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İSTATİSTİK

ESTIMATION OF Pr(X >Y ) FOR
EXPONENTIATED GUMBEL DISTRIBUTION

BASED ON LOWER RECORD VALUES

Bahman Tarvirdizade
Department of Statistics

Allameh Tabatabaei University
Tehran, Iran

email: bahtary@gmail.com

Abstract : In this paper, we consider the estimation of R = Pr(X > Y ) based on lower record values
when X and Y are independently but not identically exponentiated Gumbel distributed random variables.
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1. Introduction
The exponentiated gumbel (EG) distribution was introduced by Nadarajah (2005). He illustrated
its use for modeling rainfall data from Orland, Florida. The gumbel distribution have very applica-
tions in climate modeling include: global warming problems, flood frequency analysis, offshore mod-
eling, rainfall modeling, and wind speed modeling. For other applications, see Kotz and Nadarajah
(2000).

The cumulative distribution function (cdf) of the exponentiated gumbel distribution with shape
parameter α> 0 is given by;

F (x) =
(
exp

(
−e−x

))α
, α > 0,−∞<x<∞. (1)

The probability density function (pdf) corresponding to (1) is given by;

f(x) = αe−x
(
exp

(
−e−x

))α
, α > 0,−∞<x<∞. (2)

We will denote exponentiated gumbel distribution with shape parameter α by EG(α).
Let {Xi, i≥ 1} be a sequence of independent and identically distributed (iid) random variables

with an absolutely continuous cumulative distribution function (cdf) F (x) and probability density
function (pdf) f(x). An observation Xj is called an upper record if its value exceeds all previous
observations, i.e. Xj is an upper record if Xj > Xi for every i < j. An analogous definition can
be given for lower records. These type of data arise in a wide variety of practical situations such
as industrial stress testing, meteorology, hydrology, sports, and stock market analysis. Interested
readers may refer to the book by Arnold et al. (1998) and the references contained therein.

In this paper, we consider the problem of estimating the stress-strength reliability Pr(X >Y ) in
the exponentiated gumbel distribution based on lower record values. This problem was considered
by Kakade et al. (2008) for ordinary samples from the exponentiated gumbel distribution with
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shape and scale parameters. Kang et al. (2013) and Abdi (2014) discussed different methods of
estimation for the two-parameter exponentiated Gumbel distribution based on record values. The
reader is referred to Kotz et al. (2003) for some applications and motivations for the study of
the stress-strength reliability Pr(X > Y ). In Section 2, we discussed likelihood inference for the
stress-strength reliability, while in Section 3 we considered Bayesian inference. A simulation study
is described in Section 4.

2. Likelihood inference
Let X ∼ EG(α) and Y ∼ EG(β) be independent random variables. Let R = Pr(X > Y ) be the
stress strength reliability. then,

R= Pr(X >Y ) =

∞∫
−∞

x∫
−∞

αe−x
(
exp

(
−e−x

))α
βe−y

(
exp

(
−e−y

))β
dydx=

α

α+β
.

Our interest is in estimating R based on lower record values on both variables. Let r
∼

= (r1, ..., rn)

be a set of lower records from EG(α) and let s
∼

= (s1, ..., sm) be an independent set of lower records

from EG(β). The likelihood functions are given by (Ahsanullah, 2004);

L(α| r
∼

) = f(rn)
n−1∏
i=1

(
f(ri)

F (ri)

)
, −∞< rn < ... < r1 <∞

L(β| s
∼

) = g(sm)
m−1∏
i=1

(
g(si)

G(si)

)
, −∞< sm < ... < s1 <∞ (3)

where f and F are the pdf and cdf of X ∼EG(α) respectively and g and G are the pdf and cdf of
Y ∼EG(β) respectively. Substituting f , F , g and G in the likelihood functions and using Equation
(3), we obtain

L(α| r
∼

) = αn
(
exp

(
−e−rn

))α n∏
i=1

e−ri ,

L(β| s
∼

) = βm
(
exp

(
−e−sm

))β m∏
i=1

e−si . (4)

It can be shown that the maximum likelihood estimators (MLE) of α and β based on the lower
record values are

∧
α= nern ,

∧
β =mesm . (5)

Therefore the MLE of R is given by
∧
R=

∧
α
∧
α+
∧
β

. To study the distribution of
∧
R we need the distri-

butions of
∧
α and

∧
β. Consider first

∧
α= nern , the pdf of Rn is given by (Ahsanullah, 2004);

fRn(rn) =
1

(n− 1)!
f(rn)[− lnF (rn)]

n−1

=
1

(n− 1)!

