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1. Introduction 
Graphene nanoplatelets (GPLs) are high-strength 

materials with a thickness of several nanometers. 

Interest in graphene increased rapidly with the 

development of nanotechnology. Since they are produced 

entirely from graphite, they can conduct excellent 

thermal and electrical conduction. GPLs have been 

proven to be excellent candidates for enhancing material 

properties when added to the polymer matrix. For this 

reason, GPLs are widely used in the production of strong 

adhesives, in the reinforcement of structural elements, 

change of electrical properties, and in many other areas 

(Lee et al., 2008; Fei et al., 2020; Gaj et al., 2020; Kong et 

al., 2020; Songsuwan et al., 2021). The strength of 

graphene nanoplatelets is much higher than carbon 

nanotubes. By adding only %1 weight fraction of GPLs 

compared to %1 weight fraction of carbon nanotubes 

(CNTs), equivalent strength and stiffness can be obtained 

(Thai et al., 2020). Functionally graded material (FGM) is 

made by gradually combining two materials. The 

properties of the material can be described as smooth 

and continuous in spatial directions (Wattanasakulpong 

and Bui, 2017; Wattanasakulpong et al., 2018; Jalei and 

Civalek, 2019; Kim et al., 2019; Zur et al., 2020). By using 

such a concept, the structural performance of new 

composites can be improved significantly, especially for 

GPL-based composites. Therefore, the GPL-based 

composites produced in the form of FGMs are called 

functionally graded graphene nanoplatelet reinforced 

composites (FG-GPLRC) (Hao et al., 2019; Song et al., 

2017; Gao et al., 2020). The studies correspond to the FG-

GPLRC structures that examine the mechanical behaviors 

of composite structures that are in their infancy. The 

production of high-strength and slender beams, plates, 

and shells using this material and, the examination of the 

mechanical properties of these elements have recently 

attracted a lot of attention from engineers (Zhao et al., 

2020). Yang et al. devoted great effort to the bending, 

buckling, and vibration behavior of FG-GPLRC beams and 

plates (Yang et al., 2017a; Yang et al., 2017b; Zhao et al., 

2017; Song et al., 2018; Yang et al., 2018a). Lin et al. 

(2017) determined graphene efficiency parameters of 

FG-GPLRCs that were used to evaluate the material 

properties of the composite using these parameters by 

matching results from the Halpin–Tsai model and 

molecular dynamics simulations. Furthermore, Shen et al. 

discussed various results for nonlinear bending, 

vibration, and buckling behaviors of FG-GPLRC plates, 

panels, and shells (Shen et al., 2017a; Shen et al., 2017b; 

Shen et al., 2017c; Shen and Xiang, 2018; Shen et al., 

2018). A large number of researchers have been carried 

out on building elements produced with reinforced 

materials with the help of GPLs. Some of these are; the 

vibration of pre-twisted panels reinforced by GPLs (Niu 

et al., 2019), linear and nonlinear analyses for buckling 

and vibration of FG-GPLRC piezoelectric plates under 

electric and mechanical forces (Mao and Zhang, 2018; 

Mao and Zhang, 2019), the vibration of FG-GPLRC doubly 
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curved shells (Wang et al., 2018; Wang et al., 2019a), FG-

GPLRC structures with di-electric plates (Wang et al., 

2019a). Moreover, the trend of investigations into FG- 

GPLRC structures has grown dramatically in the 

engineering community (Yang et al., 2018b; Thai et al., 

2019; Karami and Shahsavari, 2020).  

In addition to numerical and theoretical investigations, 

recent studies have increasingly focused on the 

experimental characterization of graphene nanoplatelet-

reinforced structural elements. Saleh et al. (2025) 

conducted laboratory-scale experimental tests on 

reinforced concrete beams incorporating engineered 

nanographene and demonstrated significant 

improvements in flexural and shear performance, 

highlighting the strong influence of GPL content on 

structural behavior. Similarly, Yager et al. (2024) 

investigated the time-dependent mechanical properties 

of graphene nanoplatelet-reinforced concrete and 

reported notable enhancements in stiffness and long-

term performance under sustained loading. On the 

numerical side, Ni et al. (2023) provided a detailed 

vibration analysis of graphene nanoplatelet-reinforced 

structures, offering valuable insights into damping and 

dynamic response characteristics. These recent 

experimental and numerical findings underline the 

practical relevance of GPL-reinforced composites and 

further motivate the development of reliable higher-

order theoretical models for FG-GPLRC beams, 

particularly for capturing nonlinear bending behavior 

under different material gradation schemes.  

