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Abstract : This paper deals with the estimation problem of the multicomponent stress-strength reliability
parameter when stress, strength variates are given by two independent one-parameter exponential distribu-
tions with different parameters. It is assumed that Y1, . . . , Yn2 are the random strengths of n2 components
subjected to random stresses X1, . . . ,Xn1 . Our study is concentrated on the probabilityP (Xr:n1 < Yk:n2)
and the problem of frequentist and Bayesian estimation of P (Xr:n1 <Yk:n2) based on X- and Y -samples are
discussed. Some special cases are considered and the small sample comparison of the reliability estimates is
made through Monte Carlo simulation.
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1. Introduction
In reliability context, the probability that the random variable X (stress) is exceeded by its

strength which is a realization of a random variable Y is called stress-strength reliability and
is equal to R := Pr(X < Y ). Parametric and non-parametric inferences on R = P (X < Y ) have
been discussed in the literature extensively. The estimator of P (X < Y ) when X and Y follow
independent exponential random variables are discussed by several authors, for example see the
works by, Enis and Geisser (1971), Tong (1974), Kelley et al. (1976), Shah and Sathe (1981) and
Chao (1982). Reiser and Guttman (1987) are compared point estimations of R in the normal case.
Empirical Bayes estimation of P (X <Y ) is discussed in Ahmad and Fakhry (1997), when X and
Y are Burr Type-X random variables. We refer the readers to Kotz et al. (2003) and references
therein for an extensive review of the topic up to 2003. This book collects and digests theoretical
and practical results on the theory and applications of the stress-strength relationships in industrial
and economic systems. Kunda and Gupta (2005) considered the estimation of R = P (X < Y ),
when X and Y are independent and have generalized exponential distribution. Saraçoǧlu and Kaya
(2007) considered frequentist and Bayesian estimation problem of reliability R = P (X < Y ) in
the Gompertz case. Eryilmaz (2008a) obtained minimum variance unbiased (MVU) estimator of
the reliability of consecutive k-out-of-n:G system, when the stress and strength distributions are
exponential with unknown scale parameters. Eryilmaz (2010) studied stress-strength reliability for
a general coherent system and illustrated the estimation procedure for exponential stress-strength
distributions.

Multicomponent stress-strength reliability also has been studied by several authors, see for exam-
ples, Bhattacharyya and Johnson (1974), Pandey et al. (1992) and Eryilmaz (2008b). Let us denote
the rth and the kth order statistics from X-sample with sample size n1 and Y -sample with sam-
ple size n2, by Xr:n1 and Yk:n2 , respectively. In this paper, we assume Y1, . . . , Yn2 are the random
strengths of n2 component subjected to random stresses X1, . . . ,Xn1 . We obtain the reliability
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of stress-strength models based on rth order stress component, Xr:n1 , and kth order component
strength, Yk:n2 , i.e, P (Xr:n1 <Yk:n2) which contains all arrangements of components. For example
taking r = n1 and k = 1 leads to the reliability of series stress-strength system. And, r = n1 = 1
and k= n2− s+ 1 leads the reliability of a system with n2 components where the system functions
when at least s (1≤ s≤ n2) components survive a common random stress X. So, the probability
P (Xr:n1 < Yk:n2) generalizes various stress-strength reliability models for particular selection of r
and k.

The rest of this paper is structured as follows: First, we consider special cases of Rr,k = P (Xr:n1 <
Yk:n2) and determine the reliability of the system for this cases. Then, maximum likelihood esti-
mator (MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes estimator of
Rr,k are obtained, these are presented in Section 3. In Section 4, a simulation study is performed
to compare the estimators of Rn1,1. Section 5 contains a brief summary.

