sorunların üstesinden gelmek ve modellerin 

başarımını iyileştirmek amacıyla literatürde çeşitli 

stratejiler önerilmiştir. Bu stratejiler genel olarak veri 

seviyesinde yaklaşımlar ve algoritma seviyesinde 

yaklaşımlar olarak ikiye ayrılabilir. Veri artırma (data 

augmentation), aşırı örnekleme (oversampling) ve eksik 

örnekleme (undersampling) gibi veri seviyesi teknikler, 

sınıf dağılımını dengeleyerek modelin azınlık sınıfını 

daha etkin bir şekilde tanımasını sağlamayı hedefler 

(Alam vd., 2022; Loukili vd., 2024; Byeon, 2021; Ayoub 

vd., 2023; Abdelmoumin vd., 2023; Patel vd., 2017). 

Algoritma seviyesinde ise, adaptif güçlendirme (adaptive 

boosting) veya maliyet duyarlı öğrenme (cost-sensitive 

learning) gibi yöntemler ve sınıf düzeltme kaybı (class 

rectification loss) gibi gelişmiş teknikler, modelin 

kendisini dengesiz senaryolarda daha iyi başarım 

gösterecek şekilde adapte etmesini amaçlar (Taherkhani 

vd., 2020; Huang vd., 2020). Dengesiz veri setlerinin 

yarattığı zorlukların ele alınması, çeşitli uygulamalarda 

doğru tahminler yapabilen sağlam makine öğrenmesi 

modelleri geliştirmek için kritik öneme sahiptir 

(Meysami vd., 2023; Zhang vd., 2023). 

Aşırı örnekleme teknikleri, veri setini dengelemek 

amacıyla azınlık sınıfına ait yeni sentetik örnekler üretir. 

YHT bağlamında, Khuat vd. (2020), yaptıkları deneysel 

çalışmada, farklı örnekleme metotlarının sınıflandırıcı 

başarımını nasıl iyileştirdiğini incelemişler ve özellikle 

aşırı örneklemenin sınıflandırma doğruluğunu anlamlı 

ölçüde artırabildiğini göstermişlerdir. Benzer şekilde, Li 

vd. (2022), YHT veri setlerinin dengesiz doğasıyla 

mücadele etmek için parçacık sürüsü optimizasyonu 

(PSO) ile adaptif güçlendirmeyi (AdaBoost) birleştiren 

akıllı bir füzyon algoritması önermişler ve aşırı 

örnekleme stratejilerinin model başarımını artırmadaki 

etkinliğini ortaya koymuşlardır. 

Diğer yandan, eksik örnekleme teknikleri, dengeli bir veri 

seti elde etmek amacıyla çoğunluk sınıfındaki örneklerin 

sayısını azaltmayı hedefler. Rahardian vd. (2020), yazılım 

hata tahmininde sınıf dağılımını iyileştirmek için eksik 

örnekleme stratejilerinin kullanımını ele almışlardır. 

Çalışmalarında, eksik örneklemenin, çoğunluk sınıfının 

model üzerindeki baskın etkisini azaltarak tahmin 

gücünü artırmada etkili olabileceğini belirtmişlerdir. 

Ayrıca, Kou vd. (2012), eksik örnekleme tekniklerini de 

içeren sınıflandırıcı değerlendirme yöntemlerini 

araştırmış ve bu tekniklerin hata tahminlerinin 

doğruluğunu iyileştirmedeki etkinliğini göstermişlerdir. 

Mevcut literatür hem aşırı örnekleme hem de eksik 

örnekleme tekniklerinin YHT’nde sınıf dengesizliği ile 

mücadelede değerli yaklaşımlar olduğunu ortaya 

koymaktadır. Ancak, farklı yeniden örnekleme 

yöntemlerinin, belirli veri setleri (bu çalışmada JM1) ve 

farklı sınıflandırıcılar bağlamındaki karşılaştırmalı 

başarımları üzerinde daha fazla araştırmaya ihtiyaç 

duyulmaktadır. Bu çalışma, bu boşluğu doldurmaya 

yönelik bir adım atmayı ve JM1 veri seti üzerinde 

belirtilen yöntemlerin etkinliğini değerlendirmeyi 

amaçlamaktadır. 

Bu bağlamda çalışmamızın temel amacı, YHT alanında 

sıkça karşılaşılan veri dengesizliği sorununun üstesinden 

gelmek için kullanılan farklı yeniden örnekleme 

yöntemlerinin etkisini, çalışmalarda sıklıkla kullanılan 

JM1 veri seti üzerinde incelemektir. Ayrıca, bu çalışma 

sınıf tabanlı yazılım hata tahmini problemine 

odaklanmaktadır. Bu kapsamda kullanılan veri seti, her 

bir yazılım modülünü veya sınıfını, hatalı ya da hatasız 
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olarak etiketlenmiş bağımsız örnekler şeklinde temsil 

etmektedir. Çalışma kapsamında, Sentetik Azınlık Aşırı 

Örnekleme Tekniği (Synthetic Minority Over-sampling 

Technique - SMOTE) gibi aşırı örnekleme ve Rastgele 

Azınlık Örneklemesi (Random Undersampling - RUS) gibi 

eksik örnekleme tekniklerinin, Naive Bayes (NB), 

Rastgele Orman (RO) ve Destek Vektör Makineleri (DVM) 

gibi yaygın makine öğrenmesi algoritmalarının hata 

tahmini başarımı üzerindeki etkileri karşılaştırmalı 

olarak analiz edilmiştir. Bu analizle, JM1 veri seti özelinde 

hangi yeniden örnekleme stratejisinin hangi sınıflandırıcı 

ile daha etkin sonuçlar verdiğinin belirlenmesi 

hedeflenmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Şekil 1. Çalışma akışı. 

 

2. Materyal ve Yöntem 
Bu bölümde, çalışmada kullanılan veri seti, uygulanan 

yeniden örnekleme teknikleri, değerlendirme metrikleri 

ve kullanılan makine öğrenmesi algoritmaları 

detaylandırılmaktadır. Çalışmada yer alan tüm makine 

öğrenmesi modellerinin geliştirilmesi, veri ön işleme 

adımlarının uygulanması ve yeniden örnekleme 

algoritmalarının yürütülmesi, Python programlama 

dilinin 3.12 sürümü ile scikit-learn kütüphanesinin 1.6.1 

sürümü kullanılarak gerçekleştirilmiştir. Çalışmamızın 

baştan sona akışı Şekil 1’de gösterilmiştir. 

Deneylerin metodolojik tutarlılığını ve 

tekrarlanabilirliğini sağlamak amacıyla, hem Bölüm 

2.2'de açıklanan makine öğrenmesi sınıflandırıcıları hem 

de Bölüm 2.3'te ele alınan yeniden örnekleme teknikleri 

için standart bir yaklaşım benimsenmiştir. Yeniden 

örnekleme işlemleri için, Scikit-learn ekosistemiyle 

uyumlu çalışan Imbalanced-learn kütüphanesi de 

kullanılmıştır. 

