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Abstract

In this study, a nonlinear hyperbolic equation with a time-dependent unknown inverse coefficient is
investigated under periodic boundary conditions. The Fourier method is employed to obtain a solution to
the problem, and the existence, uniqueness, and stability of the solution are established.
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1. INTRODUCTION

Wave propagation models arise naturally in physics, engineering, and applied mathematics, and
classical theory shows that their behavior is governed by hyperbolic partial differential equations. In
realistic media, however, waves often exhibit nonlinear, dissipative, or time-dependent effects, making
linear models inadequate for describing phenomena such as shock formation, acoustic dissipation, or
supersonic motion. These situations lead to nonlinear hyperbolic equations whose analysis is significantly
more challenging [1], [2].

Inverse problems for such equations play a central role in many practical applications—including seismic
imaging, material characterization, and signal reconstruction—where the physical properties of a medium
must be determined from observed wave data. Since these unknown coefficients typically represent
essential physical quantities such as density, stiffness, or conductivity, their accurate identification is
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crucial. However, inverse problems are frequently ill-posed, requiring careful mathematical treatment to
ensure stability, uniqueness, and continuous dependence on the available data [3]- [5].

Boundary value problems with non-local structures, particularly periodic boundary conditions, are
especially relevant in processes exhibiting repeated or cyclic behavior [6]. Inverse problems under periodic
boundary conditions have been studied in various classical frameworks, including hyperbolic problems [7]—

[9].
2. PROBLEM FORMULATION
Consider a nonlinear hyperbolic equation defined on the domain A := {77 €(0,7);xk(0,K )} :
Ve =V — 0NV = [ (17,5, V), (1)
with the initial conditions

v(17,0) =c(m),

(2)

V,.(1,0) = u(n),
boundary conditions
v(0,x) =Vv(r,K),

_ (3)
v, (0,x) =V, (7,K),
and the overdetermination condition
P(x) = jv(n, K)dn. (4)

0

Where the functions ¢(r7), u(7),P(x) and f(n,x,v) are given functions on [0,7] and A x{-o,} , respectively;
while the function v(77,x) and the coefficient (k) are unknown.

If the coefficient (k) in equation (1) is known, then the system defined by equations (1)— (3) represents a

direct problem. Otherwise, it becomes an inverse problem, which requires an additional condition to ensure
solvability. For the inverse problem described by equations (1)— (3), the overdetermination condition (4) is
introduced. The primary objective is to determine the unknown coefficient along with the corresponding
state function that satisfying the governing equation and all imposed auxiliary conditions.

Definition 1. The task of identifying the pair of unknown functions (@(x),v(n,x))satisfying the system
(1)— (4) 1s referred to as the inverse coefficient problem.
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Using the Fourier method to solve equations (1)— (3), we obtain

v(n,K) :%[go + ILIOK+%]€]Z(K— z')[go(r) v (@,7) +f(a),r,v)]da)dTJ +

M

~
Il

1

(gd cos2lk + 2iz 1., sin 2lx + LZ”[@(T) v (0,7) + f(@,7,v)]cos 2lwsin 2(k — T)da)drj cos20n + (5)
T 00

M

~
Il

1

(gx, cos 2l + Zil 1, sin 21K + Lz j j [p(2) v (0,7) + f(o,7,v)]sin 2lwsin 21(x — T)da)ersin 21n.
T 00

Where,

S =%I§(n)dm Ly =%j jo” w(n)dn,

0

2% 2k G
. =—Ig(77) cos2indn, u, =—J.,U(77)COS 2indn,
Ty, 9
2% , 2k ¢ :
S == stnsin2indn, u, == unsin2indn.
0 0

Using the overdetermination condition (4) together with the solution (5), the inverse coefficient is obtained
as:

P"(x) —J-f(n, x,v)dn

() = P(r) : (6)

3. EXISTENCE OF A SOLUTION

Theorem 1. Suppose the following assumptions hold:

Al. P(x) e C*[0,K], ¢(x) € C[0,K].
A2. ¢(n7) € C[0, 7]; u(n7) € CO, 7].

