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Abstract: In the present paper, we first introduce a quantum n-space on which the algebra
of coordinates is η-commutative. Further, it is shown that there are some σ -twisted
derivations acting on this algebra, and the algebra of such derivations is a quantum group.
Morever, we show that a bicovariant differential calculus on this space can be constructed
by using σ -twisted derivations. Finally, the quantum Lie algebra is obtained by using this
bicovariant differential calculus.

Bir Kuantum Uzay ve Bazı İlişkili Kuantum Gruplar

Anahtar Kelimeler
Kuantum uzaylar,
Kuantum gruplar,
Türev cebirleri

Özet: Bu makalede önce koordinatlar cebiri η-değişmeli olan bir kuantum uzay tanım-
landı. Ayrıca bu cebire etki eden σ -bükümlü türevlerin varlığı gösterildi ve bu türev-
lerin oluşturduğu cebirin değişmeli ve eşdeğişmeli olmayan bir Hopf cebiri olduğu ispat
edildi. Üstelik, söz konusu kuantum uzay üzerinde bir bikovaryant diferansiyel hesabın
σ -bükümlü türevlerin yardımı ile elde edilebileceği gösterildi. En son kuantum Lie cebiri
bu diferansiyel hesap yardımı ile oluşturuldu.

1. Introduction

It is well known from [1] that the notion of quantum group
is used to specify deformed versions of some classical Lie
groups in the classical differential geometry. In addition,
as the most concrete examples of noncommutative spaces,
quantum spaces(groups) are also regarded by many as
a pattern in generalizing quantum deformed physics(for
example, see [1–4]). In this context many efforts were
displayed to introduce differential calculus on quantum
spaces(groups) (see [5–14]). Differential calculus for
quantum groups can be realized by using the setting
of Hopf algebra [11], and this differential calculus is
extended to the graded differential Hopf algebra [2].

In this study we first introduce a quantum n-space on which
the corresponding coordinate algebra is an η-commutative
algebra. Morever it is shown that this η-commutative al-
gebra admits some σ -twisted derivations and the algebra
of these derivations is a non-cocommutative Hopf algebra,
namely, a quantum group. Further it is seen that the η-
commutative algebra has a proper cocommutative Hopf
algebra structure making possible a bicovariant differential
calculus obtained by means of σ -twisted derivations on the
quantum n-space. Finally, based on this bicovariant differ-
ential calculus, the right invariant Maurer-Cartan forms and
the corresponding vector fields are given, and it is seen that
the algebra of these vector fields has a non-cocommutative
Hopf algebra structure.

2. Preliminaries

Throughout the paper, the complex numbers C will be al-
ways ground field for all our objects. A triple (A ,m,u)
stands for an associative algebra with multiplicative iden-
tity 1A where A is a linear space, m : A ⊗A →A is the
multiplication mapping on A and u : C→A is the unit
mapping defined as u(k) = k.1A such that these algebraic
mappings hold the axioms of algebra. A coassociative coal-
gebra (A ,∆,ε) is defined by inverting all arrows in the
diagrams of data and axioms for (A ,m,u). This is equiva-
lent to saying that we have a coproduct ∆ : A →A ⊗A
and a counit ε : A → C satisfying two axioms

(∆⊗ id)◦∆ = (id⊗∆)◦∆ (1)

(ε⊗ id)◦∆ = id = (id⊗ ε)◦∆. (2)

where id is the identity mapping.
A bialgebra A is a coalgebra such that ∆ and ε are both
algebraic homomorphisms such that ∆(1A ) = 1A ⊗ 1A

and ε(1A ) = 1K . Finally, a Hopf algebra is a bialgebra
A endowed with an algebra antihomomorphism called
“antipode mapping" S : A →A enjoying

m◦ (S⊗ id)◦∆ = u◦ ε = m◦ (id⊗S)◦∆, (3)

Let A be an algebra. A C-vector space Ω is called a
right A -module if there exists a linear mapping ϕR : Ω⊗
A →Ω with ϕR ◦ (ϕR⊗ id) = ϕR ◦ (id⊗m) and ϕR ◦ (id⊗
u) = id. Similarly, the vector space Ω is called a left
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A -module if there is a linear mapping ϕL : A ⊗Ω→ Ω

satisfying the conditions ϕL ◦(id⊗ϕL) = ϕL ◦(m⊗ id) and
ϕL ◦ (u⊗ id) = id. If the Ω is both a right A -module and
a left A -module such that the relevant actions ϕR and ϕL
commute, that is, ϕL ◦ (id⊗ϕR) = ϕR ◦ (ϕL⊗ id), then we
call Ω an A -bimodule. Let A be a Hopf algebra. A right
comodule over A is a C-vector space Ω equipped with a
linear function ∆R : Ω−→Ω⊗A satisfying