Çalışmanın odak noktası hiperparametre optimizasyonu 

olmadığından, farklı yeniden örnekleme stratejilerinin 

varsayılan modeller üzerindeki saf etkisini 

karşılaştırabilmek amacıyla, tüm sınıflandırıcılar ve 

yeniden örnekleme algoritmaları kütüphanelerin 

varsayılan hiperparametreleri ile çalıştırılmıştır. Ek 

olarak, tüm deneylerde algoritmaların dahili rastgeleliği 

kontrol altına almak ve sonuçların tutarlılığını güvence 

altına almak için “random_state” parametresi sabit bir 

değere (42) ayarlanmıştır. 

2.1. Veri Seti  

NASA Metrik Veri Programı (Metrics Data Program - 

MDP) veri setleri, YHT araştırmalarının temel taşlarından 

biri olarak geniş çapta kabul görmektedir. Çeşitli NASA 

projelerinden türetilen bu veri setleri, statik kod 

metrikleri ve hata verilerini sağlayarak, hataya eğilimli 

yazılım modüllerini tanımlamayı hedefleyen tahmin 

modellerinin geliştirilmesine ve değerlendirilmesine 

olanak tanır. 

MDP koleksiyonu, her biri farklı NASA yazılım 

projelerinden elde edilen verileri temsil eden CM1, JM1, 

KC1, KC2 ve PC1 gibi iyi bilinen alt kümeleri 

içermektedir. Bu veri setleri, yazılım modüllerindeki 

hataların varlığını gösteren etiketlerin yanı sıra, satır 

sayısı, döngüsel karmaşıklık, Halstead karmaşıklık 

metrikleri, modül bağlantısı, yorum satırı oranı ve 

değişken/operatör yoğunluğu gibi 22 farklı statik kod 

özelliğini (özniteliği) içermektedir. Bu metrikler, 

yazılımın yapısal karmaşıklığı ve bakım zorluğunu nicel 

olarak ifade etmeleri nedeniyle hata tahmini 

modellerinde temel belirleyiciler olarak kullanılmaktadır 

(McCabe, 1976; Halstead, 1977; Menzies vd., 2010). 

NASA MDP veri setlerinin popülerliğinin başlıca 

nedenlerinden biri, tekrarlanabilirliği teşvik eden ve 

çalışmalar arasında karşılaştırmalı değerlendirmelere 

olanak sağlayan kamuya açık olmalarıdır. Dahası, bu veri 

setleri, araştırmacıların çeşitli modelleme tekniklerini 

incelemesine olanak tanıyan zengin bir metrik çeşitliliği 

sunar. Alanda yaygın olarak kullanılmaları, bu metrikleri 

yeni yaklaşımların doğrulanması için standart bir 

referans noktası haline getirmiştir. 

MDP veri setlerinin dikkat çeken bir diğer önemli özelliği, 

hatasız modüllerin hatalı olanlardan önemli ölçüde daha 

fazla olduğu doğal sınıf dengesizliğidir. Gerçek dünya 

yazılım sistemlerini yansıtan bu karakteristik özellik, 

aynı zamanda önemli bir zorluk teşkil etmekte ve aşırı 

örnekleme teknikleri ile örneklem tabanlı filtreleme gibi 

yenilikçi veri ön işleme yöntemlerinin geliştirilmesini 

teşvik etmektedir. Bu çalışmanın odak noktası da tam 

olarak bu dengesizlik sorununa yönelik yeniden 

örnekleme yöntemlerinin incelenmesidir. 

MDP veri setleri, makine öğrenmesi ve derin öğrenme 

teknikleri için bir test ortamı görevi görerek YHT 

alanının ilerlemesinde kritik bir rol oynamıştır. Bu veri 

setlerinden yararlanan çalışmalar, aşırı uyum ve projeler 

arası tahmin gibi önemli zorlukları ele almış, hata tahmin 

modellerinin anlaşılmasına ve iyileştirilmesine ciddi 

katkılarda bulunmuştur (Goyal, 2022; Pandey vd., 2020; 

Arya vd., 2021). 

Özetle, NASA MDP veri setleri, erişilebilirlikleri, kapsamlı 

metrikleri ve gerçek dünya yazılım zorluklarıyla 

uyumları nedeniyle YHT araştırmalarında hayati bir 

kaynaktır. Sürekli kullanımları, tahminsel metodolojilerin 

değerlendirilmesi ve ilerletilmesindeki önemlerini 

vurgulamaktadır. Çalışmada kullanılan JM1 veri seti tek 

bir sürüm (single-release) verisi olup, içerisinde 22 
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nitelik, 2106 hatalı modül (azınlık sınıfı) ve 8879 hatasız 

modül (çoğunluk sınıfı) bulunmaktadır. 

2.2. Makine Öğrenme Algoritmaları 

Bu çalışmada, JM1 veri seti üzerinde yazılım hata tahmini 

başarımı, farklı yeniden örnekleme teknikleri ile birlikte 

çeşitli makine öğrenmesi algoritmaları kullanılarak 

değerlendirilmiştir. Analizde kullanılan temel 

sınıflandırıcı algoritmalar aşağıda tanımlanmaktadır. 

2.2.1. Naive Bayes 

Naive Bayes (NB) sınıflandırıcıları, Bayes teoreminin, 

öznitelikler arasında güçlü bağımsızlık varsayımları 

yapılarak uygulanmasına dayanan olasılıksal bir 

sınıflandırıcı ailesidir. Basitlikleri ve hesaplama 

verimlilikleri, NB sınıflandırıcılarını yazılım mühendisliği 

dahil pek çok alanda değerli kılmaktadır; bu alanda 

özellikle güvenlik açığı sınıflandırması ve hata tahmini 

gibi görevlerde uygulamaları bulunmaktadır. İlgili 

literatür, NB modellerinin yazılım projelerindeki teknik 

borç sorunlarını sınıflandırmada ve yazılım güvenlik 

açıklarını tahmin etmede etkin bir şekilde kullanıldığını 

göstermektedir (Li vd., 2022; Fu vd., 2024). NB 

sınıflandırıcısının uygulama kolaylığı, bu sınıflandırıcıyı 

çeşitli makine öğrenmesi görevleri için sıklıkla tercih 

edilen bir seçenek haline getirmektedir (Agrawal vd., 

2020). 

2.2.2. Destek vektör makineleri 

Destek Vektör Makineleri (DVM), güçlü matematiksel 

temellere dayanan bir makine öğrenmesi algoritmasıdır. 

Doğrusal olmayan örüntüleri ayırt edebilme, yüksek 

boyutlu uzaylarda çalışabilme ve gürültülü verilere karşı 

görece dayanıklı olma gibi özellikleri, DVM’leri YHT ve 

güvenilirlik kestirimi dahil olmak üzere çeşitli yazılım 

mühendisliği uygulamaları için uygun bir yöntem 

kılmaktadır. DVM'lerin ölçeklenebilirlik gibi bazı 

kısıtlamaları bulunmakla birlikte, devam eden 

araştırmalar bu kısıtlamaları gidermeye ve algoritmanın 

yorumlanabilirliğini artırmaya odaklanmakta ve sayede 

algoritmanın yazılım mühendisliği alanındaki güncelliğini 

korumasını sağlamaktadır. 