2. Model description
Let X and Y be two random variables with exponential distribution with means 1/α and 1/β,

respectively. Then, it is known that the pdf of X and Y are given by

fX(x) = αe−αx, x > 0, α > 0, (2.1)

and

fY (y) = βe−βy, y > 0, β > 0, (2.2)

respectively. Suppose X1, . . . ,Xn1 and Y1, . . . , Yn2 are two independent samples from X and Y ,
respectively. The stresses and the strengths, are assumed to be independent. Under these assump-
tions, we find

Rr,k = P (Xr:n1 <Yk:n2) =

∫ ∞
0

FXr:n1 (y)fYk:n2 (y) dy, (2.3)

where FXr:n1 (y) and fYk:n2 (y) stand for the rth cdf and the kth pdf of Xr:n1 and Yk:n2 , respectively.
We recall that for a random sample X1, . . . ,Xm, the pdf and cdf of the ith order statistic are given
by

fXi:m(x) = i

(
m

i

)
F i−1(x)[1−F (x)]m−if(x), (2.4)

and

FXi:m(x) =
m∑
j=i

(
m

j

)
F j(x)[1−F (x)]m−j, (2.5)

respectively, see David and Nagaraja (2003) for more details. By substituting (2.1), (2.2), (2.4)
and (2.5) into (2.3), and doing some calculations, we obtain

Rr,k = k

(
n2

k

) n1∑
j=r

(
n1

j

)∫ ∞
0

β(1− e−yα)j(1− e−yβ)k−1e[−y(α(n1−j)+β(n2−k+1))] dy

= k

(
n2

k

) n1∑
j=r

j∑
i=0

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+iβ

α(i+n1− j) + (l+n2− k+ 1)β
. (2.6)

In what follows, some special cases of (2.6) are considered.
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2.1. Special cases
For some special cases of Rr,k, we obtained a simple expression for the reliability of the system

with different arrangement of the components.
(i) For r= n1 and k= 1, minimum strength component is subjected to maximum stress compo-

nent. In this case, the probability Rn1,1 is the reliability of a series system with n2 component

Rn1,1 = n2

n1∑
i=0

(
n1

i

)
(−1)

i β

iα+n2β
. (2.7)

(ii) When r = n1 and k = n2, maximum strength component is subjected to maximum stress
component. Then, Rn1,n2 is reliability of a parallel system with n2 component

Rn1,n2 = n2

n1∑
i=0

n2−1∑
l=0

(
n1

i

)(
n2− 1

l

)
(−1)i+lβ

iα+ (l+ 1)β
. (2.8)

(iii) When r= 1 and k= 1, minimum strength component is subjected to minimum stress com-
ponent. Then

R1,1 = n2

n1∑
j=1

j∑
i=0

(
n1

j

)(
j

i

)
(−1)iβ

(i+n1− j)α+n2β
. (2.9)

(iv) For r = n1 and k = k, the kth strength order component is subjected to maximum stress
component. In fact in this case, Rn1,k is reliability of the k-out-of-n2 system

Rn1,k = k

(
n2

k

) n1∑
i=0

k−1∑
l=0

(
n1

i

)(
k− 1

l

)
(−1)l+iβ

iα+ (l+n2− k+ 1)β
. (2.10)

3. Estimation of reliability
When the parameters α and β are known, then the exact value of Rr,k is simply calculated,

otherwise we have to obtain an estimate of the reliability. In this section, we provide three common
estimators namely the UMVUE, MLE and Bayes estimator for reliability of Rr,k.

3.1. MLE
Let X1, . . . ,Xn1 be a random sample of size n1 from (2.1) and Y1, . . . , Yn2 be a random sample

of size n2 from (2.2). Then, the log likelihood function of the observed samples is readily given by

logL(α,β) = n1logα+n2logβ−α
n1∑
i=1

xi−β
n2∑
j=1

yj.