(id⊗∆)◦∆R = (∆R⊗ id)◦∆R

id = m◦ (id⊗ ε)◦∆R.
(4)

A left comodule over A is a C-vector space Ω equipped
with a linear function ∆L : Ω−→A ⊗Ω such that

(∆⊗ id)◦∆L = (id⊗∆L)◦∆L

id = m◦ (ε⊗ id)◦∆L.
(5)

Let Ω be left and right comodule over A with the relevant
linear mappings ∆L and ∆R. If ∆L and ∆R commute, then
one says that Ω is a bicomodule over A . A bicovariant
bimodule Ω is a bicomodule Ω where ∆L and ∆R hold the
compatibility condition:

∆L(apb) = ∆(a)∆L(p)∆(b),

∆R(apb) = ∆(a)∆R(p)∆(b)

for all a,b ∈A and p ∈Ω.
Let Ω1 be a bimodule over an algebra A and d be a lin-
ear mapping from A to Ω1. The pair (Ω1,d) is called
a first order differential calculus over A if the Leib-
niz rule d(ab) = d(a)b + ad(b) holds for all a,b ∈ A .
Note that Ω1 is the linear span of elements ad(b) or
d(a′)b′,a,a′,b,b′ ∈A . Morever, it is said that a first order
differential calculus (Ω1,d) is bicovariant if Ω1 is bicovari-
ant together with the coactions ∆L(d(a)) = (id⊗d)(∆(a))
and ∆R(d(a)) = (d⊗ id)(∆(a)),a ∈ A , where ∆L|A = ∆

and ∆R|A = ∆(see [11]). Let Ωn be the space of differ-
ential n-forms. Let any element of Ωn be denoted by
ad(a1)∧d(a2)∧ ...∧d(an) or d(a1)∧d(a2)∧ ...∧d(an)a
for a,ai’s∈ A where the multiplication ∧ is defined as
u∧ v ∈ Ωm+n for u ∈ Ωm and v ∈ Ωn. Thus, the exterior
algebra of all higher order differential forms (or differen-
tial graded algebra) is a N0-graded algebra Ω∧ =

⊕
n≥0 Ωn,

Ω0 = A , with the exterior mapping d : Ω∧→ Ω∧ of de-
gree 1 satisfying d2 = 0 and the graded Leibniz rule d(w1∧
w2) = d(w1)∧w2+(−1)nw1∧d(w2), w1 ∈Ωn, w2 ∈Ω∧.
Thus we extend the bicovariant first order differential cal-
culus to the differential graded algebra Ω∧ in a similar way.
Morever, Ω∧ can be endowed with a Hopf algebra struc-
ture derived from the coproduct ∆̂ = ∆L +∆R (for more
details see [2, 15]).
Let σ be an automorphism of an algebra A . For A , a σ -
derivation is a linear mapping ∂ : A →A with ∂ (ab) =
∂ (a)b+σ(a)∂ (b) for all a,b ∈A .
Let us recall that a quantum n-space [8, 9] is an associative
C-algebra generated by x1,x2, ...,xn satisfying the follow-
ing commutation relations:

xix j = qi jx jxi, i, j = 1,2, ...,n, (6)

where qi j’s are nonzero complex numbers with q−1
i j = q ji.

3. A Quantum n-Space

In this section we concern with a quantum n-space on
which the algebra of noncommuting coordinates is η-
commutative. The construction of such a quantum n-
space can be achieved by using some means such as
bicharacter and 2-cocycle on additive group Zn as used
in [5]. However, our quantum n-space differs from that
of [5] in two aspects. First, we make a bicharacter which
yields a commutation relation that is not only based on
the powers of generators but also their indices, and sec-
ond, we take a grouplike generator into account. Let
α = (α1, ...,αn),β = (β1, ...,βn) ∈ Zn be any two integer
n-tuples, and consider a mapping ∗ : Zn×Zn→ Z defined
through

α ∗β =
n−1

∑
j=1

∑
i> j

( j− i)αiβ j. (7)

One can easily show that the mapping ∗ holds the following
distributive laws:

(α +β )∗ γ = α ∗ γ +β ∗ γ,

α ∗ (β + γ) = α ∗β +α ∗ γ.

