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Abstract: In this study, nonlinear bending behavior of functionally graded graphene nanoplatelet reinforced composite beams is
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polynomials fitted to the dimensionless numerical results obtained were given.
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1. Introduction
Graphene nanoplatelets (GPLs) are high-strength
materials with a thickness of several nanometers.
Interest in graphene increased

development of nanotechnology. Since they are produced

rapidly with the

entirely from graphite, they can conduct excellent
thermal and electrical conduction. GPLs have been
proven to be excellent candidates for enhancing material
properties when added to the polymer matrix. For this
reason, GPLs are widely used in the production of strong
adhesives, in the reinforcement of structural elements,
change of electrical properties, and in many other areas
(Lee et al,, 2008; Fei et al,, 2020; Gaj et al., 2020; Kong et
al, 2020; Songsuwan et al, 2021). The strength of
graphene nanoplatelets is much higher than carbon
nanotubes. By adding only %1 weight fraction of GPLs
compared to %1 weight fraction of carbon nanotubes
(CNTs), equivalent strength and stiffness can be obtained
(Thai et al.,, 2020). Functionally graded material (FGM) is
made by gradually combining two materials. The
properties of the material can be described as smooth
and continuous in spatial directions (Wattanasakulpong
and Bui, 2017; Wattanasakulpong et al., 2018; Jalei and
Civalek, 2019; Kim et al., 2019; Zur et al., 2020). By using
such a concept, the structural performance of new
composites can be improved significantly, especially for
GPL-based composites. Therefore, the GPL-based
composites produced in the form of FGMs are called
functionally graded graphene nanoplatelet reinforced

composites (FG-GPLRC) (Hao et al, 2019; Song et al,
2017; Gao et al., 2020). The studies correspond to the FG-
GPLRC structures that examine the mechanical behaviors
of composite structures that are in their infancy. The
production of high-strength and slender beams, plates,
and shells using this material and, the examination of the
mechanical properties of these elements have recently
attracted a lot of attention from engineers (Zhao et al,
2020). Yang et al. devoted great effort to the bending,
buckling, and vibration behavior of FG-GPLRC beams and
plates (Yang et al., 2017a; Yang et al,, 2017b; Zhao et al,,
2017; Song et al,, 2018; Yang et al,, 2018a). Lin et al.
(2017) determined graphene efficiency parameters of
FG-GPLRCs that were used to evaluate the material
properties of the composite using these parameters by
matching results from the Halpin-Tsai model and
molecular dynamics simulations. Furthermore, Shen et al.
discussed various results for nonlinear bending,
vibration, and buckling behaviors of FG-GPLRC plates,
panels, and shells (Shen et al,, 2017a; Shen et al,, 2017b;
Shen et al, 2017c; Shen and Xiang, 2018; Shen et al,
2018). A large number of researchers have been carried
out on building elements produced with reinforced
materials with the help of GPLs. Some of these are; the
vibration of pre-twisted panels reinforced by GPLs (Niu
et al,, 2019), linear and nonlinear analyses for buckling
and vibration of FG-GPLRC piezoelectric plates under
electric and mechanical forces (Mao and Zhang, 2018;
Mao and Zhang, 2019), the vibration of FG-GPLRC doubly
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curved shells (Wang et al., 2018; Wang et al,, 2019a), FG-
GPLRC structures with di-electric plates (Wang et al,
2019a). Moreover, the trend of investigations into FG-
GPLRC structures has grown dramatically in the
engineering community (Yang et al, 2018b; Thai et al,,
2019; Karami and Shahsavari, 2020).

In addition to numerical and theoretical investigations,
recent studies have increasingly focused on the
experimental characterization of graphene nanoplatelet-
reinforced structural elements. Saleh et al. (2025)
conducted laboratory-scale experimental tests on
reinforced concrete beams incorporating engineered
nanographene and significant
improvements in flexural and shear performance,
highlighting the strong influence of GPL content on
structural behavior. Similarly, Yager et al. (2024)
investigated the time-dependent mechanical properties

demonstrated

of graphene nanoplatelet-reinforced concrete and
reported notable enhancements in stiffness and long-
term performance under sustained loading. On the
numerical side, Ni et al. (2023) provided a detailed
vibration analysis of graphene nanoplatelet-reinforced
structures, offering valuable insights into damping and
dynamic response These
experimental and numerical findings underline the
practical relevance of GPL-reinforced composites and
further motivate the development of reliable higher-
FG-GPLRC beams,
particularly for capturing nonlinear bending behavior
under different material gradation schemes.