Then the MLE of α and β denoted by α̃ and β̃, receptively, immediately obtained as

α̃=
n1∑n1
i=1Xi

, (3.1)

and

β̃ =
n2∑n2
i=1 Yi

. (3.2)

Due to the invariance property of the maximum likelihood estimator the MLE of Rr,k, denoted by
R̃r,k, can be easily obtained by replacing α and β by their MLE’s as in (3.1) and (3.2), respectively.
Hence the MLE of Rr,k is given by

R̃M
r,k = k

(
n2

k

) n1∑
j=r

j∑
i=0

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+iX̄

(i+n1− j)Ȳ + (l+n2− k+ 1)X̄
. (3.3)
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To obtain E(R̃M
r,k), by noting that W =

βȲ

αX̄
has F-distribution with 2n2 and 2n1 degree of freedom,

it is enough to find

E

(
X̄

(i+n1− j)Ȳ + (l+n2− k+ 1)X̄

)
.

For example in the case of series system, we obtain

E

(
X̄

iȲ +n2X̄

)
= E

[
αi

β
W +n2

]−1

=

∫ ∞
0

Γ(n1 +n2)

Γ(n1)Γ(n2)
(
n2

n1

)n2
wn2−1

(1 + n2
n1
w)n1+n2

1

n2 + iα
β
w
dw,

=
1

n2

(
iαn1

βn2
2

)n1
∫ 1

0

Γ(n1 +n2)

Γ(n1)Γ(n2)
un1(1−u)n2−1(1−u(1− iαn1

βn2

))−(n1+n2)du,

=


(αn1i
βn22

)n1 n1
(n1+n2)n2

F (n1 +n2, n1 + 1, n+n2 + 1;C), |C|< 1,

(
βn22
αn1i

)n2 n1
(n1+n2)n2

F (n1 +n2, n2, n+n2 + 1; C
C−1

), C <−1,

(3.4)

where C = 1− iαn1
βn2

and F (a, b, c;z) is hypergeometric series defined by (see e.g. Abramowtiz and
Stegun, 1992, page 556)

F (a, b, c;z) =
∞∑
j=1

a(a+ 1) . . . (a+ j− 1)b(b+ 1) . . . (b+ j− 1)

c(c+ 1) . . . (c+ j− 1)

zj

j!
. (3.5)

The series in (3.5) is convergent for |z|< 1, c 6= 0,−1,−2, . . . , and reduces to a finite sum if a or
b is zero or a negative integer. Since | C

1−C |< 1 for C <−1, the hypergeometric series in (3.4) are
always convergent. We used the integral form of hypergeometric series in (3.4) which is given by

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− b)

∫ 1

0

ub−1(1−u)c−b−1(1−ux)−adu.

Therefore, the excepted value of R̃n1,1 is

E(R̃M
n1,1

) = n2

n1∑
i=0

(
n1

i

)
(−1)i

×


(αn1i
βn22

)n1 n1
(n1+n2)n2

F (n1 +n2, n1 + 1, n+n2 + 1;C), |C|< 1,

(
βn22
αn1i

)n2 n1
(n1+n2)n2

F (n1 +n2, n2, n+n2 + 1; C
C−1

). C <−1,

We have not an analytical expression for MSE of R̃r,k, this can be done by using numerical
computations.

3.2. UMVUE
Let us denote the UMVUE of Rr,k by R̂U

r,k. To obtain the UMVUE of Rr,k, from (2.6) and using
the linear property of UMVUE, it is enough to find UMVUE for

φ(α,β) =
β

α(i+n1− j) + (l+n2− k+ 1)β
. (3.6)
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To do this, let X1, . . . ,Xn1 and Y1, . . . , Yn2 be two independent random samples from (2.1) and
(2.2), respectively. For obtaining UMVU estimator, we use Rao-Blackwell method (see, Rao, 1973,
for more details). An unbiased estimator of φ(α,β) is given by

h(X1, Y1, Y2) =

{
1, X1 > (i+n1− j)Y1 and Y2 > (l+n2− k)Y1,
0, otherwise.