2.2.3. Lojistik regresyon 

Lojistik Regresyon (LR), bir bağımlı değişkenin belirli bir 

kategoriye ait olma olasılığını bir veya daha fazla 

bağımsız değişken aracılığıyla modellemek amacıyla 

kullanılan temel bir istatistiksel ve makine öğrenimi 

yöntemidir. Yazılım mühendisliği bağlamında, belirli 

metrikler veya faktörlerin bir sonucun olasılığı 

üzerindeki etkisini anlamak ve kategorik bir değişkeni 

(ör. yazılım hatasının varlığı/yokluğu, modülün risk 

durumu) tahmin etmek için yaygın olarak 

kullanılmaktadır. Yöntemin görece basitliği, 

katsayılarının yorumlanabilirliği ve özellikle ikili 

sınıflandırma problemlerindeki etkinliği, yazılım 

analizinde belirli sınıflandırma ve risk modelleme 

görevleri için sıkça tercih edilmesini sağlamaktadır. 

Lojistik regresyon, temel olarak ikili ve çoklu 

sınıflandırma problemleri için tasarlanmıştır. Yazılım 

hata tahmini, müşteri kaybı analizi gibi birçok yazılım 

mühendisliği problemi doğal olarak sınıflandırma görevi 

olduğundan, LR bu alanlarda temel bir modelleme ve 

tahmin aracı olarak kabul edilir ve genellikle daha 

karmaşık yöntemler için bir referans noktası görevi 

görür. 

2.2.4. Karar ağacı 

Karar Ağaçları (KA), sınıflandırma ve regresyon görevleri 

için kullanılan parametrik olmayan, kural tabanlı bir 

makine öğrenmesi yöntemidir. Veri setindeki 

özniteliklere dayalı olarak bir dizi karar kuralını 

hiyerarşik bir ağaç yapısında temsil eder. Ağacın her iç 

düğümü bir öznitelik üzerinde yapılan bir testi, her dal 

testin sonucunu ve her yaprak düğüm ise bir sınıf 

etiketini veya regresyon değerini gösterir. Bu yapısal 

özellik, karar ağaçlarının kolayca yorumlanabilmesine 

olanak tanır ve yazılım geliştirme efor tahmini gibi 

alanlarda kullanımlarını kolaylaştırır. Tekil karar ağaçları 

yorumlanabilirlik avantajı sunsa da genellikle aşırı uyum 

eğilimi gösterirler ve YHT’nde sıklıkla Rastgele Orman 

veya Gradyan Artırma (“Gradient Boosting”) gibi topluluk 

yöntemlerinin temelini oluştururlar. 

2.2.5. Rastgele orman 

Rastgele Orman (RO), sınıflandırma ve regresyon 

problemleri için yaygın olarak kullanılan bir topluluk 

öğrenmesi (ensemble learning) yöntemidir. Leo Breiman 

tarafından 2001'de geliştirilen bu yöntem, yüksek tahmin 

doğruluğu sergilemesi ve çok sayıda öznitelik içeren 

büyük veri setlerini etkin bir şekilde işleyebilmesi 

nedeniyle tercih edilmektedir. RO, eğitim aşamasında çok 

sayıda karar ağacı oluşturur ve sınıflandırma için ağaç 

tahminlerinin modunu (en sık çıkan sınıf), regresyon için 

ise ortalamasını alarak nihai çıktıyı üretir. Özellikle 

öznitelik sayısının örneklem sayısından fazla olduğu 

durumlarda gösterdiği etkinlik, RO'ı yazılım hata tahmini 

gibi çeşitli uygulamalar için elverişli kılmaktadır. 

2.3. Veri Dengeleme Algoritmaları 

Bu çalışmada ele alınan JM1 veri setinin Bölüm 2.1'de 

belirtilen doğal sınıf dengesizliği özelliğinin, Bölüm 2.2'de 

tanımlanan makine öğrenmesi modellerinin başarımı 

üzerindeki potansiyel olumsuz etkilerini azaltmak 

amacıyla çeşitli yeniden örnekleme teknikleri 

uygulanmıştır. Bu bölümde, kullanılan temel veri 

dengeleme algoritmaları açıklanmaktadır. 

2.3.1. Sentetik azınlık aşırı örnekleme tekniği 

Sentetik Azınlık Aşırı Örnekleme Tekniği (Synthetic 

Minority Over-sampling Technique - SMOTE), veri 

setlerindeki sınıf dengesizliği sorununu gidermek için 

yaygın olarak kullanılan bir aşırı örnekleme yöntemidir. 

Mevcut örneklemleri basitçe kopyalamak yerine, azınlık 

sınıfı için sentetik örnekler üreterek çalışır. Bu yaklaşım, 

rastgele aşırı örnekleme ile ilişkili aşırı uyum 

sorunlarının hafifletilmesine yardımcı olur ve eksik 

örnekleme tekniklerinde kaybolabilecek değerli bilgilerin 

korunmasını sağlar (Byeon, 2021; Fernández vd., 2018). 

2.3.2. Rastgele eksik örnekleme 

Rastgele Eksik Örnekleme (Random Undersampling - 

RUS), çoğunluk sınıfından rastgele örneklemler çıkararak 

veri setindeki sınıf dengesizliğini gidermeyi amaçlayan 

basit bir eksik örnekleme tekniğidir. Bu yöntem, daha 
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dengeli bir veri seti oluşturarak makine öğrenmesi 

modellerinin azınlık sınıfının özelliklerini daha iyi 

öğrenmesine olanak tanımayı ve böylece model 

başarımını iyileştirmeyi hedefler (Fan, 2024; Guo vd., 

2019; Jeon vd., 2020). RUS, basit ve hesaplama açısından 

verimli olmasına rağmen, potansiyel olarak değerli 

bilgileri içeren örneklemlerin atılması riskini taşır; bu 

durum önemli ölçüde veri kaybına yol açabilir ve 

nihayetinde model doğruluğunu olumsuz etkileyebilir 

(Guo vd., 2019; Jeon vd., 2020). 

2.3.3. Rastgele aşırı örnekleme 

Rastgele Aşırı Örnekleme Örnekleri (Random Over-

Sampling Examples - ROSE), sentetik örnekler üreterek 

veri setlerindeki sınıf dengesizliğini gidermek için 

tasarlanmış istatistiksel bir tekniktir. Mevcut azınlık sınıfı 

örneklemlerini yalnızca çoğaltan geleneksel aşırı 

örnekleme yöntemlerinden farklı olarak ROSE, 

düzgünleştirilmiş bir bootstrap (smoothed bootstrap) 

yaklaşımına dayalı yeni örnekler oluşturur; bu da 

üretilen örneklemlerin çeşitliliğini artırır (Lunardon vd., 

2014). Bu yöntem, özellikle bir sınıfın önemli ölçüde az 

temsil edildiği ikili sınıflandırma problemlerinde 

faydalıdır, çünkü daha dengeli bir eğitim seti sağlayarak 

makine öğrenmesi modellerinin başarımını iyileştirmeye 

yardımcı olur (Zhang vd., 2019). 

