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NASA METRICS DATA PROGRAM VERI SETi UZERINDE
YENIDEN ORNEKLEME YONTEMLERININ YAZILIMDA HATA
TAHMINI BASARIMINA ETKISI
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Ozet: NASA Metrics Data Program (MDP), NASA tarafindan yiirtiitillen ve gesitli yazihm projelerinden elde edilen
metrikleri ve hata bilgilerini iceren, arastirmalarda yaygin olarak kullanilan bir veri deposudur. Cok sayida alt kiimeye
sahip NASA MDP verilerinde, ¢alismanin kapsamini sinirlamak icin uygun bir alt veri kiimesinin se¢ilmesi uygun
olacaktir. Bu amagla, biiyiik ve dengesiz veriler icermesi nedeniyle JM1 alt kiimesi tercih edilmistir. JM1 tlizerinde
yeniden ornekleme tekniklerinin makine 6grenmesi modellerinin basarimina etkileri incelenmistir. Bu kapsamda
SMOTE, RUS, ROSE, ADASYN, Tomek Links, ENN, Near Miss ve Borderline-SMOTE gibi asir1 6rnekleme, eksik érnekleme
ve hibrit teknikler; Naive Bayes (NB), Destek Vektor Makineleri (DVM), Lojistik Regresyon (LR), Karar Agaci (KA) ve
Rastgele Orman (RO) simiflandiricilan ile birlikte degerlendirilmistir. Sonuglar, yeniden 6rnekleme uygulanmayan
modellerin, 6zellikle azinlik sinifi olarak tanimlanan hatali modiilleri tanimada diisiik basarim sergiledigini; buna karsin
genel dogruluk metriklerinde yaniltici sekilde yiiksek degerler elde edebildigini gostermektedir. Ote yandan,
SMOTE+ENN gibi hibrit ve ROSE gibi asir1 6rnekleme yontemlerinin, 6zellikle Rastgele Orman ve Naive Bayes
siniflandiricilariyla birlikte kullanildiginda, AUC ve F1-6lciitii gibi dengesizlige duyarli metriklerde anlaml iyilesmeler
sagladig gozlemlenmistir. En iyi sonug, SMOTE+ENN yontemiyle birlikte kullanilan Rastgele Orman modeliyle elde
edilmis; 0,9350 dogruluk, 0,9837 AUC ve hatasiz/hatali modiiller i¢in sirasiyla 0,9126/0,9483 F1-6l¢iitii degerlerine
ulagilmistir. Bu bulgular, yazilm hata tahmininde sinif dengesizligiyle miicadelede uygun yeniden o6rnekleme
stratejilerinin se¢iminin ve dengesizlige duyarl metriklerle degerlendirme yapilmasinin 6nemini ortaya koymaktadir.
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The Impact of Resampling Techniques on the Performance of Software Defect Prediction Using the
NASA Metrics Data Program Dataset

Abstract: The NASA Metrics Data Program (MDP) is a widely used repository containing software metrics and defect
data from various NASA projects. To narrow the study’s scope, the JM1 subset was selected due to its large size and
class imbalance. The effects of resampling techniques on the performance of machine learning models were examined
using the JM1 dataset. We evaluate several oversampling, undersampling, and hybrid resampling methods-including
SMOTE, RUS, ROSE, ADASYN, Tomek Links, ENN, Near Miss, and Borderline-SMOTE-in conjunction with classifiers such
as Naive Bayes (NB), Support Vector Machines (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest
(RF). Our results indicate that models trained without any resampling often perform poorly in identifying faulty
modules (the minority class), despite achieving deceptively high values in overall accuracy metrics. Conversely, hybrid
methods such as SMOTE+ENN and oversampling techniques like ROSE significantly improve performance-particularly
when used with Random Forest and Naive Bayes classifiers-based on metrics sensitive to class imbalance such as AUC
and F1-score. The best performance is observed when combining Random Forest with SMOTE+ENN, achieving 0.9350
accuracy, an AUC of 0.9837, and F1-scores of 0.9126 and 0.9483 for non-defective and defective modules, respectively.
Consequently, for imbalanced software defect datasets, the selection of appropriate resampling methods and the use of
metrics truly reflecting real-world performance are critically important.
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1. Giris

Yazilimda hatalar kaginilmazdir. Bu hatalarin, son
kullaniciya ulasmadan once yazilim gelistirme yasam
dongiisii  icerisinde tespit edilip giderilmesi isten
hedeftir. hata (YHT), yazihim
gelistirme yasam dongiisii boyunca yazilim kalitesinin
artirllmasinda ve kaynak tahsisinin optimize edilmesinde
kritik bir rol oynamaktadir. YHT, hataya egilimli
modiillerin erken tespiti sayesinde, ekiplerin test
calismalarin1 dnceliklendirmesine olanak tanir, bdylece
gec asamada gerceklesen hata tespiti ve diizeltmelere

Yazilimda tahmini

iliskin maliyetleri azaltir (Mabayoje vd., 2019; Son vd.,
2019; Li vd., 2018). Bu proaktif yaklasim, yalnizca
maliyeti azaltmakla kalmaz, ayni zamanda daha iyi risk
degerlendirmesi ve kalite kontrolii saglayarak etkin proje
yonetimine de yardimci olur (Wang vd., 2020; Hryszko
vd., 2018).

Yazilimda hata tahmininin dogrulugunu ve verimliligini
artirma cabalari, 6zellikle makine 6g8renmesi tekniklerini
temel alan gelismis tahmin modellerinin kullanimini 6n
plana ¢ikarmistir (Badvath vd., 2022; Deng vd., 2020). Bu
modeller, ge¢mis proje verilerini ve c¢esitli yazilim
metriklerini analiz ederek, yazilim bilesenlerini 'hatali’
veya 'hatasiz' olarak simiflandirma konusunda dikkate
deger bir yetenek sergilemektedir (Ren vd., 2014;
Balogun vd., 2019). Yapilan bu smiflandirma, test
kaynaklarinin en yliksek riskli modiillere odaklanmasini
saglayan hedefe yonelik  test  stratejilerinin
uygulanmasini kolaylastirir. Dolayisiyla, bu gelismis YHT
yaklasimlari, yazilim hatalarinin ekonomik yiikiini
azaltmanin yan sira, bakim stireclerini daha verimli hale
getirerek ve test i¢in ayrilan insan giiciinii optimize
ederek genel proje iiretkenligine énemli katkilar sunar
(Tomar vd., 2016; Hall vd., 2012).

YHT alaninda kullanilan veri setlerinin 6nemli bir
ozelligi, siklikla sinif dengesizligi sergilemeleridir. Hatal
modiiller genellikle hatasiz modiillere kiyasla ¢ok daha az
sayida durum, denetimli 06grenme
algoritmalari i¢cin 6nemli zorluklar yaratir. Dengesiz veri
setleri, modellerin ¢ogunluk sinifina dogru yanli olmasina
ve Ozellikle kritik olan azinhk sinifin1 (hatali modiiller)
tespit etmede diisiik basarim gostermesine neden
olabilir. Bu yanllik, modelin genelleme yetenegini ciddi
sekilde etkileyebilir (Zheng vd., 2022; Najeeb vd., 2024;
Abdelmoumin vd. 2023; Loukili vd., 2024). Ozellikle
lojistik regresyon ve destek vektdr makineleri gibi bazi
siniflandiricilarin, veri dengesizliginin olumsuz etkilerine
karsi daha hassas oldugu ve bu durumun tahmin
dogrulugunu diistirebildigi rapor edilmistir (Zheng vd.,
2022; Bui, 2023; Mohapatra, 2024).

