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Keywords Abstract: The hydration of carbonyl compounds and the formation of hemiacetals

Qu}nollne, have been a topic of interest in organic chemistry. Hydration plays an important role

gu;“(’?e' in biological processes. Quinoline derivatives are also biologically active molecules
ydration,

with many applications. Equilibrium between 6,7-epoxy-6,7-dihydroquinoline-5,8-
dione and its hydrate or hemiacetal form was investigated in aqueous and alcoholic
solutions by NMR spectroscopy. Interestingly, no equilibrium was detected for the
hydrocarbon counterpart. It was presumed that the existence of this equilibrium is
highly dependent on the electronic structure of the molecule. To further understand
the difference in reactivity to such systems, density functional theory (DFT)
calculations were performed.

Hemiacetal

6,7-Epoksi-6,7-Dihidrokinolin-5,8-Dion'da Hidrat ve Hemiasetal Dengelerinin
Spektroskopik ve Hesaplamali1 Calismasi

Anahtar Kelimeler Oz: Karbonil bilesiklerinin hidratasyonu ve hemiasetallerin olusumu organik

Kinolin, kimyada ilgi cekici bir konu olmustur. Hidratasyon biyolojik islemlerde 6zellikle de

Ki.non, ila¢g saliniminda dénemli bir rol oynar. Kinolin tiirevleri de bir¢ok uygulama alanina

gﬁ;?;ig{;n’ sahiptir ve ¢ok genis spektrumda biyolojik olarak aktif molekiillerdir. Bir kinolin
tiirevi olan 6,7-epoksi-6,7-dihidrokinolin-5,8-dion ile hidrat veya hemiasetal formu
arasindaki denge, sulu ve alkollii ¢ozeltilerde NMR spektroskopisi ile incelendi.
llging bir sekilde, hidrokarbon analogu icin bir denge tespit edilmedi. Bu dengenin
varliginin molekiiliin elektronik yapisina (azot atomu molekiiliin elektronik yapisini
degistirdiginden) biiylik 6l¢iide bagl oldugu varsayildi. Bu tiir sistemlere karsi
reaktiflikteki farki daha iyi anlamak icin yogunluk fonksiyonel teorisi (DFT)
hesaplamalar1 yapildi.

1. Introduction 0 HO OH

. . . . RJ\R' " H0 R™OR'

The reversible hydration and hemiacetal formation of

carbonyl compounds in aqueous solutions has long

been a topic of interest and investigation (Scheme 1) o HO OCH,

[1-11]. These reactions are one of the simplest R)J\R' + CHZOH R R

addition reactions to the carbonyl group and have also
been utilized to understand various organic reactions
[1,4]. Moreover, it is already known that hydration
plays an important role in solubility and stability of
pharmaceutical solids[12].

Scheme 1 Hydration and hemiacetal formation of ketones

The mechanism proposed for the hydration of
aldehydes involves attack of a water molecule to the
carbonyl carbon of aldehydes and ketones and the
release of the hydrogen ion of the water molecule. In
the next step carbonyl oxygen attacks to the hydrogen
ion to furnish hydrated forms of aldehydes and
ketones [2]. The mechanism suggested for the hydrate
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formation in water is thought to be the same with the
hemiacetal formation of a ketone in alcohol
solutions[13].

Although, hydration and hemiacetal formation of
simple aldehydes and ketones are well documented in
the literature, investigation of complex systems such
as heterocycle fused aldeydes and ketones are
documented in a few instances [10,14-16]. Herein, we
investigated the quinoline-conjugated and ketone
systems.

Quinoline skeletons are available in natural
compounds (e.g. Lavendamycin) [17] and these
molecules show antitumor, antimalarial, antimicrobial
and anti-inflammatory biologic activities [18,19].
Quinoline units are also widely used as pH-sensitive
chromophore and have been suggested for several
optical sensing applications [20]. Quinoline
derivatives have also been widely utilized in
medicinal, industrial and synthetic organic chemistry
[19].

