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Abstract 

 

Wagner constants are estimated from VLE predictions based solely on the critical and normal boiling points, and 

acentric factor.  The predictions come from the standard forms of 1) Riedel and 2) Ambrose-Walton, 3) a modified 

Riedel equation resulting from forcing the value of K to provide zero error at the reduced temperature of 0.7, and 4) 

a modified Ambrose-Walton equation resulting from using a pseudo acentric factor that provides zero error at the 

normal boiling point.  Reduced vapor pressure values obtained using these Wagner constants are compared to those 

generated by using literature-reported Wagner constants that are applicable for the entire two-phase VLE curve for 

72 species. It is shown that the Wagner equation parameterized using VLE predictions from such correlations can 
provide better accuracy than the underlying source correlations themselves, and it can exhibit less error than a 

parameterization using a limited interval of experimental data. 
 

Keywords: Vapor-liquid equilibrium; Wagner equation; Riedel equation; Ambrose-Walton equation. 

 

1. Introduction 

A primary goal of our ongoing research is to provide a 

practitioner with better approaches to predict entire-curve 

VLE for pure substances with as little required data as 

possible.  The Wagner equation is typically used to describe 

VLE over the entire two-phase region because it has been 

shown to be successful at accurately representing phase 

equilibrium along the entire co-existence curve for many 

substances [1]–[5].  The Wagner equation is generally not 

considered to be predictive because the constants are not 

known a priori; being unique for each substance, the four 

constants are usually determined by data-fitting algorithms. 

Several researchers have used limited data to estimate 

Wagner constants that were then used to extend VLE 

predictions in one direction, either interpolation upward to 

the critical point [6]–[9] or extrapolation downward to the 

triple point [3], [10]–[12]. Researchers have consistently 

found alcohols to be problematic and to respond differently 

than other species to their parameterization approaches. 

In his study of normal light hydrocarbons, Thodos [13] 

showed that pure species tend to have an elongated S-shaped 

curve when logarithmic vapor pressure is plotted versus the 

reciprocal thermodynamic temperature. The plot has 

curvature at low pressures, becomes more linear after the 

normal boiling point, and the plot undergoes a reversal of 

curvature at moderate pressures as the critical point is 

approached. Waring [14] defined the S-shaped curve in more 

exact mathematical form in terms of heat of vaporization and 

compressibility, noting that the upper inflection point usually 

occurred at a reduced temperature between 0.8 and 0.85, and 

recommended that the presence of this inflection point be 

used as a qualitative fit-of-form test for VLE predictive 

methods. 

A broader range for the location of the inflection point 

has subsequently been determined [7]. McGarry [8] used the 

inflection point as one of his three fitting constraints, 

attempted to correlate its location to the temperature of a 

species’ normal boiling point, and noted that species with a 

normal boiling point below 50 K did not exhibit the 

inflection point.  The presence of the inflection point is 

implicit in the Riedel equation [15], and the Ambrose-

Walton equation has good success at predicting its location 

[16]. 

Our work is focused on further exploring the ability of 

the Wagner equation to become predictive for the entire two-

phase region.  It has been shown that a single set of four VLE 

points of good precision from limited data can be used to 

estimate Wagner constants that can generally provide VLE 

predictions over the entire two-phase curve for pure 

substances with good accuracy [17]. 

The impact of data repeatability/reproducibility 

disagreement was subsequently investigated by using entire-

curve Wagner analytics for 55 species to represent the “best” 

values and Antoine analytics to represent single sets of 

limited-range experimental data [18].  The results led to 

several conclusions: 1) VLE data in the literature can deviate 

significantly from “best” values; 2) Wagner constants 

estimated from analytic values from another correlation of 

different form can have greater predictive power than that of 

the source correlation; 3) the fully-determined approach to 

estimate Wagner constants from Antoine analytics failed the 

qualitative Waring fit-of-form test for several species; and 4) 

Wagner constants estimated from Antoine analytics 

generally had superior predictive power for alcohols, the 

Riedel equation was best for organic acids, and the Ambrose-

Walton equation had least error for the remaining species 

(mostly normal, and a few polar). 
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Given the relative good performance of Riedel and 

Ambrose-Walton equations for species other than alcohols, 

their ability to satisfy the Waring fit-of-form test, and their 

functional form being different from that of the Wagner 

equation, the goal of this paper is to determine if Wagner 

constants estimated using predictions from the Riedel and 

Ambrose-Walton correlations can result in superior 

predictive power while also satisfying the qualitative Waring 

fit-of-form test. 

The results of using predicted VLE values from standard 

and modified versions of the Riedel and Ambrose-Walton 

equations to estimate Wagner constants are presented. The 

predictive error of these Wagner constants is compared first 

with that of the source equations and second with that of 

Wagner constants estimated from limited-range Antoine 

analytics.  For many species only the critical and normal 

boiling points and acentric factor are given in technical 

handbooks – thus, the benefit of using Riedel and Ambrose-

Walton as the source correlations.  This paper presents a new 

approach for using only these three known vapor pressure 

data points to predict VLE over the entire two-phase curve.  

The results presented here are relevant to the research of 

predictive correlation development and to engineers tasked 

with predicting VLE for a species when only these three data 

points are available.  

 

2. Approach 

Our approach has two notable elements.  First, a four-

point, fully-determined solution rather than a complex over-

determined solution is used.  That significant predictive 

success can arise from a relatively simple, algebraic 

parameterization of the Wagner equation has practical utility 

as it can potentially reduce computational burden.  Second is 

the hypothesis that the Wagner equation parameterized from 

VLE predictions can have better predictive error than the 

source correlations themselves, and that such 

parameterizations can provide less error than 

parameterizations using limited data intervals.  The concept 

of having source predictive correlations utilizing only a few 

experimental anchor points to provide pseudo data with 

which another predictive correlation is parameterized and 

applied to the entire two-phase curve proves to be insightful 

though appearing to be counter intuitive. 

The generally preferred form of the Wagner equation [5] 

is used in our work, 

𝐿𝑛 𝑃𝑣,𝑟 = (𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏2.5 + 𝑑𝜏5)/𝑇𝑟 (1) 

Ln refers to natural logarithm, P refers to pressure, and T 

represents thermodynamic temperature. The subscript v 

indicates the pressure corresponds to the vapor-liquid 

equilibrium curve, and r indicates that the parameter is 

reduced with respect to the critical point (i.e., Tr = T/Tc and 

Pv,r = Pv /Pc, where the subscript c refers to the critical point). 

The parameter τ equals 1-Tr. 

Wagner constants found in the literature that are 

applicable to the entire two-phase VLE curve are referred to 

here as “entire-curve” constants. Vapor pressures calculated 

from such entire-curve Wagner constants are referred to as 

“entire-curve analytic” data and are used as the reference 

standard, the “best” values, for error comparison. 

In the absence of an accurate vapor pressure 

data/correlation for a temperature interval of interest, it is 

recommend that the Riedel or Ambrose-Walton methods be 

used to predict VLE at low temperatures and a two-

reference-fluid or Riedel method for polar substances in the 

reduced temperature range 0.5-1.0 [5].  This provides 

additional support for using the Riedel and Ambrose-Walton 

equations as the sources of VLE predictions in our fully-

determined approach to estimate Wagner constants. 

The standard form of Ambrose-Walton used in this work 

is given by [5], [19] 

𝐿𝑛 𝑃𝑣,𝑟 = 𝑓(0) + 𝜔𝑓(1) + 𝜔2𝑓(2) (2) 

where 

𝑓(0) =
−5.97616𝜏+1.29874𝜏1.5−0.60394𝜏2.5−1.06841𝜏5

𝑇𝑟
 (2a) 

𝑓(1) =
−5.03365𝜏+1.11505𝜏1.5−5.41217𝜏2.5−7.46628𝜏5

𝑇𝑟
 (2b) 

𝑓(2) =
−0.64771𝜏+2.41539𝜏1.5−4.26979𝜏2.5+3.25259𝜏5

𝑇𝑟
 (2c) 

The standard Riedel equation has the normal boiling 

point as an anchor and is given by (as cited in Ref. [5]) 

𝐿𝑛 𝑃𝑣,𝑟 = 𝐴+ −
𝐵+

𝑇𝑟
+ 𝐶+ 𝐿𝑛𝑇𝑟 + 𝐷+ 𝑇𝑟

6 (3) 

where 

A+ = -35Q ;  B+ = -36Q;  C+ = 42Q + αc ;  

D+ = -Q (3a) 

Q = K (3.758 - αc) (3b) 

∝𝑐=  
3.758 𝐾 𝜓𝑏− 𝐿𝑛 𝑃𝑣,𝑟,𝑏

𝐾𝜓𝑏− 𝐿𝑛 𝑇𝑟,𝑏
 (3c) 

𝜓𝑏 = −35 +
36

𝑇𝑟,𝑏
+ 42 𝐿𝑛 𝑇𝑟.𝑏 − 𝑇𝑟,𝑏

6  (3d) 

The subscript b on ѱ indicates that the parameter is based 

on the reduced temperature of the normal boiling point.  K 

has the value of 0.0838, except for organic acids and 

alcohols, in which case the linear relationships of Vetere[2], 

[20] are used, 

K = -0.120 + 0.025 h (3e) 

and   

K = 0.373 - 0.030 h (3f) 

respectively, where   

ℎ = −𝑇𝑟,𝑏
𝐿𝑛 𝑃𝑣,𝑟,𝑏 

1−𝑇𝑟,𝑏
 (3g) 

The Wagner constants and physical properties of the 72 

species studied are given in Table 1. Although the dipole 

moment is not used as a mathematical input in our approach, 

it is included in the table to provide an estimate of polarity.   

The significant digits displayed in Table 1 are those given by 

the referenced sources. The group of 72 species studied in 

our work include 22 alcohols, 9 organic acids, 6 other polar 

species, and 35 normal substances (the quantum gases 

hydrogen and helium are included in the count of normal 

substances). 

