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In this study, a nonlinear hyperbolic equation with a time-dependent unknown inverse coefficient is 
investigated under periodic boundary conditions. The Fourier method is employed to obtain a solution to 
the problem, and the existence, uniqueness, and stability of the solution are established. 
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Wave propagation models arise naturally in physics, engineering, and applied mathematics, and 
classical theory shows that their behavior is governed by hyperbolic partial differential equations. In 
realistic media, however, waves often exhibit nonlinear, dissipative, or time-dependent effects, making 
linear models inadequate for describing phenomena such as shock formation, acoustic dissipation, or 
supersonic motion. These situations lead to nonlinear hyperbolic equations whose analysis is significantly 
more challenging [1], [2]. 

 
Inverse problems for such equations play a central role in many practical applications–including seismic 
imaging, material characterization, and signal reconstruction–where the physical properties of a medium 
must be determined from observed wave data. Since these unknown coefficients typically represent 
essential physical quantities such as density, stiffness, or conductivity, their accurate identification is 
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crucial. However, inverse problems are frequently ill-posed, requiring careful mathematical treatment to 
ensure stability, uniqueness, and continuous dependence on the available data [3]– [5]. 
Boundary value problems with non-local structures, particularly periodic boundary conditions, are 
especially relevant in processes exhibiting repeated or cyclic behavior [6]. Inverse problems under periodic 
boundary conditions have been studied in various classical frameworks, including hyperbolic problems [7]– 
[9]. 
 

 
 

Consider a nonlinear hyperbolic equation defined on the domain { }: (0, ); (0, )Kη π κΛ = ∈ ∈ : 
( ) ( , , ),fκκ ηη κ η κ∨ −∨ −℘ ∨ = ∨  (1) 

with the initial conditions 

( ,0) ( ),
( ,0) ( ),κ

η ς η
η µ η

∨ =
∨ =

 (2) 

boundary conditions 

(0, ) ( , ),
(0, ) ( , ),η η

κ π κ
κ π κ

∨ = ∨
∨ = ∨

 (3) 

and the overdetermination condition 

0

( ) ( , ) .d
π

κ η κ ηΡ = ∨∫  (4) 

Where the functions ( ), ( ), ( )ς η µ η κΡ  and ( , , )f η κ ∨  are given functions on [ ]0,π  and { },Λ× −∞ ∞ , respectively; 
while the function ( , )η κ∨  and the coefficient ( )κ℘  are unknown.  

If the coefficient ( )κ℘ in equation (1) is known, then the system defined by equations (1)– (3) represents a 
direct problem. Otherwise, it becomes an inverse problem, which requires an additional condition to ensure 
solvability. For the inverse problem described by equations (1)– (3), the overdetermination condition (4) is 
introduced. The primary objective is to determine the unknown coefficient along with the corresponding 
state function that satisfying the governing equation and all imposed auxiliary conditions. 

Definition 1. The task of identifying the pair of unknown functions ( )( ), ( , )κ η κ℘ ∨ satisfying the system 
(1)– (4) is referred to as the inverse coefficient problem.  

 

 

 

 

2. PROBLEM FORMULATION 
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Using the Fourier method to solve equations (1)– (3), we obtain 

[ ]

[ ]

[ ]

0 0
0 0

1 0 0

1 2( , ) ( ) ( ) ( , ) ( , , )
2

1 1cos 2 sin 2 ( ) ( , ) ( , , ) cos 2 sin 2 ( ) cos 2
2

1 1cos 2 sin 2 ( ) ( , ) ( , , ) sin 2 s
2

cl cl
l

sl sl

f d d

l l f l l d d l
l l

l l f l
l l

κ π

κ π

η κ ς µ κ κ τ τ ω τ ω τ ω τ
π

ς κ µ κ τ ω τ ω τ ω κ τ ω τ η
π

ς κ µ κ τ ω τ ω τ ω
π

∞

=

 
∨ = + + − ℘ ∨ + ∨ + 

 
 