Since T = (T1, T2) =

(
n1∑
j=1

Xj,

n2∑
j=1

Yj

)
is a complete sufficient statistic for (α,β), then from Rao-

Blackwell Theorm, the UMVUE of φ(α,β) is given by

φ̂(α,β) = E[h(X1, Y1, Y2)|T ]
= P (X1 > (i+n1− j)Y1, Y2 > (l+n2− k)Y1 | T ). (3.7)

Letting S1 = X1/T1, S2 = Y1/T2, S3 = Y2/T2 and V = T2/T1, then, the equation (3.7) can be
expressed as

φ̂(α,β) = P{S1 > (i+n1− j)V S2, S3 > (l+n2− k)S2 | T}. (3.8)

Obvious that S1, S2 and S3 are ancillary statistics, therefore by using Basu’s Theorem (see, Basu,
1955) (S1, S2, S3) is independent of T . Consequently, we have

fS1,S2,S3(s1, s2, s3 | T ) = (n1− 1)(n2− 1)(n2− 1)(1− s1)n1−2(1− s2)n2−2(1− s3)n2−2,

0< si < 1, i= 1,2,3. (3.9)

Using (3.9), for the case (i+n1− j)V ≤ 1 if l+n2− k≤ 1, we find

φ̂(α,β) = P{S1 > (i+n1− j)V S2, S3 > (l+n2− k)S2 | T}

=

∫ 1

0

(1− (i+n1− j)V s2)n1−1(1− (l+n2− k)s2)n2−1(n2− 1)(1− s2)n2−2 ds2.

When l+n2− k > 1, we have

φ̂(α,β) =

∫ 1
l+n2−k

0

(1− (i+n1− j)V s2)n1−1(1− (l+n2− k))s2)n2−1(n2− 1)(1− s2)n2−2 ds2.

Similarly for the case (i+n1− j)V > 1, we have

φ̂(α,β) =

∫ 1
(i+n1−j)V

0

(1− (i+n1− j)V s2)n1−1(1− (l+n2− k)s2)n2−1(n2− 1)(1− s2)n2−2 ds2,

when l+n2− k > 1, we find

φ̂(α,β) =

∫ E

0

(1− (i+n1− j)V s2)n1−1(1− (l+n2− k)s2)n2−1(n2− 1)(1− s2)n2−2 ds2,

where E = min{ 1
(i+n1−j)V

, 1
l+n2−k

}. Summing up, the UMVUE of φ(α,β) is given by

φ̂(α,β) =



Q(V,1), (i+n1− j)V ≤ 1, l+n2− k≤ 1

Q(V, 1
l+n2−k

), (i+n1− j)V ≤ 1, l+n2− k > 1

Q(V, 1
(i+n1−j)V

), (i+n1− j)V > 1, l+n2− k≤ 1

Q(V,min{ 1
(i+n1−j)V

, 1
l+n2−k

}), (i+n1− j)V > 1, l+n2− k > 1,
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İSTATİSTİK: Journal of the Turkish Statistical Association 6(3), pp. 92–102, c© 2013 İstatistik 97

where T1 =

n1∑
j=1

Xj, T2 =

n2∑
j=1

Yj, V = T2/T1 and

Q(V,p) =

∫ p

0

(1− (i+n1− j)V s2)n1−1(1− (l+n2− k)s2)n2−1(n2− 1)(1− s2)n2−2 ds2.

Since Rr,k is a linear function of φ(α,β), then the UMVUEs of Rr,k is readily obtained; see, e.g.,
Rao (1973, p. 318).

R̂U
r,k = k

(
n2

k

) n1∑
j=r

j∑
i=0

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+iφ̂(α,β). (3.10)

The UMVU estimator obtained in (3.10) leads to computational complexities, however the variance
of R̂r,k can be easily obtained numerically.

3.3. Bayes estimator of Rr,k
In this section, we consider the Bayes estimator of Rr,k with respect to the squared error loss

(SEL) function. Let X1, . . . ,Xn1 and Y1, . . . , Yn2 be two independent random samples taken from
one-parameter exponential distribution with parameters α and β as in (2.1) and (2.2), respectively.
We consider conjugate priors for α and β, i.e.