In the modeling of functionally graded beam and plate 

structures, various classical and refined beam theories 

have been developed to capture shear deformation and 

thickness-dependent material behavior. Among these, 

higher-order shear deformation theories (HSDTs) have 

been shown to provide improved accuracy without the 

need for shear correction factors, particularly for 

moderately thick beams and structures with strong 

material gradation (Reddy, 1984). Subsequent 

developments extended these concepts to functionally 

graded micro- and macro-scale beams, demonstrating 

the effectiveness of higher-order kinematic assumptions 

in predicting bending and vibration responses (Simsek 

and Reddy, 2013). Comprehensive reviews further 

indicate that HSDT-based formulations constitute a 

robust theoretical framework for the analysis of 

functionally graded structures when compared to 

classical and first-order theories (Thai and Kim, 2015). 

Motivated by these established theoretical foundations, 

the present study adopts a higher-order beam 

formulation to investigate the nonlinear behavior of 

functionally graded graphene nanoplatelet-reinforced 

composite beams. 

In the studies given above, it is assumed that the FG-

GPLRC constructs have been produced as multi-layered 

GPLs. With this assumption, it is very difficult to account 

for stress concentrations and adhesion problems 

between layers. To circumvent these difficulties is to 

assume that the GPLs are continuously dispersed in the 

polymer matrix (Wang et al., 2019b; Wang et al., 2019c).  

In this study, it was accepted that GPLs change softly 

along the beam height with the function proposed by 

Touratier. Total Potential energy is written taking into 

account nonlinear terms. The boundary conditions and 

equilibrium equations were found using the condition 

that the variation in energy is zero. The solution to the 

problem for various end conditions and loads is given 

numerically. The comprehensive literature review 

indicates that similar boundary conditions and 

equilibrium equations have not been previously 

formulated in the same manner. 

 

2. Materials and Methods 
2.1. FG-GPLRC Beams 

The effective Young’s modulus of composites made from 

GPLs/epoxy (Ec(z)) is composed of two modulus types: 

longitudinal (El(z)) and transverse (Et(z)) modulus 

(Songsuwan et al., 2021; Wang et al., 2019c; Yang et al., 

2017). In this study, a homogenized material model 

based on an effective modulus (Ec(z)) is adopted. The 

influence of graphene nanoplatelet orientation is 

therefore not explicitly considered and may affect local 

deformation characteristics under high bending 

moments. This limitation has been acknowledged, as the 

present formulation aims to capture the global nonlinear 

response of FG-GPLRC beams rather than detailed 

microscale effects (equations 1-5). 

𝐸𝑐(𝑧) =
3

8
𝐸𝑙(𝑧) +

5

8
𝐸𝑡(𝑧)                                                         (1) 

 

El(z) and Et(z) are 

𝐸𝑙 =
(1+𝜉𝑙η𝑙Vgpl)𝐸𝑚

1−η𝑙Vgpl
                                                                      (2) 

 

𝐸𝑡 =
(1+𝜉𝑤η𝑤Vgpl)𝐸𝑚

1−η𝑤Vgpl
                                                                    (3) 

 

Where 

𝜉𝑙 =
2𝑙𝑔𝑝𝑙

ℎ𝑔𝑝𝑙
, 𝜉𝑤 =

2𝑤𝑔𝑝𝑙

ℎ𝑔𝑝𝑙
, η𝑙 = (

Egpl

𝐸𝑚
-1)/(

Egpl

𝐸𝑚
+𝜉𝑙) 

 

η𝑤 = (
Egpl

𝐸𝑚
-1)/(

Egpl

𝐸𝑚
+𝜉𝑤)                                                            (4) 

 

𝑉𝑔𝑝𝑙 =
ggpl

ggpl+
𝜌

𝑔𝑝𝑙(1−ggpl)

𝜌
𝑚

 , ggpl = Ψ2(
1

2
− 𝑧), 

𝑉𝑚 = 1 − 𝑉𝑔𝑝𝑙                                                                              (5) 

where ggpl is the given weight fraction, ρm and ρgpl denote 

the material density of the polymer matrix and GPLs, 

respectively 

Poisson’s ratio (νc(z)) can be defined using the 

rule of mixtures as follows (equations 6 and 7): 
 