Herein, we present a computational and experimental
study in an effort to gain insight on the electronic
feature of quinolone derivative 1 for the hydrate and
hemiacetal formation reactions.

2. Material and Method
2.1 Experimental section

20 mg of samples were disolved in 0.6 ml of
deuterated solvents and transferred to NMR tubes.
NMR (1H, 13C, 2D) spectra were recorded (at 4, 23 and
40 °C) on a Bruker Instrument, Avance Series-
Spectrospin DPX-400 Bruker, Ultra Shield (400 MHz).
Column  chromatographic  separations  were
performed by using Fluka Silica gel 60 plates with
0.063-0.200 mm particle size. Thin layer
chromatography (TLC) was applied using precoated
0,25 mm silica gel plates purchased from Fluka.
Solvents were obtained from Merck and used without
further purification

3. Results

6,7-epoxy-6,7-dihydoquinoline-5,8-dione (1) was
synthesized according to the previously reported
protocol (Scheme 2) [21]. Based on the 'H NMR
spectroscopy measured in D20, significant amount of
compound 1 was observed in its hydrated form 1a
(Figure 1).

DO OR

2aR=D
2b R=CD;4

formation of

Scheme 2. Hydration and hemiacetal

compounds 1 and 2

a)

55 50

65 60
1 (ppm)

Figure 1 'H NMR spectra of 1 (a) in CDCls3 (b) in D20

The use of CD3sOD as a solvent resulted in the
formation of expected structure 1b (Scheme 2). The
reason for this observation is probably due to the
electron-withdrawing nature of the nitrogen in the
quinoline moiety which decreases the electron density
on carbonyl carbon and facilitates the hydration
reaction. To understand the influence of heteroatom
on the electronic structure of the starting material,
similar reaction approach was followed for compound
2. However, neither hydrate 2a nor hemiacetal 2b was
observed, showing that electronic effects have greater
impact on the reaction (Scheme 2).

The molar ratios of compounds 1 and 2 to hydrate or
hemiacetal species in D20 or CD30D solutions were
calculated by the integration of 'H NMR peaks. In
order to understand the temperature effect on the
equilibrium, NMR spectra were recorded at 4, 23 and
40 °C. The equilibrium constants (Kh [hydrate] /
[ketone] in D20 and K [hemiacetal] / [ketone]) CD30D)
for hydration and hemiacetal formation of 1 and 2 are
shown in Table 1. The equilibrium shifted toward
products (hydrate or hemiacetal) at 4 °C while it
shifted toward reactant (compound 1) at 40 °C. These
results clearly indicate that the reaction is exothermic.
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Table 1. The equilibrium constants for hydration and
hemiacetal formation of 1 and 2

Compound | T(°C)  Hydration, Hemiacetal,
Khn K
1 4 1.19 1.14
1 23 0.85 1.32
1 40 0.63 0.37
2 23 - -

The 'H NMR spectrum in CDCl3 showed that all proton
signals of hydrate and hemiacetal form of 1 are shifted
(0.5 ppm) to the higher field with respect to its ketone
form (see Appendix A). The detail analysis revealed
that the aromatic protons H-2 and H-4 resonate at 8.98
and 8.22 ppm as a doublet of doublets, respectively.
The other aromatic proton H-3 appears at 7.64 ppm as
a doublet of doublets as well. The aliphatic protons (H-
6 and H-7) appear as an AB system ataround 3.78-4.02
ppm. On the other hand, the spectrum recorded in D20
showed three additional signals between 8.80 and
7.58 ppm in addition to the three aromatic proton
signals of compound 1 and the aliphatic protons gave
rise to an AB system. A part of AB system resonates at
4.25 ppm and B part at 4.01 ppm. Moreover, the
resonance signal observed at 91 ppm in the 13C NMR
spectrum (in D20) indicates the hydration of 1.