Bu sorunlarin {istesinden gelmek ve
basarimini iyilestirmek amaciyla literatiirde cesitli
stratejiler Onerilmistir. Bu stratejiler genel olarak veri
seviyesinde yaklasimlar ve algoritma seviyesinde
yaklasimlar olarak ikiye ayrilabilir. Veri artirma (data
augmentation), asir1 6rnekleme (oversampling) ve eksik
ornekleme (undersampling) gibi veri seviyesi teknikler,
sinif dagilimini dengeleyerek modelin azinlik simifini

bulunur. Bu

modellerin

daha etkin bir sekilde tanimasini saglamayi hedefler
(Alam vd., 2022; Loukili vd., 2024; Byeon, 2021; Ayoub
vd., 2023; Abdelmoumin vd. 2023; Patel vd., 2017).
Algoritma seviyesinde ise, adaptif gliclendirme (adaptive
boosting) veya maliyet duyarli 6grenme (cost-sensitive
learning) gibi yontemler ve siif diizeltme kaybi (class
rectification loss) gibi modelin
dengesiz senaryolarda daha iyi basarim
gosterecek sekilde adapte etmesini amaclar (Taherkhani
vd.,, 2020; Huang vd. 2020). Dengesiz veri setlerinin
yarattifl zorluklarin ele alinmasi, cesitli uygulamalarda
dogru tahminler yapabilen saglam makine 6grenmesi

gelismis teknikler,
kendisini

modelleri gelistirmek ic¢in krittkk ©6neme sahiptir
(Meysami vd., 2023; Zhang vd., 2023).
Asir1  ornekleme teknikleri, veri setini dengelemek

amaciyla azinlik sinifina ait yeni sentetik drnekler tretir.
YHT baglaminda, Khuat vd. (2020), yaptiklar1 deneysel
calismada, farkli 6rnekleme metotlarinin siniflandirici
basarimini nasil iyilestirdigini incelemisler ve &zellikle
asirl orneklemenin siniflandirma dogrulugunu anlaml
olclide artirabildigini gostermislerdir. Benzer sekilde, Li
vd. (2022), YHT veri setlerinin dengesiz dogasiyla
miicadele etmek icin pargacik siiriisii optimizasyonu
(PSO) ile adaptif giiclendirmeyi (AdaBoost) birlestiren
akilli  bir
ornekleme stratejilerinin model basarimini artirmadaki
etkinligini ortaya koymuslardir.

Diger yandan, eksik drnekleme teknikleri, dengeli bir veri
seti elde etmek amaciyla ¢ogunluk sinifindaki érneklerin
say1sini azaltmay1 hedefler. Rahardian vd. (2020), yazilim
hata tahmininde sinif dagilimini iyilestirmek igin eksik
ornekleme stratejilerinin kullanimini ele almislardir.
Calismalarinda, eksik 6rneklemenin, ¢ogunluk sinifinin
model

flizyon algoritmasi Onermisler ve asir1

tzerindeki baskin etkisini azaltarak tahmin
giciini artirmada etkili olabilecegini belirtmislerdir.
Ayrica, Kou vd. (2012), eksik 6rnekleme tekniklerini de
iceren degerlendirme  yontemlerini
arastirmis ve bu tekniklerin hata tahminlerinin

dogrulugunu iyilestirmedeki etkinligini gostermislerdir.

siniflandirici

Mevcut literatiir hem asir1 drnekleme hem de eksik
ornekleme tekniklerinin YHT'nde siif dengesizligi ile
degerli yaklasimlar oldugunu ortaya
koymaktadir.  Ancak, farkli yeniden o6rnekleme
yontemlerinin, belirli veri setleri (bu ¢alismada JM1) ve
farkl baglamindaki karsilastirmali
basarimlar1 tzerinde daha fazla arastirmaya ihtiyac
duyulmaktadir. Bu ¢alisma, bu boslugu doldurmaya
yonelik bir adim atmay1 ve JM1 veri seti lizerinde
belirtilen yontemlerin etkinligini degerlendirmeyi
amaclamaktadir.

Bu baglamda ¢alismamizin temel amaci, YHT alaninda
sikca karsilasilan veri dengesizligi sorununun iistesinden
gelmek icin kullanilan farkli yeniden

miicadelede

smiflandiricilar

ornekleme
yontemlerinin etkisini, ¢alismalarda siklikla kullanilan
JM1 veri seti lizerinde incelemektir. Ayrica, bu ¢alisma
yazilim  hata problemine
odaklanmaktadir. Bu kapsamda kullanilan veri seti, her
bir yazilim modiiliinii veya sinifini, hatali ya da hatasiz

smif  tabanlh tahmini
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olarak etiketlenmis bagimsiz 6rnekler seklinde temsil
etmektedir. Calisma kapsaminda, Sentetik Azinhk Asiri
Ornekleme Teknigi (Synthetic Minority Over-sampling
Technique - SMOTE) gibi asir1 6rnekleme ve Rastgele
Azinhk Orneklemesi (Random Undersampling - RUS) gibi
eksik ornekleme tekniklerinin, Naive Bayes (NB),
Rastgele Orman (RO) ve Destek Vektor Makineleri (DVM)
gibi yaygin makine O0grenmesi algoritmalarinin hata
tahmini basarimi karsilastirmali
olarak analiz edilmistir. Bu analizle, JM1 veri seti 6zelinde
hangi yeniden 6rnekleme stratejisinin hangi siniflandirici
ile daha etkin sonuglar verdiginin

hedeflenmektedir.

Temizlik Agamasi

!

Yeniden Ornekleme Yontemleri

!

Makine Ogrenme Yéntemleri

!

Sonuglarin Degerlendirilmesi

lzerindeki etkileri

belirlenmesi

Sekil 1. Calisma akisi.

2. Materyal ve Yontem
Bu béliimde, ¢alismada kullanilan veri seti, uygulanan
yeniden 6rnekleme teknikleri, degerlendirme metrikleri
ve  kullanilan  makine
detaylandirilmaktadir. Calismada yer alan tiim makine
O0grenmesi modellerinin gelistirilmesi, veri 6n isleme
adimlarinin  uygulanmasi1 ve yeniden

algoritmalarinin  yiiriitiilmesi, Python programlama

o6grenmesi  algoritmalari

ornekleme

dilinin 3.12 silirtimii ile scikit-learn kiitiiphanesinin 1.6.1
sirtimii kullanilarak gergeklestirilmistir. Calismamizin
bastan sona akisi Sekil 1’de gdsterilmistir.

Deneylerin metodolojik tutarhihigini ve
tekrarlanabilirligini saglamak amaciyla, hem Bo6lim
2.2'de aciklanan makine 6grenmesi siniflandiricilart hem
de Bolim 2.3'te ele alinan yeniden 6rnekleme teknikleri
icin standart bir yaklasim benimsenmistir. Yeniden
ornekleme islemleri icin, Scikit-learn ekosistemiyle
uyumlu c¢alisan Imbalanced-learn kiitiiphanesi de
kullanilmistir.

Calismanin odak noktas1 hiperparametre optimizasyonu
olmadigindan, farkl yeniden ornekleme stratejilerinin
varsayilan modeller tizerindeki saf  etkisini
karsilastirabilmek amaciyla, tiim smiflandiricilar ve
yeniden algoritmalari
varsayllan hiperparametreleri ile c¢ahstirilmistir. Ek
olarak, tiim deneylerde algoritmalarin dahili rastgeleligi

kontrol altina almak ve sonuglarin tutarhiligini giivence

ornekleme kitiiphanelerin

altina almak i¢in “random_state” parametresi sabit bir
degere (42) ayarlanmstir.

2.1. Veri Seti

NASA Metrik Veri Programi (Metrics Data Program -
MDP) veri setleri, YHT arastirmalarinin temel taglarindan
biri olarak genis capta kabul gérmektedir. Cesitli NASA
projelerinden tiiretilen bu veri statik kod
metrikleri ve hata verilerini saglayarak, hataya egilimli
yazillm modillerini tanimlamayr hedefleyen tahmin
modellerinin gelistirilmesine ve degerlendirilmesine
olanak tanir.