𝑣𝑐(𝑧) = 𝑣𝑔𝑝𝑙𝑉𝑔𝑝𝑙 + 𝑣𝑚𝑉𝑚                                                         (6) 
 

where 

𝑉𝑚 = 1 − 𝑉𝑔𝑝𝑙                                                                              (7) 
 

νgpl and νm are the Poisson’s ratio of GPLs and polymer 

matrix, respectively. Numerical values of parameters 

and the form of weight fraction (ggpl) are (Thai et al., 

2019) (equation 8). 
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Ψ2 = 2, Egpl = 1.01TPa, 𝑣𝑔𝑝𝑙=0.186, 𝜌𝑔𝑝𝑙=1.06 g/ 𝑐𝑚3 

𝐸𝑚 = 2.85 𝐺𝑃𝑎, 𝑣𝑚 = 0.34, 𝜌𝑚 = 1.2 g/𝑐𝑚3, 𝑙𝑔𝑝𝑙=2.5 µm   

𝑤𝑔𝑝𝑙 = 1.5 µ𝑚, ℎ𝑔𝑝𝑙 = 1.5 µ𝑚, 𝑔𝑔𝑝𝑙 =  Ψ2 (
1

2
− 𝑧)           (8) 

 

3. Results 
The graph of the Youngs modulus for the values of 

the parameters given in equation 8 is shown in Figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Variation of Young’s modulus Ec(z) (vertical 

axis) along the beam thickness (𝑧/ℎ, horizontal axis). 

 

3.1. Beam Under Consideration 

Figure 2 presents geometry of the FG-GPLRC beam 

and its cross-section. 

 

 

 

 

 
 

Figure 2. Geometry of the FG-GPLRC beam and its 

cross-section. 

 

The displacement field of the shear deformation theory is 

expressed as follows (Wang et al., 2019c; Simsek and 

Reddy, 2013; Joshan et al., 2017; Singh and Singh, 2017). 
 

𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧𝑤′(𝑥) + 𝑓(𝑧)𝜑(𝑥)                               (9) 
 

𝑤(𝑥, 𝑧) = 𝑤(𝑥)                                                                        (10) 
 

where prime means the derivative of w(x) with 

respect to x, u and w de- note the displacement 

components of the beam at any point, u0 is the axial 

displacement at any point on the mid-plane surface 

(z = 0) of the beam, φ represents the shear 

deformation at the mid-plane surface, and f (z) 

represents the shear-strain function that corresponds 

only to the function of thickness coordinate z. Normal 

strain ϵxx and shear strain γxz relations are found by 

taking into account the nonlinear terms with the help 

of 9 and 10 relations as follows (equations 11-16). 
 

𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)2                                                                  (11) 

 

𝛾𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑥
                                                                          (12) 

 

𝜖𝑥𝑥 = 𝑢0′ − 𝑧𝑤′′ + 𝑓𝜑′ +
1

2
𝑤′2                                         (13) 

 

𝛾𝑥𝑥 = 𝑓𝜑′                                                                                  (14) 
 

𝜎𝑥 = 𝐸𝑐(𝑧)𝜖𝑥𝑥 = 𝐸𝑐𝑢0
′ − 𝐸𝑐𝑧𝑤′′ + 𝐸𝑐𝑓𝜑′ +

1

2
𝐸𝑐𝑤′2  (15) 

 

𝜏𝑥𝑧 = 𝐺𝐶(𝑧)𝛾𝑥𝑧 = 𝐺𝐶𝑓′𝜑                                                      (16) 
 

where Gc(z) is shear modulus. Variation of total 

energy is 

𝛿𝜋 = ∫  ∫  ∫ (𝜎𝑥𝛿𝜖𝑥𝑥 +  𝜏𝑥𝑧𝛿𝛾𝑥𝑥)𝑑𝑦𝑑𝑧𝑑𝑥 −
ℎ

2

−
ℎ

2

𝑏

2

−
𝑏

2

𝐿

0

∫ 𝑞(𝑥)𝛿𝑤𝑑𝑥
𝐿

0
                                                                             (17) 

 

If equations 11, 12, 13, 14, 15 and 16 are used, the 

following relation is obtained (equations 18 and 19). 
 