+ + ℘ ∨ + ∨ − + 
 

+ + ℘ ∨ + ∨

∫ ∫

∑ ∫ ∫

1 0 0

in 2 ( ) sin 2 .
l

l d d l
κ π

κ τ ω τ η
∞

=

 
− 

 
∑ ∫ ∫

 (5) 

Where, 

0 0 0
0 0

0 0

0 0

2 2( ) , ( ) ,

2 2( )cos 2 , ( ) cos 2 ,

2 2( )sin 2 , ( )sin 2 .

cl cl

sl sl

d d

kl d l d

kl d l d

π π
π

π π

π π

ς ς η η µ µ η η
π π

ς ς η η η µ µ η η η
π π

ς ς η η η µ µ η η η
π π

= =

= =

= =

∫ ∫ ∫

∫ ∫

∫ ∫

 

Using the overdetermination condition (4) together with the solution (5), the inverse coefficient is obtained 
as: 

( )
0

( ) , ,
( ) .

( )

f d
π

κ η κ η
κ

κ

′′Ρ − ∨
℘ =

Ρ

∫
 (6) 

 

Theorem 1. Suppose the following assumptions hold: 

A1. 2( ) [0, ], ( ) [0, ].C K C Kκ κΡ ∈ ℘ ∈  

A2. ( ) [0, ]; ( ) [0, ].C Cς η π µ η π∈ ∈  

A3.1 ( , , )f η κ ∨ is continuous in each argument on ( ),Λ× −∞ ∞ and complies with condition: 

( ) ( )

( ) ( )

( , , ) ( , , ) ( , ) , 0, 2,
l l

l l

f f lη κ η κ δ η κ
η η

∂ ∨ ∂ ∨
− ≤ ∨ −∨ =

∂ ∂
 where ( )2( , ) , ( , ) 0t L tδ η δ η∈ Λ ≥  

A3.2 ( , , ) [0, ], ( , , ) , [0, ].f C f t Kη κ π η κ∨ ∈ ∨ ≤ Θ ∈  

3. EXISTENCE OF A SOLUTION 
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A3.3 
0

( , , ) 0, [0, ].f d K
π

η κ η κ∨ ≠ ∀ ∈∫  

Then, the system (1)–(4) has a unique solution. 

Proof. We define an iterative procedure for the solution (5) and the inverse coefficient (6) as follows: 

( ) ( ) ( ) ( ) ( )1 0
0 0

0 0

2( ) ( ) ( ) ( , ) ( , , ) ,N N N Nf d d
κ π

κ κ τ τ ω τ ω τ ω τ
π

+  ∨ = ∨ + − ℘ ∨ + ∨ ∫ ∫  

( ) ( ) ( ) ( ) ( )1 0

1 0 0

1( ) ( ) ( , ) ( , , ) cos 2 sin 2 ( ) ,N N N N
cl cl

l
f l l d d

l

κ π

κ τ ω τ ω τ ω κ τ ω τ
π

∞
+

=

 ∨ = ∨ + ℘ ∨ + ∨ − ∑ ∫ ∫  (7) 

( ) ( ) ( ) ( ) ( )1 0

1 0 0

1( ) ( ) ( , ) ( , , ) sin 2 sin 2 ( ) ,N N N N
sl sl

l
f l l d d

l

κ π

κ υ τ ω τ ω τ ω κ τ ω τ
π

∞
+

=

 ∨ = + ℘ ∨ + ∨ − ∑ ∫ ∫  

( )

( )( )
1 0

( ) , ,
( ) .