2.3.4. Adaptif sentetik örnekleme 

Adaptif Sentetik Örnekleme (Adaptive Synthetic - 

ADASYN), veri setlerindeki sınıf dengesizliğini gidermek 

için tasarlanmış gelişmiş bir aşırı örnekleme tekniğidir. 

SMOTE prensiplerine dayanarak, ADASYN azınlık sınıfı 

için sentetik örnekleri daha adaptif bir şekilde üretir. 

Spesifik olarak ADASYN, azınlık sınıfı örneklemlerinin 

öğrenilmesinin daha zor olduğu bölgelerde daha fazla 

sentetik örnek oluşturmaya odaklanır; böylece öznitelik 

uzayında sınıflandırıcılar için daha zorlayıcı olan alanları 

etkin bir şekilde hedefler (Zakariah vd., 2023; Rendón 

vd., 2020). 

2.3.5. TOMEK bağlantıları 

TOMEK Bağlantıları (Tomek Links), öncelikle dengesiz 

veri setleri bağlamında kullanılan bir veri temizleme 

tekniğidir. Farklı sınıflara ait olan ve öznitelik uzayında 

birbirine en yakın olan örneklem çiftlerini ("Tomek 

bağlantıları" olarak adlandırılır) tanımlar. Böyle bir çift 

bulunduğunda, genellikle çoğunluk sınıfına ait olan 

örneklem kaldırılır; bu sayede sınıflar arasındaki ayrım 

artırılır ve veri setindeki gürültü azaltılır (Branco vd., 

2016; McKendrick vd., 2019; Aljawazneh vd., 2021). Bu 

yöntem, yanlış sınıflandırmaya yol açabilecek belirsiz 

örneklemleri ortadan kaldırmada özellikle etkilidir ve 

böylece dengesiz veriler üzerinde eğitilen 

sınıflandırıcıların başarımını iyileştirir (Boschi vd., 

2014). 

TOMEK Bağlantıları, tek başına bir teknik olarak veya 

SMOTE gibi aşırı örnekleme yöntemleriyle birleştirilerek 

SMOTE-Tomek olarak bilinen hibrit bir yaklaşım 

oluşturmak için de uygulanabilir. Bu kombinasyon, 

yalnızca azınlık sınıfı için sentetik örnekler üretmekle 

kalmaz, aynı zamanda sınıflar arasında gürültü veya 

örtüşme yaratabilecek örneklemleri kaldırarak veri setini 

temizler (Wu vd., 2021). 

2.3.6. Düzenlenmiş en yakın komşular 

Düzenlenmiş En Yakın Komşular (Edited Nearest 

Neighbor - ENN), özellikle dengesiz sınıflandırma 

problemleri bağlamında, eğitim veri setlerinin kalitesini 

artırmak için kullanılan bir veri ön işleme tekniğidir. 

ENN, gürültülü ve yanlış etiketlenmiş örneklemleri 

kaldıran bir süreç aracılığıyla veri setini iyileştirerek 

çalışır. Spesifik olarak, veri setindeki her bir örneklemi 

inceler ve en yakın komşularını dikkate alır; eğer bu 

komşuların çoğunluğu farklı bir sınıfa aitse, örneklem 

gürültülü kabul edilir ve eğitim setinden çıkarılır (Fu vd., 

2022). 

Bu yöntem, sınıf dengesizliğinin yanlış sınıflandırmaya 

yol açabileceği senaryolarda özellikle değerlidir, çünkü 

sınıflar arasındaki karar sınırlarının netleşmesine 

yardımcı olur. Öğrenme algoritmasını karıştırabilecek 

örneklemleri ortadan kaldırarak, ENN makine öğrenmesi 

modellerinin genel sınıflandırma doğruluğunu 

iyileştirebilir (Fu vd., 2022). ENN, eğitim için daha 

dengeli ve daha temiz bir veri seti oluşturmak amacıyla 

sıklıkla SMOTE gibi diğer yeniden örnekleme 

teknikleriyle birlikte kullanılır (Fu vd., 2022). 

2.3.7. Near miss 

Near Miss, makine öğrenmesi veri setlerindeki sınıf 

dengesizliğini gidermek için kullanılan bir veri yeniden 

örnekleme (eksik örnekleme) tekniğidir. Bu yöntem, 

azınlık sınıfı örneklemlerine en yakın olan çoğunluk sınıfı 

örneklemlerini tanımlayıp korumaya odaklanır; böylece 

mevcut örneklemleri basitçe çoğaltmadan azınlık 

sınıfının temsilini göreceli olarak artırır. Near Miss 

tekniği, azınlık sınıfı örneklemlerine en yakın olan 

çoğunluk sınıfı örneklemlerini seçerek çalışır ve çoğunluk 

sınıfının bilgilendirici özelliklerini korurken etkin bir 

şekilde daha dengeli bir veri seti oluşturur (Mqadi vd., 

2021; Elsobky, 2023). (Not: Near Miss'in farklı 

versiyonları bulunmaktadır ve seçilen çoğunluk sınıfı 

örneklemleri, azınlık sınıfı örneklemlerine olan ortalama 

uzaklıklarına veya en yakın/en uzak komşularına göre 

belirlenebilir.) 

2.3.8. Sınır Çizgisi Örneklemesi 

Sınır çizgisi örneklemesi (Borderline), veri yeniden 

örneklemede sınıf dengesizliğini gidermek için 

kullanılan, özellikle sınıflar arasındaki karar sınırına 

yakın bulunan örneklemlere odaklanan bir tekniktir. Bu 

konsept, temel olarak, azınlık sınıfının özellikle sınır 

çizgisi örneklemlerini hedefleyerek geleneksel SMOTE 

yaklaşımını geliştiren Borderline-SMOTE yönteminde 

uygulanmaktadır. 

Borderline-SMOTE'da, sentetik örnekler yalnızca 

çoğunluk sınıfına yakın olan azınlık sınıfı örneklemleri 

için üretilir. Bu, bu sınır çizgisi örneklemlerinin en yakın 

komşularını belirleyerek ve onları birbirine bağlayan 

çizgi segmentleri boyunca yeni sentetik örnekler 

oluşturarak yapılır. Bu yaklaşımın arkasındaki mantık, 

karar sınırına yakın örneklemlerin sınıflandırılmasının 

genellikle daha zor olması ve dolayısıyla sınıflandırıcının 
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başarımını iyileştirmek için daha kritik olmalarıdır 

(Nguyen vd., 2011). 