Besides using their standard forms, a modified form of 

Riedel is created by forcing the value of K to provide zero 

error at the reduced temperature of 0.7, and a modified 

Ambrose-Walton is created by using a pseudo acentric factor 

that provides zero error at the normal boiling point. 

 

2.1 Modification of Riedel Equation 

The standard Riedel equation uses the normal boiling 

point as an anchor point, but any other saturation point can 
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become a secondary anchor by using it to back calculate the 

value of K. Inverting Eq. (3) and substituting Eqs. (3a) and 

(3b) for A+, B+, C+, D+, and Q gives a substance-specific 

relationship for K based upon an additional saturation point, 

𝐾 =
𝐿𝑛 𝑃𝑣,𝑟,𝑆𝐴−𝛼𝑐 𝐿𝑛 𝑇𝑟,𝑆𝐴

(3.758−𝛼𝑐)𝜓𝑆𝐴
 (4) 

The subscript “SA” has been added to indicate that a variable 

or parameter pertains to the secondary anchor point.  The 

parameter ψSA has the same functional form as that of ψb and 

is given by 

𝜓𝑆𝐴 = −35 +
36

𝑇𝑟,𝑆𝐴
+ 42 𝐿𝑛 𝑇𝑟,𝑆𝐴 − 𝑇𝑟,𝑆𝐴

6  (4a) 

The parameter αc is dependent upon K, so Eq. (3c) has to 

be substituted for αc into Eq. (4) to arrive at the final 

relationship for the substance-dependent K,  

𝐾 =
(𝐿𝑛 𝑃𝑣,𝑟,𝑏)(𝐿𝑛 𝑇𝑟,𝑆𝐴)−(𝐿𝑛 𝑃𝑣,𝑟,𝑆𝐴)(𝐿𝑛 𝑇𝑟,𝑏)

𝐾′  (4b) 

where the denominator in the above equation is given by 

𝐾′ = 3.758[(𝐿𝑛 𝑇𝑟,𝑆𝐴)𝜓𝑏 − (𝐿𝑛 𝑇𝑟,𝑏)𝜓𝑆𝐴] +

           (𝐿𝑛 𝑃𝑣,𝑟,𝑏)𝜓𝑆𝐴 − (𝐿𝑛 𝑃𝑣,𝑟,𝑆𝐴)𝜓𝑏 (4c) 

Using the reduced temperature of 0.7 for the secondary 

anchor point, Eq. (5) has the potential to result in a negative 

value for K because of round off error  if the normal boiling 

point reduced temperature is very close to 0.7 (only three 

significant digits right of the decimal point are used for the 

acentric factor). Such is the situation for one of the 72 

species, butanoic acid, where the difference between Tr,b and 

0.7 is only 0.00011, in which case the Vetere value of K 

given by Eq. (3e) is retained. 

The notation Riedel(ω), or the short hand R(ω), is used to 

represent using Eq. (4b) and the acentric factor to determine 

the value of K: the value calculated from Eq. (4b) is used if 

positive, and the Vetere value of K is used if the value 

calculated from Eq. (6) is negative, in which case the 

standard Riedel and R(ω) are equivalent. 

 

2.2 Modified Ambrose-Walton Equation 

Unlike the Riedel equation with its K parameter, the 

Ambrose-Walton relationship with its twelve coefficients 

doesn’t have a single parameter that can be methodically 

adjusted to provide an additional universal anchor point.  We 

choose to swap the normal boiling point with the reduced 

temperature of 0.7 as the anchor point.  The anchor point can 

be changed by simply using the acentric factor estimated 

from the normal boiling point. The Ambrose-Walton is 

quadratic in the acentric factor; thus, the acentric factor can 

be estimated from any saturation point by 

𝜔 =
−𝑓(1)±√(𝑓(1))

2
−4𝑓(2)(𝑓(0)−𝐿𝑛 𝑃𝑣,𝑟)

2𝑓(2)  (5) 

Using the normal boiling point, values calculated from 

Eq. (5) using the negative square root in the numerator were 

compared with the acentric factor values given in Ref. [5] for 

313 species. The produced acentric values have an average 

absolute deviation of 0.004, with 10 species having a 

deviation greater than 0.02.  The notation Ambrose-

Walton(Tb), or the short hand A-W(Tb), is used to represent 

using in Eq. (2) the value of the acentric factor given by Eq. 

(5) using the normal boiling point and the negative square 

root.  Although Ref. [5] notes that for most species the ω2 

term in the Ambrose-Walton equation is negligible when 

using it to estimate the acentric factor from the normal 

boiling point vapor pressure, we choose to use the quadratic 

because it is easy to calculate and it removes any potential 

error arising from a linear estimate. 

 

2.3 Algebraic Solution to Wagner Equation for Fully-

Determined Case 

Given that the Wagner equation has four parameters, an 

algebraic solution for each parameter can be obtained with 

only four points.  The resulting Fw,j function to estimate 

Wagner constants from four data points (i.e., the fully-

determined case) is given by  

𝐹𝑤,𝑗 = 𝜂𝑗1𝐿𝑛 𝑃𝑣,𝑟,𝑇𝑟1
 + 𝜂𝑗2𝐿𝑛 𝑃𝑣,𝑟,𝑇𝑟2

 +

             𝜂𝑗3𝐿𝑛 𝑃𝑣,𝑟,𝑇𝑟3
 + 𝜂𝑗4𝐿𝑛 𝑃𝑣,𝑟,𝑇𝑟4

 (6) 

The subscript j refers to the Wagner constant (a, b, c, or 

d). The reduced temperature subscript on Ln Pv,r and the 

value of the “i” subscript in the ηji terms indicate the 

corresponding data point of the four selected VLE data.  The 

only arguments of the universal Fw,j functions are a 

substance’s four Ln Pv,r values.  The sixteen ηji coefficients 

(4 for each of the 4 Wagner constants) are functions only of 

the four reduced temperatures and are the same for all species 

for any chosen set of four reduced temperatures.  The 

algebraic definitions of the ηji terms have been given 

elsewhere [17]. 

 

3. Discussion 

3.1 Hypothesized Performance of Modified Correlations 

Relative to Standard Forms 

It is hypothesized that the different anchor point in the 

modified forms will improve the predictive accuracy on the 

part of the two-phase VLE curve in which the new anchor 

point resides. With a second anchor point at the reduced 

temperature of 0.7, Riedel(ω) is expected to perform better 

than the standard Riedel below the normal boiling point for 

the case when Tr,b > 0.7 and above the normal boiling point 

when Tr,b < 0.7. Alternatively, with the acentric factor 

defined by the normal boiling point, A-W(Tb) is expected to 

perform better than the standard Ambrose-Walton below the 

normal boiling point for the case when Tr,b < 0.7 because the 

anchor point is lower down the VLE curve than is the 

reduced temperature 0.7. Similarly, A-W(Tb) is expected to 

perform better than the standard Ambrose-Walton above the 

normal boiling point for the case when Tr,b > 0.7 because the 

anchor point is higher up the VLE curve than is the reduced 

temperature 0.7. The expected relative performance is 

summarized in Table 2. There is no hypothesized relative 

predictive accuracy for the part of the two-phase VLE curve 

in which the anchor point does not reside; thus, the blank 

cells in Table 2. 
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Table 1.  Wagner Constants and Physical Properties. 

 Wagner Constants Physical Properties 

Species a b c d Tf (K) Tb (K) Tc (K) Pc (bar) ω 
µ 

(Debye) 

2-Methyl propanoic acid (C4H8O2) -8.53258 1.30605 -5.2242 -2.05813 227.05 427.57 605.00 37.00 0.618 1.3 

3-Methyl butanoic acid (C5H10O2) -8.67381 1.62939 -6.51756 -2.08757 243.85 449.68 629.00 34.00 0.651  

Acetic Acid (C2H4O2) -8.29430 0.97928 -0.21745 -5.72367 289.77 391.04 592.71 57.86 0.459 1.3 

Butanoic acid (C4H8O2) -8.42953 1.34333 -5.37332 -2.74438 267.97 436.87 624.00 40.30 0.600 1.5 

Decanoic acid (C10H20O2) -9.07060 2.77535 -11.1014 -2.43545 305.15 541.92 726.00 22.30 0.749  

Formic acid (CH2O2) -7.24917 0.44255 -0.35558 -0.96906 281.50 374.04 588.00 58.07 0.316 1.5 

Octanoic acid (C8H16O2) -9.04015 2.16529 -8.66117 -4.69516 289.45 512.01 695.00 26.40 0.734  

Pentanoic acid (C5H10O2) -8.76701 1.54990 -6.19961 -4.21927 239.45 459.31 643.00 35.80 0.670  

Propanoic acid (C3H6O2) -8.14882 0.79590 -3.1836 -3.81338 252.31 414.31 604.00 45.30 0.539 1.5 

1-Butanol (C4H10O) -8.40615 2.23010 -8.2486 -0.7110 183.35 390.88 563.05 44.24 0.591 1.8 

1-Decanol (C10H22O) -9.75478 4.18634 -7.0572 -15.980 280.05 504.25 689.00 24.10 0.629 1.8 

1-Dodecanol (C12H26O) -9.91901 3.61884 -5.8537 -18.204 297.1 537.79 720.00 20.80 0.684  

1-Eicosanol (C20H42O) -11.23154 3.66900 -7.0775 -14.321 339.00 647.69 809.00 13.00 0.954  

1-Heptadecanol (C17H36O) -10.73125 3.55515 -6.3591 -15.696 327.00 611.12 780.00 15.00 0.853  

1-Heptanol (C7H16O) -9.68778 5.35716 -10.1672 -8.0100 239.20 449.81 632.50 31.35 0.580 1.7 

1-Hexadecanol (C16H34O) -10.54087 3.47260 -6.0770 -15.939 322.45 597.53 770.00 16.10 0.818  

1-Hexanol (C6H14O) -9.49034 5.13288 -10.5817 -5.1540 229.20 430.44 610.70 34.70 0.575 1.8 