𝛿𝜋 =

𝑐6 ∫ 𝑢0′
𝐿

0
𝛿𝑢0

′ 𝑑𝑥 − 𝑐3 ∫ 𝑢0′
𝐿

0
𝛿𝑤′′𝑑𝑥 + 𝑐5 ∫ 𝑢0′

𝐿

0
𝛿𝜑′𝑑𝑥 +

𝑐6 ∫ 𝑢0′
𝐿

0
𝑤′𝛿𝑤′𝑑𝑥 − 𝑐3 ∫ 𝑤′′𝐿

0
𝛿𝑢0

′ 𝑑𝑥 + 𝑐1 ∫ 𝑤′′𝐿

0
𝛿𝑤′′𝑑𝑥 −

𝑐2 ∫ 𝑤′′𝐿

0
𝛿𝜑′𝑑𝑥 − 𝑐3 ∫ 𝑤′′𝑤′𝐿

0
𝛿𝑤′𝑑𝑥 + 𝑐5 ∫ 𝜑′𝐿

0
𝛿𝑢0

′ 𝑑𝑥 −

𝑐2 ∫ 𝜑′𝐿

0
𝛿𝑤′′𝑑𝑥 + 𝑐4 ∫ 𝜑′𝐿

0
𝛿𝜑′𝑑𝑥 + 𝑐5 ∫ 𝜑′𝐿

0
𝑤′𝛿𝑤′𝑑𝑥 +

𝑐6

2
∫ 𝑤′3𝐿

0
𝛿𝑢0

′ 𝑑𝑥 −
𝑐3

2
∫ 𝑤′2𝐿

0
𝛿𝑤′′𝑑𝑥 +

𝑐5

2
∫ 𝑤′2𝐿

0
𝛿𝜑′𝑑𝑥 +

𝑐6

2
∫ 𝑤′3𝐿

0
𝛿𝑤′𝑑𝑥 + 𝑐7 ∫ 𝜑

𝐿

0
𝛿𝜑𝑑𝑥 − ∫ 𝑞

𝐿

0
𝛿𝑤𝑑𝑥                 (18) 

 

Where 

𝑐1 = 𝑏 ∫ 𝑧2
ℎ

2

−
ℎ

2

𝐸𝑐(𝑧)𝑑𝑧,      𝑐2 = 𝑏 ∫ 𝑧
ℎ

2

−
ℎ

2

𝐸𝑐(𝑧)𝑓(𝑧)𝑑𝑧,    𝑐3 =

𝑏 ∫ 𝑧
ℎ

2

−
ℎ

2

𝐸𝑐(𝑧)𝑑𝑧, 𝑐4 = 𝑏 ∫ 𝐸𝑐

ℎ

2

−
ℎ

2

(𝑧)𝑓(𝑧)2𝑑𝑧, 𝑐5 =

𝑏 ∫ 𝐸𝑐

ℎ

2

−
ℎ

2

(𝑧)𝑓(𝑧)𝑑𝑧,   𝑐6 = 𝑏 ∫ 𝐸𝑐

ℎ

2

−
ℎ

2

(𝑧)𝑑𝑧,   𝑐7 =

𝑏 ∫ 𝐺𝑐

ℎ

2

−
ℎ

2

(𝑧)𝑓′(𝑧)2𝑑𝑧,                                                               (19) 

Function f (z) for shear stress distribution is selected 

as Touratier’s model (Touratier, 1991; Wang et al., 

2019c) (equation 20).  
 

𝑓(𝑧) =  
ℎ

𝜋
  sin

𝜋𝑧

ℎ
                                                                       (20) 

 

With the help of the minimum total potential 

energy principle (δπ = 0), the boundary conditions 

and governing equations are obtained as follows. 

Boundary conditions are (equations 21-28); 
 

𝑁𝛿𝑢0|
𝐿
0

= 0                                                                             (21) 

 

𝑇𝛿𝑤|
𝐿
0

= 0                                                                                (22) 

 

𝑀1𝛿𝑤′|
𝐿
0

= 0                                                                           (23) 

 

𝑀2𝛿𝜑|
𝐿
0

= 0                                                                             (24) 

 

Where 
 

𝑁 = 𝑐6𝑢0
  ′ − 𝑐3𝑤′′ + 𝑐5𝜑′ +  

𝑐6

2
 𝑤′2                                   (25) 

 

𝑇 = 𝑐3𝑢0
   ′′ − 𝑐6𝑢0

′ 𝑤′ − 𝑐1𝑤′′′ + 𝑐2𝜑′′ + 𝑐5𝜑′𝑤′ +  
𝑐6

2
 𝑤′3                                                    

(26) 
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𝑀1 = −𝑐3𝑢0
   ′ + 𝑐1𝑤′′ − 𝑐2𝜑′ −  

𝑐3

2
 𝑤′2                             (27) 

 

𝑀2 = 𝑐5𝑢0
   ′ − 𝑐2𝑤′′ + 𝑐4𝜑′ + 

𝑐5

2
 𝑤′2                                 (28) 

 

Equlibrium equations are (equations 29-31). 
 

