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Abctract 

In this paper, numerical solution of a boundary value problem for a fourth-order ordinary differential equation, 

known as the Euler-Bernoulli beam equation, is presented. The related equation is used extensively in 

engineering areas such as huge buildings, long bridges across big rivers, planes and cars. The approximate 

solution of the problem considered is obtained by using the Galerkin method with basis functions that satisfy 

the boundary conditions given. The accuracy of the proposed method is given through two numerical examples 

with the help of Maple® program. 
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Galerkin Metodu Yardımıyla Euler-Bernoulli Kiriş Denkleminin Yaklaşık Çözümü 

Öz 
Bu çalışmada Euler-Bernoulli kiriş denklemi olarak bilinen dördüncü mertebeden bir adi diferansiyel denklem 

için sınır değer probleminin sayısal çözümü sunulmuştur. İlgili denklem büyük binalar, büyük nehirler 

arasındaki uzun köprüler, uçaklar ve arabalar gibi mühendislik alanlarında yaygın olarak kullanılmaktadır. Ele 

alınan problemin yaklaşık çözümü, sınır koşullarını sağlayan temel fonksiyonlar ile Galerkin metodu 

kullanılarak elde edilmektedir. Önerilen yöntemin doğruluğu Maple® programı yardımıyla iki nümerik örnek 

üzerinden gösterilmektedir. 

Anahtar Kelimeler: Euler-Bernoulli kiriş denklemi, Galerkin metodu, Adi diferansiyel denklemler 

 

1. Introduction 

The Euler-Bernoulli beam equation that 

describes steady-state vibrations of a beam on 

an elastic foundation is the fourth-order 

differential equation  

 (𝑎(𝑥)𝑢′′(𝑥))
′′

+ 𝑞(𝑥)𝑢(𝑥) = 𝑓(𝑥) (1) 

for 𝑥 ∈ [0, 𝐿]. Here 𝐿 is the length of the 

beam, 𝑢(𝑥) is the deflection of the beam, 

𝑓(𝑥) is the transverse distributed load and 

𝑞(𝑥) is the foundation modulus at the point 𝑥 

(Lesnic, 2006; Thankane and Stys, 2009). 

Also the function  𝑎(𝑥) = 𝐸𝐼 is the product 

of  the Young’s modulus 𝐸 and moment of 

inertia 𝐼 of the beam (Thankane and Stys, 

2009; Gunakala et al., 2012). The analysis of 

beams on elastic foundation is very common 

in the sciences, especially structural and 

mechanical engineering. The beams are used 

as a basis of supporting structures or as the 

main frame foundation in application areas 

such as high buildings, bridges between 

rivers, air vehicles and heavy motor vehicles 

(Gunakala et al., 2012). Therefore, the beam 

theory must be used correctly in order to 

produce such structures successfully and 

safely. We refer the reader to (Biot, 1937; 

Han et al., 1999). 

We consider the beam equation (1) with the 

free ends boundary conditions 

 
𝑢(0) = 0, 𝑢(𝐿) = 0,

 𝑢′′(0) = 0, 𝑢′′(𝐿) = 0.
 (2) 
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The exact solution 𝑢(𝑥) of the problem (1)-

(2) can be found by standard methods that are 

well known in literature of the ordinary 

differential equations when 𝑎, 𝑞 and 𝑓 are 

known simple functions. In general it is not 

always possible to obtain exact solution of an 

arbitrary differential equation. It may also be 

laborious to get the theoretical solution. In 

these cases, we can use the effective 

numerical methods to find an approximate 

solution of the boundary value problems. 

The Galerkin method is one of the well-

known methods to provide powerful 

numerical solutions for the ordinary and 

partial differential equations. Its simplicity 

makes it perfect for many applications. The 

approximations to solution of the system of 

the ordinary differential equations have been 

obtained by using the Galerkin method in 

literature (Dubeau et al., 2003; Kostadinova, 

et al., 2013; Al-Omari et al., 2013). Peradze 

has been studied the numerical methods to 

find the approximation solutions of the 

Kirchhoff-Type Nonlinear Static Beam 

Equations via Galerkin method in (Peradze, 

2009; Peradze, 2016). In (Subaşı et al., 2011; 

Şener et al., 2013), applications of the 

Galerkin method to hyperbolic problems 

have been explained. Smith et al. (1992) have 

solved the fourth-order Euler-Bernoulli 

partial differential equations by Galerkin 

method and tested the results obtained on 

numerical examples. Younesian et. al. (2012) 

have obtained the analytical solutions of the 

beam equation on nonlinear elastic 

foundations by using the Variational Iteration 

Method. Thankane and Stys (2009) have 

presented the mathematical analysis of 

effective algorithms based on the Finite 

Difference Method for a beam equation.  