Bu hedeflenmiş aşırı örnekleme, yalnızca azınlık 

örneklemlerini çoğaltırken oluşabilecek aşırı uyum 

riskini azaltmaya yardımcı olur ve dengesiz veri setleri 

üzerinde eğitilen sınıflandırıcıların genel sağlamlığını 

artırır (Salunkhe vd., 2018). Borderline-SMOTE1 ve 

Borderline-SMOTE2 gibi varyantlar, çevreleyen 

örneklemlerin yoğunluğuna göre üretilen sentetik örnek 

sayısını ayarlayarak bu yaklaşımı daha da geliştirir 

(Salunkhe vd., 2018). 

 

3. Bulgular ve Tartışma 
Bu bölümde, kullanılan sınıflandırma tekniklerinin 

başarımı incelenmektedir. JM1 veri seti üzerinde yapılan 

analizlerde, modellerin eğitimi ve değerlendirilmesi için 

standart bir yaklaşım izlenmiştir. Öncelikle, veri seti %80 

eğitim ve %20 test verisi olacak şekilde rastgele 

bölünmüştür. Eğitim verisi üzerinde, model başarımının 

daha güvenilir bir şekilde değerlendirilmesi ve aşırı 

uyum riskinin azaltılması amacıyla 10-katlı çapraz 

doğrulama tekniği uygulanmıştır. Yeniden örnekleme 

teknikleri, çapraz doğrulama sürecinin her bir katında 

yalnızca eğitim bölümüne uygulanarak veri sızıntısının 

önüne geçilmiştir. Modellerin nihai başarımı, ayrılan 

%20'lik test seti üzerinde değerlendirilmiştir. Başarımın 

analizi ve değerlendirilmesi, temel olarak karmaşıklık 

matrisinden elde edilen çeşitli ölçütlere dayanmaktadır 

(Şekil 2). Karmaşıklık matrisi, bir sınıflandırma 

modelinin tahminlerinin gerçek sınıf etiketleriyle 

karşılaştırılmasını özetleyen ve aşağıdaki dört temel 

parametreyi içeren bir tablodur: 

Doğru Pozitif (True Positive - TP): Gerçekte pozitif 

(örneğin, hatalı modül) olan ve model tarafından doğru 

bir şekilde pozitif olarak sınıflandırılan örneklemlerin 

sayısı. 

Yanlış Pozitif (False Positive - FP): Gerçekte negatif 

(örneğin, hatasız modül) olan ancak model tarafından 

yanlışlıkla pozitif olarak sınıflandırılan örneklemlerin 

sayısı. 

Yanlış Negatif (False Negative - FN): Gerçekte pozitif olan 

ancak model tarafından yanlışlıkla negatif olarak 

sınıflandırılan örneklemlerin sayısı. 

Doğru Negatif (True Negative - TN): Gerçekte negatif olan 

ve model tarafından doğru bir şekilde negatif olarak 

sınıflandırılan örneklemlerin sayısı. 

 

 

 

 

 

 

 

 

Şekil 2. Karmaşıklık Matrisi. 

 

 

Sınıflandırma modellerinin başarımı, karmaşıklık 

matrisinden türetilen ve literatürde yaygın olarak 

kullanılan aşağıdaki metrikler aracılığıyla 

değerlendirilmiştir: Kesinlik (Precision), F-ölçütü (F-

measure), Doğruluk (Accuracy) ve ROC Eğrisi Altında 

Kalan Alan (AUC). 

Kesinlik (Precision): Model tarafından pozitif olarak 

sınıflandırılan örneklemler içerisinde, gerçekte de pozitif 

olanların oranını ifade eder. Yanlış Pozitif 

sınıflandırmaların maliyetinin yüksek olduğu 

durumlarda özellikle dikkate alınan bir metriktir (eşitlik 

1). 
 

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (1) 

 

F-ölçütü (F-measure veya F1-Score): Kesinlik ve 

Duyarlılık metriklerinin harmonik ortalamasıdır. Bu iki 

metrik arasında bir denge sağlar ve özellikle sınıf 

dağılımının dengesiz olduğu veri setlerinde, Doğruluk 

metriğine kıyasla model başarımını daha anlamlı bir 

şekilde yansıtabilir (eşitlik 2). 
 

𝐹 − Ö𝑙çü𝑡ü = 2𝑥
(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘)

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
=

2𝑥𝑇𝑃

2𝑥𝑇𝑃+𝐹𝑃+𝐹𝑁
        (2) 

 

Doğruluk (Accuracy): Tüm sınıflandırmalar içinde doğru 

olarak yapılan tahminlerin (hem Doğru Pozitifler hem de 

Doğru Negatifler) toplam örneklem sayısına oranını 

belirtir. Yorumlanması en kolay metrik olmasına rağmen, 

sınıf dağılımının belirgin şekilde dengesiz olduğu 

durumlarda yanıltıcı olabilir; zira model, yalnızca 

çoğunluk sınıfını başarılı bir şekilde tahmin ederek 

yüksek bir doğruluk değeri elde edebilirken azınlık 

sınıfını tespit etmede yetersiz kalabilir (eşitlik 3). 
 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (3) 

 

ROC Eğrisi Altında Kalan Alan (AUC - Area Under the ROC 

Curve): ROC (Alıcı İşletim Karakteristiği - Receiver 

Operating Characteristic) eğrisi, modelin farklı 

sınıflandırma eşik değerlerinde Duyarlılık (TPR) oranının 

Yanlış Pozitif Oranına (FPR = FP / (FP + TN)) karşı 

çizilmesiyle elde edilir. AUC, bu eğrinin altında kalan 

alanı ifade eder ve [0, 1] aralığında bir değer alır. Modelin 

pozitif ve negatif sınıfları ne kadar iyi ayırt edebildiğinin 

genel bir ölçüsüdür. 0,5 değeri rastgele bir sınıflandırıcı 

başarımına işaret ederken, 1 değeri mükemmel bir ayırt 

etme yeteneğini gösterir. AUC, sınıf dağılımının 

dengesizliğinden etkilenmeyen bir metrik olarak 

değerlendirilir. 

Hesaplamalarda her bir sınıf (bu çalışmada '0’- Hatasız ve 

'1' - Hatalı olarak temsil edilmiştir) için elde edilen F1-

Ölçütü değerleri, genel Doğruluk ve AUC değerleri ile 

birlikte sunulan sonuç tablolarında detaylandırılmıştır. 

Sonuçların sunulduğu tablolarda, her bir metrik ve 

sınıflandırıcı kombinasyonu için elde edilen en yüksek 

değerler, okuyucunun kolayca ayırt edebilmesi amacıyla 

vurgulanmıştır. 

  



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Emre Can YILMAZ ve Recai OKTAŞ 47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Şekil 3. Sınıflandırıcı ve yeniden örnekleme yöntemlerinin ısı haritası. 