In the modeling of functionally graded beam and plate
structures, various classical and refined beam theories
have been developed to capture shear deformation and
thickness-dependent material behavior. Among these,
higher-order shear deformation theories (HSDTs) have
been shown to provide improved accuracy without the
need for shear correction factors, particularly for

characteristics. recent

order theoretical models for

moderately thick beams and structures with strong
material gradation (Reddy, 1984). Subsequent
developments extended these concepts to functionally
graded micro- and macro-scale beams, demonstrating
the effectiveness of higher-order kinematic assumptions
in predicting bending and vibration responses (Simsek
and Reddy, 2013). Comprehensive reviews further
indicate that HSDT-based formulations constitute a
robust theoretical framework for the analysis of
functionally graded structures when compared to
classical and first-order theories (Thai and Kim, 2015).
Motivated by these established theoretical foundations,
the present study adopts a higher-order beam
formulation to investigate the nonlinear behavior of
functionally graded graphene nanoplatelet-reinforced
composite beams.

In the studies given above, it is assumed that the FG-
GPLRC constructs have been produced as multi-layered
GPLs. With this assumption, it is very difficult to account
concentrations

for stress and adhesion problems

between layers. To circumvent these difficulties is to

assume that the GPLs are continuously dispersed in the
polymer matrix (Wang et al.,, 2019b; Wang et al,, 2019c).
In this study, it was accepted that GPLs change softly
along the beam height with the function proposed by
Touratier. Total Potential energy is written taking into
account nonlinear terms. The boundary conditions and
equilibrium equations were found using the condition
that the variation in energy is zero. The solution to the
problem for various end conditions and loads is given
numerically. The comprehensive literature
indicates that similar boundary conditions and
equilibrium equations have not been previously
formulated in the same manner.

review

2. Materials and Methods

2.1. FG-GPLRC Beams

The effective Young’s modulus of composites made from
GPLs/epoxy (Ec(z)) is composed of two modulus types:
longitudinal (Ei(z)) and transverse (Ei(z)) modulus
(Songsuwan et al,, 2021; Wang et al, 2019¢; Yang et al,,
2017). In this study, a homogenized material model
based on an effective modulus (Ec(z)) is adopted. The
influence of graphene nanoplatelet orientation is
therefore not explicitly considered and may affect local
deformation high bending
moments. This limitation has been acknowledged, as the
present formulation aims to capture the global nonlinear
response of FG-GPLRC beams rather than detailed
microscale effects (equations 1-5).

Ec(2) = 2E(2) + 2E(2) &)

Ei(z) and E¢(z) are
_ (1+§mlvgpl)Em

characteristics under

E =——>"— 2
1 = (2)
(1+fwnwvgpl)Em
E, = “wihvVep)fm 3
t 1—T]ngp1 ( )
Where

2lgpl 2wgpt Egpl 1 Egpl
= = = - +
gt g, =y By g

E E
M = (22-1)/(2+4,) @
_ Sepl _ 1
Vgpl - gi}:(l—ggpl) »8gpl = k) (E - 2),
L
Vn =1—"Vyp (5)

where ggpi is the given weight fraction, pm and pgp denote
the material density of the polymer matrix and GPLs,
respectively

Poisson’s ratio (vc¢(z)) can be defined using the
rule of mixtures as follows (equations 6 and 7):

ve(2) = nglVgpl + U Vi (6)
where
Vi =1—"Vyp (7)

Vgpl and vi, are the Poisson’s ratio of GPLs and polymer
matrix, respectively. Numerical values of parameters
and the form of weight fraction (ggp) are (Thai et al,
2019) (equation 8).
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W, = 2,Egp = 1.01TPq, v4,,=0.186, P 4,,=1.06 g/ cm?