π(α) =
γµ

τ(µ)
αµ−1exp{−γα}, α > 0, γ > 0, µ > 0, (3.11)

and

π(β) =
λυ

τ(υ)
βυ−1exp{−λβ}, β > 0, υ > 0, λ > 0, (3.12)

respectively. From (2.1), (2.2), (3.11) and (3.12) the posterior distribution of α and β is as follows

π(α,β|x, y) =
f(x, y | α,β)π(α,β)∫

α

∫
β
f(x, y | α,β)π(α,β) dα dβ

=
(γ+n1x̄)n1+µ(n2λ+ ȳ)n2+υ

τ(n1 +µ)τ(n2 + υ)
αn1+µ−1βn2+υ−1

×exp{−α(γ+n1x̄)−β(λ+n2ȳ)}, (3.13)

where x= (x1, ..., xn1) and y= (y1, ..., yn2). Note that, from (2.6), Rr,k can be expressed as

Rr,k = k

(
n2

k

) k−1∑
l=0

(−1)l
1

l+n2− k+ 1
+ k

(
n2

k

) n1−1∑
j=r

j∑
i=1

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+i

×[
α(i+n1− j)

β
+ l+n2− k+ 1]−1. (3.14)

It is known that the Bayes estimator under SEL function is the mean of the posterior distribution.
Hence, using (3.13) and (3.14), denoting the Bayes estimator of Rr,k by R̂B

r,k, we have

R̂B
r,k = k

(
n2

k

) k−1∑
l=0

(−1)l
1

B

+k

(
n2

k

) n1−1∑
j=r

j∑
i=1

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+i

(γ+n1x̄)n1+µ(λ+n2ȳ)n2+υ

τ(n1 +µ)τ(n2 + υ)

×
∫ ∞

0

∫ ∞
0

αn1+µ−1βn2+υ−1

α
β
A+B

exp{−α(γ+n1x̄)−β(λ+n2ȳ)} dα dβ, (3.15)
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where A= i+n1− j and B = l+n2− k+ 1.
Consider a one-to-one transformation U = Bβ

Aα+Bβ
and W =Aα+Bβ with the inverse α= W (1−U)

A

and β = UW
B

. The Jacobian | J(U,W ) | here is det

(
∂α
∂U

∂α
∂W

∂β
∂U

∂β
∂W

)
= det

( −W
A

1−U
A

W
B

U
B

)
. Hence, the term

double integral in equation (3.15) can be reexpressed as

Γ(n1 +n2 +µ+ υ)

Bn2+υ+1An1+µ

∫ 1

0

un2+υ(1−u)n1+µ−1

(
(1−u)

γ+n1x̄

A
+u

λ+n2ȳ

B

)−(n1+n2+µ+υ)

du. (3.16)

By substituting (3.16) in (3.15) and take D = 1− A(λ+n2ȳ)

B(γ+n1x̄)
, finally the Bayes estimator of Rr,k is

given by

R̂B
r,k = k

(
n2

k

) k−1∑
l=0

(−1)l
1

l+n2− k+ 1
+

1

B
k

(
n2

k

) n1−1∑
j=r

j∑
i=1

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+i

×


Gn2+υ n2+υ

n1+n2+µ+υ
F (n1 +n2 +µ+ υ,n2 + υ+ 1, n1 +n2 +µ+ υ+ 1;D), |D|< 1,

G−n1−µ n2+υ
n1+n2+µ+υ

F (n1 +n2 +µ+ υ,n1 +µ,n1 +n2 +µ+ υ+ 1; D
D−1

). D <−1,

(3.17)

where G= A(λ+n2ȳ)

B(γ+n1x̄)
.