MDP koleksiyonu, her biri farkh NASA yazihim
projelerinden elde edilen verileri temsil eden CM1, JM1,
KC1, KC2 ve PCl1 gibi iyi bilinen alt kiimeleri
icermektedir. Bu veri setleri, yazihm modiillerindeki
hatalarin varhgini goésteren etiketlerin yani sira, satir
sayisi, donglisel karmasiklik, Halstead karmagiklik
metrikleri, modil baglantisi, yorum satir1 orani ve
degisken/operatdr yogunlugu gibi 22 farkh statik kod
ozelligini  (6zniteligi) icermektedir. Bu metrikler,

setleri,

yazilimin yapisal karmasiklign ve bakim zorlugunu nicel
ifade nedeniyle hata
modellerinde temel belirleyiciler olarak kullanilmaktadir
(McCabe, 1976; Halstead, 1977; Menzies vd., 2010).

NASA MDP veri setlerinin popiilerliginin baslica
nedenlerinden biri, tekrarlanabilirligi tesvik eden ve
calismalar arasinda karsilastirmali degerlendirmelere
olanak saglayan kamuya a¢ik olmalaridir. Dahasi, bu veri
setleri, arastirmacilarin gesitli modelleme tekniklerini
incelemesine olanak taniyan zengin bir metrik cesitliligi
sunar. Alanda yaygin olarak kullanilmalari, bu metrikleri
yeni yaklasimlarin dogrulanmasi igin
referans noktasi haline getirmistir.

MDP veri setlerinin dikkat ¢eken bir diger 6nemli 6zelligi,

olarak etmeleri tahmini

standart bir

hatasiz modiillerin hatali olanlardan 6énemli 6l¢lide daha
fazla oldugu dogal siif dengesizligidir. Gergek diinya
yazilim sistemlerini yansitan bu karakteristik ozellik,
ayni zamanda 6nemli bir zorluk tegkil etmekte ve asir
ornekleme teknikleri ile 6rneklem tabanl filtreleme gibi
yenilik¢i veri 6n isleme yontemlerinin gelistirilmesini
tesvik etmektedir. Bu calismanin odak noktasi da tam
olarak bu dengesizlik sorununa yoénelik yeniden
ornekleme yontemlerinin incelenmesidir.

MDP veri setleri, makine dgrenmesi ve derin 6grenme
teknikleri icin bir test ortami gorevi gorerek YHT
alaninin ilerlemesinde kritik bir rol oynamistir. Bu veri
setlerinden yararlanan ¢alismalar, asir1 uyum ve projeler
arasli tahmin gibi 6nemli zorluklari ele almis, hata tahmin
modellerinin anlasilmasina ve iyilestirilmesine ciddi
katkilarda bulunmustur (Goyal, 2022; Pandey vd., 2020;
Aryavd,, 2021).

Ozetle, NASA MDP veri setleri, erisilebilirlikleri, kapsamh
metrikleri ve gercek diinya yazilim zorluklariyla
uyumlart nedeniyle YHT arastirmalarinda hayati bir
kaynaktir. Stirekli kullanimlari, tahminsel metodolojilerin
degerlendirilmesi ve
vurgulamaktadir. Calismada kullanilan JM1 veri seti tek
bir siirtim (single-release) verisi olup, icerisinde 22

ilerletilmesindeki  6nemlerini
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nitelik, 2106 hatali modiil (azinlik sinifi) ve 8879 hatasiz
modiil (¢ogunluk sinifi) bulunmaktadir.

2.2. Makine Ogrenme Algoritmalari

Bu ¢alismada, JM1 veri seti lizerinde yazilim hata tahmini
basarimi, farkli yeniden 6rnekleme teknikleri ile birlikte
cesitli makine o6grenmesi kullanilarak
degerlendirilmistir.
siniflandirici algoritmalar asagida tanimlanmaktadir.
2.2.1. Naive Bayes

Naive Bayes (NB) siniflandiricilar;, Bayes teoreminin,
Oznitelikler arasinda giliglii bagimsizlik varsayimlari
yapilarak uygulanmasina dayanan
siniflandiric Basitlikleri  ve
verimlilikleri, NB siniflandiricilarini yazilim miithendisligi
dahil pek ¢ok alanda degerli kilmaktadir; bu alanda
ozellikle giivenlik acig1 siniflandirmasi ve hata tahmini
gibi gorevlerde uygulamalari fgili
literatiir, NB modellerinin yazihim projelerindeki teknik
bor¢ sorunlarini simiflandirmada ve yazilim gilivenlik
aciklarini tahmin etmede etkin bir sekilde kullanildigini
gostermektedir (Li vd., 2022; Fu vd, 2024). NB
siniflandiricisinin uygulama kolayligi, bu sinmiflandiriciy:
cesitli makine O0grenmesi gorevleri icin siklikla tercih
edilen bir secenek haline getirmektedir (Agrawal vd,
2020).

2.2.2. Destek vektor makineleri

Destek Vektér Makineleri (DVM), gii¢cli matematiksel
temellere dayanan bir makine 6grenmesi algoritmasidir.
Dogrusal olmayan oriintiileri ayirt edebilme, ytksek

algoritmalari

Analizde kullanilan temel

olasiliksal  bir

ailesidir. hesaplama

bulunmaktadir.

boyutlu uzaylarda ¢alisabilme ve giirtltiilii verilere karsi
gorece dayanikli olma gibi dzellikleri, DVM'leri YHT ve
giivenilirlik kestirimi dahil olmak {izere c¢esitli yazilim

miihendisligi uygulamalar1 i¢in uygun bir yontem
kilmaktadir. DVM'lerin 6lgeklenebilirlik gibi bazi
kisitlamalar1 ~ bulunmakla  birlikte, devam eden

arastirmalar bu kisitlamalar1 gidermeye ve algoritmanin
yorumlanabilirligini artirmaya odaklanmakta ve sayede
algoritmanin yazilim miithendisligi alanindaki giincelligini
korumasini saglamaktadir.

2.2.3. Lojistik regresyon

Lojistik Regresyon (LR), bir bagimli degiskenin belirli bir
kategoriye ait olma olasilifini bir veya daha fazla
bagimsiz degisken aracilifiyla modellemek amaciyla
kullanilan temel bir istatistiksel ve makine 6grenimi
yontemidir. Yazihlm miihendisligi baglaminda, belirli
metrikler veya olasilig1
lzerindeki etkisini anlamak ve kategorik bir degiskeni
(6r. yazillm hatasinin varligi/yoklugu, modiliin risk

faktorlerin bir sonucun

durumu) tahmin etmek icin yaygin  olarak
kullanilmaktadir. Yontemin gorece basitligi,
katsayilarinin  yorumlanabilirligi ve ozellikle ikili
siniflandirma  problemlerindeki  etkinligi, yazilim

analizinde belirli siniflandirma ve risk modelleme
gorevleri icin sikca tercih edilmesini saglamaktadir.
Lojistik  regresyon,
siniflandirma problemleri i¢in tasarlanmistir. Yazilim
hata tahmini, miisteri kayb1 analizi gibi bir¢ok yazilim

mithendisligi problemi dogal olarak siniflandirma gorevi

temel olarak ikili ve ¢oklu

oldugundan, LR bu alanlarda temel bir modelleme ve
tahmin araci olarak kabul edilir ve genellikle daha
karmasik yontemler icin bir referans noktasi gorevi
gorur.