( )

Nf d
π

κ η κ η
κ

κ
Ν+

′′Ρ − ∨
℘ =

Ρ

∫

 Where, 

( )

( )

( )

0
0 0 0

0

0

( ) ,
1( ) cos 2 sin 2 ,
2
1( ) cos 2 sin 2 .
2

cl cl cl

sl sl sl

l l
l

l l
l

κ ς µ κ

κ ς κ µ κ

κ ς κ µ κ

∨ = +

∨ = +

∨ = +  

If 0=N for the system (7), then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0 0 0 0
0 0

0 0

1 0 0 0 0

0 0

1 0 0 0 0

0 0

2( ) ( ) ( ) ( , ) ( , , ) ,

1( ) ( ) ( , ) ( , , ) cos 2 sin 2 ( ) ,

1( ) ( ) ( , ) ( , , ) sin 2 sin 2 ( ) ,

cl cl

sl sl

f d d

f l l d d
l

f l l d d
l

κ π

κ π

κ π

κ κ τ τ ω τ ω τ ω τ
π

κ τ ω τ ω τ ω κ τ ω τ
π

κ τ ω τ ω τ ω κ τ ω τ
π

 ∨ = ∨ + − ℘ ∨ + ∨ 

 ∨ = ∨ + ℘ ∨ + ∨ − 

 ∨ = ∨ + ℘ ∨ + ∨ − 

∫ ∫

∫ ∫

∫ ∫  
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( )

( )( )0

1 0

''( ) , ,
( )

( )

f d
π

κ η κ η
κ

κ

Ρ − ∨
℘ =

Ρ

∫
. 

By applying the Cauchy, Bessel, and Hölder inequalities together with the Lipschitz condition, and after 

performing the necessary rearrangements, we obtain the following estimates: 

( )
( )

( ) ( ) ( )( ) ( )
0

01 0 0 0 0
( )

( ) ( ) ( ) ( ) ( , ) ( , ) ,
2 cl sl

κ
κ κ κ κ δ η κ η κ

∨
∨ ≤ + ∨ + ∨ + ϒ ℘ + ∨ + ϒΘ

 

( )
( )0

1
( , ) ( )( )

( ) ,
( ) ( )

π δ η κ κ πκ
κ

κ κ

∨ + Θ′′Ρ
℘ ≤ +

Ρ Ρ
 

where 

2: .
3 6

K
K K ππ

 
ϒ = + 

 

 

Under the assumptions of the theorem, we have (1) ( ) .κ∨ < ∞  

Similarly, for 1,N +  we obtain 

( )
( )

( ) ( ) ( )( ) ( )
0

01 0 0
( )

( ) ( ) ( ) ( ) ( , ) ( , ) ,
2

N N N
cl sl

κ
κ κ κ κ δ η κ η κ+

∨
∨ ≤ + ∨ + ∨ + ϒ ℘ + ∨ + ϒΘ  

( ) ( )( )1 ( )
( ) ( , ) ( ) .

( ) ( )
N Nκ πκ δ η κ κ

κ κ
+ ′′Ρ

℘ ≤ + ∨ +Θ
Ρ Ρ

 

According to the hypotheses of the theorem, ( )1 ( ) .N κ+∨ < ∞  

Applying the same approach to the differences of successive approximations yields 

( ) ( ) ( )( ) ( )1 0 0 0( ) ( ) ( ) ( , ) ( , ) ,κ κ κ δ η κ η κ∨ −∨ ≤ ϒ ℘ + ∨ + ϒΘ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1 1 2 1 1 0( ) ( ) ( ) ( ) ( , ) ,κ κ κ κ δ η κ∨ −∨ ≤ ϒ ∨ ℘ −℘ + ϒ ℘ ∨ −∨ + ϒ ∨ −∨  (8) 
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( ) ( )
( ) ( )2 1

2 1
( , )

( ) ( ) .
( )

δ η κ
κ κ

κ

∨ −∨
℘ −℘ ≤

Ρ
 (9) 

Substituting (9) into (8), we obtain 

( ) ( )

1
2

2 1 2

1 0 0

1( ) ( ) ( , ) ,P d d
Q

κ π

κ κ δ ω τ ω τ
 

∨ −∨ ≤ ϒ  
 
∫ ∫  (10)

 

where 

( ) ( )
( )