Furthermore, in 33C NMR spectrum recorded in
CD30D, the carbon signals of quinone and hemiacetal
equilibrium mixture were observed as two sets of
signals (see Appendix F). Additionally, a signal in the
13C NMR spectrum (CD30D) appearing at 94 ppm
supports the hemiacetal form of compound 1 [3]. For
the further characterization 2D NMR spectrum
(HMBC) was recorded to illustrate that the hydration
occurs at C-8 carbon (see Appendix I). It was observed
that C-8 no correlation with the aromatic protons. If
hydration had occurred at the C-5 carbon, the
correlation of this carbon signal with aromatic protons
should have been observed. Therefore, we propose
that the hydration and hemiacetal formation occur at
the C-8 position.

The heteroatom effect on the charge distribution in
compound 1 may serve for understanding the
experimentally observed result. For this reason,
theoretical calculations were performed. Molecular
geometry of 1 was optimized in gas phase with the
MO06 functional [22] in conjunction with a large basis
set 6-311++G(2d,2p) as implemented in the Gaussian
09 [17] program package (figure 2). Structural
representation was generated using CYLview [24].
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Figure 2. Optimized geometry of 1.

The Mulliken population analysis is probably the most
widely used method; however, its results may vary
with the basis set employed [25]. Therefore, Mulliken
charges were calculated using various basis sets and
methods on atoms C-5 and C-8 (Table 2). According to
the results, C-8 is found to be more electrophilic than
C-5. This could be an indication for the preferred
nucleophilic attack on C-8.

Table 2. Selected Mulliken charges of compound 1 in
different methods.

Mulliken Charges

Method C-5 C-8
B3LYP [26-28] /6- 0.429 0.454
31G(d)

B3LYP/6- 0.421 0.444
31G(d,p)

M06/6-31G(d) 0.462 0.486
M06/6-31+G(d,p) 0.120 0.150
B3PW91[26-29] 0.451 0.469
/6-31G(d)

®wB97XD [30] 0.451 0.465
30/6-31G(d)

®wB97XD/6- 0.443 0.455
31G(d,p)

4. Discussion and Conclusion

Herein, we present a combined experimental and
computational study aimed at understanding the
equilibrium between 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione and its hydrate or
hemiacetal form in alcoholic and aqueous solutions.
In the reaction of compound 1, nucleophilic attack on
C-8 took place leading to its hydrate or hemiacetal
form. However, in the case of its hydrocarbon
counterpart, the reaction was failed. Our calculations
indicate that charge distribution is responsible from
this outcome.

In most cases for the hydration and hemiacetal
formation reactions, the equilibrium does not favor
the generation of hydrate and hemiacetal forms.
However, in our case, 6,7-Epoxy-6,7-
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dihydroquinoline-5,8-dione has been found reactive
enough to furnish its hydrate and hemiacetal forms.

With this work, it is also shown that the hydration and
hemiacetal formation of 1 can occur intrinsically
without any catalysts such as acid, base and/or metal.
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Appendices
Appendix A: 1H spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CDCls at 23 °C (400
MHz)

RAS-22 1H

L
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. 1
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Appendix B: 13C NMR spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CDCl3 at 23 °C (400
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Appendix C: 'H NMR spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in D20 at 23 °C (400 MHz)
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Appendix D: 13C NMR spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in D20 at 23 °C (400 MHz)
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Appendix E: 'H NMR spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CD30D (400 MHz)
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Appendix F: 13C NMR spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CD30D (400 MHz)
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Appendix G: COSY spectrum of 6,7-epoxy-6,7-

dihydroquinoline-5,8-dione (1) in CD30D (400 MHz)
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Appendix H: HSQC spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CD30D (400 MHz)
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Appendix I: HMBC spectrum of 6,7-epoxy-6,7-
dihydroquinoline-5,8-dione (1) in CD30D (400 MHz)
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Appendix J: tH NMR spectrum of naphtho[2,3-b]oxirene-
2,7(1aH,7aH)-dione (2) in CD30D (400 MHz)
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