2.2.4. Karar agaci

Karar Agaclar1 (KA), siniflandirma ve regresyon gorevleri
icin kullanilan parametrik olmayan, kural tabanli bir
O0grenmesi  yontemidir.  Veri
Ozniteliklere dayali olarak bir dizi
hiyerarsik bir aga¢ yapisinda temsil eder. Agacin her i¢
diigiimi bir dznitelik ilizerinde yapilan bir testi, her dal
testin sonucunu ve her yaprak diigim ise bir sinif
etiketini veya regresyon degerini gosterir. Bu yapisal
ozellik, karar agaclarinin kolayca yorumlanabilmesine
olanak tanir ve yazilim gelistirme efor tahmini gibi
alanlarda kullanimlarini kolaylastirir. Tekil karar agaglari
yorumlanabilirlik avantaji sunsa da genellikle asir1 uyum
egilimi gosterirler ve YHT'nde siklikla Rastgele Orman
veya Gradyan Artirma (“Gradient Boosting”) gibi topluluk
yontemlerinin temelini olustururlar.

2.2.5. Rastgele orman

Rastgele Orman (RO), smiflandirma ve regresyon
problemleri i¢in yaygin olarak kullanilan bir topluluk
6grenmesi (ensemble learning) yontemidir. Leo Breiman
tarafindan 2001'de gelistirilen bu yoéntem, yiiksek tahmin

makine setindeki

karar kuralini

dogrulugu sergilemesi ve ¢ok sayida oznitelik igeren
biiyiik veri setlerini etkin bir sekilde isleyebilmesi
nedeniyle tercih edilmektedir. RO, egitim asamasinda ¢ok
sayida karar agaci olusturur ve siniflandirma igin agag
tahminlerinin modunu (en sik ¢ikan sinif), regresyon i¢in
ise ortalamasim alarak nihai ciktiyr iiretir. Ozellikle
oznitelik sayisinin o6rneklem sayisindan fazla oldugu
durumlarda gosterdigi etkinlik, RO"1 yazilim hata tahmini
gibi gesitli uygulamalar i¢in elverisli kilmaktadir.

2.3. Veri Dengeleme Algoritmalar:

Bu calismada ele alinan JM1 veri setinin Bolim 2.1'de
belirtilen dogal sinif dengesizligi 6zelliginin, B6liim 2.2'de
tanimlanan makine 6grenmesi modellerinin basarimi

izerindeki potansiyel olumsuz etkilerini azaltmak
amaciyla  ¢esitli  yeniden  o6rnekleme  teknikleri
uygulanmistir. Bu bdliimde, kullanilan temel veri

dengeleme algoritmalar: agiklanmaktadir.

2.3.1. Sentetik azinlik asir1 6rnekleme teknigi
Sentetik Azinlik Asir1 Ornekleme Teknigi (Synthetic
Minority Over-sampling Technique - SMOTE), veri
setlerindeki sinif dengesizligi sorununu gidermek igin
yaygin olarak kullanilan bir asir1 érnekleme yontemidir.
Mevcut orneklemleri basitce kopyalamak yerine, azinlik
sinifi i¢cin sentetik 6rnekler iireterek calisir. Bu yaklasim,
rastgele asir1 iligkili asin
sorunlarinin hafifletilmesine yardimci olur ve eksik
ornekleme tekniklerinde kaybolabilecek degerli bilgilerin
korunmasini saglar (Byeon, 2021; Fernandez vd., 2018).
2.3.2. Rastgele eksik érnekleme

Rastgele Eksik Ornekleme (Random Undersampling -
RUS), ¢cogunluk sinifindan rastgele 6rneklemler ¢ikararak
veri setindeki sinif dengesizligini gidermeyi amaclayan
basit bir eksik ornekleme teknigidir. Bu yontem, daha

ornekleme ile uyum
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dengeli bir veri seti olusturarak makine O6grenmesi
modellerinin azinhk smifinin  6zelliklerini daha iyi
0grenmesine tanimaylr ve bdylece
basarimin iyilestirmeyi hedefler (Fan, 2024; Guo vd,
2019; Jeon vd., 2020). RUS, basit ve hesaplama agisindan
verimli olmasina ragmen, potansiyel olarak degerli
bilgileri iceren drneklemlerin atilmasi riskini tasir; bu
durum oOnemli Ol¢iide veri kaybina yol acabilir ve
nihayetinde model dogrulugunu olumsuz etkileyebilir
(Guo vd., 2019; Jeon vd., 2020).

2.3.3. Rastgele asir1 6rnekleme

Rastgele Asir1 Ornekleme Ornekleri (Random Over-
Sampling Examples - ROSE), sentetik drnekler iireterek
sinif dengesizligini gidermek igin
tasarlanmus istatistiksel bir tekniktir. Mevcut azinlik sinifi
orneklemlerini cogaltan geleneksel asir1
ornekleme yontemlerinden farkli olarak  ROSE,
diizgiinlestirilmis bir bootstrap (smoothed bootstrap)
yaklasimina dayali yeni ornekler olusturur; bu da
tiretilen 6rneklemlerin cesitliligini artirir (Lunardon vd.,

olanak model

veri setlerindeki

yalnizca

2014). Bu yontem, 6zellikle bir sinifin énemli dl¢iide az
edildigi  ikili problemlerinde
faydalidir, ¢linkii daha dengeli bir egitim seti saglayarak
makine 6grenmesi modellerinin bagarimini iyilestirmeye
yardimci olur (Zhang vd., 2019).

2.3.4. Adaptif sentetik 6rnekleme

Adaptif Sentetik Ornekleme (Adaptive Synthetic -
ADASYN), veri setlerindeki sinif dengesizligini gidermek
icin tasarlanmis gelismis bir asir1 6rnekleme teknigidir.
SMOTE prensiplerine dayanarak, ADASYN azinhk sinifi
icin sentetik ornekleri daha adaptif bir sekilde iretir.
Spesifik olarak ADASYN, azinlik smifi 6rneklemlerinin
ogrenilmesinin daha zor oldugu bélgelerde daha fazla
sentetik 6rnek olusturmaya odaklanir; bdylece 6znitelik

temsil siniflandirma

uzayinda siniflandiricilar i¢in daha zorlayici olan alanlari
etkin bir sekilde hedefler (Zakariah vd. 2023; Rendén
vd., 2020).

2.3.5. TOMEK baglantilari

TOMEK Baglantilar1 (Tomek Links), oncelikle dengesiz
veri setleri baglaminda kullanilan bir veri temizleme
teknigidir. Farkl siniflara ait olan ve 6znitelik uzayinda
birbirine en yakin olan o6rneklem ¢iftlerini ("Tomek
baglantilar1” olarak adlandirilir) tanimlar. Béyle bir ¢ift
bulundugunda, genellikle ¢ogunluk sinifina ait olan
orneklem kaldirilir; bu sayede siniflar arasindaki ayrim
artirthr ve veri setindeki giiriiltii azaltilir (Branco vd.,
2016; McKendrick vd., 2019; Aljawazneh vd. 2021). Bu
yontem, yanhs siniflandirmaya yol agabilecek belirsiz
orneklemleri ortadan kaldirmada o6zellikle etkilidir ve

boylece dengesiz veriler lizerinde egitilen
siniflandiricilarin - basarimini iyilestirir (Boschi vd,
2014).

TOMEK Baglantilari, tek basina bir teknik olarak veya
SMOTE gibi asir1 drnekleme yontemleriyle birlestirilerek
SMOTE-Tomek olarak bilinen hibrit bir
olusturmak icin de uygulanabilir. Bu kombinasyon,
yalnizca azinlik sinifi i¢in sentetik drnekler iiretmekle
kalmaz, ayni zamanda simiflar arasinda giiriilti veya

yaklasim

ortiisme yaratabilecek drneklemleri kaldirarak veri setini
temizler (Wuvd., 2021).