1-Nonanol (C9H20O) -9.91542 5.13670 -8.8075 -12.497 268.15 486.52 671.50 26.30 0.610 1.7 

1-Octadecanol (C18H38O) -10.91637 3.57835 -6.6199 -15.060 331.00 623.57 790.00 14.40 0.892  

1-Octanol (C8H18O) -10.01437 5.90629 -10.4026 -9.0480 257.65 468.33 652.50 28.60 0.594 2.0 

1-Pentanol (C5H12O) -8.98005 3.91624 -9.9081 -2.1910 194.25 411.16 588.15 39.09 0.579 1.7 

2-Butanol (C4H10O) -8.09820 1.64406 -7.4900 -5.27355 158.5 372.66 536.01 41.98 0.577 1.7 

2-Ethyl-1-hexanol (C8H18O) -9.61812 5.17861 -9.1144 -11.004 203.20 457.77 640.50 27.99 0.558 1.8 

2-Octanol (C8H18O) -9.37352 4.73760 -8.3382 -11.646 241.15 453.03 638.00 28.90 0.534 1.6 

Benzyl alcohol (C7H8O)  -7.29099 1.17084 -4.7167 -5.5300 257.80 478.46 715.00 43.00 0.390 1.7 

Cyclohexanol (C6H12O) -7.12838 1.40189 -5.60756 -9.57158 297.65 433.94 650.00 42.60 0.370 1.7 

Ethanol (C2H6O) -8.68587 1.17831 -4.8762 1.5880 159.05 351.80 513.92 61.32 0.643 1.7 

Isopropyl alcohol (C3H8O) -8.73656 2.16240 -8.70785 4.77927 183.65 355.39 508.30 47.62 0.665 1.7 

Methanol (CH4O) -8.63571 1.17982 -2.4790 -1.0240 175.49 337.69 512.64 80.92 0.564 1.7 

Propanol (C3H8O) -8.53706 1.96214 -7.6918 2.9450 147.00 370.93 536.78 51.68 0.620 1.7 

Tert-butanol (C4H10O) -8.47927 2.47845 -9.27918 -2.53992 298.55 355.49 506.20 39.73 0.613 1.7 

Acetone (C3H6O) -7.55098 1.60784 -1.9944 -3.2002 178.50 329.22 508.10 47.02 0.307 2.9 

Cyclopentanone (C5H8O) -7.36589 1.54092 -2.28143 -3.0514 222.5 403.72 624.50 46.00 0.288 3.0 

Methyl isobutyl ketone (C6H12O) -7.70040 1.69968 -2.80448 -3.81623 189.15 389.15 574.60 32.70 0.351 2.8 

Benzene (C6H6) -7.01433 1.55256 -1.8479 -3.7130 278.68 353.24 562.16 48.98 0.209 0.0 

Ethylbenzene (C8H10) -7.53139 1.75439 -2.42012 -3.57146 178.18 409.36 617.20 36.00 0.302 0.4 

Naphthalene (C10H8) -7.61444 1.91553 -2.5075 -3.2300 351.35 491.16 748.40 40.50 0.304 0.0 

Toluene (C7H8) -7.31600 1.59425 -1.93165 -3.72220 178.16 383.79 591.80 41.06 0.264 0.4 

Pentafluorobenzene (C6HF5) -7.86799 1.71659 -2.53582 -4.59937 225.85 358.89 530.97 35.37 0.374  

Pentafluorotoluene (C7H3F5) -8.08717 1.76131 -2.72838 -4.13797 243.35 390.65 566.52 31.24 0.415  

m-Xylene (C8H10) -7.67717 1.80240 -2.47745 -3.66068 225.28 412.34 617.05 35.38 0.326 0.3 

o-Xylene (C8H10) -7.60491 1.75383 -2.27531 -3.73771 247.97 417.59 630.33 37.35 0.312 0.5 

p-Xylene (C8H10) -7.71694 1.89119 -2.39695 -3.63026 286.41 411.53 616.23 35.16 0.322 0.1 

Acetic  Anhydride (C4H6O3) -8.35130 1.89050 -2.8357 -5.1156 199.00 412.69 606.00 40.00 0.456 3.0 

Butane (C4H10) -7.01763 1.67770 -1.9739 -2.1720 134.79 272.66 425.25 37.92 0.199 0.0 

Diethyl ether (C4H10O) -7.43301 1.78847 -2.4793 -3.2811 156.86 307.59 466.74 36.50 0.282 1.3 

Decane (C10H22) -8.60643 2.44659 -4.2925 -3.9080 243.49 447.30 617.65 21.05 0.490 0.0 

Dodecane (C12H26) -9.08593 2.77846 -5.1985 -4.1730 263.57 489.48 658.00 18.20 0.573 0.0 
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 Wagner Constants Physical Properties 

Species a b c d Tf (K) Tb (K) Tc (K) Pc (bar) ω 
µ 

(Debye) 

Eicosane (C20H42) -10.97958 4.25588 -8.9573 -5.0430 309.95 616.84 769.00 11.60 0.891   

Ethane (C2H6) -6.47500 1.41071 -1.1440 -1.8590 90.35 184.55 305.33 48.71 0.099 0.0 

Heptadecane (C17H36) -10.23600 3.54177 -7.1898 -5.0000 295.13 574.56 735.00 13.70 0.772 0.0 

n-Heptane (C7H16) -7.77404 1.85614 -2.8298 -3.5070 182.59 371.57 540.15 27.35 0.350 0.0 

Hexadecane (C16H34) -10.03664 3.41426 -6.8627 -4.8630 291.32 559.98 722.00 14.35 0.737 0.0 

n-Hexane (C6H14) -7.53998 1.83759 -2.5438 -3.1630 177.84 341.88 507.90 30.35 0.299 0.0 

Methane (CH4) -6.02242 1.26652 -0.5707 -1.366 90.69 111.66 190.55 45.99 0.011 0.0 

Nonadecane (C19H40) -10.68217 3.98054 -8.3030 -4.9950 305.25 602.34 758.00 12.30 0.844  

Nonane (C9H20) -8.32886 2.25707 -3.8257 -3.7320 219.66 423.97 594.90 22.90 0.443 0.0 

Octadecane (C18H38) -10.47230 3.69655 -7.5779 -5.1090 301.32 588.30 746.00 13.00 0.812 0.0 

Octane (C8H18) -8.04937 2.03865 -3.3120 -3.6480 216.39 398.82 568.95 24.90 0.397 0.0 

Pentadecane (C15H32) -9.80239 3.29217 -6.5317 -4.5840 283.08 543.83 708.00 15.15 0.696 0.0 

n-Pentane (C5H12) -7.30698 1.75845 -2.1629 -2.9130 143.43 309.22 469.80 33.75 0.251 0.0 

Propane (C3H8) -6.76368 1.55481 -1.5872 -2.024 85.47 231.02 369.83 42.48 0.152 0.0 

R152a (C2H4F2) -7.433439 1.755544 -2.169951 -2.774693 156.15 249.10 386.41 45.17 0.275 2.3 

n-Tetradecane (C14H30) -9.54470 3.06637 -6.0070 -4.5300 279.01 526.76 693.00 16.10 0.654 0.0 

Tridecane (C13H28) -9.32959 2.89925 -5.5550 -4.4700 267.76 508.63 676.00 17.10 0.618 0.0 

Undecane (C11H24) -8.85076 2.60205 -4.7305 -4.0810 247.57 469.08 638.85 19.55 0.533 0.0 

Argon (Ar) -5.926538 1.208266 -0.509886 -1.590893 83.80 87.27 150.69 48.63 -0.002  

Nitrogen (N2) -6.11102 1.2189 -0.69366 -1.89893 63.15 77.35 126.20 34.00 0.037 0.0 

Ammonia (NH3) -7.28322 1.5716 -1.85672 -2.39312 195.41 239.82 405.50 113.53 0.256 1.5 

Water (H2O) -7.861942 1.879246 -2.266807 -2.128615 273.15 373.14 647.10 220.64 0.344 1.8 

Helium (He normal) -4.265233 1.571259 0.479795 0.751271 2.15 4.24 5.20 2.27 -0.382  

Hydrogen (H2 normal) -4.902616 1.065004 0.737305 0.053125 13.56 20.37 33.15 12.96 -0.219  

 

All Wagner constants are from Ref. [5], except for helium, hydrogen, argon, water, and R152a, which are from Ref. [17].  All dipole moments and normal fusion 

points are from Ref. [5].  All critical points are from Ref. [5], except for helium, hydrogen, argon, water, and R152a, which are from NIST [21].  The normal 

boiling point temperature (Tb) and the acentric factor (ω) are calculated from the entire-curve Wagner constants; thus, the values of the anchor points of the 
Riedel and Ambrose-Walton equations are consistent for each species with the corresponding entire-curve Wagner constants. 

 

Table 2.  Hypothesized Performance Comparison of Modified Correlations vs. Standard Counterparts. 

Tr,b vs. 0.7 
Tr < Tr,b Tr > Tr,b 

R vs. R(ω) A-W vs. A-W(Tb) R vs. R(ω) A-W vs. A-W(Tb) 

Tr,b >0.7 R(ω) ----- ----- A-W(Tb) 

Tr,b<0.7 ---- A-W(Tb) R(ω) ---- 

R = standard Riedel 

R(ω) = modified Riedel, Riedel(ω) 

A-W = standard Ambrose-Walton 

A-W(Tb) = modified Ambrose-Walton, Ambrose-Walton(Tb) 

3.2 Determining Best Correlation for Below and Above 

the Normal Boiling Point 

A summary of the comparison of the predictive error of 

the standard Riedel and Ambrose-Walton equations and their 

modified forms at the normal fusion point is shown in Table 

3.  The absolute percent error (A%Err), given by 100 * | (Pv,r 

reference – Pv,r predicted) / Pv,r reference | where the 

reference value is represented by the entire-curve Wagner 

analytic. The average errors for each substance subset is 

shown for each correlation in the table.  The correlation with 

the average least error when the standard Riedel and 

Ambrose-Walton go head-to-head is indicated, and that with 

the least average error of all four correlations is also 

indicated (“All Four” column). 