The mapping ∗ also satisfies

εi ∗β = ∑
s<i

(s− i)βs (1≤ i≤ n),

β ∗ εi = ∑
s>i

(i− s)βs (1≤ i≤ n),

(εi− εi+1)∗β =
i

∑
s=1

βs (1≤ i < n),

β ∗ (εi− εi+1) =−
n

∑
s=i+1

βs (1≤ i < n),

where εi = (δ1i, ...,δni) (1 ≤ i ≤ n) is a basis of Zn as a
Z-module. Let q be a nonzero complex constant. Now we
define a mapping η : Zn×Zn→ C∗ as follows

η(α,β ) = qα∗β−β∗α . (8)

In particular, we can verify that η(εi,ε j) = q j−i. In fact,
since the following properties hold

η(α +β ,γ) = η(α,γ)η(β ,γ) (9)

η(α,β + γ) = η(α,β )η(α,γ) (10)

η(α,0) = 1 = η(0,α) (11)

η(α,β )η(β ,α) = 1 = η(α,α), (12)

the mapping η is a bicharacter of the additive group Zn.
We are now in a position to give our quantum n-space.
This quantum n-space is generated by x1, ...,xn having
commutation relations which we write as

xix j = η(εi,ε j)x jxi, 1≤ i, j ≤ n. (13)

This space or, rather, the polynomial function ring is for-
mally defined by the following ring

Aq(n) = C〈x1, ...,xn〉/I , (14)
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where C〈x1, ...,xn〉 means an associative C-algebra freely
generated by x1, ...,xn and I is an ideal generated by the
relations (13). This is a deformation of the usual commu-
tative space corresponding to the case q = 1. Let Zn

+ show
the set of nonnegative-integer n-tuples and xα = xα1

1 · · ·xαn
n

any nonzero monomial in Aq(n) where α = (α1, ...,αn) ∈
Zn
+. So we assume that the quantum n-space has a PBW ba-

sis whose elements are of the ordered form xα = xα1
1 · · ·xαn

n .
That is, the vector space Aq(n) can be given as a direct
sum of the vector subspaces consisting of the above or-
dered monomials of homogeneity degree m. From now
on, our all linear mappings will be defined by taking into
account the above ordering. Morever, we easily derive the
commutation relation between two monomials xα ,xβ with
the help of η as follows:

xα xβ = η(α,β )xβ xα .

We note at this point that since η holds the conditions
(9− 12), η-commutativity is well defined, and η is a 2-
cocycle on the additive group Zn, meaning that it satisfies

η(α,β )η(α +β ,γ) = η(β ,γ)η(α,β + γ), (15)

which ensures the compatibility of η-commutativity with
associativity rule. So the above construction shows that the
quantum n-space Aq(n) is an associative η-commutative
algebra if we set that x0 = 1 and xα = 0 for α /∈ Zn

+. For
more details on more general algebras such as Γ−graded
η−commutative algebras, see the series of papers [3, 16].

4. Derivation Algebra on Aq(n)

In this section, we will show that, in presence of automor-
phisms, some derivation operators on Aq with deformed
Leibniz rules given by the automorphism are related with
a bicovariant differential calculus on Aq. Let us define a
linear mapping ∂q/∂xi of Aq, defined through

∂q

∂xi
(xα) = η(

←
αi,εi)αixα−εi (i = 1, ...,n), (16)

where
←
αi= (α1, ..αi−1,0, ...,0) with

←
α1= 0. Note that

∂q
∂xi

(1) = 0, and even if we extend Aq by x−1
1 , the the

algebra is again η-commutative. This says that the rule
(16) can be also defined for xz

1 where z is a negative integer,

for example, ∂q
∂x1

(xz
1) = zxz−1

1 as the usual one. For sim-
plicity of notation, we let ∂i denote briefly ∂q/∂xi. From
the definition (16) one has the following commutation rule
between two mappings ∂i,∂ j with respect to their compo-
sition as follows:

∂i∂ j = η(εi,ε j)∂ j∂i. (17)

We also note that the mapping ∂i reduces to the usual par-
tial derivative operator with respect to xi when q→ 1. It
is intriguing at this point to ask whether the mappings
∂i, i = 1, ...,n are deformed derivations acting on Aq(n).
To answer this, we investigate Leibniz rule for the each
mapping. Really, each ∂i has the following deformed Leib-
niz rule when it acts on xα g, where g is any element of
Aq:

∂i(xα g) = ∂i(xα)g+σi(xα)∂i(g), (18)

where for any β ∈ Zn, the mapping σβ : Aq(n)→Aq(n)
is an algebra automorphism acting on xα

σβ (x
α) = η(α,β )xα for all xα ∈Aq(n), (19)

and σi denotes σ(εi), i = 1, ...,n. Note that this rule can be
also defined for negative powers of x1.
From the properties of η , it is obviously seen that for all
α,β ∈ Zn, the relation between automorphisms σα ,σβ

appears as commutative one

σα σβ = σα+β = σβ σα (20)

σ(0) = 1, σ
−1
α = σ−α , (21)

and the relation of an automorphism σ(α) with the map-
ping ∂i, i = 1, ...,n is of the form

σα ∂i = η(α,εi)∂iσα (22)

Considering the above constructions, we give an algebra
Dq(2n) freely generated by ∂1, ....,∂n,σ1, ...,σn enjoying
the relations (17), (20) and (22). Here we note that Dq(2n)
is a deformation of the algebra D(n) generated by the usual
partial derivations ∂1, ...,∂n because the mappings σi re-
duce to the idendity mapping when q→ 1. It is well known
that D(n) has a Hopf algebra structure via the coproduct
∆, counit ε and antipode S acting on the generators as
∆(∂i) = ∂i⊗ id+ id⊗∂i, ε(∂i) = 0,S(∂i) =−∂i. Based on
the above investigations, one can investigate whether the
deformed derivation algebra Dq(2n) has a Hopf algebra
structure as a deformation of the Hopf algebra structure
for D(n). In fact, the answer is hidden in the structure of
automorphisms and Leibniz rule of the derivations. That
is, using the definitions m(∆(∂a)( f ⊗ g)) := ∂a( f g) and
m(∆(σa)( f ⊗ g)) := σa( f g) = σa( f )σa(g) together with
(18) implies that the coproduct ∆ acts on the generators as
∆(σi) = σi⊗σi and ∆(∂i) = ∂i⊗ id+σi⊗∂i. Morever we
observe that Dq(2n) is nothing else than Uq mentioned in
Subsection 3.3 of [5]. Therefore, Dq(2n) can be equipped
with a Hopf algebra structure by the following comappings:

∆(σi) = σi⊗σi

∆(∂i) = ∂i⊗ id+σi⊗∂i,
(23)

ε(σi) = 1, ε(∂i) = 0, (24)

S(σi) = σ
−1
i , S(∂i) =−σ

−1
i ∂i, (25)

where i = 1, ...,n and the multiplication in Dq(2n)⊗
Dq(2n) is the usual one, that is, (α⊗ γ)(β ⊗θ) = αβ ⊗
γθ .

4.1. A bicovariant differential calculus over Aq(n)

This subsection is devoted to the construction of a bicovari-
ant differential calculus of Aq(n) by using σi-derivations
∂i, i = 1, ...,n. For this, we first need to show that Aq(n)
has a proper Hopf algebra structure making possible the
existence of bicovariant differential calculus obtained by
means of σi-derivations ∂i.
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Lemma 4.1. Let us extend Aq(n) by the inverse x−1
1 .

Given two algebra homomorphisms ∆ : Aq(n)→Aq(n)⊗
Aq(n), ε : Aq(n)→ C and an algebra antihomomorphism
S : Aq(n)→Aq(n) , acting on the generators x1,x2, ...,xn
as follows:

∆(x±1
1 ) = x±1

1 ⊗ x±1
1 ,

∆(xi) = xi⊗ x1 + x1⊗ xi, 1 < i≤ n,

ε(x1) = 1, ε(xi) = 0, 1 < i≤ n,

S(x1) = x−1
1 , S(xi) =−x−1

1 xix−1
1 , 1 < i≤ n,

(26)

where the multiplication in Aq(n)⊗Aq(n) is given by
(a⊗ b)(c⊗ d) = ac⊗ bd. Then the extended quantum
space Aq(n) is a cocommutative Hopf algebra together
with the mappings ∆, counit ε and antipode S.