Ep = 2.85GPa, vy, = 0.34,P,, = 1.2 g/cm3,15,,=2.5 um
1

Wgpt = 1.5 um, hypy = 1.5 wm, ggp = ¥, (E_ z) (8)

3. Results
The graph of the Youngs modulus for the values of

the parameters given in equation 8 is shown in Figure
1.

25
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Figure 1. Variation of Young’'s modulus E(z) (vertical
axis) along the beam thickness (z/h, horizontal axis).

3.1. Beam Under Consideration
Figure 2 presents geometry of the FG-GPLRC beam

and its cross-section.
X.u
h
]
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Figure 2. Geometry of the FG-GPLRC beam and its
cross-section.

The displacement field of the shear deformation theory is
expressed as follows (Wang et al., 2019c; Simsek and
Reddy, 2013; Joshan et al,, 2017; Singh and Singh, 2017).

u(x,z) = upg(x) —zw'(x) + f(2p(x) 9
w(x,z) = w(x) (10)

where prime means the derivative of w(x) with
respect to x, u and w de- note the displacement
components of the beam at any point, uo is the axial
displacement at any point on the mid-plane surface
(z = 0) of the beam, ¢ represents the shear
deformation at the mid-plane surface, and f (z)
represents the shear-strain function that corresponds
only to the function of thickness coordinate z. Normal
strain exx and shear strain yx., relations are found by
taking into account the nonlinear terms with the help
of 9 and 10 relations as follows (equations 11-16).

a 1,0

€ =5 +5 G2 (11)
du , ow

yxx_a"'a (12)

Exx = Uy —2zW' + f' + %W’Z (13)

Yex = [’ (14)

0x = Ec(2)€xy = Ecuy — Eczw” + E.fo’ + %ECWIZ (15)

Txz = Gc(2)Vaz = Gef'o (16)

where Gc(z) is shear modulus. Variation of total
energy is

om = foL f_gg f_gg(o-xsexx + TuzOVax)dydzdx —

2 2
f(fq(x)éwdx 17)
If equations 11, 12, 13, 14, 15 and 16 are used, the
following relation is obtained (equations 18 and 19).
om =
Ce fOL uy’ Sujdx — c3 fOL uy' Sw''dx + cg fOL uy' S¢'dx +
Co f: uy' w'sw'dx — c5 f: w' Sugdx + ¢q f: w' dw' dx —
o fOL w' §¢@'dx — c3 foLw”w' dw'dx + cs fOL @' dugdx —
cy fOL @' sw'dx +c, fOL @' 8¢ dx + cg fOL @' w'sw'dx +
S [ w' Supdx — 2 [T w2 swdx + 2 [T w2 8¢ dx +

%fOL w3 sw'dx + ¢, fOL @ Spdx — fOL q Swdx (18)

Where

h h
¢ =b[*2°E(2)dz, c;=b[*2E(2)f(2)dz, c3=
k ’ L3 ’
b [*2E.(2)dz, ¢y = b [*E. (2)f(2)*dz,cs =
ﬁz ’ h
b [*E. (2)f(2)dz, c6=Db [*E.(2)dz, c;=
2 2

h
b [*.G. (2)f'(2)?dz, (19)
Function f{z) for shear stress distribution is selected
as Touratier’'s model (Touratier, 1991; Wang et al,,
2019c) (equation 20).

fz)= 2 sin™* (20)

With the help of the minimum total potential
energy principle (ér = 0), the boundary conditions
and governing equations are obtained as follows.
Boundary conditions are (equations 21-28);

1v5u0|3 =0 1)
L
Téwly =0 (22)
nL
My 8wl =0 (23)
L
My5p]} =0 24)
Where
N = cguy —csw" +c50' + % w'? (25)

C
T = cquy’' — cgugw’ — W'’ + c20" + csp'w’ + 75 w's

(26)
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M; = —c3uy’ + W'’ — ¢’ — % w'? (27)
My = csuy’ — cow" + cp" + % w'? (28)

Equlibrium equations are (equations 29-31).