Comparing all four correlations to each other, Table 3 

shows that R(ω) results in lowest error for organic acids, 

Riedel for alcohols, Ambrose-Walton for “Others” with Tr,b 

> 0.7, and A-W(Tb) for “Others” with Tr,b < 0.7. The “All 

Four” entries that match the hypotheses are in italic font, 

those contradicting a hypothesis are shaded in gray, and the 

cells with normal font and no shading are cases for which 

there are no expectations.  It is seen that when averaged over 

each substance type, the modified Riedel does meet 

expectations for organic acids - Riedel outperformed 

Ambrose-Walton, and R(ω) has the least error of all 

correlations.  However, R(ω) does not meet expectations for 

alcohols with Tr,b > 0.7; it does not have the least error of all 

four correlations despite Riedel outperforming Ambrose-

Walton.  A-W(Tb) met expectations because it  
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Table 3.  Summary of Comparison of Standard and Modified Riedel and Ambrose-Walton Equations: A%Err @ Tr,f  

Relative to Entire-Curve Wagner Analytics. 

 
Average A%Err Least A%Err 

R R(ω) A-W A-W(Tb) R vs. A-W All Four 1 

Acids (9) 

Tr,b > 0.7 (6) 41.02 23.71 107.57 152.19 R R(ω) 

Tr,b < 0.7 (3) 12.28 5.33 27.29 23.25 R R(ω) 

Alcohols (22) 

Tr,b > 0.7 (13) 289.21 572.54 1,827.82 1,989.41 R R 

Tr,b < 0.7 (9) 71.99 310.04 680.22 639.65 R R 

"Others" (41) 

Tr,b > 0.7 (14) 28.81 44.91 3.59 4.03 A-W A-W 

Tr,b < 0.7 (27) 18.59 44.98 8.22 7.17 A-W A-W(Tb) 

Normal (21) 17.99 49.78 5.17 4.85 A-W A-W(Tb) 

Polar (6) 20.69 28.18 18.93 15.13 A-W A-W(Tb) 

R = Riedel; R(ω) = Riedel(ω); A-W = Ambrose-Walton; and A-W(Tb) = Ambrose-Walton(Tb). 
1 Those that match the hypotheses are in italic font, those contradicting a hypothesis are shaded in gray, 

and cells with normal font and no shading are cases for which there are no expectations. 

both has the least error for all species where Tr,b < 0.7 and the 

standard Ambrose-Walton performs better than Riedel. 

Organic acids with Tr,b < 0.7 is one cell having no 

expectations, for which R(ω) has the least average predictive 

error.  Restricting the comparison to just modified vs. 
standard forms, one can see that the R(ω) correlation has 

better predictive power than the standard Riedel only for 

organic acids.  The A-W(Tb), however, is superior to its 

standard counterpart for all substance types with Tr,b < 0.7. 

Table 4 summarizes the results for the equally-weighted 

average absolute percent errors for the parts of the two-phase 

VLE curve, both below and above the normal boiling point.  

The average for a subset shown in Table 4 is not the average 

of all the corresponding species’ averages in that subset, but 

rather it is the sum of the individual A%Err values for the 

VLE points of all species in that subset divided by the 

number of total points in the subset.  This is done because the 

number of points above and below the normal boiling point 

varies for each species given that the value of the normal 

boiling point temperature varies.  The normal boiling point 

itself is not included in either of the two temperature 

segments. 

The correlation that has the least predictive error for each 

substance subset is shown in the “All Four” column, 

segregated further by location of the normal boiling point.  

The normal fusion point generally has the largest error along 

the entire two-phase curve, thus, it tends to dominate when 

included in averages of equally-weighted points.  This 

evident by the fact that the “All Four” entries for the Tr <Tr,b 

segment are the same as those for the single normal fusion 

point shown in Table 3, except that the standard Riedel is 

superior to the standard Ambrose-Walton in their head-to-

head competition for the 6 polar “Others” when Tr,b < 0.7. 

There are no polar “Others” with Tr,b > 0.7 for comparison in 

our sample pool of 72 species. 

Only one subset of species has results contrary to the 

hypothesized relative performance - alcohols with Tr,b > 0.7, 

which cells are shaded in gray; R(ω) is expected to be best 

performer of “All Four” below the normal boiling point, and 

A-W(Tb) above.  The “All Four” entries of the other subsets 

are consistent with the expectations and are shown in italic 

font.  The subsets for which there were no expectations are 

shown in normal font without shading.  Note that R(ω) has 

the least predictive error for the Tr > Tr,b segment for all 

substance subsets except “Others” with Tr,b > 0.7. 

Because the error at low temperatures tend to dominate 
the entire-curve statistics when points are equally weighted, 

the entries in the “All Four” column for the Tr <Tr,b segment 

also apply to the entire curve, i.e., the correlation that has the 

least error for a species subset at the low-temperature end of 

the curve ends up also having the least error in aggregate over 

the entire curve when the four correlations are compared 

head-to-head. The Fw,j function, however, will be shown to 

provide a method to combine the best correlations below and 

above the normal boiling point to reduce the average error 

over the entire two-phase curve. 

The results shown in Table 4 suggest ways to combine 

the correlations via the Fw,j function: 

1) R(ω) appears to be best for the entire two-phase co-

existence curve for organic acids, and yet there is still 

significant predictive error, so  four R(ω) points are used to 

estimate Wagner constants to assess whether or not the Fw,j 

function can improve upon the R(ω) correlation. The Wagner 

constants estimated by Eq. (6) from such combinations are 

denoted by Fw,j[R(ω)]. 

2) It is hypothesized that the predictive error over the 

entire curve for alcohols can be decreased by combining 

Riedel points below the normal boiling point with R(ω) 

points above the normal boiling point, and the Wagner 

constants estimated by Eq. (6) from such combinations are 

denoted by Fw,j[R|R(ω)]. 

3) The standard Ambrose-Walton cannot be out-

performed in aggregate for “Others” with Tr,b > 0.7 either 

below or above the normal boiling point,  and the average 

errors are sufficiently small such that only minimal benefit 

could potentially be achieved by Fw,j functions based on 

vapor pressure predictions of the Ambrose-Walton.  Thus, 

this subset of species is not targeted by Fw,j functions. 

4) And lastly, it is hypothesized that error can be reduced 

for “Others” with Tr,b<0.7 by using A-W(Tb) points below 

the normal boiling point and R(ω) points above, and the 
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equations for the estimated Wagner constants for such 

combinations are denoted by Fw,j[A-W(Tb)|R(ω)]. 

Three different point distributions are used.  Because of 

the general characteristics of the S shape of the log Pv vs. 1/T 

curve, we try to capture the best predictions from both below 

and above the normal boiling point.  A reduced temperature 

≥0.9 is included to try to incorporate the region around the 

upper inflection point.  The vapor pressure at the reduced 

temperature of 0.6 has been shown to significantly increase 

the prediction of VLE and other thermodynamic properties  

for polar fluids when combined with the acentric factor [22]–

[24].  The predictive error of the four correlations involved 

generally increases as the saturation temperature decreases, 

with the error increasing significantly at reduced 

temperatures lower than 0.6.  Although the predictions of the 

four correlations being used are not what would be 

considered good precision compared to actual data, the four 

saturation points at the reduced temperatures of 0.6, 0.7, 0.8, 

and 0.9 are initially chosen for use in the Fw,j function 

because it represents an interval of decent width and located 

in the part of the VLE curve with the least predictive error by 

the four correlations.  The superscript “(1)” is used to 

indicate this point distribution for Fw,j functions comprised 

of points from two correlations. 

However, that set of points can exclude the standard 

Riedel and A-W(Tb) being used if the normal boiling point’s 

reduced temperature is less than 0.6.  Consequently, the set 

of reduced temperatures 0.3, 0.6, 0.7, and 0.95 are used to 

extend the interval below any reasonable normal boiling 

point and extend the interval further upward into the area of 

the upper inflection point.  The reduced temperatures of 0.6 

and 0.7 are chosen to help establish the middle of the VLE 

curve with accurate data since standard Riedel and A-W(Tb) 

have the normal boiling point as an anchor and R(ω) has the 

acentric factor as an additional anchor.  The superscript “(2)” 

is used to indicate this point distribution 

The third set of points include the reduced temperatures 

0.2, Tr,b, 0.7, and 0.95.  The low end of the interval is lowered 

to 0.2 to account for those species where the below-Tb 

correlation is accurate, and the normal boiling point is used 

to enforce zero error at this known point, thereby providing 

good representation for the below-Tb segment of the two-

phase VLE curve for such species.  The normal boiling point 

pressure, 1.01325 bars, is used for Tr,b.  The superscript “(3)” 

is used to indicate this point distribution. 

The temperature of the triple point (or normal fusion 

point) is not always known, thus, the lowest reduced 

temperature of the four-point distributions used is fixed 

rather than being tied to a species-dependent lower bound.  

Additional implementation specifics are given below for 

some Fw,j functions.  

 

3.2.1 Fw,j[R(ω)] 

R(ω) predictions at the four reduced temperatures of 0.6, 

0.7, 0.8, and 0.9 are used with this function. 

 

3.2.2 Fw,j
(3)[R|R(ω)] 

The reduced vapor pressure at Tr=0.7 is from R(ω) since 

it should be accurate at that reduced temperature and be 

consistent with the Riedel value for Tr = 0.2 given that both 

correlations have the normal boiling point as an anchor and 

both have similar functional form. 

 

3.2.3 Fw,j
(3)[A-W(Tb)|R(ω)] 

Unlike for Fw,j
(3)[R|R(ω)], the vapor pressure for Tr = 0.7 

in Fw,j
(3)[A-W(Tb)|R(ω)] is calculated using the A-W(Tb) if 

0.7 is below the normal boiling point reduced temperature 

and R(ω) if it is above because R(ω) and A-W(Tb) do not 

share a similar functional form. 