Proof. For any basis element xα of the extended quantum
space Aq(n), let α ∈ Z×Zn−1

+ . Thus, it is clear that the
extended Aq(n) is again η-commutative algebra in the as-
sumption that x0 = 1 and xα = 0 if the last (n-1)-tuple of α

(αn−1, ...,αn) /∈ Zn
+. So, it must be first checked whether

the mappings ∆,ε and S leave invariant the commutation re-
lation (13). For ε , it is clear. For ∆, we shall check whether
∆(xix j−η(εi,ε j)x jxi) = 0 holds for all i, j = 1,2, ...,n. It
is seen in the following:

∆(xix j) = (xi⊗ x1 + x1⊗ xi)(x j⊗ x1 + x1⊗ x j)

= xix j⊗ x2
1 + xix1⊗ x1x j + x1x j⊗ xix1

+ x2
1⊗ xix j

= η(εi,ε j)(x jxi⊗ x2
1 + x1xi⊗ x jx1)

+η(εi,ε j)(x jx1⊗ x1xi + x2
1⊗ x jxi)

= η(εi,ε j)∆(x j)∆(xi)

(27)

for 1 < i, j ≤ n with i 6= j and

∆(x1xi) = (x1⊗ x1)(xi⊗ x1 + x1⊗ xi)

= x1xi⊗ x2
1 + x2

1⊗ x1xi

= η(ε1,εi)(xix1⊗ x2
1 + x2

1⊗ xix1)

= η(ε1,εi)∆(xi)∆(x1)

and

∆(x−1
1 xi) = (x−1

1 ⊗ x−1
1 )(xi⊗ x1 + x1⊗ xi)

= x−1
1 xi⊗1+1⊗ x−1

1 xi

= η(εi,ε1)(xix−1
1 ⊗1+1⊗ xix−1

1 )

= η(εi,ε1)∆(xi)∆(x−1
1 )

for 1< i≤ n. From the definition of ∆, it is readily apparent
that ∆ holds the rule of cocommutativity ∆= τ ◦∆, where τ

is the twisting mapping defined by τ(a⊗b) = b⊗a. From
the actions of ∆,ε,S on the generators, it is also clear that
the mappings ∆,ε,S fulfill the Hopf algebra axioms (1-3).
Thus we can note that S is an anti-homomorphism at the
level of coalgebra, meaning that

τ ◦ (S⊗S)◦∆ = ∆◦S. (28)

Indeed, from (26),

(τ ◦ (S⊗S)◦∆)(xi)

= (τ ◦ (S⊗S))(xi⊗ x1 + x1⊗ xi),

= τ
(
−x−1

1 xix−1
1 ⊗ x−1

1 − x−1
1 ⊗ x−1

1 xix−1
1
)

=−x−1
1 ⊗ x−1

1 xix−1
1 − x−1

1 xix−1
1 ⊗ x−1

1

(29)

Also

(∆◦S)(xi)

= ∆
(
−x−1

1 xix−1
1
)

=−
(
x−1

1 ⊗ x−1
1
)
(xi⊗ x1 + x1⊗ xi)

(
x−1

1 ⊗ x−1
1
)

=−x−1
1 ⊗ x−1

1 xix−1
1 − x−1

1 xix−1
1 ⊗ x−1

1 .

(30)

We see from (29) and (30) that the equality (28) exists for
the generator xi, 1 < i ≤ n. It is also shown in a similar
manner that (τ ◦ (S⊗S)◦∆)(x1) = (∆◦S)(x1). Finally
we observe equalities ε ◦S = ε and S2 = id.

Theorem 4.2. Let Ω1 be an Aq(n)-bimodule with basis
elements dx1, ...,dxn whose relations with the generators
x1, ...,xn are of the form

xidx j = η(εi,ε j)dxix j, i, j = 1, ...,n. (31)

If a mapping d : Aq(n)→Ω1 is defined by

d( f ) = dx1∂1( f )+ · · ·+dxn∂n( f ) = (32)

then the pair (Ω1,d) is a first order differential calculus
on Aq(n).

