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Abstract: In this study, we consider the Pareto distribution where the value of k parameter is uncertain.
Some statistical quantities such as expected value, variance, skewness and kurtosis of the pareto distribution
are derived by using fuzzy numbers. In addition to the these numerical characteristics, a numerical study
is provided. Furthermore, large claims data from Society of Actuaries (SOA) Group Medical insurance is
examined and k parameter of Pareto distribution is obtained by using the maximum likelihood estimation
method and the numerical characteristics of this distribution are calculated under uncertainty.
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1. Introduction

Pareto distribution, which is introduced by Italian-born Swiss professor Vilfredo Pareto (1848-
1923), is a heavy tailed distribution [10]. Heavy-tailed distributions are crucial for modeling extreme
loss in insurance applications such as medical and catastrophic insurance. On the other hand,
in financial applications, heavy-tailed distributions gives opportunity to interpreting of financial
status such as ruin. Detailed information about Pareto distribution is summarized by Kleiber and
Kotz (2003) [11].
It’s known that fuzzy logic is used in numerous scientific areas, for instance, electronic, inventory

theory, reliability theory, queuing theory, biology, medical, decision theory, mathematics, statistics,
and specially in insurance theory. Note that, insurance theory has numerous areas with applications
for fuzzy logic. These include classification, fuzzy future and present values, pricing, asset location
and cash flows, and investment ([1, 2, 4, 7, 13, 15, 16, 18]). As discussed by Shapiro (2004), measures
of fuzziness can be used to classify life insurance risks. Buckley (1987) investigated fuzzy time-value-
of-money aspects of actuarial pricing, when he investigated the fuzzy future and present values of
fuzzy cash amounts, using fuzzy interest rates, and both crisp and fuzzy periods. Lemaire (1990)
discussed the computation of the fuzzy premium for a pure endowment policy using fuzzy arithmetic
by a model which is given by Buckley (1987). Young (1996) described how fuzzy logic could be
used to make pricing decision in group health insurance. Carretero and Viejo (2000) investigate
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to use of fuzzy mathematical programming for insurance pricing decisions. Pareto distribution can
be used for modelling of probabilities in extreme losses. Due to the uncertainty, investigating of
fuzzy numerical characteristics of Pareto distribution have vital importance for insurance industry.
In accordance with Buckley and Eslami’ method [3], we investigated the Pareto distribution and
its numerical characteristics where k parameters of the probability values are uncertain. After
proving that the Pareto distribution fits to medical insurance claims data, k parameter of Pareto
distribution is obtained by using the maximum likelihood estimation method then the numerical
characteristics of this distribution are recalculated under uncertainty.
We might use the standard notation X ∼ Par(m,k). Distribution function (c.d.f) and density

function (p.d.f) of the Pareto distribution is given by

F (x) = 1−
(m
x

)k

, 0<m≤ x<∞, (1.1)

f (x;k,m) = k
mk

xk+1
, 0<m≤ x<∞, (1.2)

respectively. In here, k is called the Pareto index [5, 14, 21], k > 0 is a shape parameter (also
measuring the heaviness of the right tail) and m is a scale parameter.

2. Literature Review

After Zadeh’s well konown study [19], fuzzy logic had gained recognition and was intensively
used in applied mathematics and computer sciences ([6],[8]-[12],[20]).
Definition 1. Let X is a classical set of objects, called the universe, whose generic elements

are denoted by X. The membership in a crisp subset of X is often viewed as characteristic function
µA from X to {0,1} such that:

µA (x) =

{
1 , if x∈A
0 , if x /∈A

(2.1)

where {0,1} is called a valuation set. If the valuation set is allowed to be the real interval [0, 1], A
is called fuzzy set. µA(x)is the degree of membership of X in A ([17],[20]).
Definition 2. If A is a fuzzy set, then Ã(x)∈ [0,1] is the membership function for Ã evaluated

a real number x. An α-cut of Ã written Ãα, is defined as
{
x
∣∣∣Ã (x)≥α

}
, for 0<α≤ 1 .