The point distributions for the three fully-determined 

cases used in this study to calculate Wagner constants from 

the seven Fw,j functions are summarized in Table 5. 

 

 

Table 4.  Summary of Comparison of Standard and Modified Riedel and Ambrose-Walton Equations: A%Err for Below & 

Above Tb Relative to Entire-Curve Wagner Analytics. 

Species 

 

Average A% Error 

Tr < Tr,b Tr > Tr,b 

R R(ω) A-W A-W(Tb) 

Least 

R R(ω) A-W A-W(Tb) 

Least 

R vs. 

A-W All Four 

R vs. 

A-W 

All Four 
1 

Organic Acids (9) 

Tr,b > 0.7 (6) 14.62 8.39 36.18 50.39 R R(ω) 1.22 0.85 4.20 3.34 R R(ω) 

Tr,b < 0.7 (3) 6.29 1.95 11.98 9.17 R R(ω) 1.88 0.85 1.49 2.27 A-W R(ω) 

Alcohols (22) 

Tr,b > 0.7 (13) 58.83 106.00 298.48 322.45 R R 2.27 1.30 1.70 1.37 A-W R(ω) 
Tr,b < 0.7 (9) 30.94 63.82 157.80 148.69 R R 1.99 1.59 3.64 4.17 R R(ω) 

"Others" (41) 

Tr,b > 0.7 (14) 9.95 9.63 1.02 1.20 A-W A-W 0.27 0.29 0.04 0.03 A-W A-W(Tb) 

Tr,b < 0.7 (27) 5.51 12.55 3.41 2.76 A-W A-W(Tb) 0.73 0.15 0.25 0.39 A-W R(ω) 

Normal (21) 5.08 13.83 2.17 1.93 A-W A-W(Tb) 0.55 0.15 0.17 0.24 A-W R(ω) 
Polar (6) 7.07 7.82 8.03 5.84 R A-W(Tb) 1.35 0.15 0.52 0.88 A-W R(ω) 

R = standard Riedel; R(ω) = Riedel(ω); A-W = standard Ambrose-Walton; and A-W(Tb) = Ambrose-Walton(Tb). 
1 Those that match the hypotheses are in italic font, those contradicting a hypothesis are shaded in gray, and cells with normal font and no shading are 

cases for which there are no expectations. 
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Table 5.   Point Distributions and ηji Values for the Three Fully-Determined Cases Used. 

(a) Tr = 0.6, 0.7, 0.8, 0.9 (b) Tr = 0.3, 0.6, 0.7, 0.95 

Fw,j
 Function 

Pv,r Correlation 

Fw,j
 Function 

Pv,r Correlation 

Tr < Tr,b Tr > Tr,b 
Tr < Tr,b Tr > Tr,b 

Fw,j[R(ω)] R(ω) R(ω) 

Fw,j
(1)[R|R(ω)] R R(ω) Fw,j

(2)[R|R(ω)] R R(ω) 

Fw,j
(1)[A-W(Tb)|R(ω)] A-W(Tb) R(ω) Fw,j

(2)[A-W(Tb)|R(ω)] A-W(Tb) R(ω) 

                    ηji Values                   ηji Values 

ηa1 -3.0648585 ηa1 -0.0773462 

ηa2 21.0364707 ηa2 4.4993457 

ηa3 -53.6598599 ηa3 -9.6419666 

ηa4 66.9831631 ηa4 43.9504566 

ηb1 13.1164427 ηb1 0.3961452 

ηb2 -88.4498187 ηb2 -22.6938397 

ηb3 214.071988 ηb3 47.6499234 

ηb4 -219.1970428 ηb4 -118.1136539 

ηc1 -34.8740634 ηc1 -1.0066326 

ηc2 221.8890227 ηc2 51.4795436 

ηc3 -447.742097 ηc3 -90.6479963 

ηc4 360.8064394 ηc4 130.6868447 

ηd1 198.8988093 ηd1 3.1821126 

ηd2 -829.2917811 ηd2 -65.2308649 

ηd3 1232.016927 ηd3 95.2281085 

ηd4 -766.7340723 ηd4 -90.2449189 

 

(c) Tr = 0.2, Tr,b, 0.7, 0.95 

Fw,j
 Function 

Pv,r Correlation 

0.2 Tr,b 0.7 0.95 

Fw,j
(3)[R|R(ω)] R 1.01325/Pc R(ω) R(ω) 

Fw,j
(3)[A-W(Tb)|R(ω)] A-W(Tb) 1.01325/Pc A-W(Tb) for 0.7 < Tr,b 

R(ω) for 0.7 > Tr,b 

R(ω) 

ηji Values are species-specific  

The ηji values are shown for cases (a) and (b) because they apply to every species.  The ηji values for 

case (c), however, are species-dependent because the normal boiling point is one of the four points.  The 

algebraic equations for the ηji parameters, which are dependent only upon the chosen four reduced 

temperatures, can be found in Ref. [25]. 

 

The ηji values in Table 5 are shown with seven significant 

digits right of the decimal point to allow for rounding off of 

calculated Wagner constants to six digits right of the decimal 

point.  The well-established value of 1.01325 bar is used for 

the atmospheric pressure for the normal boiling point.  

Reduced temperatures used as inputs to the calculations are 

rounded off to five significant digits; however, hanging zeros 

are dropped from reduced temperature values in the tables.  

More explanation of the round off used in calculations is 

provided in Ref. [18]. 

 

4. Results 

When discussing statistics for predicted VLE points, the 

“All Trs” term is used here to indicate the entire two-phase 

curve, including the normal boiling point.  The error at the 

normal boiling point will not always be zero because not all 

of the correlations and functions have the normal boiling 

point as an anchor.  The results of the various Fw,j functions 

are summarized in Table 6 for “All Trs.”  The cell of the 

function having the least average error for a substance subset 

is shaded in gray.  The type of Fw,j function suggested by the 

correlations that have the least subset errors of the below-Tb 

and above-Tb curve segments (see Table 4) are also indicated 

for the species subset. A comparison indicates that some Fw,j 

functions with the least subset error are not consistent with 

those suggested from the results shown in Table 4.  For 

example, Fw,j
(3)[R|R(ω)] has the minimum average error for 

organic acids rather than Fw,j[R(ω)], and Fw,j[R(ω)] has less 

error than the Fw,j [A-W(Tb)|R(ω)] functions for polar 

“Others” with Tr,b < 0.7.  On the other hand, consistent with 

the results in Table 4 are the Fw,j[R|R(ω)] functions having 

the least average error for alcohols and the Fw,j
(3)[A-

W(Tb)|R(ω)] function having the minimum average error for 

the twenty-seven “Others” and the twenty-one normal 

“Others” with Tr,b < 0.7. 

Not surprisingly, the Fw,j [R(ω)] and Fw,j [R|R(ω)] 

functions perform best for polar species while Fw,j[A-

W(Tb)|R(ω)] functions have the advantage with normal 

species.  As mentioned previously, no attempt is made to 

design an Fw,j function to outperform the Ambrose-Walton 

correlation for normal species that have Tr,b > 0.7, but the Fw,j 

function with the least error for this subset is indicated by 

gray shading in Table 6 for completeness sake. 

 

4.1 Minimum Possible Entire-Curve Average Error & 

Levels of Success 

The minimum possible entire-curve total A%Err for a 

given species using the four correlations is the minimum 

error below the normal boiling point summed with that  
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Table 6. Summary of Comparison of Average A%Err of Fw,j Functions for Entire Two-Phase Curve (“All Trs”). 

Species 

Average A% Err for Entire Curve 

Fw,j[R(ω)] 

Fw,j
(1) 

[R|R(ω)] 

Fw,j
(2) 

[R|R(ω)] 

Fw,j
(3) 

[R|R(ω)] 

Fw,j
(1) 

[A-W(Tb)|R(ω)] 

Fw,j
(2) 

 [A-W(Tb)|R(ω)] 

Fw,j
(3) 

 [A-W(Tb)|R(ω)] 

Acids (9) : *Fw,j[R(ω)] 

Tr,b > 0.7 (6) 6.97 13.18 8.72 4.33 120.69 31.02 4,384.25 

Tr,b < 0.7 (3) 1.82 4.80 2.76 0.96 4.21 3.95 2.50 

Alcohols (22) : *Fw,j[R|R(ω)] 

Tr,b > 0.7 (13) 47.43 20.46 35.72 44.70 28,204.41 196.96 225.95 

Tr,b < 0.7 (9) 28.03 23.45 17.24 18.95 8,108,568.90 81.53 40.72 

"Others" (41) 

Tr,b > 0.7 (14) 3.565 3.55 4.09 6.58 2.37 0.94 2.28 

Tr,b < 0.7 (27) :*Fw,j[A-W(Tb)|R(ω)] 1.85 5.02 2.42 3.49 2.86 1.23 0.97 

      Normal (21): * Fw,j[A-W(Tb)|R(ω)] 2.11 5.52 2.35 3.76 2.36 0.94 0.86 

      Polar (6): * Fw,j[A-W(Tb)|R(ω)] 0.93 3.27 2.66 2.55 4.61 2.26 1.36 

*Indicates the type of Fw,j function suggested by Table 4. 

 
above the normal boiling point.  This total “All Trs” error is 

then divided by the number of calculated points plus 1 to 

arrive at the minimum possible average A%Err for the entire 

VLE curve.  A detailed description of the concept of 

minimum possible error and its values for the 72 species 

studied can be found in Ref. [25]. 