Gunakala et al. (2012) have given the use of 

the Galerkin Finite Element Method to solve 

the beam equation with homogeneous and 

non-homogeneous boundary conditions by 

choosing the cubic interpolation functions as 

the basis functions. Musa (2017) has obtained 

the solution for bending analysis of a beam on 

a non-homogeneous foundation by using the 

Galerkin method. 

In this work we present the effective 

numerical method for solving the steady-state 

Euler-Bernoulli beam equation with free ends 

boundary conditions. The proposed method, 

Galerkin method, uses the basis functions that 

satisfy the boundary conditions to get the 

approximate solutions. We get useful 

approximate weak solutions on some 

numerical examples by using Maple®.  

The paper is organized as follows. In Section 

2, we give the definition of the weak solution 

for the boundary value problems (1)-(2) and 

explain how Galerkin method is applied this 

problem. In section 3, we get symbolically 

the approximation solutions that confirm 

effectiveness of the method on the numerical 

examples.   

2. Material ve Method 

In this section, we will present the Galerkin 

method similar to carried out in 

(Ladyzhenskaya, 1985). Assume that 

𝑎, 𝑞, 𝑓 ∈ 𝐿2[0, 𝐿] and 𝑞(𝑥) ≥ 0 for 𝑥 ∈

[0, 𝐿]. The function 𝑎(𝑥) satisfies the 

condition 

 0 < 𝑎0 ≤ 𝑎(𝑥) ≤ 𝑎1 (3) 

where 𝑎0 and 𝑎1 are constants. Then the 

problem (1)-(2) has a unique solution 𝑢 ∈

𝐻̃2[0, 𝐿] weak sense where 

𝐻̃2[0, 𝐿]: = {𝑢 ∈ 𝐻2[0, 𝐿]: 𝑢(0) =  𝑢(𝐿) = 0} 

(see Lesnic, 2006; Ladyzhenskaya, 1985).  

For the weak solution of the problem we 

mean the function 𝑢 ∈ 𝐻̃2[0, 𝐿] which 

satisfies the following integral equality: 

 

∫ 𝑎(𝑥)𝑢′′(𝑥)𝑣′′(𝑥)𝑑𝑥
𝐿

0

           + ∫ 𝑞(𝑥)𝑢(𝑥)𝑣(𝑥)
𝐿

0
𝑑𝑥

           = ∫ 𝑓(𝑥)𝑣(𝑥)𝑑𝑥
𝐿

0

 (4) 

for all 𝑣 ∈ 𝐻̃2[0, 𝐿].  
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Here the space 𝐿2[0, 𝐿] is the complete linear 

normed space consisting of all measurable (in 

the sense of Lebesque) functions on [0, 𝐿]  

(Hunter, 2000). 𝐻2[0, 𝐿] is the Hilbert space 

consisting of all the elements 𝐿2[0, 𝐿] having 

generalized derivatives of first and second 

order from 𝐿2[0, 𝐿].  

Let’s perform an approximation of the 

solution of the boundary-value problem (1)-

(2) by the Galerkin method. Due to this 

method, we can denote the solution of the 

problem by 𝑢𝑁 and define by formula 

 𝑢𝑁(𝑥) = ∑ 𝑐𝑖𝑣𝑖(𝑥)𝑁
𝑖=1  (5) 

where the functions 𝑣𝑖(𝑥) are the basis 

functions and the coefficients 𝑐𝑖 are constants 

to be obtained. 