N'(x)=0 (29)
T'(x) = —q(x) (30)
M;(x) — c;0(x) =0 (31)

The dimensionless quantities are defined as follows
(equation 32).

ST SN g _ Mg My b
T_cﬁ'N_c6' Ml_csL' 2_c(,L'O(_h' 0

Uo - Wo %X 3 - L

L yWo = L , X = L’ q(x) q(x)c6 (32)

Equilibrium equations take the following form in terms
of dimensionless quantities (equations 33-35).

cﬁL(ﬁ”(f)+W’(JE)W"(f))—c3W(3)()Z)+cstp"(JE)

=0 (33)

ceL

calT® @) +esL (W (D (D' (9" () -1 W D@ +e20 P (D)

celL
g@@) + u' (w'® +u' (@©w" (xX) +
3 w' (%)W" (%)=0 (34)

—c;L2p(X)+csL(w () +w' (W' (8))—c,w P (0)+c, 0" (%) _

- =0 (35)

3.2. Examples

Simple beams and two-end fixed beams under the
influence of different types of loads are examined in the
examples below.

3.2.1. The simple beam is subjected to a uniform load
Figure 3 presents a simple beam is subjected to a
uniform load.

EEEEEEEERR] P
N\

D L S

Figure 3. A simple beam is subjected to a uniform
load.

In this example, the axial displacement &g in X = 1 is
not zero. With the help of the boundary condition
given by the relation of 21, the axial force is obtained

as N= 0. The boundary conditions are (equations 36-
44).

My (0) = 0,M,(0) = 0,w(0) = 0,T,(0) =

N |

My (1) = 0, M,(1) = 0,w(1) = 0,T,(1) = - £ (36)
Vertical displacements (W), axial displacements (%),
rotation of cross-sections ¢, moments Ml ) 11_42 and shear

force T are obtained by numerically with the help of

governing equations (29, 30, 31) and boundary
conditions for a simple beam subjected to a uniform
load (Figures 3,4, 5,6, 7, 8, 9 and equations 37, 38, 39,
40, 41 42, 43, 44). Selected parameters are given
below.

a=z,L=1mh=08m>b=ahf=1N/m (37)

Numerical values of ¢; coefficients are

¢, = 0.0197809, ¢, = 0.0152049, c3 = 0.0463755, ¢, =
0.011857, c5 = 0.0358353, ¢s = 0.349531, ¢, =
0.0694033 (38)
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Figure 5. Axial displacements.
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Figure 6. Rotation of cross-sections.

wy (x) = 24.598x° — 73.7952x° + 85.4561x* —
47.9202x3 + 15.624x? — 3.96309x + 0.00508682 (39)

u,(x) = 2.86476x5 — 7.1619x* + 1.87407x3 +
4.35079x% — 2.77764x — 0.0119582 (40)
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Figure 9. Shear force.

@p(x) = —0.0000543558x° — 36.4423x° + 91.106x* —
65.6862x% + 7.42331x2 + 10.1733x — 3.287 (41

My, (%) = 20.6875x° + 62.0625x° — 71.8694x* +
40.3013x% — 11.7094x2 + 1.90251x — 0.00427806 (42)

M,,(x) = 6.28831x° — 18.8649x° + 22.1359x* —
12.8302x3 + 4.21323x% — 0.942298x + 0.00127271  (43)

T, (x) = 1.43049 — 2.86098x — 0.0000293798x +
0.000208642x3 — 0.000516923x* + 0.00054273x5 —
0.000204722x° (44)

3.2.2. The simple beam is subjected to a triangular
load

Figure 10 presents simple beam is subjected to a
triangular load.