Proof. By d : Aq(n)→Ω1, it is clear that d(xi) =dxi. Thus,
to show that the pair (Ω1,d) is a first order differential
calculus, it is sufficient to prove that d( f g) = d( f )g +
fd(g), where f = xα and g is any element of Aq(n). For
this goal we first need the following commutation relation
obtained by (31):

dxiσi( f ) = fdxi, (33)

By substituting f g into (32) and using (16), we have the
following

d( f g) = dx1(∂1( f )g+σ1( f )∂1(g))

+ · · ·+dxn(∂n( f )g+σn( f )∂n(g)).
(34)

Making use (33) in (34), we have

d( f g) = (dx1∂1 + · · ·+dxn∂n)( f )g

+ f (dx1∂1 + · · ·+dxn∂n)(g),
(35)

which turns out that d( f g) = d( f )g+ fd(g). Thus the
pair (Ω1,d) is a first order differential calculus on Aq(n).
Morever, since Aq(n) is a Hopf algebra, using Woronow-
icz’s approach, we can define the right covariant bimod-
ule structure by a mapping ∆R : Ω1 → Ω1⊗Aq(n), de-
fined as ∆R = (d⊗ id)◦∆, and the left covariant bimodule
structure by a mapping ∆L : Ω1→Aq(n)⊗Ω1, given by
∆L = (id⊗d)◦∆. Note that ∆R and ∆L act on Aq(n) as the
coproduct given in (26). Finally, it is remain to show that
the mappings ∆L and ∆R preserve the commutation rela-
tions (31). For example, in the case 1 < i≤ n,1≤ j ≤ n,
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for ∆R, we can see this from the following straightforward
calculation:

∆R(xidx j)

= (x1⊗ xi + xi⊗ x1)(dx1⊗ x j +dx j⊗ x1)

= x1dx1⊗ xix j + x1dx j⊗ xix1 + xidx1⊗ x1x j

+ xidx j⊗ x1x1

= η(εi,ε j)((dx1⊗ x j +dx j⊗ x1)(x1⊗ xi + xi⊗ x1)

= η(εi,ε j)∆R(dx j)∆R(xi).

In the other cases, it can be similarly shown for both ∆R and
∆L. Thus the differential calculus (Ω1,d) is a bicovariant
one on Aq(n).
Note that the action of d on a negative integer power of x1
is computed by using d(x−1

1 ) :=−d(x1)x−2
1 . Based on the

above differential calculus (Ω1,d), one can extend d to the
exterior operator as follows

A ∼= Ω0
d→Ω1

d→ · · · d→Ωn
d→Ωn+1

d→ · · · (36)

d◦d := d2 = 0 (37)

d(u∧ v) = (du)∧ v+(−1)ku∧ (dv), (38)

where u ∈Ωk and Ωk is the space of differential k-forms.
Thus, taking into account (31) with (37) and(38), we get
the relation of differentials dxi and dx j, i, j = 1, ...,n as
follows:

dxi∧dx j = (δi j−η(εi,ε j))dx j ∧dxi. (39)

At this position we note that the above relation is consistent
with the nilpotency rule (37) when we take into account
d := (dx1∂1 + · · ·+dxn∂n).
As the final part of this section we can obtain the relation of
mapping ∂i and generator x j by using the Leibniz property
of d and the relations in (31)

∂ix j = δi j +η(ε j,εi)x j∂i,1≤ i, j ≤ n, (40)

which complete the scheme of Weyl algebra corresponding
to Aq(n) together with the relation (17).

5. Space of Maurer-Cartan 1-Forms on Aq(n)

In the framework of the Hopf algebra Aq(n), the right-
invariant Maurer-Cartan form for any f ∈Aq(n) is defined
by through the formula [11]

w f := m((d⊗S)∆( f )) (41)

where m stands for the multiplication. Thus, for the non-
commuting coordinates of Aq(n),

ωx1 = m((d⊗S)∆(x1))

= m((d⊗S)(x1⊗ x1))

= m(d(x1)⊗S(x1)) = dx1x−1
1 ,

ωxi = m((d⊗S)∆(xi))

= m((d⊗S)(x1⊗ xi + xi⊗ x1))

= dxi x−1
1 −dx1 x−1

1 xix−1
1 ,

where 1 < i≤ n. Let ωi = ωxi . Then (41) implies that for
any f ∈Aq(n), ω f could be written as a linear combina-
tion of all ωi’s of the form ω f = f1ω1 + · · ·+ fnωn where
fi ∈Aq(n), i = 1,2,3. Now, using (13), (31) and (39), we
obtain some relations, which will be used in the following
sections, such as commutation relations of ωi’s with the
generators xi’s as

xiω1 = ωx1xi, 1≤ i≤ n

xiω j = q j−1
ω jxi, 1≤ i≤ n, 1 < j ≤ n,

(42)

and one between any ωi and ω j as follows:

ωi∧ω j =−(1−δi j)ω j ∧ωi (43)