Due to boundary conditions (2), the basis 

functions can be derived from the set 

 {√
2

𝐿
𝑠𝑖𝑛

𝜋𝑥

𝐿
, √

2

𝐿
𝑠𝑖𝑛

2𝜋𝑥

𝐿
, ⋯ , √

2

𝐿
𝑠𝑖𝑛

𝑁𝜋𝑥

𝐿
} (6) 

We write the statement (1) for 𝑢𝑁, multiply 

𝑣𝑙 , 𝑙 = 1,2, ⋯ , 𝑁 and integrate over [0, 𝐿]: 

 

∫ [𝑎(𝑥)(𝑢𝑁)′′]′′𝑣𝑙(𝑥)𝑑𝑥
𝐿

0

+ ∫ 𝑞(𝑥)𝑢𝑁𝑣𝑙(𝑥)𝑑𝑥
𝐿

0

= ∫ 𝑓(𝑥)𝑣𝑙(𝑥)𝑑𝑥
𝐿

0
, (𝑙 = 1,2, ⋯ , 𝑁)

 (7) 

By substituting the approximation (5) into (7) 

and applying integration by parts, we obtain 

the system of the linear equations with 

unknowns 𝑐𝑖, 𝑖 = 1,2, ⋯ , 𝑁 as 

   

∫ [𝑎(𝑥) ∑ 𝑐𝑖𝑣𝑖
′′(𝑥)𝑁

𝑖=1 𝑣𝑙
′′(𝑥)]𝑑𝑥

𝐿

0

       + ∫ 𝑞(𝑥) ∑ 𝑐𝑖𝑣𝑖(𝑥)𝑁
𝑖=1 𝑣𝑙(𝑥)𝑑𝑥

𝐿

0

       = ∫ 𝑓(𝑥)𝑣𝑙(𝑥)𝑑𝑥
𝐿

0

 (8) 

for 𝑙 = 1,2, ⋯ , 𝑁. The coefficients of the 

system (8) are constants. The solution of this 

system gives the coefficients of (5). 

3. Findings 

In this section, we solve two test problems to 

show the effectiveness of the method given in 

the Section 2 with aid of Maple®. For 

purposes of comparison, we chose examples 

with known solutions and use the 𝐿2-norm 

error and absolute error which is defined as 

𝐸 = |𝑢 − 𝑢𝑁|. 

Example 1. For 𝑥 ∈ [0,2], we consider the 

following beam equation  

 

(𝑒𝑥𝑢′′)′′ + 𝑒𝑥𝑢

       = 𝑒𝑥(𝑥7 − 8𝑥6 + 66𝑥5)

       +𝑒𝑥(148𝑥4 − 584𝑥3 − 384𝑥2)

       +𝑒𝑥(1440𝑥 − 576)

 (9) 

with corresponding homogeneous boundary 

conditions 

 
𝑢(0) = 0, 𝑢(2) = 0,

𝑢′′(0) = 0, 𝑢′′(2) = 0.
  (10) 

The exact solution of this boundary value 

problem is the function 𝑢(𝑥) = 𝑥3(𝑥 − 2)4.  

Using the basis functions {𝑣𝑙(𝑥)} =

{sin
𝑙𝜋𝑥

2
} , 𝑙 = 1,2, ⋯ ,10 and solving the 

corresponding system of the linear equations, 

we have the following approximate solution 

 

𝑢10 = 0.79587824 sin
𝜋𝑥

2

         +0.20042622 sin 𝜋𝑥

        −0.21991419 sin
3𝜋𝑥

2

        −0.07192558 sin 2𝜋𝑥

        −0.01845701 sin
5𝜋𝑥

2

        −0.01135205 sin 3𝜋𝑥

        −0.00347032 sin
7𝜋𝑥

2

        −0.00281533 sin 4𝜋𝑥

        −0.00093712 sin
9𝜋𝑥

2

        −0.00081528 sin 5𝜋𝑥
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In Table 1, we present a list of errors rounded 

off to eight decimal places in space 𝐿2[0, 𝐿] 

for increasing values of 𝑁 which is the 

number of used fundamental functions. 

Similar results can be found for different 𝑁 

values. 

Table 1. Some 𝐿2[0,2] errors of Example 1 for some 

values of 𝑁. 