(
αe−rn

)n(
exp

(
−e−rn

))α
, −∞< rn <∞. (6)

Consequently, the pdf of Z1 =
∧
α is given by;

fZ1
(z1) =

(nα)
n

(n− 1)!z1n+1
e−

nα
z1 , z1 > 0. (7)
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This is recognized as the inverted gamma distribution, i.e., Z1 ∼ IGamma(n,nα). Similarly, the

pdf of Z2 =
∧
β is given by;

fZ2
(z2) =

(mβ)
m

(m− 1)!z2m+1
e−

mβ
z2 , z2 > 0. (8)

Thus Z2 ∼ IGamma(m,mβ). Therefore we can find the pdf of
∧
R=

∧
α
∧
α+
∧
β

= Z1
Z1+Z2

= 1

1+
Z2
Z1

. Consider

Z2
Z1

. Note that, by the properties of the inverted gamma distribution and its relation with the gamma

distribution we have nα
Z1
∼Gamma(n,1) and mβ

Z2
∼Gamma(m,1). Hence 2nα

Z1
∼ χ2

2n and 2mβ
Z2
∼ χ2

2m.

Note that, by the independence of two random quantities we have (2nα/2nZ1)

(2mβ/2mZ2)
= αZ2

βZ1
∼ F(2n,2m).

hence, Z2
Z1

= β
α
F(2n,2m), has a scaled F distribution. It follows that the distribution of

∧
R is that of

1

1+ β
αF(2n,2m)

which can be obtained using simple transformation techniques. This fact can be used

to construct the following (1− a)% confidence interval for R;((
1 +

z2
z1Fa/2,2n,2m

)−1
,

(
1 +

z2
z1F1−a/2,2n,2m

)−1)
. (9)

Records are rare in practice (Arnold et al., 1998) and sample sizes are often very small, however,
intervals based on the asymptotic normality of MLEs can be of interest in cases when the number
of records is sufficiently large. This is because of their optimal asymptotic properties under very

general conditions (Lehmann, 1999). Note that (
∧
α − α)

d→N(0, I−1(α)) as n → ∞, where (
d→)

denotes convergence in distribution and I−1(α) is the asymptotic variance given by the reciprocal

of the Fisher information;

[
−E

(
∂2 lnL(α| r

∼
)

∂α2

)]−1
= α2

n
. Similarly, (

∧
β−β)

d→N(0, I−1(β)) as m→∞,

where I−1(β) = β2

m
. Let n→∞ and m→∞ such that m/n→ p where 0 < p < 1, it follows that

√
n(
∧
β−β)→N(0, β2/p). Since R= α

α+β
= h(α,β) and

∧
R=

∧
α
∧
α+
∧
β

= h(
∧
α,
∧
β), we have;

√
n(
∧
R−R) =

√
n

(
h(
∧
α,
∧
β)−h(α,β)

)
d→N(0, η2)

where η2 =
(
∂h(α,β)

∂α

)2

α2 +
(
∂h(α,β)

∂β

)2

β2/p. A (1−a)% approximate confidence interval for R based

on this asymptotic result is given by (
∧
R−z1−a/2

∧
η /
√
n,
∧
R+z1−a/2

∧
η /
√
n), where

∧
η is obtained by

substituting m/n for p and the MLEs
∧
α and

∧
β in the asymptotic standard deviation η. In these

calculations we assumed that m is the smaller sample in size and n is the larger. However, if this
is not the case then the formula for the asymptotic variance in the asymptotic interval should be
modified accordingly.