6. Vector Fields

In this section we will obtain the quantum Lie algebra of
vector fields, denoted by T , corresponding to the right-
invariant Maurer-Cartan forms obtained in the Section 4.
To express the generators of T by the derivation mappings
∂i we first obtain the Maurer-Cartan forms as follows

dx1 = ω1x1, dxi = ω1xi +ωix1, 1 < i≤ n (44)

Now we write d in terms of the Maurer-Cartan forms and
the generators of T :

d=
n

∑
i=1

ωiTi (45)

where Ti’s are generators of T . By inserting (44) to the
expression

d=
n

∑
i=1

dxi∂i

we obtain the generators as the following vector fields:

T1 ≡
n

∑
i=1

xi∂i

Ti ≡ x1∂i, 1 < i≤ n

(46)

Together with the relations (13), (17) and (40), (46) implies
that commutation relation between two generators Ti and
Tj is of the form

TiTj−TjTi = 0, 1≤ i, j ≤ n (47)

The commutation relation (47) must be consistent with
monomials of the algebra A . For this, we get the following
relations of the generators of T with the coordinates xi’s
by using the relations in (13) and (40):

T1 x j = x j + x j T1, 1≤ j ≤ n

Ti x j = δi jx1 +qi−1 x j Ti, 1 < i≤ n, 1≤ j ≤ n

Lemma 6.1. Let f be any monomial of the form xα in
Aq(n). For any g ∈Aq(n), the vector fields Ti’s have the
following q-deformed Leibniz rules when they act on f g :

Ti ( f g) = Ti ( f ) g+qλi f Ti (g) , λi = (i−1)
n

∑
k=1

αk (48)
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Proof. The relations in (42) result in the following relation
between the form ωi and the monomial f

f ωi = qλiωi f . (49)

From the Leibniz rule and the exterior differential operator
d given by (45), we have(

n

∑
i=1

ωiTi

)
( f g) =

(
n

∑
i=1

ωiTi

)
( f )g+ f

(
n

∑
i=1

ωiTi

)
(g)

(50)
Inserting (49) to (50) and collecting according to ωi, we
obtain(

n

∑
i=1

ωiTi

)
( f g) =

n

∑
i=1

ωi

(
Ti( f )g+qλi f Ti(g)

)
(51)

which results in (48).

Theorem 6.2. We have the following q-deformed coprod-
uct for the vector fields Ti, which is consistent with the
q-deformed Leibniz rule (48):

∆(Ti) = Ti⊗1+q(i−1)T1 ⊗Ti (52)

Proof. If we consider tensor product of the form

(X⊗Y )( f⊗g)=X( f )⊗Y (g), f ,g∈A , X ,Y ∈T (53)

and m(∆(X)( f ⊗ g)) := X( f g), then we have, from the
q-deformed Leibniz rule (48), the q-deformed coproduct
(53). Notice that by the action (16), the vector field T1 acts
on the monomial f = xα as follows

T1( f ) =

(
n

∑
i=1

xi∂xi

)
( f ) =

(
n

∑
i=1

αi

)
. f

Since the action rule (16) holds also for a negative power
of x1, the action of Ti can be extended to a negative power
of x1.
Finally, in order to introduce Hopf algebra for the univer-
sal enveloping algebra U (T ), we obtain the counit and
antipode corresponding to the coproduct given in (52) as

ε(Ti) = 0, 1≤ i≤ n

S(Ti) =−q−(i−1)T1Ti, 1≤ i≤ n
(54)

Notice that the Hopf algebra derived by (52) is q-deformed
version of the usual Hopf algebra with the primitive co-
product ∆(Ti) = Ti⊗ 1+ 1⊗Ti obtained in the classical
case q = 1.

7. Conclusion

In this study we first introduce a quantum n-space whose
coordinates yield an η-commutative polynomial algebra.
Further it is shown that this η-commutative algebra ad-
mits some σ -twisted derivations and the algebra of these
derivations is a non-cocommutative Hopf algebra, namely,
a quantum group. Morever, we introduce a proper cocom-
mutative Hopf algebra structure on η-commutative algebra
such that a bicovariant differential calculus on the quan-
tum n-space can be obtained via σ -twisted derivations.
Finally, using this bicovariant differential calculus, the
right invariant Maurer-Cartan forms and the corresponding
vector fields are given, and it is seen that the algebra of
these vector fields has a non-cocommutative Hopf algebra
structure.
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