2.3.6. Diizenlenmis en yakin komsular

Diizenlenmis En Yakin Komgsular (Edited Nearest
Neighbor - ENN), o6zellikle dengesiz smiflandirma
problemleri baglaminda, egitim veri setlerinin kalitesini
artirmak i¢in kullanilan bir veri én isleme teknigidir.
ENN, giriltili ve yanlis etiketlenmis Orneklemleri
kaldiran bir siire¢ araciligiyla veri setini iyilestirerek
calisir. Spesifik olarak, veri setindeki her bir 6rneklemi
inceler ve en yakin komsularini dikkate alir; eger bu
komsularin ¢ogunlugu farkli bir sinifa aitse, 6rneklem
giriltili kabul edilir ve egitim setinden ¢ikarilir (Fu vd.,
2022).

Bu yontem, siif dengesizliginin yanlis siniflandirmaya
yol acabilecegi senaryolarda ozellikle degerlidir, ¢iinki
siniflar sinirlarinin  netlesmesine
yardimcr olur. Ogrenme algoritmasimi karistirabilecek
orneklemleri ortadan kaldirarak, ENN makine 6grenmesi
modellerinin genel siniflandirma dogrulugunu
iyilestirebilir (Fu vd., 2022). ENN, egitim i¢cin daha
dengeli ve daha temiz bir veri seti olusturmak amaciyla
siklikla SMOTE gibi diger yeniden
teknikleriyle birlikte kullanilir (Fu vd., 2022).
2.3.7. Near miss

arasindaki karar

ornekleme

Near Miss, makine Ogrenmesi veri setlerindeki sinif
dengesizligini gidermek icin kullanilan bir veri yeniden
ornekleme (eksik ornekleme) teknigidir. Bu yontem,
azinlik sinifi 6rneklemlerine en yakin olan ¢ogunluk sinifi
orneklemlerini tanimlayip korumaya odaklanir; bdylece
mevcut basitce ¢ogaltmadan
sinifinin  temsilini goreceli olarak artirir. Near Miss
teknigi, azinlk sinifi 6rneklemlerine en yakin olan
cogunluk sinifi 6rneklemlerini secerek ¢alisir ve cogunluk

orneklemleri azinhk

sinifinin  bilgilendirici 6zelliklerini korurken etkin bir
sekilde daha dengeli bir veri seti olusturur (Mqgadi vd,,
2021; Elsobky, 2023). (Not:
versiyonlar1 bulunmaktadir ve secilen ¢ogunluk sinifi
orneklemleri, azinlik sinifi 6rneklemlerine olan ortalama

Near Miss'in farkh

uzakliklarina veya en yakin/en uzak komsularina gore
belirlenebilir.)

2.3.8. Sinir Cizgisi Orneklemesi

Smir c¢izgisi 6rneklemesi (Borderline), veri yeniden
orneklemede smif dengesizligini gidermek i¢in
kullanilan, o6zellikle siniflar arasindaki karar sinirina
yakin bulunan drneklemlere odaklanan bir tekniktir. Bu
konsept, temel olarak, azinhik smnifinin 6zellikle sinir
cizgisi orneklemlerini hedefleyerek geleneksel SMOTE
yaklasimini gelistiren Borderline-SMOTE yonteminde
uygulanmaktadir.

Borderline-SMOTE'da, yalnizca
cogunluk sinifina yakin olan azinhk sinifi érneklemleri

icin iretilir. Bu, bu sinir ¢izgisi 6rneklemlerinin en yakin

sentetik  ornekler

komsularini belirleyerek ve onlar1 birbirine baglayan
cizgi boyunca yeni
olusturarak yapilir. Bu yaklasimin arkasindaki mantik,
karar sinirina yakin 6rneklemlerin siniflandirilmasinin
genellikle daha zor olmasi ve dolayisiyla siniflandiricinin

segmentleri sentetik drnekler
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basarimini iyilestirmek icin daha kritik olmalaridir
(Nguyen vd., 2011).

Bu hedeflenmis asir1 o6rnekleme, yalnizca azinlik
orneklemlerini c¢ogaltirken olusabilecek asir1 uyum
riskini azaltmaya yardimci olur ve dengesiz veri setleri
tizerinde egitilen siniflandiricilarin genel saglamligini
artirir  (Salunkhe vd. 2018). Borderline-SMOTE1 ve
Borderline-SMOTE2  gibi
orneklemlerin yogunluguna gore iiretilen sentetik drnek
sayisinl ayarlayarak bu yaklasimi daha da gelistirir
(Salunkhe vd., 2018).

varyantlar, cevreleyen

3. Bulgular ve Tartisma
Bu bolimde,
basarimi incelenmektedir. JM1 veri seti lizerinde yapilan
analizlerde, modellerin egitimi ve degerlendirilmesi i¢in

kullamlan smiflandirma tekniklerinin

standart bir yaklasim izlenmistir. Oncelikle, veri seti %80
egitim ve %20 test verisi olacak sekilde rastgele
boliinmiistiir. Egitim verisi lizerinde, model basariminin
daha giivenilir bir sekilde degerlendirilmesi ve asir1
amaciyla 10-katll c¢apraz
dogrulama teknigi uygulanmistir. Yeniden oOrnekleme
teknikleri, ¢capraz dogrulama siirecinin her bir katinda
yalnizca egitim boéliimiine uygulanarak veri sizintisinin
online gecilmistir. Modellerin nihai basarimi, ayrilan
%20'lik test seti lizerinde degerlendirilmistir. Basarimin
analizi ve degerlendirilmesi, temel olarak karmasiklik
matrisinden elde edilen cesitli 6lciitlere dayanmaktadir
(Sekil  2).
modelinin

uyum riskinin azaltilmasi

siniflandirma
etiketleriyle

Karmasiklik matrisi, bir
tahminlerinin gercek simif
karsilastirilmasini dzetleyen ve asagidaki dort temel
parametreyi iceren bir tablodur:

Dogru Pozitif (True Positive - TP): Gergekte pozitif
(6rnegin, hatali modiil) olan ve model tarafindan dogru
bir sekilde pozitif olarak siniflandirilan 6rneklemlerin
sayisl.

Yanlis Pozitif (False Positive - FP): Gercgekte negatif
(6rnegin, hatasiz modiil) olan ancak model tarafindan
yanlishikla pozitif olarak siniflandirilan 6rneklemlerin
sayisl.

Yanlis Negatif (False Negative - FN): Gercekte pozitif olan
ancak model tarafindan yanhgshkla negatif olarak
siniflandirilan 6rneklemlerin sayisi.

Dogru Negatif (True Negative - TN): Gergekte negatif olan
ve model tarafindan dogru bir sekilde negatif olarak
siniflandirilan 6rneklemlerin sayisi.

Gercek Degerler

3 Hatal Kod Hatasiz Kod
=

’Eﬂ Hatali Kod P EP

A

=

E Hatasiz Kod EN TN

"

F

Sekil 2. Karmasiklik Matrisi.

Smiflandirma  modellerinin  basarimi,  karmasiklik
matrisinden tiiretilen ve literatiirde yaygin olarak
kullanilan asagidaki metrikler araciligiyla

degerlendirilmistir: Kesinlik (Precision), F-olciiti (F-
measure), Dogruluk (Accuracy) ve ROC Egrisi Altinda
Kalan Alan (AUC).

Kesinlik (Precision): Model tarafindan pozitif olarak
siniflandirilan érneklemler icerisinde, gercekte de pozitif
ifade Yanhs  Pozitif
maliyetinin yiiksek oldugu
durumlarda o6zellikle dikkate alinan bir metriktir (esitlik

1).

Kesinlik =

olanlarin oranini eder.

siniflandirmalarin

TP
TP+FP

(0

F-olciitii  (F-measure veya F1-Score): Kesinlik ve
Duyarlihk metriklerinin harmonik ortalamasidir. Bu iki
metrik arasinda bir denge saglar ve ozellikle sinif
dagiliminin dengesiz oldugu veri setlerinde, Dogruluk
metrigine kiyasla model basarimini daha anlaml bir
sekilde yansitabilir (esitlik 2).