 

3.1. Yeniden Örnekleme Yöntemlerinin Etkisi 

Sonuç tabloları ve Şekil 3 incelendiğinde, yeniden 

örnekleme tekniklerinin farklı sınıflandırıcılar üzerindeki 

etkilerinin değişkenlik gösterdiği açıkça görülmektedir. 

İlk olarak, yeniden örnekleme yapılmayan durum ele 

alındığında, özellikle LR ve DVM en yüksek Doğruluk 

değerlerinin (0,8120 ve 0,8134) elde edildiği 

görülmektedir. Ancak bu yüksek doğruluk oranları, bu 

modellerin azınlık sınıfı (hatalı modüller, Sınıf 1) 

üzerindeki başarımını gizlemektedir. İlgili tablolara 

(Tablo 1-6) bakıldığında, LR ve DVM için yeniden 

örnekleme yapılmadığında Sınıf 1 F1-ölçütü değerlerinin 

sırasıyla 0,1996 ve 0,1880 gibi oldukça düşük seviyelerde 

kaldığı gözlemlenmektedir. Bu durum, modellerin büyük 

ölçüde çoğunluk sınıfını (hatasız modüller, Sınıf 0) doğru 

tahmin ederek yüksek doğruluk elde ettiğini, ancak hatalı 

modülleri tespit etmede ciddi şekilde başarısız olduğunu 

göstermektedir. Bu bulgu, literatürde belirtilen (Zheng 

vd., 2022; Bui, 2023; Mohapatra, 2024) LR ve DVM gibi 

algoritmaların sınıf dengesizliğine karşı hassasiyeti ile 

uyumludur ve yalnızca Doğruluk metriğine dayanarak 

model başarımını değerlendirmenin yanıltıcı 

olabileceğini vurgulamaktadır. Benzer bir durum, 

yeniden örnekleme yapılmayan NB, KA ve RO için de 

geçerlidir; bu modellerde de Sınıf 1 F1-ölçütü değerleri 

(sırasıyla 0,2762, 0,3793, 0,3477) düşüktür. Yeniden 

örnekleme teknikleri uygulandığında ise durum belirgin 

şekilde değişmektedir. Özellikle aşırı örnekleme ve hibrit 

yöntemler, birçok sınıflandırıcı için başarımı, özellikle 

azınlık sınıfı tespitini (Sınıf 1 F1-ölçütü) ve genel ayırt 

etme gücünü (AUC) önemli ölçüde iyileştirmiştir. 

Naive Bayes için en iyi başarımı ROSE tekniği 

sergilemiştir. ROSE uygulandığında Doğruluk 0,8647'ye, 

AUC değeri ise 0,9075'e yükselmiş ve Sınıf 1 F1-ölçütü 

0,8523 gibi dengeli bir değere ulaşmıştır. Bu, basit bir 

aşırı örnekleme tekniği olan ROSE'un NB'in olasılıksal 

yapısıyla iyi çalıştığını ve dengesizliği gidermede etkili 

olduğunu göstermektedir. 

DVM ve LR için, yeniden örnekleme uygulanmayan 

duruma göre Doğruluk düşse de SMOTE + ENN gibi hibrit 

yöntemler AUC değerlerini (sırasıyla 0,8172 ve 0,8223) 

ve Sınıf 1 F1-ölçütü değerlerini (sırasıyla 0,7919 ve 

0,7978) dramatik şekilde artırmıştır. Bu, modellerin 

yeniden örnekleme ile hatalı modülleri çok daha iyi tespit 

edebildiğini, ancak bunun genel doğruluktan bir miktar 

ödün vererek gerçekleştiğini göstermektedir. Hata 

tespitinin öncelikli olduğu durumlarda bu yöntemler 

tercih edilebilir. 

Ağaç tabanlı topluluk yöntemleri olan KA ve RO için 

yeniden örnekleme tekniklerinin etkisi oldukça olumlu 

olmuştur. Her iki sınıflandırıcı için de en yüksek başarımı 

SMOTE + ENN hibrit yöntemi sağlamıştır. RO ile SMOTE + 

ENN kombinasyonu, 0,9350 Doğruluk ve 0,9837 AUC gibi 

çalışmadaki en yüksek değerlere ulaşmış, ayrıca her iki 

sınıf için de dengeli ve yüksek F1-ölçütü değerleri (Sınıf 

0: 0,9126, Sınıf 1: 0,9483) elde etmiştir. DT ile SMOTE + 

ENN kombinasyonu da benzer şekilde 0,9052 Doğruluk 

ve 0,8981 AUC ile oldukça başarılı sonuçlar vermiştir. Bu 

durum, SMOTE'un sentetik azınlık örnekleri oluşturarak 

ve ENN'nin sınıf sınırlarına yakın gürültülü veya örtüşen 

örnekleri temizleyerek ağaç tabanlı modellerin karar 

sınırlarını daha etkin bir şekilde öğrenmesine yardımcı 

olduğunu düşündürmektedir. Random Over-Sampling, 

ADASYN, Borderline SMOTE gibi diğer aşırı örnekleme ve 

hibrit yöntemler de RO ve DT için yeniden örnekleme 

yapılmayan duruma göre belirgin iyileşmeler sağlamıştır. 

Eksik örnekleme teknikleri olan RUS ve NearMiss, genel 

olarak çoğu sınıflandırıcı için düşük başarım 

göstermiştir. Bu yöntemler, Doğruluk, AUC ve F1-ölçütü 

değerlerini sıklıkla diğer yöntemlerin veya hatta yeniden 

örnekleme yapılmayan durumun altına düşürmüştür. Bu 

durum, çoğunluk sınıfından rastgele veya belirli bir 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Emre Can YILMAZ ve Recai OKTAŞ 48 
 

kritere göre örnek silmenin, modelin öğrenmesi için 

gerekli olan önemli bilgilerin kaybına yol açabileceği 

hipotezini desteklemektedir. Benzer şekilde, bir veri 

temizleme/eksik örnekleme tekniği olan Tomek Links, 

tek başına kullanıldığında genellikle yeniden örnekleme 

yapılmayan duruma kıyasla marjinal bir iyileşme 

sağlamış veya başarımı değiştirmemiştir. Ancak, SMOTE 

ile birleştirildiğinde (SMOTE + Tomek Links), bazı 

durumlarda saf SMOTE'a göre küçük iyileşmeler 

göstermiştir. 

3.2. Sınıflandırıcı Başarımlarının Karşılaştırılması 

Yeniden örnekleme yöntemleri uygulandıktan sonraki 

başarımlar dikkate alındığında: 

- RO, özellikle SMOTE + ENN ile birleştirildiğinde, JM1 

veri seti üzerinde yazılım hata tahmini için en yüksek ve 

en dengeli başarımı sergileyen sınıflandırıcı olmuştur. 

Yüksek Doğruluk, çok yüksek AUC ve dengeli F1-ölçütü 

değerleri, bu kombinasyonun hem genel tahmin gücünün 

yüksek olduğunu hem de hatalı modülleri etkin bir 

şekilde tespit edebildiğini göstermektedir. 