𝑁′(𝑥) = 0                                                                                   (29) 
 

𝑇′(𝑥) = −𝑞(𝑥)                                                                          (30) 

𝑀2
′ (𝑥) − 𝑐7𝜑(𝑥) = 0                                                               (31) 

 

The dimensionless quantities are defined as follows 

(equation 32). 

 

𝑇̅ =
𝑇

𝑐6
, 𝑁̅ =

𝑁

𝑐6
,   𝑀1

̅̅ ̅̅ =  
𝑀1

𝑐6𝐿
, 𝑀2

̅̅ ̅̅ =  
𝑀2

𝑐6𝐿
 , 𝛼 =

𝑏

ℎ
 , 𝑢0̅̅ ̅ =

 
𝑢0

𝐿
  , 𝑤0̅̅̅̅ =  

𝑤0

𝐿
  , 𝑥̅ =  

𝑥

𝐿
  , 𝑞(𝑥) = 𝑞(𝑥)

𝐿

𝑐6
                         (32) 

 

Equilibrium equations take the following form in terms 

of dimensionless quantities (equations 33-35). 
 

𝑐6𝐿(𝑢̅′′(𝑥̅)+𝑤̅′(𝑥̅)𝑤̅′′(𝑥̅))−𝑐3𝑤̅(3)(𝑥̅)+𝑐5𝜑′′(𝑥̅)

𝑐6𝐿
 = 0     (33) 

 

𝑐3𝐿𝑢(3)(𝑥̅)+𝑐5𝐿(𝑤̅′′(𝑥̅)𝜑′(𝑥̅)+𝑤̅′(𝑥̅)𝜑′′(𝑥̅))−𝑐1𝑤̅(4)(𝑥̅)+𝑐2𝜑(3)(𝑥̅)

𝑐6𝐿
+

𝑞̅(𝑥̅) + 𝑢′′(𝑥̅)𝑤̅′(𝑥̅) + 𝑢̅′(𝑥̅)𝑤̅′′(𝑥̅) +

  
3

2
 𝑤̅′(𝑥̅)2𝑤̅′′(𝑥̅)=0                                                  (34) 

 

−𝑐7𝐿2𝜑(𝑥̅)+𝑐5𝐿(𝑢′′(𝑥̅)+𝑤′(𝑥̅)𝑤′′(𝑥̅))−𝑐2𝑤(3)(𝑥̅)+𝑐4𝜑′′(𝑥̅)

𝑐6𝐿
= 0    (35) 

 

3.2. Examples 

Simple beams and two-end fixed beams under the 

influence of different types of loads are examined in the 

examples below. 

3.2.1. The simple beam is subjected to a uniform load 

Figure 3 presents a simple beam is subjected to a 

uniform load. 

 
 

Figure  3. A simple beam is subjected to a uniform 

load. 

 

In this example, the axial displacement ū 0  in x̄ = 1 is 

not zero. With the help of the boundary condition 

given by the relation of 21, the axial force is obtained 

as N̄ = 0. The boundary conditions are (equations 36-

44). 

𝑀̅1(0) = 0, 𝑀̅2(0) = 0, 𝑤̅(0) = 0, 𝑇̅2(0) =
𝛽̅

2
 

𝑀̅1(1) = 0, 𝑀̅2(1) = 0, 𝑤̅(1) = 0, 𝑇̅2(1) = −
𝛽̅

2
             (36) 

 

Vertical displacements ( w̄) ,  axial displacements ( ū0 ) ,  

rotation of cross-sections φ, moments M̄1 ,  M̄ 2  and shear 

force T¯ are obtained by numerically with the help of 

governing equations (29, 30, 31) and boundary 

conditions for a simple beam subjected to a uniform 

load (Figures 3, 4, 5,6, 7, 8, 9 and equations 37, 38, 39, 

40, 41 42, 43, 44). Selected parameters are given 

below. 
 