( )
2

1 0 1
1

( )2: ( ) ( ) , , 1 ( , ) ( ) .
( )3 6

K
P K K Q

κπκ κ π δ η κ κ
κ

  ∨    = ∨ −∨ ϒ = + = − ϒ ϒ ℘    Ρ      

Similarly, we obtain 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3 3 2 2 3 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( , )κ κ κ κ κ κ δ η κ∨ −∨ ≤ ϒ ∨ ℘ −℘ + ϒ ℘ ∨ −∨ + ϒ ∨ −∨  (11) 

and 

( ) ( )
( ) ( )3 2

3 2
( , )

( ) ( ) .
( )

δ η κ
κ κ

κ

∨ −∨
℘ −℘ ≤

Ρ
 (12) 

Using (12) and (10) in (11), we obtain 

( ) ( )

1
2 2

3 2 2 2
1 1 1 1

2 1 0 0 0 0

( ) ( ) ( , ) ( , ) .
tP d d d d

Q Q

π κ π

κ κ δ ω τ δ ω τ ω τ ω τ
  ϒ

∨ −∨ ≤      
∫ ∫ ∫ ∫  

By repeatedly applying the same iterative process until the convergence of ( 1)Ν+∨ and ( 1)Ν+℘ , we obtain 

( 1) ( )

1 1

( , ) ,
.... !

N
N

N N

P
Q Q Q N

δ η κΝ+ Ν

−

ϒ
∨ −∨ ≤  (13) 

( ) ( ) ( ) ( )1 1( , )
( ) ( ) .

( )
δ η κ

κ κ
κ

Ν+ Ν Ν+ Ν℘ −℘ ≤ ∨ −∨
Ρ

 

Thus, ( 1) ( )Ν+ Ν∨ →∨ as Ν→∞ ; therefore, ( 1) ( ) .N N+℘ →℘  
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Next, let us verify that ( 1) ( 1)lim ( , ) ( , ), lim ( ) ( ).N N

N N
η κ η κ κ κ+ +

→∞ →∞
∨ = ∨ ℘ =℘  Considering the difference between 

the exact and approximate solutions, we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1

( ) ( ) ( ) ( ) ( , ) ( , )

( ) ( , ) .

κ κ κ κ η κ δ η κ

κ δ η κ

Ν+ Ν+ Ν+ Ν+ Ν

Ν+

∨ −∨ ≤ ϒ ℘ −℘ ∨ + ϒ ∨ −∨ +

ϒ ℘ + ∨ −∨
 (14) 

Using ( ) ( )1 1( , )
( ) ( )

( )
π δ η κ

κ κ
κ

Ν+ Ν+℘ −℘ ≤ ∨ −∨
Ρ

and (13) in (14), we obtain 

( )
( )

( )

11
221 1

0 0

1
1

1

( , ) ( , )
( ) ( ) ( ) ( , ) ( , ) ( , )

( )

( , ) .
... 1!

N
N N

N
N

N

S d d

P
Q Q N

κ ππ δ η κ η κ
κ κ κ δ η κ ω τ ω τ ω τ

κ

δ η κ

+

+ +

+
+

 ∨     ∨ −∨ ≤ ℘ + + ∨ −∨   Ρ   
ϒ

+
+

∫ ∫
 

Applying Gronwall’s inequality leads to  

( )
( )

2
12 ( , )

2 ( ) ( , ) ( , )12 ( )2( 1)1

1

( ) ( ) 2 ( , ) .
... 1!N

P e
Q Q N

π δ η κ
κ η κ δ η κ

κ
κ κ δ η κ

Ν+
    ϒ ℘ + ∨ + Ν+  Ρ Ν+  Ν+  

 ϒ
∨ −∨ ≤   + 

 

Hence, ( 1)Ν+∨ →∨ and ( 1)Ν+℘ →℘as .N →∞  

If two solutions, ( )( ), ( , )κ η κ℘ ∨  and ( )( ), ( , )λ κ ϑ η κ , satisfy (1)–(4), performing the same procedures gives 

( , )
( ) ( ) ,

( )
π δ η κ

κ λ κ ϑ
κ

℘ − ≤ ∨ −
Ρ

 (15)
 

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) .tκ ϑ κ κ ϑ δ η κ ϑ κ λ ϑ η κ∨ − ≤ ϒ ℘ ∨ − + ϒ ∨ − + ϒ ℘ −  (16)

 Substituting (15) into (16) yields  

[ ]
1
22

0 0

( , )
( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ) .