We have not a closed form for the risk of R̂B
r,k, hence numerical computations are needed. As we

recognize, in this case the results lead to some complexities and it is hard to compute the risk of
R̂B
r,k in (3.17). Here, we employ Lindley’s approximation method to obtain Bayes estimates of Rr,k.

Notice that there exists other methods and approximations such as Markov Chain Monte Carlo
(MCMC) method and Tierney-Kadane approximation; see DasGupta (2008) for more details.

3.3.1. Lindley’s approximation
We consider Lindley’s approximation (see, Lindley, 1980) form expanding about the posterior

mode. For the two parameter case λ= (λ1, λ2), Lindley’s approximation leads to

ÛB =E[U(λ) | x] =U(λ) +
1

2
[B+Q30B12 +Q21C12 +Q12C21 +Q03B21], (3.18)

where B =
∑2

i=1

∑2

j=1Uijτij, Qηξ = ∂n+ξQ/∂nλ1∂
ξλ2, η, ξ = 0,1,2,3, η+ ξ = 3, for i, j = 1,2, Ui =

∂U/∂λi, Uij = ∂2U/∂λi∂λj and for i 6= j, Bij = (Uiτii+Ujτij)τii, Cij = 3Uiτiiτij +Uj(τiiτjj +2τ 2
ij) τij

is the (i , j )th element in the inverse of matrix Q∗ = (−Q∗ij), i, j = 1,2 such that Q∗ = ∂2Q/∂λ1∂λ2.

Expansion (3.17) is to be evaluated at (λ̂1, λ̂2), the mode of the posterior density.
In our case, (λ1, λ2) = (α,β) and Q is given by

Q= log q∝ (n1 +µ− 1) logα−α(γ+

n1∑
j=1

xj) + (n2 + υ− 1) logβ−β(λ+

n2∑
j=1

yj), (3.19)

also U(α,β) = Rr,k. The joint posterior mode, denoted by (α̂Mod, β̂Mod), is obtained from (3.19),
we have

α̂Mod =
n1 +µ− 1

γ+
∑n1

j=1 xj
and β̂Mod =

n2 + υ− 1

λ+
∑n2

j=1 yj
.

First, the τij elements of the inverse of the matrix Q∗ = (−Q∗ij) i, j = 1,2 are given by τ11 = α2

n1+µ−1
,

τ22 = β2

n2+υ−1
and τ12 = τ21 = 0. Furthermore, Q12 =Q21 = 0, Q30 = 2(n1+µ−1)

α3 and Q03 = 2(n2+υ−1)

β3
.
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Substituting the above values in (3.18) and take A= i+ n1 − j and B = l+ n2 − k+ 1 yields the
Bayes estimate of the function U(α,β, ) of the unknown parameters α and β given by

R̃B
r,k = k

(
n2

k

) k−1∑
l=0

(
k− 1

l

)
(−1)l

B
+ k

(
n2

k

) n1−1∑
j=r

j∑
i=1

k−1∑
l=0

(
n1

j

)(
j

i

)(
k− 1

l

)
(−1)l+i

× { β̂Mod

α̂ModA+Bβ̂Mod

+
α̂2
Modβ̂ModA

2

(n1 +µ− 1)(α̂ModA+ β̂ModB)3
− α̂Modβ̂

2
ModAB

(n2 + υ− 1)(α̂ModA+ β̂ModB)3

− α̂Modβ̂ModA

(n1 +µ− 1)(α̂ModA+ β̂ModB)2
+

α̂Modβ̂ModA

(n2 + υ− 1)(α̂ModA+ β̂ModB)2
}. (3.20)

Here also we have not a closed form for the risk of R̃B
r,k as R̂B

r,k, hence numerical computations are

needed. Notic that R̃B
r,k is easy calculable with respect to R̂B

r,k.