The minimum possible average error for a species is the 

best that can be obtained using any combination of the four 

correlations for the two temperature segments Tr < Tr,b and Tr  

> Tr,b.  This minimum possible error is the most stringent test 

because the final Wagner constants chosen for a species 

would have to blend well the functional form of  the best 

correlation for the Tr < Tr,b  segment with that of the best 

correlation for  the Tr < Tr,b segment, while accurately 

predicting the normal boiling point pressure.  A less stringent 

test is having an entire-curve average A%Err less than all of 

the four correlations.  The least stringent test is having an 

entire-curve average A%Err less than just the Riedel and 

Ambrose-Walton equations.  A set of Wagner constants that 

can predict better than or equal to the standard Riedel and 

Ambrose-Walton is considered a satisfactory success since 

those two correlations are the primary tools available and 

recommended for use when VLE data is sparse.  A set of 

Wagner constants is considered to have superior success if it 

can also match or beat the additional R(ω) and A-W(Tb) 

correlations introduced here since it has been shown that they 

can perform better than their standard counterparts in many 

cases.  Ultimate success is achieved when the estimated 

Wagner constants can meet or beat the minimum possible 

error; a methodology that can on average incorporate the best 

predictive powers of the four correlations would be 

remarkable. 

 

4.2 Comparison to Minimum Possible Entire-Curve 

Average Error 

Table 7 shows subset least average entire-curve errors for 

several comparators.  The minimum possible average A%Err 

is displayed here for reference, given that it is the criterion 

for Ultimate success.  The minimum possible errors indicate 

a dependency upon relative position of the normal boiling 

point to the reduced temperature of 0.7, and the dependency 

for normal “Others” is reverse of that for organic acids and 

alcohols.  The large average minimum entire-curve errors for 

alcohols (19.65 and 8.93%) indicate that none of the four 

correlations can describe them well, and one might conclude 

the same for organic acids with Tr,b > 0.7, whose average 

minimum possible error is 3.93%. 

The column to the right of the minimum possible error 

indicates the least average error one could achieve if one 

knew a priori which would have the lowest error in head-to-

head competition between the standard Riedel and Ambrose-

Walton correlations for each individual species. Similarly, 

the next column over displays the least average error one 

could achieve knowing beforehand which of the four 

correlations provides the least entire-curve predictive error 

for each species.  The next column shows the least average 

error possible if one knew which Fw,j function was best for 

each species.  The subsequent columns to the right indicate 

the average errors obtained when the best subset method is 

applied to every member of the substance subset.  The best 

subset Fw,j functions and their corresponding average errors 

are taken from Table 6, except for “Others” with Tr,b < 0.7, 

in which case the average is based upon the results of the 

subset best methods for normal and polar species combined.  

The subset of normal “Others” species with Tr,b > 0.7 is 

included for reference as in Table 6, but it is excluded from 

the following discussion regarding the results of Table 7 

since that subset is not targeted. 

Looking at the averages of the species-specific least 

errors, the Fw,j functions produce less error than do the four 

correlations, which in turn result in less error than when 

limited to only the standard Riedel and Ambrose-Walton.  

Interestingly, the Fw,j functions result in less average error 

than the minimum possible error for every species subset, 

whereas, the four correlations do not.  In other words, four 

vapor pressures predicted by two of the four correlations can 

be used via the Fw,j functions to result in less error than the 

individual correlations themselves produce over the entire 

curve and also less than when the entire-curve error is 

minimized for a species by splitting the VLE curve at the 

normal boiling point and using the best correlation for each 

temperature segment.  The fact that a fully-determined 

formulation such as the Fw,j function based on vapor pressure 

predictions can outperform the source correlations is a 

testament to the robustness of the Wagner equation and 

indicates that the fully-determined case can improve VLE 
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Table 7.  Summary Comparison of Entire-Curve Average Absolute Percent Error. 

Tr,b vs. 0.7 

Using Species-Specific Least Average 

A%Err 
Average A%Err Using Subset Best Method 

Minimum 

Possible 

R vs. A-

W 

All 

Four 
FW,j Correlation FW,j 

FW,j 

Success 

Acids (9) 

Tr,b > 0.7  (6) 3.93 7.84 4.09 3.12 5.07 R(ω) 4.33 Fw,j
(3)[R|R(ω)] S 

Tr,b < 0.7  (3) 0.99 3.18 1.26 0.66 1.26 R(ω) 0.96 Fw,j
(3)[R|R(ω)] U 

Alcohols (22)  

Tr,b > 0.7  (13) 19.65 21.13 20.12 8.95 35.68 R 20.46 Fw,j
(1)[R|R(ω)] S 

Tr,b < 0.7  (9) 8.93 13.37 9.22 7.80 17.59 R 17.24 Fw,j
(2)[R|R(ω)] <S 

"Others" (41) 

Tr,b > 0.7  (14) 0.49 0.66 0.50 0.73 0.66 A-W 0.94 Fw,j
(2)[A-W(Tb)|R(ω)] <S 

Tr,b < 0.7  (27) 1.07 1.50 1.13 0.78 1.44 A-W(Tb) 0.87 See breakdown below U 

Normal (21) 0.81 1.02 0.84 0.75 1.00 A-W(Tb) 0.86 Fw,j
(3)[A-W(Tb)|R(ω)] S 

Polar (6) 1.99 3.18 2.12 0.91 2.98 A-W(Tb) 0.93 Fw,j[R(ω)] U 

Legend for Success Levels:  “<S” indicates less than Satisfactory (average error of subset best Fw,j function  >  species-specific subset average 
error of either standard Riedel or Ambrose-Walton).  “S” indicates Satisfactory (average error of subset best Fw,j function  ≤  species-specific 

subset average error of both standard Riedel and Ambrose-Walton).  “U” indicates Ultimate (average error of subset best Fw,j function  ≤  species-

specific subset average minimum possible error).  Note that achieving Superior success (average error of subset best Fw,j function  ≤  species-

specific subset average error for all four correlations) without achieving Ultimate success does not occur. 

predictive error if used wisely.  These results provide strong 

support for the earlier preliminary assessment [18] that 

Wagner constants estimated from predictions can perform 

better than the source correlations. 

As shown in Tables 4 and 6, however, no single 

correlation or Fw,j function results in the least error for all 

species, let alone for each member of a subset of species.  

Indeed, individual correlations and Fw,j functions perform 

very poorly for some species.  Thus, benefit to the 

practitioner can result only if subset best methods can 

perform well relative to the minimum possible error.  This 

comparison is made with the “Average Using Subset Best 

Method” columns.  In every case the subset best Fw,j function  

has less average predictive error than the subset best 

correlation.  The last column of Table 7 shows the success 

level of the subset best Fw,j function.  The success level is less 

than satisfactory for only alcohols with Tr,b < 0.7.  Although 

Fw,j
(2)[R|R(ω)], the best Fw,j function for this subset of 

alcohols (17.24%), does have slightly less error than the 

subset best correlation, standard Riedel (17.59%), it is 

greater than the error obtainable if one knows a priori for 

each species the best of all four correlations (9.22%) or the 

best between just the standard Riedel and Ambrose-Walton 

(13.37%).  The subset best Fw,j functions achieve either 

satisfactory or ultimate success for the other substance 

subsets.  One can see that there is no “Superior” entry in the 

“Success” column - if the subset best Fw,j function can 

outperform the species-specific “All Four” average error, 

then it also ends up beating the minimum possible error and 

achieving Ultimate success. 

Table 7 overall shows that subset best Fw,j functions have 

better predictive power than subset best correlations, except 

for “Others” with  Tr,b > 0.7 (all normal species except for 

helium), which is not a targeted species subset.  The subset 

best Fw,j functions achieve ultimate success in aggregate for 

30 of the 72 species.  All six Fw,j functions shown in Table 7 

pass the qualitative Waring fit-of-form test for all species in 

their corresponding substance subset – the constants b and c 

had opposite signs for all species, except helium and 

hydrogen, whose normal boiling points are below 50 K. 

The data shown in Table 7 for alcohols is especially 

interesting.  First, the species-specific Fw,j functions produce 

much less error than the minimum possible (8.95% vs. 

19.65% and 7.80% vs. 8.93%), indicating that improvement 

in predictive error can be achieved by combining predicted 

VLE from two of the four correlations for individual species; 

however, neither a single correlation for either the below- 

and above-Tb segments nor Fw,j function for the entire VLE 

curve describe the alcohol subset well enough for one to be 

confident of which to use for a given alcohol a priori. 

Second, for alcohols with Tr,b < 0.7, the subset best Fw,j 

function is only slightly better than the subset best 

correlation, 17.24 and 17.59%, respectively. Consequently, 

one may decide to use the Riedel correlation instead of the 

more algebraically cumbersome Fw,j
(2)[R|R(ω)] function for 

alcohols with Tr,b < 0.7.  The nine alcohols in this subset 

share three different species-specific correlation winners at 

the normal fusion point and six different Fw,j function 

winners for the entire two-phase curve.  The lack of a 

correlation that can consistently describe the VLE below the 

normal boiling point accurately for these alcohols results in 

the large entire-curve minimum possible error of 8.93% and 

subsequently prohibits a single correlation or Fw,j function 

from being successful.  Consequently, the results do not 

strongly recommend any combination of the underlying four 

correlations used in this work to predict VLE for this species 

subset. 
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Third, although the subset best function Fw,j
(1)[R|R(ω)] is 

significantly better than the subset best correlation Riedel for 

alcohols with Tr,b > 0.7 and approaches closely the minimum 

possible error of 19.65%, it unfortunately still has a large 

error of 20.46%.  The results for individual species indicate 

that the A-W(Tb) correlation and the Fw,j
(1)[A-W(Tb)|R(ω)] 

function perform significantly better than the subset best 

methods for the four alcohols with Tr,b > 0.76 (e.g., 1-

eicosanol, 1-octadecanol, 1-heptadecanol, and 1-

hexadecanol).  The actual appropriate reduced temperature 

threshold may be lower, but the limited sample pool in our 

analysis suggests a value near 0.76. 

Table 8 shows the average errors when the alcohols Tr,b 

> 0.7 subset is divided further to account for the 0.76 

threshold.  The best Fw,j function for the two new alcohol 

subsets achieve Ultimate success while only Satisfactory 

success is achieved by the aggregate Tr,b > 0.7 segment best 

function Fw,j
(1)[R|R(ω)]. 