𝛼 =
1

2
, 𝐿 = 1𝑚, ℎ = 0.8𝑚, 𝑏 = 𝛼ℎ, 𝛽 = 1𝑁/𝑚      (37) 

 

Numerical values of ci coefficients are 

𝑐1 = 0.0197809, 𝑐2 = 0.0152049, 𝑐3 = 0.0463755, 𝑐4 =

0.011857, 𝑐5 = 0.0358353, 𝑐6 = 0.349531, 𝑐7 =

0.0694033                                                                                 (38) 

 
Figure 4. Vertical displacements. 

 

 
Figure 5. Axial displacements. 

 

 
Figure 6. Rotation of cross-sections. 

 

𝑤𝑝(𝑥) = 24.598𝑥6 − 73.7952𝑥5 + 85.4561𝑥4 −

47.9202𝑥3 + 15.624𝑥2 − 3.96309𝑥 + 0.00508682  (39) 
 

𝑢𝑝(𝑥) = 2.86476𝑥5 − 7.1619𝑥4 + 1.87407𝑥3 +

4.35079𝑥2 − 2.77764𝑥 − 0.0119582                              (40) 
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Figure 7. Moment-M1. 
 

 
Figure 8. Moment-M2. 

 
Figure 9. Shear force. 

 

𝜑𝑝(𝑥) = −0.0000543558𝑥6 − 36.4423𝑥5 + 91.106𝑥4 −

65.6862𝑥3 + 7.42331𝑥2 + 10.1733𝑥 − 3.287                         (41) 
 

𝑀1𝑝(𝑥) = 20.6875𝑥6 + 62.0625𝑥5 − 71.8694𝑥4 +

40.3013𝑥3 − 11.7094𝑥2 + 1.90251𝑥 − 0.00427806           (42) 
 

𝑀2𝑝(𝑥) = 6.28831𝑥6 − 18.8649𝑥5 + 22.1359𝑥4 −

12.8302𝑥3 + 4.21323𝑥2 − 0.942298𝑥 + 0.00127271         (43) 
 

𝑇𝑝(𝑥) = 1.43049 − 2.86098𝑥 − 0.0000293798𝑥2 +

0.000208642𝑥3 − 0.000516923𝑥4 + 0.00054273𝑥5 −

0.000204722𝑥6                                                                        (44) 

 

3.2.2. The simple beam is subjected to a triangular 

load 

Figure 10 presents simple beam is subjected to a 

triangular load. 

 
Figure 10. Simple beam is subjected to a triangular 

load 
 

In this example, the axial displacement ( ū0 )  in x̄ = 1 is 

not zero. With the help of the boundary condition 

given by the relation of 21, the axial force is obtained 

as N̄ = 0. The boundary conditions are (equation 45). 

𝑀̅1(0) = 0, 𝑀̅2(0) = 0, 𝑤̅(0) = 0, 𝑇̅2(0) =
𝛽̅

2
 

𝑀̅1(1) = 0, 𝑀̅2(1) = 0, 𝑤̅(1) = 0, 𝑇̅2(1) = −
𝛽̅

2
             (45) 

 

Vertical displacements w̄,  axial displacements ū0 , 

rotation of cross-sections φ, moments M̄1 ,  M̄ 2  and 

shear force T¯ are obtained by numerically with the help 

of equilibrium equations (29, 30, 31) and boundary 

conditions for a simple beam subjected to a uniform load 

(Figures 10, 11, 12,13, 14, 15,16 and equations 46, 47, 48 

49, 50, 51). Selected parameters and ci coefficients are 

given in equations 37 and 38 
 

 
Figure 11. Vertical displacements. 

 
Figure 12. Axial displacements. 
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Figure 13. Rotation of cross-sections. 

 
Figure 14. Moment-M1. 

 
Figure 15. Moment-M2. 

 
Figure 16. Shear force. 