Definition 3. Let A be a fuzzy set in R. A is a called a fuzzy number if: A is normal, A is
convex, A has a bounded support, and all α-cuts of A are closed intervals in R. Two special classes
of fuzzy numbers often are used in practice; they are triangular and trapezoidal fuzzy numbers.
Since the triangular fuzzy number will be used in application in this work, we will be defined this
kind of fuzzy number. A triangular fuzzy number A is defined by three numbers a < b< c. In this
regard a triangular membership function is given by

µA (x) =





x−a

b−a
, a≤ x< b

1 , x= b
c−x

c−b
, b < x≤ c

0 , x> c or x< a

(2.2)

where fuzzy set A in R

It is called triangular fuzzy number. This triangular number is based on the interval [a, c] and
µA(b) = 1 [17].
Let [a1, c1] and [a2, c2] be two closed, bounded, intervals of real numbers. The basic operations

from interval arithmetics are,

[a1, c1] + [a2, c2] = [a1 + a2, c1 + c2] (2.3)
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[a1, c1]− [a2, c2] = [a1− c2, c1− a2] (2.4)

[a1, c1]/ [a2, c2] = [a1, c1]

[
1

c2
,
1

a2

]
(2.5)

and
[a1, c1] · [a2, c2] = [γ,β] (2.6)

where
γ =min{a1a2, a1c2, c1a2, c1c2} , (2.7)

β =max{a1a2, a1c2, c1a2, c1c2} . (2.8)

Multiplication and division may be further simplified if a1 > 0 and c2 < 0, or c1 > 0 and c2 < 0,
are known. For instance, if a1 ≥ 0 and a2 ≥ 0, then

[a1, c1] · [a2, c2] = [a1a2, c1c2] (2.9)

and if c1 < 0 but a2 ≥ 0, it can be seen that

[a1, c1] · [a2, c2] = [a1c2, a2c1]. (2.10)

Also, assuming c1 < 0 and c2 < 0 we get

[a1, c1] · [a2, c2] = [c1c2, a1a2] , (2.11)

but a1 ≥ 0, c2 < 0 produces
[a1, c1] · [a2, c2] = [a2c1, c2a1] . (2.12)

In division, it is assumed that zero does not belong to [a2, c2] [1].

3. Pareto Distribution under Uncertainty

Fuzzy probability can be calculated in [c, d] interval by

P̃α [c, d] =





d∫

c

k
mk

xk+1
dx

∣∣∣k ∈ k̃ [α] ∀α



 (3.1)

For 0≤ α≤ 1 then P̃α [c, d] = [p1 (α) , p2 (α)] where

p1 (α) =min





d∫

c

k
mk

xk+1
dx

∣∣∣k ∈ k̃ [α]



 (3.2)

and

p2 (α) =max





d∫

c

k
mk

xk+1
dx

∣∣∣k ∈ k̃ [α]



 (3.3)

Let

h (k) =

d∫

c

k
mk

xk+1
dx,k ∈ k̃α = [k1(α), k2(α)] (3.4)

then
p1 (α) = h (k2 (α)) and p2 (α) = h (k1 (α)) (3.5)

where h(.) is increase function with respect to parameter k.
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Example 1. Let m = 1, k = 5. Since k is uncertain, it is assumed that k̃ = (4.9/5.0/5.1) for
k. So fuzzy probability, P̃α [2,3], can be calculated by using equations given by (3.2-3.5) with
k̃α = [k1 (α) , k2 (α)] = [4.9+0.1α,5.1− 0.1α].

Fuzzy probability, P̃α, and other fuzzy numerical characteristics are calculated according to the
different values of α for k in the interval k̃α by a MATLAB code and given in Table 1.

α P̃α [2,3] µ̃α σ̃2
α γ̃1,α γ̃2,α

0.0 [0.0255,0.0289] [1.1951,1.3077] [0.0940,0.1156] [4.2372,5.1073] [55.5432,91.1285]
0.1 [0.0256,0.0287] [1.2005,1.3018] [0.0950,0.1144] [4.2372,5.0589] [56.8869,88.8113]
0.2 [0.0258,0.0285] [1.2059,1.2959] [0.0960,0.1132] [4.2372,5.0110] [58.2674,86.5636]
0.3 [0.0260,0.0284] [1.2113,1.2901] [0.0969,0.1120] [4.2372,4.9637] [59.6862,84.3829]
0.4 [0.0261,0.0282] [1.2167,1.2843] [0.0979,0.1109] [4.2372,4.9170] [61.1443,82.2667]
0.5 [0.0263,0.0280] [1.2222,1.2785] [0.0989,0.1097] [4.2372,4.8708] [62.6432,80.2127]
0.6 [0.0265,0.0278] [1.2277,1.2727] [0.1000,0.1086] [4.2372,4.8251] [64.1842,78.2186]
0.7 [0.0266,0.0277] [1.2333,1.2670] [0.1010,0.1075] [4.2372,4.7800] [65.7689,76.2823]
0.8 [0.0268,0.0275] [1.2388,1.2613] [0.1020,0.1063] [4.2372,4.7353] [67.3987,74.4018]
0.9 [0.0270,0.0273] [1.2444,1.2556] [0.1031,0.1052] [4.2372,4.6912] [69.0751,72.5749]
1.0 [0.0271,0.0271] [1.2500,1.2500] [0.1042,0.1042] [4.6476,4.6476] [70.8000,70.8000]