A3.1  f(n,x,v)is continuous in each argument onAx(—w,0)and complies with condition:

" f(n,x,v) 8V f(n,x,9) -
I faz(z) - J;:;”) |S5(77,K)|V—V

,1=0,2, where 8(17,0) € L, (A), 8(17,£)>0

A3.2 f(n,x,v)eC[0,7],

f(?],lc,v)|£®, t€[0,K].
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A33 jf(n,zc,v)dn £ 0,V e[0,K].
0

Then, the system (1)—(4) has a unique solution.

Proof. We define an iterative procedure for the solution (5) and the inverse coefficient (6) as follows:
W) =+ 2 [ [ -0 o) (@0,0)+ f(@,7,9) |dwdr,
ﬂ. 00

vg\'”)(/c) = v(c?) + Z%IJ.[@(N) (7) v (0,7)+ f(o,7, v(N))] cos2lwsin2l(k —7)dwdr, (7)
=1 7TEY %

W) =0+ 31|
=1 7[1 0

O e Ny

[go(N) )V (@,7)+ f(o,1, v“”)] sin 2lwsin 21(x — 7)d wd?,

P"(x) —Tf(?], o, v ) dn

P(x)

(@(NH) (K') _
Where,

Vg)O)(K) =Gy T MK,

1 .
\/(C(,)) (k)=¢,cos2lk+ 2_l'ud sin 2/xk,

,sin2/x.

S

\/E([))(K') =g, cos2lk +i,u
21
If N =0for the system (7), then
v (x) = +% [[ee=0)| 0@V (@,0)+ f(@,7.v") |dwdz,
00
W)=+~

[go(o) (7) v (0,7)+ f(o,7, v(o))} cos2lwsin2l(xk —7)dwdt,

Vi) =V +

S

[p”) V) (0,7)+ f (0,1, v<°>)} sin 2lwsin 21(k - 7)dwd-,
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P"(x)— ]{f(n, K, v(o))dn

) (1) =
oK)= o)

By applying the Cauchy, Bessel, and Holder inequalities together with the Lipschitz condition, and after

performing the necessary rearrangements, we obtain the following estimates:

(0)
||v“’<'<>||SM+||vi?)<'f>||+||vﬁ?)<'<>||+Y(||so(°’<'<>||+||5<W<>Il)||v(°’<mK>||+Y®a
p(l)(’()‘ (K)H + \/_ ¢}

IIP( I IIP(K)II
where

Y= \/_|K|\/_(|\7—| \/_]

Under the assumptions of the theorem, we have ||V(l)(l()|| <o,

Similarly, for N +1, we obtain

(0)

||V(N+1)(K')|| < e = A > + VO

e x(fo wl el e+ ve.

P P"(x )|
< e >||('

(K‘)||+®).

According to the hypotheses of the theorem, HV(N”)(K)H < oo,

Applying the same approach to the differences of successive approximations yields

- o {Jo ol ol s ve.

v? (x)— v (K)H <

VeRvl

D _0

(8)
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” s, K)”HV(Z) _y0

@) = oM () < 9
)" () P 9)
Substituting (9) into (8), we obtain
v (i) - v“)(,c)H < LYPUT&'Z(a),r)da)dTJZ , (10)
Q] 00
where
Hv (x) = (K‘)H Y= |K|x/7rK(| L, —”] 0 =[1-|T VO H |5, )||YH50 (K‘)H
V3 6 IP()|
Similarly, we obtain
[V ) =P )| < o) -0 (x| O x s oV -0 an
and
G _,0
o) e) oo, ol -]
(k)— K| < (12)
0 (1) =0 ()| P
Using (12) and (10) in (11), we obtain
KT 5
B () ! (K)H ( [[6*@. T)L ] 52(a)1,r1)da)ldrljda)dr} .
2 1 00 00
By repeatedly applying the same iterative process until the convergence of v™*" and ™", we obtain
||V(N+l) _V(N)||< Y'p | (U’K)”N, (13)