(Kesinlik+Duyarlilik) _ 2xTP

F — Olgiitii = 2x —— =
Kesinlik+Duyarlilik 2xTP+FP+FN

(2)

Dogruluk (Accuracy): Tiim siiflandirmalar i¢inde dogru
olarak yapilan tahminlerin (hem Dogru Pozitifler hem de
Dogru Negatifler) toplam oOrneklem sayisina oranini
belirtir. Yorumlanmasi en kolay metrik olmasina ragmen,
sinif dagiliminin belirgin sekilde dengesiz oldugu
durumlarda yaniltict olabilir; zira model,
cogunluk sinifini basarili bir sekilde tahmin ederek
ylksek bir dogruluk degeri elde edebilirken azinlik
sinifini tespit etmede yetersiz kalabilir (esitlik 3).

yalnizca

TP+TN

Dogruluk = —————
TP+TN+FP+FN

3)

ROC Egrisi Altinda Kalan Alan (AUC - Area Under the ROC
Curve): ROC (Aha Isletim Karakteristigi - Receiver
Operating farkl
siniflandirma esik degerlerinde Duyarlilik (TPR) oraninin
Yanlis Pozitif Oranina (FPR = FP / (FP + TN)) karsi
cizilmesiyle elde edilir. AUC, bu egrinin altinda kalan
alani ifade eder ve [0, 1] araliginda bir deger alir. Modelin
pozitif ve negatif siniflar1 ne kadar iyi ayirt edebildiginin
genel bir olciisiidiir. 0,5 degeri rastgele bir siniflandirici
bagsarimina isaret ederken, 1 degeri miikemmel bir ayirt

Characteristic)  egrisi, modelin

etme yetenegini gosterir. AUC, smif dagiliminin
dengesizliginden etkilenmeyen bir metrik olarak
degerlendirilir.

Hesaplamalarda her bir sinif (bu ¢calismada '0’- Hatasiz ve
'1' - Hatali olarak temsil edilmistir) i¢in elde edilen F1-
Olgiitii degerleri, genel Dogruluk ve AUC degerleri ile
birlikte sunulan sonug tablolarinda detaylandirilmistir.
Sonuglarin sunuldugu tablolarda, her bir metrik ve
siniflandirict kombinasyonu igin elde edilen en yiiksek
degerler, okuyucunun kolayca ayirt edebilmesi amaciyla
vurgulanmstir.
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ADASYN - 0,638

Borderline SMOTE - 0,665
NearMiss - 0,639 0,602

ROSE - 0,650

Random Over-Sampling - 0,658
Random Under-Sampling - 0,660 0,628

SMOTE - 0,828

Yeniden Orneklendirme Yéntemi

SMOTE + ENN 0,899

SMOTE + Tomek Links

Tomek Links

Karar Agac

Lojistik Regresyon
Siniflandirici

Basarnim Karsilastirmasi (Test Dogruluk Degerleri)

0.642 0,567
0,667 0,570
0,650 0,536 0.647

0,652

0,662

0.665 0,603 0.667

- 0.60

Naive Bayes Rastgele Orman

Sekil 3. Siniflandirici ve yeniden 6rnekleme yontemlerinin 1s1 haritasi.

3.1. Yeniden Ornekleme Yéntemlerinin Etkisi

Sonu¢ tablolar1 ve Sekil 3 incelendiginde, yeniden
ornekleme tekniklerinin farkli siniflandiricilar iizerindeki
etkilerinin degiskenlik gosterdigi acikca goriilmektedir.
ilk olarak, yeniden érnekleme yapilmayan durum ele
alindiginda, ozellikle LR ve DVM en yiliksek Dogruluk
degerlerinin  (0,8120 ve 0,8134) elde edildigi
goriilmektedir. Ancak bu yiiksek dogruluk oranlari, bu
(hatal Smif 1)
lizerindeki basarimim gizlemektedir. Ilgili tablolara
(Tablo 1-6) bakildiginda, LR ve DVM igin yeniden
ornekleme yapilmadiginda Sinif 1 F1-6l¢iitii degerlerinin
sirasiyla 0,1996 ve 0,1880 gibi oldukca diisiik seviyelerde
kaldig1 gozlemlenmektedir. Bu durum, modellerin biiyiik
olctide ¢cogunluk simifim (hatasiz modiiller, Sinif 0) dogru
tahmin ederek yiiksek dogruluk elde ettigini, ancak hatali

modellerin azinhk smnifi modiller,

modiilleri tespit etmede ciddi sekilde basarisiz oldugunu
gostermektedir. Bu bulgu, literatiirde belirtilen (Zheng
vd., 2022; Bui, 2023; Mohapatra, 2024) LR ve DVM gibi
algoritmalarin sinif dengesizligine karsi hassasiyeti ile
uyumludur ve yalnizca Dogruluk metrigine dayanarak
model bagarimini degerlendirmenin yaniltici
olabilecegini vurgulamaktadir. Benzer bir durum,
yeniden o6rnekleme yapilmayan NB, KA ve RO i¢in de
gecerlidir; bu modellerde de Simif 1 F1-6lciitii degerleri
(sirasiyla 0,2762, 0,3793, 0,3477) disiiktiir. Yeniden
ornekleme teknikleri uygulandiginda ise durum belirgin
sekilde degismektedir. Ozellikle asir1 6rnekleme ve hibrit
yontemler, bir¢cok simiflandiricr igin basarimi, 6zellikle
azinlik simifi tespitini (Simif 1 F1-6l¢iitii) ve genel ayirt
etme giiciinii (AUC) 6nemli 6l¢tide iyilestirmistir.

Naive Bayes basarim1  ROSE teknigi
sergilemistir. ROSE uygulandiginda Dogruluk 0,8647'ye,
AUC degeri ise 0,9075'e yiikselmis ve Sinif 1 F1-6l¢ttii
0,8523 gibi dengeli bir degere ulasmistir. Bu, basit bir

icin en iyi

asirt ornekleme teknigi olan ROSE'un NB'in olasiliksal

yapisiyla iyi calistigini ve dengesizligi gidermede etkili
oldugunu gostermektedir.

DVM ve LR igin, yeniden ornekleme uygulanmayan
duruma gore Dogruluk diisse de SMOTE + ENN gibi hibrit
yontemler AUC degerlerini (sirasiyla 0,8172 ve 0,8223)
ve Smuf 1 F1-6lgiitii degerlerini (sirasiyla 0,7919 ve
0,7978) dramatik sekilde artirmistir. Bu, modellerin
yeniden ornekleme ile hatali modiilleri cok daha iyi tespit
edebildigini, ancak bunun genel dogruluktan bir miktar
o6diin vererek gerceklestigini gostermektedir. Hata
tespitinin 6ncelikli oldugu durumlarda bu ydntemler
tercih edilebilir.