Even though the Fw,j [A-W(Tb)|R(ω)] function has lower 

error than the A-W(Tb) correlation for alcohols with Tr,b > 

0.76, the Fw,j [A-W(Tb)|R(ω)] function can exhibit 

disproportionate errors for other alcohols because of the poor 

predictive behavior of Ambrose-Walton at low reduced 

temperatures for alcohols in general, which poor predictive 

power is compounded when its low–temperature prediction 

is used as one of the four points.  Consequently, the A-W(Tb) 

correlation is recommended for alcohols with Tr,b > 0.76 

because it doesn’t induce this potential compound effect.  

One can see from Table 8 that some error reduction is lost by 

using A-W(Tb) instead of Fw,j
(1)[A-W(Tb)|R(ω)] (average 

error of 15.86% compared to 12.95%) for this species subset, 

but the goal of minimizing maximum error and not just 

minimizing average error drives this recommendation. 

Table 9 summarizes the average incremental errors for 

the recommended correlations and Fw,j functions, relative to 

the minimum possible entire-curve error.  By definition, 

every negative incremental error for a subset corresponds to 

an aggregate ultimate success level.  The average entire-

curve error reduction of 13.22% for some alcohols and the 

1.06% reduction for polar “Others” are strong evidence of 

the robustness of the Wagner equation and the utility of the 

fully-determined method employing the Fw,j function for 

substance subsets. 

 

4.3 Impact of Using Predictions Below the Known 

Anchor Points: Extrapolation Burden 

A normalized extrapolation burden for a predictive 

method was defined previously [18] as ΔLog Pv,r /ΔTr, where 

ΔTr represents the difference between the reduced normal 

fusion point and the reduced temperature of the lowest 

known vapor pressure (the lowest known anchor point) used 

by the predictive method, and ΔLog Pv,r represents the 

difference between the base 10 logarithm of the “best” values 

of the reduced vapor pressures at these two temperatures.  

The dimensionless numerator ΔLog Pv,r in this paper is 

referred to separately as the non-normalized extrapolation 

burden. 

Except at low values of extrapolation burden, a 

correlation’s fixed value or rule for the lower anchor point 

generally results in larger values of non-normalized burdens 

having correspondingly larger values of normalized burdens.  

 

Table 8. Summary Comparison of Entire-Curve Average Absolute Percent Error - Alcohol Subsets for Tr,b > 0.7. 

Tr,b vs. 0.7 

Using Species-Specific Least Error Using Best Subset Method 

Minimum 

Possible 

R vs. A-

W 
All Four Fw,j Correlation Fw,j 

Fw,j 

Success 

Tr,b > 0.7  (13) 19.65 21.13 20.12 8.95 35.68 R 20.46 Fw,j
(1)[R|R(ω)] S 

Tr,b > 0.76  (4) 15.85 18.28 15.86 12.95 15.86 A-W(Tb) 12.95 Fw,j
(1)[A-W(Tb)|R(ω)] U 

0.7 < Tr,b < 0.76   (9) 21.33 22.39 22.00 7.19 22.39 R 8.11 Fw,j
(1)[R|R(ω)] U 

 
Table 9.  Summary of Entire-Curve Incremental Error for Recommended Predictive Methods. 

Tr,b vs. 0.7 
Minimum Possible 

Average A%Err 

Subset Predictive Recommendation 

Average 

A%Err 
Method Incremental Error 

Organic Acids (9) 

Tr,b > 0.7  (6) 3.93 4.33 Fw,j
(3)[R|R(ω)] 0.40 

Tr,b < 0.7  (3) 0.99 0.96 Fw,j
(3)[R|R(ω)] -0.03 

Alcohols (22) 

Tr,b > 0.7  (13) 19.65 20.46 Fw,j
(1)[R|R(ω)] 0.81 

Tr,b > 0.76  (4) 15.85 15.86 A-W(Tb) 0.01 

0.7 < Tr,b < 0.76   (9) 21.33 8.11 Fw,j
(1)[R|R(ω)] -13.22 

Tr,b < 0.7  (9) 8.93 

17.59 

or 

17.24 

R 

or 

Fw,j
(2)[R|R(ω)] 

8.66 

or 

8.31 

"Others" (41) 

Tr,b > 0.7  (14) 0.49 0.66 A-W 0.17 
Tr,b < 0.7  (27) 1.07 0.87 See breakdown below -0.20 

Normal (21) 0.81 0.86 Fw,j
(3)[A-W(Tb)|R(ω)] 0.05 

Polar (6) 1.99 0.93 Fw,j[R(ω)] -1.06 
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However, for any given species, the slope of the Log Pv,r 

vs. Tr  curve decreases as the reduced temperature increases, 

resulting in the normalized extrapolation burden decreasing, 

rather than increasing, as the reduced temperature of the 

lower known anchor point increases.  

Consequently, when performing a species-by-species 

comparison of predictive error vs. extrapolation burden for 

methods with differing lower anchor points, the non-

normalized burden is more appropriate.   

Such is the case in this study, for the lower known anchor 

point of the Fw,j functions is not fixed but rather switches 

between the normal boiling point and the reduced 

temperature of 0.7.  Hence, the non-normalized form is the 

more appropriate indicator of extrapolation burden when 

comparing the predictive performance of the recommended 

subset Fw,j functions collectively with the source correlations.  

It is interesting to note that the subset recommended Fw,j 

functions shown in Table 9 use the lowest reduced 

temperature of the two known vapor pressures (Pv,r,b and 

Pv,r,0.7) as the lowest anchor point for all but nine of the fifty-

four species.  This is consistent with logic and previous 

results [17]. 

The modified Riedel correlation, R(ω), by definition will 

always have the lowest reduced temperature of the two 

known anchor points.  However, it was shown that R(ω) does 

not always beat the other correlations in species head-to-head 

competition, nor does it produce less aggregate error for any 

species subset than the recommended Fw,j function.  This 

indicates that the improved predictability of the 

recommended Fw,j functions results from more than just 

predominately using the lowest of the two known anchor 

points. 

This can be seen in Figure 1, where the ratio of A%Err is 

plotted vs. the ratio of the non-normalized burden relative to 

three source correlations, where the form of the ratio is 

Subset Recommended Fw,j Functions : source correlation.  

One can see that the predictive error of the Fw,j function 

relative to the R(ω) correlation is less for the majority of the 

nine species where the ΔLog Pv,r for the Fw,j function is larger 

than that of R(ω).  One can also see that the error of the Fw,j 

function is less for the majority of the remaining species 

where the burden ratio is 1.0 (lowest anchor points are the 

same for both methods).  Since the burden ratio is never less 

than one, the improved predictive capability can’t be due to 

the Fw,j function having a smaller extrapolation burden than 

R(ω); rather, the error reduction is due to the prediction at 

the lowest of the four reduced temperatures used for the 

Wagner parameterizations of the recommended Fw,j  

functions being accurate enough to essentially act as a new 

lower anchor point, reducing the effective non-normalized 

extrapolation burden below the value of the formal burden.  

The Riedel plot in Figure 1 shows that the majority of the 

species have a burden ratio of one relative to the standard 

Riedel and yet an error ratio less than one, again suggesting 

that in such cases the lowest of the four reduced temperatures 

used for the recommended Fw,j  function essentially acts as an 

improved lower anchor point.  All three plots in the figure 

reveal the impact of the accuracy of the lowest 

parameterization point used in the recommended Fw,j  

function – the accuracy of the lowest parameterization point 

for the majority of species is sufficient to improve the 

predictive error at the normal fusion point. 

4.4 Comparison to Fw,j [AA] Functions 

The results of the Fw,j function using analytic predictions 

from Antoine constants has been presented elsewhere [18]; 

these functions were referred to as Fw,j[AA], where the “AA” 

indicated that the four data points were Antoine analytics.  

Table 10 compares the average and incremental errors of the 

subset recommended predictive methods with those of the 

Fw,j[AA] function for the 55 species used in that study.  None 

of the alcohols had a normal boiling point reduced 

temperature above 0.76.  Using analytic data from Antoine 

constants (a surrogate for limited-range experimental data) 

provides significantly better VLE prediction for the six 

alcohols with Tr,b < 0.7 (cell shaded in gray) and has only 

slightly greater error for the seven alcohols with Tr,b > 0.7.  

There is one caveat with the performance of the Fw,j[AA] 

function for alcohols: the function failed the Waring test for 

three members of this subset - methanol (Tr,b < 0.7), and 1-

heptanol and 1-hexanol (both with Tr,b > 0.7).  Consequently, 

one may prefer to use the Fw,j[AA] function for alcohols 

where Tr,b < 0.7, unless the function fails the Waring test, in 

which case one could choose to use Riedel or the 

Fw,j
(2)[R|R(ω)] function.  The recommended predictive 

methods result in less error than the Fw,j[AA] function for all 

the remaining substance subsets. 

Summary statistics are provided in this paper for all 

results out of concern for brevity, but results for all 

individual species corresponding to Tables 3, 4, 6-9, and 10 

can be found in Nichols [25], as can also a description of the 

calculation round off used for parameter inputs/outputs. 

 

5. Potential Modifications 

The results presented provide proof-of-principle that 

predictions from VLE correlations may be used to provide 

better predictive error near the triple point than the source 

correlations themselves.  The three sets of four points used 

(summarized in Table 5) are chosen to illustrate the principle 

and are not meant to represent or suggest universal best four-

point options.  The Riedel and Ambrose-Walton are used as 

source correlations because of their general acceptance, 

applicability [5], and ease of use.  However, developing 

predictive VLE correlations is an on-going focus of research 

in the literature, providing a wide array of possible source 

correlations, including multiple reference fluids, species-

specific correction factors, and family-specific correlations. 