4. Numerical studies and conclusions
In this numerical study, we have considered the sample sizes of n1 = n2 = 5,10,30, which are rep-

resentative of small, moderate and large data sets. We intend to observe the behavior of UMVUE,
MLE and Bayes estimator for different parameters and for different sample sizes in the case of series
system. To compare the performance of MLE and UMVUE, the parameters α and β are chosen
in such away that the reliability parameter Rn1,1 in series system equals a given values based on
(2.7). The algorithm used to compute the MSE of UMVU and ML (δi) estimate for series system
are as follows:

1. For given α and β, we compute Rn1,1 from (2.7) so that it takes the values: 0.01 to 0.99.
2. For given n1 and n2, generate a sample size n1 from (2.1) and n2 from (2.2) with given α and

β, respectively.
3. The estimate δi(MLE or UMVUE) is computed using (3.3) or (3.10).
4. Steps 2-3 are repeated N = 104 times and MSE’s and Biases are calculated and are given by

MSE(δ) = 1
N

∑N

i=1(δi−Rn1,1)2 and Bias(δ) = 1
N

∑N

i=1(δi−Rn1,1).
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Figure 1. MSE and Bias for n1 = n2 = 5.

Using N=104 replications, the Figures 1, 2 and 3 show the MSEs and Biases of R̂U
n1,1

and R̃M
n1,1

corresponding to different sample sizes n1 = n2 = 5,10,30. From the Figures 1, 2 and 3, it is
observed that when Rn1,1 is around 0.5 the MSEs are large and when Rn1,1 is small or large, the
MSE for both estimators take small values. We expect the MSEs and Biases of estimators such
as UMVUE or MLE decrease when sample sizes increase. In our case for UMVU, ML and Bayes
estimators when n1, n2 increase the average Biases and the MSEs decrease. For large sample sizes
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Figure 2. MSE and Bias for n1 = n2 = 10.
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Figure 3. MSE and Bias for n1 = n2 = 30.

the performance of the MLE and UMVUE is similar and in this case we prefer MLE. Since MLE
is easiest to obtain computationally, it has been proposed to use the MLE in practice, when the
sample sizes are sufficiently large.

Also, we study sensitivity the Estimated Risks (ER) of Bayes and approximation Bayes estima-
tors with respect to prior parameters. First for a given vector of parameters (µ, γ, υ, λ) which
includes least informative, informative and most informative, for N=104 we generate αi and βi
from the prior distribution in (3.11) and (3.12), respectively. Then we put α0 = 1

N

∑N

i=1αi and

β0 = 1
N

∑N

i=1 βi. Sample of sizes n1 = 5,10,30 and n2 = 5,10,30 are generated from (2.1) with α= α0

and (2.2) with β = β0, respectively. For the given vector of parameters (µ, γ, υ, λ), for N=104

replication the Bayes and approximation Bayes estimates based on SEL function are computed.
These are presented in Table 1.

Table 1. The values of ERs and Bias for estimators in (3.17) and (3.20).

n1 = n2 µ γ υ λ E(α)=E(β) Var(α)=Var(β) ER(R̃B
r,k) Bias(R̃B

r,k) ER(R̂B
r,k) Bias(R̂B

r,k)

1 20 1 20 0.05 0.0025 0.4081 0.6388 0.4328 0.6579
5 5 100 5 100 0.05 0.0005 0.3438 0.5864 0.3565 0.5971

10 200 10 200 0.05 0.00025 0.3258 0.5708 0.3338 0.5777
1 20 1 20 0.05 0.0025 0.3338 -0.5778 0.3481 -0.5900

10 5 100 5 100 0.05 0.0005 0.2764 -0.5257 0.2853 -0.5341
10 200 10 200 0.05 0.00025 0.2499 -0.4999 0.2559 -0.5059
1 20 1 20 0.05 0.0025 0.2539 -0.5038 0.2580 -0.5079

30 5 100 5 100 0.05 0.0005 0.2284 -0.4779 0.2316 -0.4813
10 200 10 200 0.05 0.00025 0.1862 -0.4315 0.1885 -0.4342
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From Table 1, by an empirical evidence, it is observed that the ER’s is sensitive with respect to
prior parameters, and also is decrease as the sample size increases. Moreover, it is observed that
the estimated risks of R̃B

r,k is less than that of R̂B
r,k.