Agac tabanh topluluk yontemleri olan KA ve RO i¢in
yeniden ornekleme tekniklerinin etkisi olduk¢a olumlu
olmustur. Her iki siniflandirici i¢in de en yiiksek basarimi
SMOTE + ENN hibrit yontemi saglamistir. RO ile SMOTE +
ENN kombinasyonu, 0,9350 Dogruluk ve 0,9837 AUC gibi
calismadaki en yiiksek degerlere ulasmis, ayrica her iki
sinif icin de dengeli ve yliksek F1-olcitii degerleri (Sinif
0: 0,9126, Sinif 1: 0,9483) elde etmistir. DT ile SMOTE +
ENN kombinasyonu da benzer sekilde 0,9052 Dogruluk
ve 0,8981 AUC ile oldukga basarili sonuclar vermistir. Bu
durum, SMOTE'un sentetik azinlik 6rnekleri olusturarak
ve ENN'nin sinif sinirlarina yakin giiriiltiili veya ortiisen
ornekleri temizleyerek aga¢ tabanli modellerin karar
sinirlarinl daha etkin bir sekilde 6grenmesine yardimci
oldugunu disiindiirmektedir. Random Over-Sampling,
ADASYN, Borderline SMOTE gibi diger asir1 6rnekleme ve
hibrit yontemler de RO ve DT icin yeniden 6rnekleme
yapilmayan duruma gore belirgin iyilesmeler saglamistir.
Eksik 6rnekleme teknikleri olan RUS ve NearMiss, genel
olarak  ¢ogu icin diisiik basarim
gostermistir. Bu yontemler, Dogruluk, AUC ve F1-6l¢iiti
degerlerini siklikla diger yontemlerin veya hatta yeniden
ornekleme yapilmayan durumun altina diisiirmiistiir. Bu

siniflandirici

durum, ¢ogunluk sinifindan rastgele veya belirli bir

BS] Eng Sci / Emre Can YILMAZ ve Recai OKTAS

47



Black Sea Journal of Engineering and Science

kritere gore ornek silmenin, modelin 6grenmesi igin
gerekli olan 6nemli bilgilerin kaybina yol agabilecegi
hipotezini desteklemektedir. Benzer sekilde, bir veri
temizleme/eksik ornekleme teknigi olan Tomek Links,
tek basina kullanildiginda genellikle yeniden 6rnekleme
yapilmayan duruma kiyasla marjinal bir iyilesme
saglamis veya basarimi degistirmemistir. Ancak, SMOTE
ile birlestirildiginde (SMOTE + Tomek Links), bazi
durumlarda saf SMOTE'a gore kiigiik iyilesmeler
gostermistir.

3.2. Siiflandirici Basarimlarinin Karsilastirilmasi
Yeniden oOrnekleme yoéntemleri uygulandiktan sonraki
basarimlar dikkate alindiginda:

- RO, ozellikle SMOTE + ENN ile birlestirildiginde, ]M1
veri seti lizerinde yazilim hata tahmini i¢in en yiiksek ve
en dengeli basarimi sergileyen siniflandirici olmustur.
Yiiksek Dogruluk, ¢cok yiliksek AUC ve dengeli F1-6l¢iitii
degerleri, bu kombinasyonun hem genel tahmin giicliniin
yliksek oldugunu hem de hatali modiilleri etkin bir
sekilde tespit edebildigini gdostermektedir.

- KA da SMOTE + ENN ile birlikte oldukga iyi bir basarim
gbstermis, RO'ya yakin sonugclar elde etmistir.

- NB, uygun yeniden oOrnekleme teknigi (ROSE) ile
kullanildiginda olduk¢a rekabet¢ci sonuglar vermis,
ozellikle AUC ve dengeli F1-6lciitii agisindan basarili
olmustur.

- DVM ve LR, yeniden o6rnekleme olmadan yiiksek
dogruluk gostermelerine ragmen, hatali modiil tespitinde
zaylf kalmislardir. SMOTE + ENN gibi yontemlerle bu
zaylflik giderilmis ve AUC degerleri onemli olciide
artirllmis olsa da en yliksek dogruluga ulasamamislardir.
Bu durum, bu modellerin dengesiz veriye karsi yapisal
hassasiyetini ve yeniden orneklemenin bu hassasiyeti
gidermedeki roliinii ortaya koymaktadir.

Ozetle, bulgular JM1 gibi dengesiz yazihm hata tahmini
veri setlerinde yeniden 6érnekleme tekniklerinin kritik bir
rol oynadigini géstermektedir. Ozellikle SMOTE + ENN
gibi hibrit yontemler ve ROSE gibi asir1 6rnekleme
teknikleri, modellerin azinlik sinifini (hatali modiiller)
daha etkin bir sekilde 6grenmesini saglayarak F1-o6lciiti
ve AUC gibi metriklerde 6nemli iyilesmeler saglamistir.
En iyi sonuglar, giiclii bir topluluk 6grenme yontemi olan
Rastgele Orman ile SMOTE + ENN hibrit yeniden
ornekleme tekniginin birlestirilmesiyle elde edilmistir.
Eksik ornekleme yontemleri ise bu spesifik veri seti ve
problem baglaminda genellikle bilgi kaybina yol acarak
daha diisiik bagsarima neden olmustur. Bu sonuglar, SDP
modelleri gelistirilirken sinif dengesizligi sorununun
dikkatle ele alinmasi ve wuygun veri on isleme
stratejilerinin secilmesinin 6nemini vurgulamaktadir.

Tablo 1. Siniflandiricilarin en iyi sonuc verdigi yeniden
ornekleme yéntemleri

En lyi Yeniden Ornekleme

Siiflandirici . . Dogruluk
Yontemi

LR Orneklendirme yok 0,812

DVM Orneklendirme yok 0,813

NB ROSE 0,865

KA SMOTE + ENN 0,905

RO SMOTE + ENN 0,935

Tablo 2. NB icin yeniden érnekleme yontemleri sonuglari

Yemden ) F1 F1
Ornekleme Dogruluk AUC

. . (Hatasiz) (Hatal1)
Yontemi
ROSE 0,865 0908 0875 0,852
Orneklendi

EXIENdrme 5800 0,694 0884 0,276
Yok
Tomek Links 0798 0708 0883 0,293
RUS 0,603 0683 0712 0,363
SMOTE + Tomek

_ TIOMEX 0588 0,699 0697 0357
Links
SMOTE 0581 0691 0693 0,341
Rand -

andom Over 0580 0,683 0693 0337
Sampling
SMOTE + ENN 0576 0772 0634 0496
Borderline

E , , ,32

SMOTE 0568 0,680 0683 0,323
ADASYN 0564 0679 0682 0307
NearMiss 0536 0625 0663 0,255

Tablo 3. DVM icin yeniden o&rnekleme yontemleri
sonuglari

Yeniden
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Ornekleme Dogruluk AUC F1 K

. . (Hatasiz) (Hatali)

Yontemi

Orneklendi

rnekiendirme 0,813 0723 0895 0,188

Yok

Tomek Links 0,809 0,731 0891 0,220

SMOTE + ENN 0,745 0,817 0672 0,792

MOTE

SMOTE + Tomek o (e 0720 0670 0,648

Links

SMOTE 0,670 0,723 0692 0,645

Borderline SMOTE 0,661 0,708 0,679 0,642

RUS 0,660 0,705 0691 0,623

Rand Over-

andom Ve 0659 0709 0686 0,626

Sampling

ROSE 0,650 0,676 0673 0,622

ADASYN 0,644 0,701 0,655 0,632

NearMiss 0,624 0,639 0659 0,580
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Tablo 4. RO i¢in yeniden 6rnekleme yontemleri sonuglari

Yeniden Ornekleme . F1 F1
Yontemi Dogruluk  AUC (Hatasiz) (Hatal)
SMOTE + ENN 0935 0,984 0,912 0,948
Random Over- 0924 0975 0921 0926
Sampling

ADASYN 0,893 0,948 0,892 0,894
Borderline SMOTE 0,892 0,949 0,892 0,892
SMOTE 0,892 0,949 0,891 0,893
ifliZE + Tomek 0,888 0953 0889 0,388
ROSE 0,888 0,943 0,895 0,880
Tomek Links 0,825 0,793 0,897 0,391
Orneklendirme Yok 0,818 0,751 0,894 0,347
RUS 0,668 0,737 0,670 0,666
NearMiss 0,658 0,709 0,685 0,625