- KA da SMOTE + ENN ile birlikte oldukça iyi bir başarım 

göstermiş, RO'ya yakın sonuçlar elde etmiştir. 

- NB, uygun yeniden örnekleme tekniği (ROSE) ile 

kullanıldığında oldukça rekabetçi sonuçlar vermiş, 

özellikle AUC ve dengeli F1-ölçütü açısından başarılı 

olmuştur. 

- DVM ve LR, yeniden örnekleme olmadan yüksek 

doğruluk göstermelerine rağmen, hatalı modül tespitinde 

zayıf kalmışlardır. SMOTE + ENN gibi yöntemlerle bu 

zayıflık giderilmiş ve AUC değerleri önemli ölçüde 

artırılmış olsa da en yüksek doğruluğa ulaşamamışlardır. 

Bu durum, bu modellerin dengesiz veriye karşı yapısal 

hassasiyetini ve yeniden örneklemenin bu hassasiyeti 

gidermedeki rolünü ortaya koymaktadır. 

Özetle, bulgular JM1 gibi dengesiz yazılım hata tahmini 

veri setlerinde yeniden örnekleme tekniklerinin kritik bir 

rol oynadığını göstermektedir. Özellikle SMOTE + ENN 

gibi hibrit yöntemler ve ROSE gibi aşırı örnekleme 

teknikleri, modellerin azınlık sınıfını (hatalı modüller) 

daha etkin bir şekilde öğrenmesini sağlayarak F1-ölçütü 

ve AUC gibi metriklerde önemli iyileşmeler sağlamıştır. 

En iyi sonuçlar, güçlü bir topluluk öğrenme yöntemi olan 

Rastgele Orman ile SMOTE + ENN hibrit yeniden 

örnekleme tekniğinin birleştirilmesiyle elde edilmiştir. 

Eksik örnekleme yöntemleri ise bu spesifik veri seti ve 

problem bağlamında genellikle bilgi kaybına yol açarak 

daha düşük başarıma neden olmuştur. Bu sonuçlar, SDP 

modelleri geliştirilirken sınıf dengesizliği sorununun 

dikkatle ele alınması ve uygun veri ön işleme 

stratejilerinin seçilmesinin önemini vurgulamaktadır. 

 

 

 

 

 

 

 

 

Tablo 1. Sınıflandırıcıların en iyi sonuç verdiği yeniden 

örnekleme yöntemleri 
 

Sınıflandırıcı 
En İyi Yeniden Örnekleme 

Yöntemi 
Doğruluk 

LR Örneklendirme yok 0,812 

DVM Örneklendirme yok 0,813 

NB ROSE 0,865 

KA SMOTE + ENN 0,905 

RO SMOTE + ENN 0,935 

 

Tablo 2. NB için yeniden örnekleme yöntemleri sonuçları 

Yeniden 

Örnekleme 

Yöntemi 

Doğruluk AUC 
F1 

(Hatasız) 

F1 

(Hatalı) 

ROSE 0,865 0,908 0,875 0,852 

Örneklendirme 

Yok 
0,800 0,694 0,884 0,276 

Tomek Links 0,798 0,708 0,883 0,293 

RUS 0,603 0,683 0,712 0,363 

SMOTE + Tomek 

Links 
0,588 0,699 0,697 0,357 

SMOTE 0,581 0,691 0,693 0,341 

Random Over-

Sampling 
0,580 0,683 0,693 0,337 

SMOTE + ENN 0,576 0,772 0,634 0,496 

Borderline 

SMOTE 
0,568 0,680 0,683 0,323 

ADASYN 0,564 0,679 0,682 0,307 

NearMiss 0,536 0,625 0,663 0,255 

 

Tablo 3. DVM için yeniden örnekleme yöntemleri 

sonuçları 
 

Yeniden 

Örnekleme 

Yöntemi 

Doğruluk AUC 
F1 

(Hatasız) 

F1 

(Hatalı) 

Örneklendirme 

Yok 
0,813 0,723 0,895 0,188 

Tomek Links 0,809 0,731 0,891 0,220 

SMOTE + ENN 0,745 0,817 0,672 0,792 

SMOTE + Tomek 

Links 
0,676 0,729 0,670 0,648 

SMOTE 0,670 0,723 0,692 0,645 

Borderline SMOTE 0,661 0,708 0,679 0,642 

RUS 0,660 0,705 0,691 0,623 

Random Over-

Sampling 
0,659 0,709 0,686 0,626 

ROSE 0,650 0,676 0,673 0,622 

ADASYN 0,644 0,701 0,655 0,632 

NearMiss 0,624 0,639 0,659 0,580 
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Tablo 4. RO için yeniden örnekleme yöntemleri sonuçları 

Yeniden Örnekleme 
Yöntemi 

Doğruluk AUC 
F1 

(Hatasız) 
F1 

(Hatalı) 

SMOTE + ENN 0,935 0,984 0,912 0,948 

Random Over-
Sampling 

0,924 0,975 0,921 0,926 

ADASYN 0,893 0,948 0,892 0,894 

Borderline SMOTE 0,892 0,949 0,892 0,892 

SMOTE 0,892 0,949 0,891 0,893 

SMOTE + Tomek 
Links 

0,888 0,953 0,889 0,888 

ROSE 0,888 0,943 0,895 0,880 

Tomek Links 0,825 0,793 0,897 0,391 

Örneklendirme Yok 0,818 0,751 0,894 0,347 

RUS 0,668 0,737 0,670 0,666 

NearMiss 0,658 0,709 0,685 0,625 

 

Tablo 5. LR için yeniden örnekleme yöntemleri sonuçları 

Yeniden Örnekleme 
Yöntemi 

Doğruluk AUC 
F1 

(Hatasız) 
F1 

(Hatalı) 

Örneklendirme Yok 0,812 0,719 0,893 0,199 

Tomek Links 0,807 0,727 0,890 0,221 

SMOTE + ENN 0,754 0,822 0,686 0,797 

SMOTE + Tomek 
Links 

0,679 0,731 0,704 0,651 

SMOTE 0,675 0,726 0,697 0,650 

Borderline SMOTE 0,665 0,710 0,684 0,644 

RUS 0,665 0,709 0,695 0,628 

Random Over-
Sampling 

0,661 0,710 0,688 0,630 

ROSE 0,651 0,676 0,673 0,626 

ADASYN 0,648 0,703 0,659 0,637 

NearMiss 0,633 0,641 0,665 0,594 

 

Tablo 6. KA için yeniden örnekleme yöntemleri sonuçları 

Yeniden Örnekleme 

Yöntemi 
Doğruluk AUC 

F1 

(Hatasız) 

F1 

(Hatalı) 