( )
A d d

κ ππ δ η κ
η κ ϑ η κ κ ϑ η κ δ η κ ω τ ϑ ω τ ω τ

κ

  
∨ − ≤ ℘ + + ∨ −   Ρ   

∫ ∫  

Applying Grоnwаll’s іnеquаlіtу, we conclude that ( , ) ( , )t tη ϑ η∨ = and ( ) ( )t tκ λ= .  
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Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Then the solution pair ( )( ), ( , )κ η κ℘ ∨ of 

problem (1)– (4) depends continuously on the input data , , .ς µ Ρ  

Proof. Consider two sets of data 

{ }, ,ς µΞ = Ρ , { }, ,ς µΞ = Ρ   , 

both satisfying the assumptions of Theorem 1. Assume that there exist positive constants 1 2 3, ,Μ Μ Μ such that 

2 1 2 3[0, ] [0, ] [0, ]
, , ,

C K C K C K
ς µΡ ≤ Μ ≤Μ ≤Μ  

and similarly 

2 1 2 3[0, ] [0, ][0, ]
, , .

C K C KC K
ς µΡ ≤ Μ ≤Μ ≤Μ    

Define the norms 

2[0, ] [0, ] [0, ]C K C K C K
ς µΞ = + + Ρ , 2[0, ] [0, ] [0, ]

.
C K C K C K

ς µΞ = + + Ρ    

Let the solutions ( ),℘∨ and ( ),℘∨  correspond to data Ξ and Ξ , respectively. Following the same 

methodology as before, we obtain 

1

( , )''( ) ''( )( ) ( ) ,
( ) ( )

π δ η κκ κκ κ
κ κ

Ρ Ρ
℘ −℘ ≤ − + ∨ −∨

Ρ Ρ Μ





 (17) 

( )

( ) ( )

0 0 0 0

1

1

( , ) ( , )
2

( ) ( ) ( , ) ( ) ( , ) .
2 6

cl cl sl sl
l

cl cl sl sl
l

Kς ς µ µ
η κ η κ ς ς ς ς

π µ µ µ µ κ κ η κ κ δ η κ

∞

=

∞

=

− + −
∨ −∨ ≤ + − + − +

− + − + ϒ ℘ −℘ ∨ + ϒ ℘ + ∨ −∨

∑

∑

 


 

 (18)

 

Substituting (17) into (18) gives  

22 2 2
4 5( , ) ( , ) 2 2 ( , ) .M Mη κ η κ δ η κ∨ −∨ ≤ Ξ −Ξ + ∨ −∨   

4. ANALYSIS OF SOLUTION STABILITY 
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By applying Gronwall’s inequality to the resulting expression, we obtain 

2
5

22 ( , )2
4( , ) ( , ) 2 2 .MM e δ η κη κ η κ∨ −∨ ≤ Ξ −Ξ +  

Thus, as Ξ→Ξ , it follows that .∨ →∨ Hence, .℘→℘  

 

A one-dimensional nonlinear hyperbolic equation with an unknown time-dependent inverse 
coefficient under periodic boundary conditions has been analytically solved. The Fourier method has been 
employed to construct the solution pair (∨,℘). 

 
The conditions for the existence, uniqueness, and continuous dependence of the solution on the 

given data have been established. Furthermore, the inverse problem has been proved to be well-posed via 
the Picard successive approximation technique. This study provides a theoretical foundation for inverse-
coefficient nonlinear hyperbolic equations. The results obtained are expected to guide future research on 
more complex multidimensional models, uncertain or variable coefficients, and realistic physical 
applications. 
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