𝑵 ‖𝒖(. ) − 𝒖𝑵(. )‖
𝑳𝟐[𝟎,𝟐]
𝟐  

10 0.42309729 × 10−6 

20 0.99203057 × 10−9 

30 0.29202512 × 10−9 

40 0.19999724 × 10−9 

50 0.11526815 × 10−9 

60 0.10484114 × 10−9 

70 0.10247068 × 10−9 

80 0.10000000 × 10−9 

It can be seen from Table 1 that  

‖𝑢(. ) − 𝑢𝑁(. )‖
𝐿2[0,2]
2 → 0 

when 𝑁 → +∞. That is, the error decrease as 

the number of basis function used increase. 

The following Table 2 presents the absolute 

errors for some 𝑥 values for Example 1.                                 

Table 2. The absolute errors of Example 1 for some 𝑥 

values when 𝑁 = 80. 

𝒙 𝑬 

0.1 0.13329954 × 10−6 

0.2 0.74037910 × 10−7 

0.3 0.50233288 × 10−7 

0.4 0.37021640 × 10−7 

0.5 0.28712500 × 10−7 

0.6 0.23074682 × 10−7 

0.7 0.19014300 × 10−7 

0.8 0.15196300 × 10−7 

0.9 0.13182000 × 10−7 

Example 2. Let us consider the functions 

𝑎(𝑥), 𝑞(𝑥) and 𝑓(𝑥) in the problem (1), 

respectively as 

                𝑎(𝑥) = 1, 

𝑞(𝑥) = {
1, 0 ≤ 𝑥 ≤

1

2

𝑥,
1

2
< 𝑥 ≤ 1

,

𝑓(𝑥) = {
𝑥6 − 3𝑥5 + 3𝑥4 − 𝑥3 + 360𝑥2 − 360𝑥 + 72, 0 ≤ 𝑥 ≤

1

2

𝑥7 − 3𝑥6 + 3𝑥5 − 𝑥4 + 360𝑥2 − 360𝑥 + 72,
1

2
< 𝑥 ≤ 1

 

and the following boundary conditions 

 
𝑢(0) = 0, 𝑢(1) = 0,

𝑢′′(0) = 0,  𝑢′′(1) = 0.
 

Note that the function 𝑞(𝑥) and 𝑓(𝑥) are not 

continuous. The weak solution for this 

problem is 𝑢(𝑥) = 𝑥6 − 3𝑥5 + 3𝑥4 − 𝑥3. 

Using Galerkin method for 𝑁 = 10 we get 

the following the approximate solution 
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𝑢10 = −0.01243386 sin 𝜋𝑥

        +0.00343689 sin 3𝜋𝑥

        +0.00028895 sin 5𝜋𝑥

        +0.00005483 sin 7𝜋𝑥

        +0.00001573 sin 9𝜋𝑥

        +0.21892454 × 10−10 sin 2𝜋𝑥

        −0.41397583 × 10−12 sin 4𝜋𝑥

        +0.29585831 × 10−12 sin 6𝜋𝑥

        −0.78434871 × 10−12 sin 8𝜋𝑥

        +0.14875231 × 10−12 sin 10𝜋𝑥

 

We present the 𝐿2-norm errors for different 

𝑁 values in Table 3 and absolute errors for 

different 𝑥 values in Tablo 4 for Example 2.  

              

Table 3. Some 𝐿2[0,1] errors of Example 2 for some 

values of 𝑁. 

𝑵 ‖𝒖(. ) − 𝒖𝑵(. )‖
𝑳𝟐[𝟎,𝟏]
𝟐  

10 0.21060126 × 10−10 

20 0.46125093 × 10−13 

30 0.12242365 × 10−14 

40 0.79999699 × 10−16 

50 0.11567392 × 10−16 

60 0.10758158 × 10−16 

70 0.10000000 × 10−16 

80 0.75868155 × 10−17 

It can be seen from Table 3 that 

‖𝑢(. ) − 𝑢𝑁(. )‖
𝐿2[0,1]
2 → 0 

when 𝑁 → +∞. From Table 3, we can say 

that the error decrease as the number of basis 

function used increase. 

 

 

Table 4. The absolute errors of Example 2 for some 

𝑥 values when 𝑁 = 80. 