Table 1. P̃α, µ̃α, σ̃
2
α, γ̃1,α(skewness) and γ̃2,α(kurtosis) values for α-cut

The fuzzy probability shown in Figure 1 for Example 1.
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Figure 1. Fuzzy Probabilities for Pareto
Distribution (k= 5, m= 1)

We now determinate the fuzzy expected value and fuzzy variance of fuzzy Pareto probability
density function.

µ̃α =





∞∫

m

k
(m
x

)k

dx
∣∣∣k ∈ k̃ [α]



 (3.6)

Since, each integral in the equation (3.6) equals k m

k−1
, k > 1. Hence, µ̃α = k̃ m

k̃−1
. Similarly, σ̃2

α =

k̃ m2

(k̃−2)(k̃−1)
2 , k̃ > 2.
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Now let us calculate the fuzzy expected value and fuzzy variance of fuzzy Pareto probability
density function for values which are used in Example 1. And they are given in Table 1 for some
α-cuts. The graph of the fuzzy expected value and fuzzy variance are shown in Figure 2 and Figure
3 respectively.
Now let us calculate the fuzzy skewness and fuzzy kurtosis of fuzzy Pareto probability density

function for values which are used in Example 1. And they are given in Table 1 for some α-cuts,
respectively.

γ̃1,α =
µ̃3,α

σ̃3
α

(3.7)

γ̃2,α =
µ̃4,α

σ̃4
α

− 3 (3.8)

where

µ̃i,α, i= 3,4 (3.9)

this called as fuzzy central moment.
The graph of the the fuzzy skewness and fuzzy kurtosis are shown in Figure 4 and Figure 5

respectively.
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� � � � � � � � � � � � � � � ��� � �� � �� � �� � ��
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4. Application to the SOA Group Medical Insurance Database

We handled the SOA Group Medical insurance large claims database, which is available at
http://www.soa.org, the period 1991. For calculating, a sample drawn by systematic sampling.
Systematic Sampling is a method of selecting sample members from a larger population according
to a random starting point and a fixed periodic interval. Typically, every n− th member is selected
from the total population for inclusion in the sample population. Since we select every 100− th
observation. This sample has 758 observations. According to the Kolmogrov-Smirnov goodness-
of-fit test, this observation has pareto distribution with (k̂ = 1.6577, m= 25007) parameters. The
calculated values and the table values of the Kolmogorov-Smirnov test are shown in Table 2.
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Threshold n k̂ K-S (calculated value) K-S (table)

25007 758 1.6577 0.0374 < 0.0592
Table 2: Goodness-of-fit to Pareto Distribution

The observed and theoretical frequencies plots are shown in Figure 6. From the figure 6, we can
also see that the variables are fit to pareto distribution.

7 8 7 7 9 7 7 : 7 7 ; 7 7 < 7 7 = 7 7 > 7 7 ? 7 777 @ 87 @ 97 @ :7 @ ;7 @ <7 @ =7 @ >7 @ ?7 @ A8

Figure 6. Pareto Fit Whole Data Set

Now we calculate the expectation value for the population by using estimated k̂, under

uncertainty. Let m = 25007, k̂ = 1.6577. Since k̂ is uncertain we use
˜̂
k =

[
k̂1 (α) , k̂2 (α)

]
=

[1.5577+0.1α , 1.7577− 0.1α] for k̂. We will calculate the fuzzy expected value ˜̂µ from Equation
(3.6):

α ˜̂µ
0.0 [51410 , 78814]
0.1 [52432 , 76986]
0.2 [53482 , 75220]
0.3 [54560 , 73515]
0.4 [55669 , 71866]
0.5 [56809 , 70272]
0.6 [57982 , 68730]
0.7 [59188 , 67236]
0.8 [60431 , 65790]
0.9 [61710 , 64388]
1.0 [63029 , 63029]

Table 3: ˜̂µ values for α-cut

5. Conclusions

It’s known that mean value of population is 67632. However, the expected value µ̂ is calculated as
63029 from sample by using k̂. On the other hand, it can be reached to ˜̂µ= [51410,78815] interval

by using
˜̂
k. This is shown that this interval includes the mean value. So, it can be noted that ˜̂µ

gives more useful estimation than µ̂.
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