0,0y ONN! |

(N)

") o™ w0 < lo

IIP(K)II

(N) (N)

Thus, V=™ = v®™as N — w0 ; therefore, o™ — o
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Next, let us verify that llvim vV (k) =v(n,K), }[im @ (k) = (). Considering the difference between

the exact and approximate solutions, we obtain

HV(K') - v(N“)(K)H < YH@(K) - go(N“)(K)‘H v, K)H +Y||5(n, K')M VR RveY i
Y (Je+ s mf) -],

Using Hso(lc)—so(’“‘)(rc)H J—”Eg"{)” H v and (13) in (14), we obtain
HV(K)—V(NH)(K)HSS{”p(;c)” \/7” @, ”13|l‘ )” (77, )H |5(77’K)||JU.T[V(&)’T) vV (o, r)} da)drj

N+1
Y * P ||N+1

QN QN 1'” "

Applying Gronwall’s inequality leads to

2
e - {nz[pmﬁgﬁjﬁV<N+~<n,x>+a<mj }
(GRS — .

V) < 2[QN---Q1 —

(N+1)

Hence, v®™" —»vand ™" > pas N — .

If two solutions, (¢(x), Vv (17,x)) and (A(x), 9(n,x)), satisfy (1)~(4), performing the same procedures gives

Vz |57,
[P

|o(x) = A(x)| € = (15)

|
vt -] < ol ]+ Ylsn. ol -8l Yot - aofigen. o 16

Substituting (15) into (16) yields

Nyttt ot |

”\/(77”()—'9(77,K)||SA[||go(1<)||+ P

Applying Gronwall’s inequality, we conclude that v(7,7) = 3(n,t)and «(¢) = A(¢) .
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4. ANALYSIS OF SOLUTION STABILITY

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Then the solution palr(go(/c) v(n,rc))

problem (1)— (4) depends continuously on the input datag, i, P
Proof. Consider two sets of data

E={c.u.P}, E={& i,P},
both satisfying the assumptions of Theorem 1. Assume that there exist positive constants M,,M,,M, such that

/u”C[O,K] S M3’

g”C[O,K] < MZ’

1a

[
and similarly
P

Define the norms

C*[0.K]

[l“C[O,K] Z M3‘

<M2,

|C[0,K] =

g

<M,,

C*[0,K]

c0,x1°

E|= ”é”qo,m +”/&”qo,m + ”

C?[0,K]
=
e b}

respectively. Following the same

[E0= et 1o 1P

Let the solutions (g,v)and (,V)correspond to data = and
(17)

methodology as before, we obtain

\/—”5(777 K)” ”

o< |[B® P,
() = fo(x0)|| < o) P(K)| M
_~ 0 K ©
||v(n,rc>—0<n,f<)||s”g° g‘)”+”2“° Al |+Z(gd—5d eu-gl)+
= (18)
ey = g ) + Y o) = )| [V 7. )] + Y ()| + [ S . )] ) v =]

o lucl

r &
276 ;( A
Substituting (17) into (18) gives
2"+ 202 |5, 0| v .

— —
-
hd e

[v(r.5) = 0) <2
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By applying Gronwall’s inequality to the resulting expression, we obtain

||v(77,1c)—\7(17,/c)||2 <2M:|=E

2 M2l
+2¢M 1P,

—
—]
—

Thus, as E — =, it follows that v — . Hence, ¢ — .

5.CONCLUSION

A one-dimensional nonlinear hyperbolic equation with an unknown time-dependent inverse
coefficient under periodic boundary conditions has been analytically solved. The Fourier method has been
employed to construct the solution pair (V, ).

The conditions for the existence, uniqueness, and continuous dependence of the solution on the
given data have been established. Furthermore, the inverse problem has been proved to be well-posed via
the Picard successive approximation technique. This study provides a theoretical foundation for inverse-
coefficient nonlinear hyperbolic equations. The results obtained are expected to guide future research on
more complex multidimensional models, uncertain or variable coefficients, and realistic physical
applications.
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