Ambrose & Patel [26] showed that two reference fluids 

could be used to predict vapor pressures better than one 

reference fluid.  Sorner & Strom [27] expanded to three 

reference fluids, and Rozhnov, Melnik, and Chmykhalo [28] 

developed an algorithm involving sixteen reference 

substances to predict vapor pressure for pure substances.  

One could add a species-specific correction factor to an 

existing correlation or methodology, similar to what Halm & 

Stiel [22] attempted many years ago with their polar factor, 

or as An & Yang [29] more recently have done for organics 

with the ω-based  Lee-Kesler equation.  A predictive 

equation for a class or family of substances, such as that of 

Sanjari et al. [30] for refrigerants, could be used as a source 

correlation. 

Although Waring [14] showed that a fourth parameter is 

necessary to accurately describe VLE over the entire two-
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Figure 1.  Ratio of A%Err at Tr,f vs. Ratio of Non-Normalized Extrapolation Burden for the Fifty-Four Species Corresponding 

to Subset Recommended Fw,j  Functions: ● - Fw,j : R(ω), ▲- Fw,j : Standard Riedel, * - Fw,j : Standard Ambrose-Walton. 
 

Table 10.  Summary of Entire-Curve Incremental Errors for Recommended Predictive Methods vs. Fw,j[AA] Functions.  All 

Statistics Are for the Common 55 Species 

Tr,b vs. 0.7 
Minimum Possible 

Average A%Err 

Subset Predictive Recommendation Species-Specific Fw,j[AA] 

Average A%Err Method 
Incremental 

Error 

Average 

A%Err 

Incremental 

Error 

Organic Acids (6) 

Tr,b > 0.7  (4) 3.69 5.46 Fw,j
(3)[R|R(ω)] 1.77 12.60 8.91 

Tr,b < 0.7  (2) 0.98 0.95 Fw,j
(3)[R|R(ω)] -0.03 1.56 0.58 

Alcohols (13) 

Tr,b > 0.7  (7) 12.15 7.22 Fw,j
(1)[R|R(ω)] -4.93 7.41 -4.74 

Tr,b > 0.76  (0) N/A N/A A-W(Tb) N/A N/A N/A 
0.7 < Tr,b < 0.76   (7) 12.15 7.22 Fw,j

(1)[R|R(ω)] -4.93 7.41 -4.74 

Tr,b < 0.7  (6) 9.35 

19.77 

or 

19.43 

R 

or 

Fw,j
(2)[R|R(ω)] 

10.43 

or 

10.08 

13.14 3.79 

"Others" (36) 

Tr,b > 0.7  (13) 0.32 0.33 A-W 0.01 3.17 2.85 

Tr,b < 0.7  (23) 1.04 0.84 See breakdown below -0.20 2.07 1.03 

Normal (17) 0.71 0.85 Fw,j
(3)[A-W(Tb)|R(ω)] 0.14 1.60 0.89 

Polar (6) 1.99 0.80 Fw,j[R(ω)] -1.19 3.43 1.44 
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phase curve, Vetere [31] concluded that the presence of the 

Wagner d constant is mostly inconsequential to predictive 

error when data of lower accuracy is used.  He 

mathematically tied the values of the remaining three 

Wagner constants to the critical and normal boiling points, 

with the defining relationships dependent upon the species 

type.  He concluded that the three-constant predictive 

Wagner equation was generally superior to other predictive 

correlations (including the original Riedel using K = 0.0838) 

while noting that it did perform significantly worse for a few 

species.  Vetere [2], [20] subsequently attempted to improve 

the Riedel predictive method by making the K parameter 

dependent upon species type.  Given that VLE from 

predictive correlations will generally be of lower accuracy 

relative to actual data, a potential modification to our 

approach would be to use predictive correlations to provide 

VLE inputs into the parameterization of a three-parameter 

Wagner equation rather than the full four-parameter form. 

 

6. Summary and Conclusions 

The R(ω) and A-W(Tb) correlations perform better than 

their standard counterparts in many cases (Table 4).  The   

VLE behavior below and above the normal boiling point of 

organic acids, and of normal and non-alcohol polar species 

where Tr,b < 0.7, can be described accurately on a consistent 

enough basis by the standard or modified Riedel and 

Ambrose-Walton correlations such that reasonable Wagner 

constants can be estimated from Fw,j functions whose four 

points are taken from these predictive correlations.  The VLE 

predictive error of such Wagner constants for the entire two-

phase curve approaches or beats the minimum predictive 

error possible (Tables 7 & 9).  For all substance subsets, 

except the fourteen normal species with Tr,b > 0.7, the subset 

best Fw,j function results in less average error than the subset 

best correlation. 

The correlation and prediction-based Fw,j function 

recommended for the various substance subsets have 

predictive power superior to that of Wagner constants 

estimated from Antoine analytics, except for some alcohols 

(Table 10).  This  reinforces the previous conclusion [18] that 

solely using limited VLE data to extrapolate downward to 

the triple point provides an advantage primarily for species 

that are problematic for predictive correlations. 

The possibility that merely four predictions from VLE 

correlations can be used to provide less predictive error than 
the source correlations themselves or less error than 

parameterizations using limited intervals of experimental 

data has been studied and proven.  The fact that such error 

reduction is possible opens up new avenues for predictive 

improvement.  Although complexity in an approach to VLE 

prediction is not a deterrent to a researcher, it can be to a field 

practitioner.  There are many complex and family-specific 

VLE correlations in the literature – the possibility that only 

a few accurate predictions from such a correlation can be 

used to create a simple 4-parameter Wagner equation with 

equal or better predictive accuracy for the targeted species’ 

VLE over the entire two-phase curve is of significant import 

to field practitioners.  Instead of trying to incorporate several 

complex correlations for the pure-species domain into a 

multi-species VLE algorithm, for example, one could use a 

few points from each source correlation to algebraically 

generate a set of simpler, accurate Wagner equations to 

represent the pure-species domain. 

The major benefit is for a species with sparse 

experimental data.  The results presented here show that the 

source correlation does not have to be accurate at the triple 

point itself in order to parameterize Wagner constants better 

applicable for the entire two-phase curve.  Rather, the source 

correlation needs to be accurate at a reduced temperature low 

enough to allow the effective extrapolation burden to be 

sufficiently reduced such that predictive capability towards 

the triple point is noticeably improved. 

This work presents and demonstrates a technique to 

leverage VLE correlations more effectively, while lessening 

the dependency upon low-pressure thermodynamic data 

(VLE and/or thermal) for accurate parameterization of an 

entire-curve VLE equation such as Wagner’s. 
 

Nomenclature 

a, b, c, d  Wagner constants, Eq. (1) 

A+,B+,C+,D+ Parameters in Riedel 

f (0), f (1), f (2) Parameters in Ambrose-Walton 

Fw,j    Function used to estimate Wagner 

constants, Eq. (6). 

[AA] indicates calculations use Antoine analytic 

data. 

Definition of other bracketed terms are given in text 

and summarized in Table 5. 

h    Riedel equation parameter, Eq. (3g) 

K    Parameter in the Riedel formulism. 

For standard Riedel correlation, defined by Eqs. 

(3e) and (3f) for organic acids and alcohols, 

respectively, equal to 0.0838 otherwise. 

For modified Riedel correlation, defined by Eq. 

(4b). 

K’    Defined by Eq. (4c) 

Ln    Natural logarithm 

P    Pressure (bar) 

Pc : Critical pressure 

Pv : Vapor pressure 

Pv,r  : Reduced vapor pressure (relative to critical 

point) 

Pv,r,0.7 : Reduced vapor pressure at reduced 

temperature of 0.7 

Pv,r,b : Reduced vapor pressure at normal boiling 

point 

Pv,r,f : Reduced vapor pressure at normal fusion 

point 

Pv,r,SA : Reduced vapor pressure of second anchor 

point in the modified Riedel correlation, which is 

chosen to be at Tr=0.7 

Pv,r,Tri : Reduced vapor pressure of data point “i” in 

the Fw,j function, Eq. (6) 

Q    Parameter in Riedel formulism, Eq. (3b) 

T    Thermodynamic temperature (K) 

Tb : Normal boiling point temperature 

Tc : Critical temperature 

Tr : Reduced temperature (relative to critical point) 

Tr,f : Reduced temperature of normal fusion point 

Tr,SA : Reduced temperature of second anchor point 

for modified Riedel correlation (Tr,SA = 0.7) 

Tt : Temperature at triple point 

Greek Letters 

αc    Parameter in Riedel formulism, Eq. (3c) 

ηj,i    Coefficients in Fw,j function, Eq. (6) 

τ    1 - Tr 

Ѱ    Parameter in Riedel formulism 

Ѱb : Defined by Eq. (3d) for the standard Riedel 

correlation 

ѰSA : Defined by Eq. (4a) for the modified Riedel 

correlation 

ω    Acentric factor 

 

Subscripts 

i Index notation for the four data points used by Fw,j 

function and ηj,i 
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j Index notation for the Wagner constant for Fw,j 

function and ηj,i 

Superscripts 

(1) Fw,j function, data inputs pertain to reduced 

temperature point distribution of 0.6, 0.7, 0.8 and 0.9 

(2) Fw,j function, data inputs pertain to reduced 

temperature point distribution of 0.3, 0.6, 0.7 and 0.95 

(3) Fw,j function, data inputs pertain to reduced 

temperature point distribution of 0.2, Tr,b, 0.7 and 0.9 

Abbreviations 

A%Err Absolute value of percent error relative to the entire-

curve Wagner analytic values 

All Trs Entire two-phase curve 

A-W Correlation method that represents the standard 

Ambrose-Walton correlation 

A-W(Tb) Correlation method that represents the modified 

Ambrose-Walton correlation 

R Correlation method that represents the standard 

Riedel correlation 

R(ω) Correlation method that represents the modified 

Riedel correlation 

Expressions 

ΔLog Pv,r Non-normalized extrapolation burden 

ΔLog Pv,r/ΔTr Normalized extrapolation burden 
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