Tablo 5. LR i¢in yeniden drnekleme yontemleri sonuglari

Yeniden Ornekleme . . F1 F1
Yontemi Dogruluk - AUC (Hatasiz) (Hatali)
Orneklendirme Yok 0,812 0,719 0,893 0,199
Tomek Links 0,807 0,727 0,890 0,221
SMOTE + ENN 0,754 0,822 0,686 0,797
SMOTE  + Tomek g (731 o704 0,651
Links

SMOTE 0,675 0,726 0,697 0,650
Borderline SMOTE 0,665 0,710 0,684 0,644
RUS 0,665 0,709 0,695 0,628
Random Over- 661 0710 0688 0,630
Sampling

ROSE 0,651 0,676 0,673 0,626
ADASYN 0,648 0,703 0,659 0,637
NearMiss 0,633 0,641 0,665 0,594

Tablo 6. KA i¢in yeniden 6rnekleme yontemleri sonuglari

Yeniden Ornekleme F1 F1
Yontemi Dogruluk - AUC (Hatasiz) (Hatal)
SMOTE + ENN 0,905 0,898 0,875 0,923
SR:‘;‘;‘;ir:g Over- sga 0894 0875 0891
ROSE 0,845 0,841 0,846 0,844
Borderline SMOTE 0,838 0,838 0,837 0,839
ADASYN 0,829 0,828 0,828 0,831
SMOTE 0,826 0,826 0,825 0,828
ili\flisTE +oTomek o625 0825 0825 0,824
Tomek Links 0,766 0,623 0,853 0,429
Orneklendirme Yok 0,757 0,598 0,849 0,379
RUS 0,628 0,627 0,637 0,618
NearMiss 0,605 0,610 0,603 0,607

4. Sonuglar

Calismada elde edilen bulgular, JM1 veri setinin dogal

dengesiz yapisinin, yeniden ornekleme
uygulanmadiginda ozellikle DVM ve LR gibi baz
siniflandiricilarin -~ basarimini  olumsuz  etkiledigini

dogrulamistir. Bu modeller, yiiksek genel dogruluk
oranlarina ulagsalar da azinlik sinifi olan hatali modiilleri
tespit etmede olduk¢a disik F1-6l¢iiti degerleri
sergilemislerdir. Bu durum, yalnizca dogruluk metrigine
dayali degerlendirmelerin yaniltici olabilecegini ve sinif
dengesizliginin YHT modelleri tizerindeki belirgin
etkisini bir kez daha gostermistir.

Yeniden o6rnekleme tekniklerinin uygulanmasi, dzellikle

asirt ornekleme ve hibrit yontemlerin, smiflandirict

bagsarimini, bilhassa azinlik siifi tespiti (F1-6lgttii Sinif

1) ve genel ayirt edicilik (AUC) agisindan 6nemli dl¢lide

iyilestirdigi gozlemlenmistir. Calismanin 6ne ¢ikan

bulgular: sunlardir:

1. Hibrit Yontemlerin Basarisi: SMOTE ile ENN'nin
birlestirildigi hibrit yontem (SMOTE + ENN), ozellikle
agac tabanh topluluk modelleri olan RO ve KA ile
kullanildiginda istiin basarim gostermistir. RO ve
SMOTE + ENN kombinasyonu, 0,9350 Dogruluk ve
0,9837 AUC ile calismadaki en iyi sonuglar1 elde etmis,
ayn1 zamanda her iki sinif icin dengeli ve ytiksek F1-
olciiti degerleri saglamistir.

2. Asinn Orneklemenin Etkinligi: ROSE teknigi, NB
siniflandiricisi i¢in en iyi sonuglar1 vermis, AUC ve F1-
olciitii degerlerini 6nemli dlgiide artirmistir. SMOTE,
Borderline-SMOTE ve ADASYN gibi diger asir1
ornekleme teknikleri de bir¢ok simiflandirici igin
yeniden 6rnekleme yapilmayan duruma gore belirgin
iyilesmeler saglamistir.

3. Eksik Orneklemenin Simirhliklari: Rastgele Eksik

Ornekleme (RUS) ve NearMiss gibi eksik érnekleme

yontemleri, incelenen senaryoda genellikle diger
yontemlere kiyasla daha diisiik basarim sergilemistir.
Bu durum, bu yéntemlerin ¢ogunluk sinifindan veri
silerken potansiyel olarak 6nemli bilgileri kaybetme
riski tagidigini diistindiirmektedir.

4. Smiflandirici Bagarimi: Yeniden drnekleme teknikleri
uygulandiktan sonra, RF genel olarak en gigli ve
dengeli basarimi olarak one
cikmistir.

Bu calisma, JM1 veri seti 0Ozelinde cesitli yeniden

ornekleme tekniklerinin farkli siniflandiricilar tizerindeki

etkisini sistematik ve karsilastirmali bir sekilde ortaya
koymustur. Bulgular, YHT’'de smif dengesizligiyle
miicadele igin uygun yeniden ornekleme stratejisi

sunan siniflandiric

se¢iminin kritik 6neme sahip oldugunu ve o6zellikle
SMOTE+ENN gibi hibrit yontemlerin ve RF gibi topluluk
O6grenmesi algoritmalarinin bu tiir problemler icin gii¢li
adaylar oldugunu gostermektedir. Ayrica, dengesiz veri
setlerinde model basarimini degerlendirirken Dogruluk
metriginin 6tesinde AUC ve F1-dlgiitii gibi metriklere
odaklanmanin gerekliligini vurgulamaktadir.

Calismanin bazi smirhliklart bulunmaktadir. Bulgular
yalnizca JM1 veri seti ile sinirhdir ve diger yazilim
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projelerinden elde edilen farkh ozelliklere sahip veri
setleri tlizerinde genellenebilirligi test edilmemistir.
incelenen yeniden teknikleri ve
siniflandiricilar kapsamlh olmakla birlikte, literatiirdeki
tlim alternatifleri icermemektedir. Ayrica, algoritmalarin

ornekleme

ve yeniden Ornekleme yoéntemlerinin hiperparametre
optimizasyonu bu ¢alismanin odak noktasi olmamistir.
Gelecek c¢alismalarda NASA MDP koleksiyonundaki JM1
gibi diger alt veri setleri ve farkli programlama dilleri
veya uygulama alanlarindan gelen endiistriyel veri setleri
tizerinde tekrarlanarak bulgularin genellenebilirligi
arastirilabilir. Yeni ve gelismis yeniden o6rnekleme
teknikleri ve derin 6grenme modellerinin YHT ve siif
dengesizligi baglamindaki basarimlari
Kapsamli hiperparametre optimizasyonunun ve 6znitelik
sec¢imi tekniklerinin yeniden ornekleme ile
birlestirilmesinin  etkileri de degerli arastirma
konularidir. Son olarak, farkli yeniden o6rnekleme ve
modelleme yaklasimlarinin pratik uygulamadaki maliyet-
etkinlik  analizleri, bu endiistriyel
benimsenmesini tesvik edebilir.

incelenebilir.

tekniklerin

Katki Beyan Orani
Yazarlarin katki ytizdeleri asagida verilmistir. Yazarlar
makaleyi incelemis ve onaylamistir.

E.CY. R.O.

K 50 50
T 50 50
50 50

VTI 50 50
VAY 50 50
KT 50 50
YZ 50 50
KI 50 50
GR 50 50

K= kavram, T= tasarim, Y= yonetim, VTI= veri toplama ve/veya
isleme, VAY= veri analizi ve/veya yorumlama, KT= kaynak
tarama, YZ= Yazim, KI= kritik inceleme, GR= gonderim ve
revizyon

Catisma Beyani
Yazarlar bu c¢alismada higbir ¢ikar iliskisi olmadigini
beyan etmektedirler.

Etik Onay Beyani

Bu arastirmada hayvanlar ve insanlar iizerinde herhangi
bir ¢alisma yapilmadigi icin etik kurul onay1
alinmamistir.
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