 

𝑤𝑝(𝑥) = −12.3586𝑥6 + 38.3878𝑥5 − 45.2305𝑥4 +

25.6918𝑥3 − 6.02133𝑥2 − 0.49134𝑥 + 0.00841133           (46) 
 

𝑢𝑝(𝑥) = −70.568𝑥6 + 201.252𝑥5 − 217.898𝑥4 + 109.525𝑥3 −

24.1045𝑥2 + 1.16614𝑥 + 0.00190374                                    (47) 
 

𝜑𝑝(𝑥) = 670.431𝑥6 − 1983.15𝑥5 + 2242.22𝑥4 −

1204.36𝑥3 + 309.582𝑥2 − 29.5714𝑥 − 1.03818       (48) 
 

𝑀1𝑝(𝑥) = 10.3937𝑥6 − 32.2845𝑥5 + 38.0393𝑥4 −

21.1303𝑥3 + 5.064𝑥2 − 0.0636072𝑥 − 0.00707401           (49) 
 

𝑀2𝑝(𝑥) = −2.97564𝑥6 + 9.32188𝑥5 − 10.8194𝑥4 +

5.79088𝑥3 − 1.06437𝑥2 − 0.258937𝑥 + 0.00210673         (50) 
 

𝑇𝑝(𝑥) = −0.000116502𝑥6 + 0.00032794𝑥5 −

0.000333841𝑥4 + 0.000146841𝑥3 − 1.43051𝑥2 +

1.100207 ∗ 10−6𝑥 + 0.476829                                           (51) 

 

3.2.3. Two-end fixed beam under uniformly 

distributed load 

Figure 17 presents two-end fixed beam under uniformly 

distributed load. 

 
Figure 17. Two-end fixed beam under uniformly 

distributed load. 

 

The boundary conditions are (equation 52). 
 

𝑤̅(0) = 0,     𝑤̅′(0) = 0,     𝜑̅(0) = 0                                   

𝑤̅(1) = 0,     𝑤̅′(1) = 0,     𝜑̅(1) = 0                                  (52) 
 

Selected parameters and ci coefficients are (equations 

53 and 54) 
 

𝛼 =
1

4
, 𝐿 = 0.06𝑚, ℎ = 0.6𝑚, 𝑏 = 𝛼ℎ, 𝛽 = 10𝑁/𝑚      (53) 

 

𝑐1 = 0.00294949, 𝑐2 = 0.0022738, 𝑐3 = 0.0072335, 𝑐4 =

0.00177848, 𝑐5 = 0.00559372,       𝑐6 = 0.0950059, 𝑐7 =

0.0193613                                                                                      (54) 
  

Axial force N̄ , Vertical displacements w̄,  axial 

displacements ū0 ,  rotation of cross-sections φ, 

moments M̄1 ,  M̄2  and shear force T¯ are obtained by 

numerically with the help of equilibrium equations 

(29, 30, 31) and boundary conditions for a fixed-end 

beam subjected to a uniform load (Figure 17). 

Dimensionless axial force is found as N̄ = 4.6. (Figures 

18, 19,20, 21, 22, 23 and equations 46-60). 

 

Figure 18. Vertical displacements. 
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Figure 19. Axial displacements. 

 
Figure 20. Rotation of cross-sections. 

 
Figure 21.Moment-M1. 

 
Figure 22. Moment-M2. 

 
Figure 23. Shear force. 

 

𝑤𝑝(𝑥) = 1.07242𝑥6 − 3.21725𝑥5 + 4.54465𝑥4 −

3.72722𝑥3 + 1.32449𝑥2 + 0.00291524𝑥 −

0.0000109887                                                                             (55) 
 

𝑢𝑝(𝑥) = −0.0000164922𝑥6 + 0.452401𝑥5 −

1.13095𝑥4 + 1.05𝑥3 − 0.444066𝑥2 + 0.0727426𝑥 −

0.0000562965                                                                             (56) 
 

𝜑𝑝(𝑥) = 0.0000232329𝑥6 + 8.67725𝑥5 − 21.6932𝑥4 +

24.2411𝑥3 − 14.6684𝑥2 + 3.4419𝑥 + 0.000673838              (57) 
 

𝑀1𝑝(𝑥) = 4.93259𝑥6 − 14.7982𝑥5 + 20.9045𝑥4 −

17.1449𝑥3 + 9.25028𝑥2 − 3.14429𝑥 − 5.48145          (58) 
 

𝑀2𝑝(𝑥) = 0.279462𝑥6 − 0.837942𝑥5 + 1.18252𝑥4 −

0.968706𝑥3 + 0.343992𝑥2 + 0.00075917𝑥 + 4.50433         (59) 
 

𝑇𝑝(𝑥) = 0.00357093𝑥6 − 0.0071751𝑥5 + 0.00628797𝑥4 −

0.00252181𝑥3 + 0.000553832𝑥2 − 6.31545𝑥 + 3.1577       (60) 

 

3.2.4. Two-end fixed beam is subjected to a triangular 

load 

Figure 24 presents two-end fixed beam is subjected to a 

triangular load. 