3. Bayesian inference
Consider the likelihood functions of α and β based on the two sets of lower record values from the
exponentiated gumbel distribution mentioned in previous section. We rewrite them as,

L(α| r
∼

) = αnu1(r
∼

)e−αv1(rn) and L(β| s
∼

) = βmu2(s
∼

)e−βv2(sm), (10)

where u1(r
∼

) =
n∏
i=1

e−ri , u2(s
∼

) =
m∏
i=1

e−si , v1(rn) = e−rn and v2(sm) = e−sm . These suggest that the

conjugate family of prior distributions for α and β is the Gamma family of probability distributions;

π(α) =
θγ11 α

γ1−1e−θ1α

Γ(γ1)
, α > 0 and π(β) =

θγ22 β
γ2−1e−θ2β

Γ(γ2)
, β > 0 (11)
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where γ1, θ1, γ2 and θ2 are the parameters of the prior distributions of α and β respectively. It
can be shown that (α| r

∼
)∼Gamma(n+ γ1, v1(rn) + θ1) and (β| s

∼
)∼Gamma(m+ γ2, v2(sm) + θ2).

It follows that 2(v1(rn) + θ1)(α| r
∼

) ∼ χ2
2(n+γ1)

and 2(v2(sm) + θ2)(β| s
∼

) ∼ χ2
2(m+γ2)

. It follows that

π(R| r
∼
, s
∼

), the posterior distribution of R is equal to that of (1 +AW )−1, where W ∼ F2(m+γ2),2(n+γ1)

and A= (m+γ2)(v1(rn)+θ1)

(n+γ1)(v2(sm)+θ2)
. The Bayes estimator under squared error loss is the mean of this poste-

rior distribution which may be approximated. Kang et al. (2013) discussed it by using Lindley’s
approximation technique. A Bayesian (1− a)% confidence interval for R is given by;(

(AF1−a/2,2(m+γ2),2(n+γ1) + 1)
−1
, (AFa/2,2(m+γ2),2(n+γ1) + 1)

−1
)
. (12)

The case of a noninformative prior can be treated similarly. We consider Jeffereys prior that
say, π(α) ∝

√
|I(α)|. This suggest that prior densitys for α and β are proportional to 1

α

and 1
β

respectively. Using direct arguments one can show that (α| r
∼

) ∼ Gamma(n,v1(rn)) and

(β| s
∼

) ∼ Gamma(m,v2(sm)). It follows that the posterior distribution of R is equal to that of

(1 + mv1(rn)

nv2(sm)
W )−1 where W ∼ F2m,2n. Therefore a Bayesian (1− a)% confidence interval for R is

given by; ((
mv1(rn)

nv2(sm)
F1−a/2,2m,2n + 1

)−1
,

(
mv1(rn)

nv2(sm)
Fa/2,2m,2n + 1

)−1)
. (13)

Now consider the case when the parameters of prior distributions are themselves unknown. We
consider the conjugate prior distributions for α and β above when the parameters θ1 and θ2 are
unknown. In the empirical Bayes model, we must estimate them. In order to, we calculate the
marginal distribution of lower records, with densitys

m(r
∼
|θ1) =

∫
fR
∼

(r
∼
|α)π(α|θ1)dα, −∞< rn < ... < r1 <∞,

m(s
∼
|θ2) =

∫
fS
∼

(s
∼
|β)π(β|θ2)dβ, −∞< sm < ... < s1 <∞.

Using Equations (10) and (11), we obtain

m(r
∼
|θ1) =

Γ(n+ γ1)u1(r
∼

)θγ11

Γ(γ1)(θ1 + v1(rn))
n+γ1

,

m(s
∼
|θ2) =

Γ(m+ γ2)u2(s
∼

)θγ22

Γ(γ2)(θ2 + v2(sm))
m+γ2

. (14)

It can be shown that the maximum likelihood estimators (MLE) of θ1 and θ2 based on the marginal
distributions (14) are

∧
θ1 =

γ1v1(rn)

n
,

∧
θ2 =

γ2v2(sm)

m
. (15)