5. Summary
In this paper, we have studied the problem of estimating Rr,k = P (Xr:n1 <Yk:n2) for the exponen-

tial distribution. We obtain different point estimators, namely MLE, UMVUE and Bayes estimator.
It is observed that in series system for large sample sizes the performance of the MLE and UMVUE
is similar and in this case the MLE is preferred. Since MLE is easiest to obtain computationally,
it has been proposed to use the MLE in practice, when the sample sizes are sufficiently large. The
Baysian estimator of Rr,k is obtained by using series expansion and Lindley’s approximation meth-
ods. It is observed that the estimated risks in Lindley’s approximation is less than Bayes estimator.
Therefore, Lindley’s approximation is a better alternative for the case in which the Bayes estima-
tor of Rr,k cannot be obtained in explicit forms. Finally, we emphasize here that the probability
P (Xr:n1 < Yk:n2) generalizes various stress-strength reliability models for particular selection of r
and k.

Acknowledgements
We would like to thank the reviewer for the useful comments and suggestions which improved the
presentation of the paper considerably.

References
[1] Abramowitz, M. and Stegun, I. A. (1992), Handbook of Mathematical Functions with Formulas, Graphs

and Mathematical Tables, Reprint of the 1972 edition, Dover Publications, New York.

[2] Ahmad, K. E., Fakhry, M. E. and Jaheen Z. F. (1997), Empirical Bayes estimation of P (X < Y ) and
characterization of Burr type-X model, Journal of Statistical Planing and Inference, 64, 297–308.

[3] Basu, D. (1955), On statistics independent of a complete sufficient statistic, Sankhya, 15, 377–380.

[4] Bhattacharyya, G. K. and Johnson, R. A.(1974), Estimation of reliability in a multicomponent stress-
strength model, Journal of the American Statistical Association, 69, 966–970.

[5] Chao, A. (1982), On comparing estimators of P (X <Y ) in the exponential case, IEEE Transactions on
Reliability, 31, 389–392.

[6] David, H. A. and Nagaraja, H. N. (2003), Order Statistics, John Wiley & Sons, New York.

[7] DasGupta, A. (2008), Asymptotic Theory of Statistics and Probability, Springer, New York.

[8] Enis, P. and Geisser, S. (1971), Estimation of probability that Y <X, Journal of the American Statistical
Association, 66, 162–168.

[9] Eryilmaz, S. (2008a), Consecutive k-out-of-n: G system in stress strength set up, Communication in
Statistics-Simulation and Computation, 37, 579–589.

[10] Eryilmaz, S. (2008b), Multivariate stress-strength reliability model and its evaluation for coherent struc-
tures, Journal of Multivariate Analysis, 99, 1878–1887.

[11] Eryilmaz, S. (2010), On system reliability in stress-strength setup, Statistics and Probability Letters,
80, 834–839.

[12] Kelley, G. D., Kelley, J. A. and Schuncandy, W. R. (1976), Efficient estimation of P (X < Y ) in the
exponential case, Technometrics, 18, 395–404.

[13] Kotz, S., Lumelskii, Y., Pensky, M. (2003) The Stress-Strength Model and its Generalizations: Theory
and Applications, World Scientific, Singapore.

[14] Kundu, D. and Gupta, R. D. (2005), Estimation of P (X <Y ) for the generalized exponential distribu-
tion, Metrika, 61, 291–308.

[15] Lindley, D. V. (1980), Approximation Bayesian methods, Trabajos de Estadistica, 21, 223–237.



Zohreh Pakdaman and Jafar Ahmadi: Stress-strength reliability for P (Xr:n1 <Yk:n2
) in the exponential case
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