 
Figure 24. Two-end fixed beam is subjected to a 

triangular load 

 

The boundary conditions are (equations 61). 
 

𝑤̅(0) = 0,     𝑤̅′(0) = 0,     𝜑̅(0) = 0                                   

𝑤̅(1) = 0,     𝑤̅′(1) = 0,     𝜑̅(1) = 0                                  (61) 
 

Selected parameters and ci coefficients are given in 

equations 53 and 54 

Axial force N̄ , Vertical displacements ( w̄) ,  axial 

displacements ( ū0 ) ,  rotation of cross-sections φ, 

moments M̄1 ,  M̄2  and shear force T¯ are obtained by 

numerically with the help of equilibrium equations 

(29, 30, 31) and boundary conditions for a fixed-end 

beam subjected to a triangular load (Figure 24). 
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Dimensionless axial force is found as N̄ = 5. (Figures 

25, 26, 27, 28, 29, 30 and equations 62-67)ç 

Figure 25. Vertical displacements. 

 
Figure 26. Axial displacements. 

 
Figure 27. Rotation of cross-sections. 

 
Figure 28. Moment-M1. 

 
Figure 29. Moment-M2. 

 
Figure 30. Shear force. 

 

𝑤𝑝(𝑥) = 0.144126𝑥6 − 0.365661𝑥5 + 0.435825𝑥4 −

0.352751𝑥3 + 0.138827𝑥2 − 0.000377659𝑥 +

3.975704 ∗ 10−6                                                                          (62) 
 

𝑢𝑝(𝑥) =

0.0132266𝑥6 − 0.0193753𝑥5 + 0.000283115𝑥4 +

0.0182054𝑥3 − 0.0174929𝑥2 + 0.00515248𝑥 +

5.411311 ∗ 10−7                                                                        (63) 
 

𝜑𝑝(𝑥) = 0.576675𝑥6 − 0.559113𝑥5 − 0.516918𝑥4 +

1.28968𝑥3 − 1.12158𝑥2 + 0.331066𝑥 + 0.000091323         (64) 
 

𝑀1𝑝(𝑥) = 0.720841𝑥6 − 1.82873𝑥5 + 2.17949𝑥4 −

1.48611𝑥3 + 0.694158𝑥2 − 0.257732𝑥 − 6.30986     (65) 
 

𝑀2𝑝(𝑥) = 0.0373309𝑥6 − 0.0948297𝑥5 + 0.113099𝑥4 −

0.0915632𝑥3 + 0.0360297𝑥2 − 0,0000976065𝑥 +

4.90525                                                                                           (66) 
 

𝑇𝑝(𝑥) = −0.00139672𝑥6 + 0.00285179𝑥5 −

0.00249386𝑥4 + 0.00100571𝑥3 − 0.833547𝑥2 +

0.0000186903𝑥 + 0.255842                                                  (67) 

 

4. Discussion 
In this study, the nonlinear bending behavior of 

functionally graded graphene nanoplatelet reinforced 

composite (FG-GPLRC) beams has been investigated 

by high-order shear deformation theory (HSDT). The 

governing equilibrium equations and boundary 

conditions were derived based on the minimum total 

potential energy principle. The formulation 

incorporates two distinct bending moment 

components associated with axial rotation and cross-

sectional rotation, enabling a more refined 
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representation of beam kinematics. 

The derived equilibrium equations are general in 

nature and can be adapted to different beam theories 

by modifying the shear strain function f(z). In this 

context, Touratier’s higher-order model was 

employed to demonstrate the applicability of the 

formulation. The results indicate that the proposed 

framework can be effectively extended to analyze not 

only nonlinear bending but also vibration and 

buckling behavior of FG-GPLRC beams. 

Numerical solutions were obtained for various boundary 

conditions and loading cases, and the spatial variation of 

key response quantities along the beam length was 

presented graphically. Polynomial expressions fitted to the 

numerical results were also provided, offering a practical 

means for verification and further analytical use. 

It can be concluded that the proposed formulation 

provides a versatile and consistent theoretical framework 

for the analysis of FG-GPLRC beams. The results establish 

a foundation for future comparative studies with 

experimental data, which may further clarify the 

applicability of higher-order beam models, such as 

Touratier’s theory, to different classes of functionally 

graded composite beams. 
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