With substitution
∧
θ1 and

∧
θ2 for θ1 and θ2 in prior distributions and using similar arguments above,

one can show that (α| r
∼
,
∧
θ1)∼Gamma(n+ γ1, (1 + γ1

n
)v1(rn)) and (β| s

∼
,
∧
θ2)∼Gamma(m+ γ2, (1 +

γ2
m

)v2(sm)). It follows that 2((1 + γ1
n

)v1(rn))(α| r
∼
,
∧
θ1) ∼ χ2

2(n+γ1)
and 2((1 + γ2

m
)v2(sm))(β| s

∼
,
∧
θ2) ∼

χ2
2(m+γ2)

. It follows that π(R| r
∼
,
∧
θ1, s
∼
,
∧
θ2), the empirical posterior distribution of R is equal to that of
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(1 +A′W )−1, where W ∼ F2(m+γ2),2(n+γ1) and A′ = mv1(rn)

nv2(sm)
. A Bayesian (1−a)% confidence interval

for R is given by; (
(A′F1−a/2,2(m+γ2),2(n+γ1) + 1)

−1
, (A′Fa/2,2(m+γ2),2(n+γ1) + 1)

−1
)

(16)

The construction of highest posterior density (HPD) regions requires finding the set C = {θ :
π(θ| r

∼
, s
∼

)≥ ka}, where ka is the largest constant such that Pr(θ ∈ C)≥ 1− a. This often requires

numerical optimization techniques. Chen and Shao (1999) presented a simple Monte Carlo tech-
nique to approximate the HPD region.

4. A simulation study
In this section, a simulation study is conducted to investigate and compare the performance of
the confidence intervals presented in this paper and some bootstrap intervals. There are several
bootstrap based intervals discussed in the literature (Efron and Tibshirani, 1993). It is important
here to note that all inference procedures in this paper depend only on the smallest records, rn
and sm. Therefore we shall use the parametric bootstrap based on the marginal distribution of Rn
as given in Equation (6). In follows we describe the bootstrapping procedure.

1. Calculate
∧
α,
∧
β and

∧
R, the maximum likelihood estimators of α, β and R based on rn and sm.

2. Generate r∗n from the distribution given in Equation (6) with α replaced by
∧
α and generate

s∗m similarly.

3. Calculate
∧
α∗,

∧
β∗ and

∧
R∗ using the r∗n and s∗m obtained in step 2.

4. Repeat steps 2 and 3, B times to obtain
∧
R∗1, ...,

∧
R∗B.

Then we can calculate the following bootstrap intervals;
Normal Interval: The simplest (1− a) bootstrap interval is the Normal interval

(
∧
R−z1−a/2

∧
seboot,

∧
R+z1−a/2

∧
seboot)

where
∧

seboot is the bootstrap estimate of the standard error based on
∧
R∗1, ...,

∧
R∗B.

Basic Pivotal Interval: The (1− a) bootstrap basic pivotal confidence interval is

(2
∧
R−

∧
r∗(1−a/2)B,2

∧
R−

∧
r∗(a/2)B)

where
∧
r∗β is the β quantile of

∧
R∗1, ...,

∧
R∗B.

Percentile Interval: The (1− a) bootstrap percentile interval is defined by

(
∧

r∗(a/2)B,
∧

r∗(1−a/2)B)

that is, just use the a/2 and 1− a/2 quantiles of the bootstrap sample.
Interested readers may refer to DiCiccio and Efron (1996) and the references contained therein

to observe more details.
In the simulation design we used all combinations of n = 5,10,15 and m = 5,10,15. We used

α= 1 and R= 0.1,0.25,0.5. The value of β is determined by the choice of α and R. The confidence
level taken is (1−a) = 0.90 and 0.95. For each combination of the simulation indices we generated
5000 samples of lower records from the distributions of X and Y . For each generated pair of samples
we calculated the following intervals;

1) ML: The interval based on the MLE given in Equation (9).
2) Bayes: The interval based on the Bayes estimator given in Equation (12).
3) J.B: The interval based on the Bayes estimator given in Equation (13).
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4) E.B: The interval based on the empirical Bayes estimator given in Equation (16).
5) Norm: The normal interval.
6) Basic: The basic pivotal interval.
7) Perc: The percentile interval.
The empirical coverage probability and expected lengths of intervals are obtained by using the

5000 replications. In the interval based on the Bayes estimators we used γ1 = 2 and γ2 = 5 and
θ1 = θ2 = 2. For bootstrap intervals we used 1000 bootstrap samples. The results of our simulations
are given in Tables 1 and 2.