L T

Figure 10. Simple beam is subjected to a triangular
load

In this example, the axial displacement () inx = 1 is
not zero. With the help of the boundary condition
given by the relation of 21, the axial force is obtained

as N= 0. The boundary conditions are (equation 45).
M;(0) = 0, M,(0) = 0,w(0) = 0,T;(0) =§

M,(1) = 0,/,(1) = 0,w(1) = 0,T,() =-£  (45)

Vertical displacements W, axial displacements U,
rotation of cross-sections ¢, moments M1, M, and

shear force T are obtained by numerically with the help
of equilibrium equations (29, 30, 31) and boundary
conditions for a simple beam subjected to a uniform load
(Figures 10, 11, 12,13, 14, 15,16 and equations 46, 47, 48
49, 50, 51). Selected parameters and ci coefficients are
given in equations 37 and 38

=

0.0 B
rrryrrvrYIYYY
z 01 R ' 4
g o2
= iy (@)
—03p  ----- u (%)
0.0 0.2 0.4 0.6 08 1.0

i
Figure 12. Axial displacements.
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Figure 14. Moment-M1.
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Figure 15. Moment-Ma.
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Figure 16. Shear force.

wp(x) = —12.3586x° + 38.3878x° — 45.2305x* +
25.6918x3 — 6.02133x? — 0.49134x + 0.00841133 (46)

up(x) = —70.568x° + 201.252x5 — 217.898x* + 109.525x° —
24.1045x% + 1.16614x + 0.00190374 47

@p(x) = 670.431x6 — 1983.15x5 + 2242.22x* —
1204.36x3 + 309.582x2 — 29.5714x — 1.03818  (48)

My, (x) = 10.3937x° — 32.2845x° + 38.0393x* —
21.1303x3 + 5.064x2 — 0.0636072x — 0.00707401 (49)

M, (x) = —2.97564x6 + 9.32188x° — 10.8194x* +
5.79088x% — 1.06437x% — 0.258937x + 0.00210673  (50)

T,(x) = —0.000116502x° + 0.00032794x5 —
0.000333841x* + 0.000146841x3 — 1.43051x2 +
1.100207 = 10™%x + 0.476829 (51)

3.2.3. Two-end fixed beam under uniformly
distributed load

Figure 17 presents two-end fixed beam under uniformly
distributed load.

B

L

Figure 17. Two-end fixed beam under uniformly
distributed load.

The boundary conditions are (equation 52).

w(0)=0, w'(0)=0, P(0)=0
w1) =0, w(1)=0, P1)=0 (52)

Selected parameters and c; coefficients are (equations
53 and 54)

a=7,L=0.06mh=06mb=ahf=10N/m (53)

¢, = 0.00294949, ¢, = 0.0022738, c; = 0.0072335,c, =
0.00177848, c5 = 0.00559372, ¢, = 0.0950059, ¢, =
0.0193613 (54)

Axial force N , Vertical displacements i, axial
displacements o, rotation of cross-sections ¢,
moments Ml, 1\_/12 and shear force T are obtained by
numerically with the help of equilibrium equations
(29, 30, 31) and boundary conditions for a fixed-end
beam subjected to a uniform load (Figure 17).
Dimensionless axial force is found as N= 4.6. (Figures
18, 19,20, 21, 22, 23 and equations 46-60).

0.07
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0.05

0.04

1]
IEEEESEREER
1

0.03

wixl, u'l..l: )

0.02

0.01

0.00 se=e== 1t'pf.F:|

00 02 0.4 0.6 0.8 1.0

x

Figure 18. Vertical displacements.
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Figure 19. Axial displacements.
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Figure 20. Rotation of cross-sections.

p

L

e

= 57

=]

g 8 M%) ]
I M (%)

EEEEEEREEEENE

0.0 0.2 0.4

Figure 21.Moment-Mi.

0.6 0.8 1.0

4.520F

4515

M 2(3), M (%)

Figure 22. Moment-M..