SMOTE + ENN 0,905 0,898 0,875 0,923 

Random Over-

Sampling 
0,884 0,894 0,875 0,891 

ROSE 0,845 0,841 0,846 0,844 

Borderline SMOTE 0,838 0,838 0,837 0,839 

ADASYN 0,829 0,828 0,828 0,831 

SMOTE 0,826 0,826 0,825 0,828 

SMOTE + Tomek 

Links 
0,825 0,825 0,825 0,824 

Tomek Links 0,766 0,623 0,853 0,429 

Örneklendirme Yok 0,757 0,598 0,849 0,379 

RUS 0,628 0,627 0,637 0,618 

NearMiss 0,605 0,610 0,603 0,607 

4. Sonuçlar 
Çalışmada elde edilen bulgular, JM1 veri setinin doğal 

dengesiz yapısının, yeniden örnekleme 

uygulanmadığında özellikle DVM ve LR gibi bazı 

sınıflandırıcıların başarımını olumsuz etkilediğini 

doğrulamıştır. Bu modeller, yüksek genel doğruluk 

oranlarına ulaşsalar da azınlık sınıfı olan hatalı modülleri 

tespit etmede oldukça düşük F1-ölçütü değerleri 

sergilemişlerdir. Bu durum, yalnızca doğruluk metriğine 

dayalı değerlendirmelerin yanıltıcı olabileceğini ve sınıf 

dengesizliğinin YHT modelleri üzerindeki belirgin 

etkisini bir kez daha göstermiştir. 

Yeniden örnekleme tekniklerinin uygulanması, özellikle 

aşırı örnekleme ve hibrit yöntemlerin, sınıflandırıcı 

başarımını, bilhassa azınlık sınıfı tespiti (F1-ölçütü Sınıf 

1) ve genel ayırt edicilik (AUC) açısından önemli ölçüde 

iyileştirdiği gözlemlenmiştir. Çalışmanın öne çıkan 

bulguları şunlardır: 

1. Hibrit Yöntemlerin Başarısı: SMOTE ile ENN'nin 

birleştirildiği hibrit yöntem (SMOTE + ENN), özellikle 

ağaç tabanlı topluluk modelleri olan RO ve KA ile 

kullanıldığında üstün başarım göstermiştir. RO ve 

SMOTE + ENN kombinasyonu, 0,9350 Doğruluk ve 

0,9837 AUC ile çalışmadaki en iyi sonuçları elde etmiş, 

aynı zamanda her iki sınıf için dengeli ve yüksek F1-

ölçütü değerleri sağlamıştır. 

2. Aşırı Örneklemenin Etkinliği: ROSE tekniği, NB 

sınıflandırıcısı için en iyi sonuçları vermiş, AUC ve F1-

ölçütü değerlerini önemli ölçüde artırmıştır. SMOTE, 

Borderline-SMOTE ve ADASYN gibi diğer aşırı 

örnekleme teknikleri de birçok sınıflandırıcı için 

yeniden örnekleme yapılmayan duruma göre belirgin 

iyileşmeler sağlamıştır. 

3. Eksik Örneklemenin Sınırlılıkları: Rastgele Eksik 

Örnekleme (RUS) ve NearMiss gibi eksik örnekleme 

yöntemleri, incelenen senaryoda genellikle diğer 

yöntemlere kıyasla daha düşük başarım sergilemiştir. 

Bu durum, bu yöntemlerin çoğunluk sınıfından veri 

silerken potansiyel olarak önemli bilgileri kaybetme 

riski taşıdığını düşündürmektedir. 

4. Sınıflandırıcı Başarımı: Yeniden örnekleme teknikleri 

uygulandıktan sonra, RF genel olarak en güçlü ve 

dengeli başarımı sunan sınıflandırıcı olarak öne 

çıkmıştır. 

Bu çalışma, JM1 veri seti özelinde çeşitli yeniden 

örnekleme tekniklerinin farklı sınıflandırıcılar üzerindeki 

etkisini sistematik ve karşılaştırmalı bir şekilde ortaya 

koymuştur. Bulgular, YHT’de sınıf dengesizliğiyle 

mücadele için uygun yeniden örnekleme stratejisi 

seçiminin kritik öneme sahip olduğunu ve özellikle 

SMOTE+ENN gibi hibrit yöntemlerin ve RF gibi topluluk 

öğrenmesi algoritmalarının bu tür problemler için güçlü 

adaylar olduğunu göstermektedir. Ayrıca, dengesiz veri 

setlerinde model başarımını değerlendirirken Doğruluk 

metriğinin ötesinde AUC ve F1-ölçütü gibi metriklere 

odaklanmanın gerekliliğini vurgulamaktadır. 

Çalışmanın bazı sınırlılıkları bulunmaktadır. Bulgular 

yalnızca JM1 veri seti ile sınırlıdır ve diğer yazılım 
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projelerinden elde edilen farklı özelliklere sahip veri 

setleri üzerinde genellenebilirliği test edilmemiştir. 

İncelenen yeniden örnekleme teknikleri ve 

sınıflandırıcılar kapsamlı olmakla birlikte, literatürdeki 

tüm alternatifleri içermemektedir. Ayrıca, algoritmaların 

ve yeniden örnekleme yöntemlerinin hiperparametre 

optimizasyonu bu çalışmanın odak noktası olmamıştır. 

Gelecek çalışmalarda NASA MDP koleksiyonundaki JM1 

gibi diğer alt veri setleri ve farklı programlama dilleri 

veya uygulama alanlarından gelen endüstriyel veri setleri 

üzerinde tekrarlanarak bulguların genellenebilirliği 

araştırılabilir. Yeni ve gelişmiş yeniden örnekleme 

teknikleri ve derin öğrenme modellerinin YHT ve sınıf 

dengesizliği bağlamındaki başarımları incelenebilir. 

Kapsamlı hiperparametre optimizasyonunun ve öznitelik 

seçimi tekniklerinin yeniden örnekleme ile 

birleştirilmesinin etkileri de değerli araştırma 

konularıdır. Son olarak, farklı yeniden örnekleme ve 

modelleme yaklaşımlarının pratik uygulamadaki maliyet-

etkinlik analizleri, bu tekniklerin endüstriyel 

benimsenmesini teşvik edebilir. 

 

Katkı Beyan Oranı 

Yazarların katkı yüzdeleri aşağıda verilmiştir. Yazarlar 

makaleyi incelemiş ve onaylamıştır. 
 

 E.C.Y. R.O. 

K 50 50 

T 50 50 

Y 50 50 

VTI 50 50 

VAY 50 50 

KT 50 50 

YZ 50 50 

KI 50 50 

GR 50 50 

K= kavram, T= tasarım, Y= yönetim, VTI= veri toplama ve/veya 

işleme, VAY= veri analizi ve/veya yorumlama, KT= kaynak 

tarama, YZ= Yazım, KI= kritik inceleme, GR= gönderim ve 

revizyon 

 

Çatışma Beyanı 

Yazarlar bu çalışmada hiçbir çıkar ilişkisi olmadığını 

beyan etmektedirler. 

 

Etik Onay Beyanı 

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi 

bir çalışma yapılmadığı için etik kurul onayı 

alınmamıştır. 
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