𝒙 𝑬 

0.1 0.45634082 × 10−9 

0.2 0.26124489 × 10−9 

0.3 0.20681252 × 10−9 

0.4 0.18476063 × 10−9 

0.5 0.20290400 × 10−9 

0.6 0.19751400 × 10−9 

0.7 0.22511145 × 10−9 

0.8 0.27719686 × 10−9 

0.9 0.46299088 × 10−9 

4. Result and Discussion 

In this study, we introduce the Galerkin 

method to solve the Euler-Bernoulli 

boundary value problem. The results 

obtained indicate that this method can be 

applied to get accurate numerical solutions 

of the problem (1)-(2). In other words, 

Galerkin method is an influential numerical 

method to solve the problem (1)-(2). When 

the number of basis functions used increase 

for Galerkin method, the approximate 

solution becomes closer to weak solution. 

That is the accuracy of the method depend 

on the value of 𝑁. 

5. References 

Al-Omari, A., Schüttler, H-B., Arnold, J., 

Taha, T. 2013. Solving nonlinear 

systems of first order ordinary 

differential equations using a Galerkin 

finite element method. IEEE Access, 

Volume 1, 408-417. 

Biot, M. A. 1937. Bending of an infinite 

beam on an elastic foundation. Journal 

of Applied Mechanics, 2, 165-184. 

Dubeau, F., Ouansafi, A., Sakat, A. 2003. 

Galerkin methods for nonlinear 

ordinary differential equation with 



On Approximate Solution of the Euler-Bernoulli Beam Equation via Galerkin Method 

 

 346 

 

impulses. Numerical Algorithms, 33, 

215-225. 

Gunakala, S.R., Comissiong, D.M.G, 

Jordan, K., Sankar, A. 2012. A finite 

element solution of the beam equation 

via Matlab. International Journal of 

Applied Science and Technology, 

2(8), 80-88. 

Han, S. M., Benaroya, H., Wei, T. 1999. 

Dynamics of transversely vibrating 

beams using four engineering theories. 

Journal of Sound and Vibration, 225 

(5), 935-988. 

Hunter, J.K., Narchtergaele, B. 2000. 

Applied Analysis, World Scientific, 

Singapore. 

Kostadinova, S., Buralieva, J.V., Hadzi, K., 

Saneva, V. 2013. Wavelet-Galerkin 

solution of some ordinary differential 

equations, Proceedings of the XI 

International Conferences ETAI, 

Ohrid, Republic of Macedonia. 

Ladyzhenskaya, O.A. 1985. Boundary 

Value Problems in Mathematical 

Physics, Springer, New York. 

Lesnic, D. 2006. Determination of the 

flexural rigidity of a beam from 

limited boundary measurements. J. 

Appl. Math. And Computing, 20(1-2), 

17-34. 

Musa, A.E.S. 2017. Galerkin method for 

bending analysis of beams on non-

homogeneous foundation. Journal of 

Applied Mathematics and 

Computational Mechanics, 16(3), 61-

72. 

Peradze, J. 2009. A numerical algorithm for 

a Kirchhoff-type nonlinear static 

beam. Journal of Applied 

Mathematics, 12 p. 

Peradze, J. 2016. On the approximate 

solution of Kirchhoff type static beam 

equation. Transactions of A. 

Razmadze Mathematical Institute, 

170, 266-271. 

Smith, R.C., Bowers, K.L., Lund, J. 1992. A 

fully Sinc-Galerkin method for Euler-

Bernoulli beam models. Numerical 

Methods for Partial Differential 

Equations, 8 (2), 171-202. 

Subaşı, M., Şener, S.Ş., Saraç, Y. 2011. A 

procedure for the Galerkin Method 

for a vibrating system. Computers and 

Mathematics with Applications, 61, 

2854-2862. 

Şener, S.Ş., Saraç, Y., Subaşı, M. 2013. 

Weak solutions to hyperbolic 

problems with inhomogeneous 

Dirichlet and Neumann boundary 

conditions. Applied Mathematical 

Modelling, 37, 2623-2629. 

Younesian, D., Saadatnia, Z., Askari, H. 

2012. Analytical solutions for free 

oscillations of beams on nonlinear 

elastic foundations using the 

variational iteration method. Journal 

of Theoretical and Applied 

Mechanics, 50 (2), 639-652. 

Thankane, K.S., Stys, T. 2009. Finite 

difference method for beam equation 

with free ends using Mathematica. 

Southern Africa Journal of Pure and 

Applied Mathematics, 4, 61-78. 

 