0.6 0.8 1.0

p

EEXEEEEEEREEN

Figure 23. Shear force.

w,(x) = 1.07242x° — 3.21725x5 + 4.54465x* —
3.72722x3 + 1.32449x2 + 0.00291524x —
0.0000109887 (55)

u,(x) = —0.0000164922x° + 0.452401x5 —
1.13095x* + 1.05x3 — 0.444066x% + 0.0727426x —

0.0000562965 (56)
(pp(x) = 0.0000232329x° + 8.67725x° — 21.6932x* +
24.2411x% — 14.6684x% + 3.4419x + 0.000673838 (57)

My, (x) = 4.93259x° — 14.7982x" + 20.9045x* —
17.1449x3 + 9.25028x2 — 3.14429x — 5.48145  (58)

Moy, (x) = 0.279462x°% — 0.837942x° + 1.18252x* —
0.968706x3 + 0.343992x2% + 0.00075917x + 4.50433 (59)

T, (x) = 0.00357093x° — 0.0071751x5 + 0.00628797x* —
0.00252181x3 + 0.000553832x — 6.31545x + 3.1577  (60)

3.2.4. Two-end fixed beam is subjected to a triangular
load
Figure 24 presents two-end fixed beam is subjected to a
triangular load.

B

L

— —

Figure 24. Two-end fixed beam is subjected to a
triangular load

The boundary conditions are (equations 61).

w(0)=0, w'(0)=0, @0O)=0

w(@l)=0, w'((1)=0, @1)=0 (61)
Selected parameters and c¢; coefficients are given in
equations 53 and 54

Axial force N , Vertical displacements (W), axial
displacements (i), rotation of cross-sections ¢,
moments Ml, Mz and shear force T are obtained by

numerically with the help of equilibrium equations
(29, 30, 31) and boundary conditions for a fixed-end
beam subjected to a triangular load (Figure 24).
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Dimensionless axial force is found as N = 5. (Figures
25, 26,27, 28, 29, 30 and equations 62-67)¢
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Figure 25. Vertical displacements.
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Figure 26. Axial displacements.
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Figure 27. Rotation of cross-sections.
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Figure 30. Shear force.

w,, (x) = 0.144126x6 — 0.365661x5 + 0.435825x* —
0.352751x3 + 0.138827x2 — 0.000377659x +
3.975704 = 1076 (62)

u,(x) =

0.0132266x5 — 0.0193753x5 + 0.000283115x* +
0.0182054x3 — 0.0174929x2 + 0.00515248x +
5411311 % 1077 (63)

@,(x) = 0.576675x° — 0.559113x° — 0.516918x* +
1.28968x% — 1.12158x2 + 0.331066x + 0.000091323  (64)

My, (x) = 0.720841x6 — 1.82873x°5 + 2.17949x* —
1.48611x3 + 0.694158x2 — 0.257732x — 6.30986  (65)

My, (x) = 0.0373309x° — 0.0948297x° + 0.113099x* —

0.0915632x3 + 0.0360297x2 — 0,0000976065x +
4.90525 (66)

T,(x) = —0.00139672x° + 0.00285179x5 —
0.00249386x* + 0.00100571x3 — 0.833547x2 +
0.0000186903x + 0.255842 (67)

4. Discussion
In this study, the nonlinear bending behavior of
functionally graded graphene nanoplatelet reinforced
composite (FG-GPLRC) beams has been investigated
by high-order shear deformation theory (HSDT). The
governing equilibrium equations and boundary
conditions were derived based on the minimum total
potential energy principle. The formulation
incorporates  two bending
components associated with axial rotation and cross-
enabling a more

distinct moment

sectional rotation, refined
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representation of beam kinematics.

The derived equilibrium equations are general in
nature and can be adapted to different beam theories
by modifying the shear strain function f(z). In this
context, Touratier’s higher-order model was
employed to demonstrate the applicability of the
formulation. The results indicate that the proposed
framework can be effectively extended to analyze not
only nonlinear bending but also vibration and
buckling behavior of FG-GPLRC beams.

Numerical solutions were obtained for various boundary
conditions and loading cases, and the spatial variation of
key response quantities along the beam length was
presented graphically. Polynomial expressions fitted to the
numerical results were also provided, offering a practical
means for verification and further analytical use.

It can be concluded that the proposed formulation
provides a versatile and consistent theoretical framework
for the analysis of FG-GPLRC beams. The results establish
a foundation for future comparative studies with
experimental data, which may further clarify the
applicability of higher-order beam models, such as
Touratier’s theory, to different classes of functionally
graded composite beams.
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