5. Conclusion and discussion
Based on simulation results, it appears that the length of the intervals is maximized when R= 0.5
and gets shorter and shorter as we move away to the extremes. Increasing the sample size on either
variable also results in shorter intervals. The performance of the both basic pivotal interval and
percentile interval is similar in terms of expected length but in terms of coverage rate percentile
interval has the better performance. The percentile interval appears to be the best among bootstrap
intervals. The interval based on the MLE appears to perform almost as well as the percentile
interval specially for small to moderate sample sizes. The interval based on the Bayes estimator
given in Equation (12) has the low coverage rate for small values of R since it is dependent on
θ1 and θ2 values. Furthermore, the interval based on the Bayes estimator given in Equation (13)
has the more expected length rather than the interval based on the empirical Bayes estimator.
It appears that the interval based on the empirical Bayes estimator simultaneously has the short
expected length and very good coverage rate in comparison with the other intervals. Hence, we
recommend to use this confidence interval in all.
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İSTATİSTİK: Journal of the Turkish Statistical Association 6(3), pp. 103–109, c© 2013 İstatistik 109

Table 1. Expected lengths and coverage rates (in parentheses) of the confidence intervals with (1-α)=0.95

n m R ML Bayes J.B E.B Norm Basic Perc
5 5 0/1 0.273(0.955) 0.224(0.887) 0.263(0.993) 0.187(0.991) 0.279(0.933) 0.271(0.807) 0.271(0.951)
5 5 0/25 0.451(0.948) 0.378(0.995) 0.471(0.993) 0.360(0.989) 0.461(0.902) 0.449(0.801) 0.449(0.944)
5 5 0/5 0.539(0.956) 0.448(0.996) 0.576(0.995) 0.462(0.993) 0.552(0.909) 0.539(0.808) 0.539(0.955)
5 10 0/1 0.220(0.949) 0.263(0.944) 0.213(0.991) 0.175(0.990) 0.256(0.955) 0.249(0.835) 0.249(0.933)
5 10 0/25 0.390(0.947) 0.342(0.994) 0.399(0.990) 0.336(0.988) 0.425(0.931) 0.417(0.851) 0.417(0.935)
5 10 0/5 0.480(0.944) 0.426(0.991) 0.507(0.989) 0.431(0.986) 0.488(0.856) 0.479(0.823) 0.479(0.934)
5 15 0/1 0.202(0.959) 0.230(0.993) 0.196(0.996) 0.166(0.995) 0.247(0.976) 0.240(0.861) 0.240(0.941)
5 15 0/25 0.366(0.947) 0.324(0.996) 0.372(0.991) 0.321(0.989) 0.408(0.931) 0.401(0.850) 0.401(0.927)
5 15 0/5 0.461(0.948) 0.412(0.996) 0.481(0.990) 0.414(0.987) 0.466(0.909) 0.458(0.852) 0.458(0.911)
10 5 0/1 0.240(0.955) 0.286(0.500) 0.229(0.993) 0.160(0.991) 0.214(0.925) 0.209(0.847) 0.209(0.944)
10 5 0/25 0.403(0.947) 0.334(0.990) 0.417(0.991) 0.312(0.989) 0.380(0.893) 0.373(0.829) 0.373(0.932)
10 5 0/5 0.482(0.956) 0.395(0.996) 0.507(0.994) 0.404(0.991) 0.489(0.907) 0.479(0.826) 0.479(0.909)
10 10 0/1 0.177(0.950) 0.225(0.840) 0.172(0.990) 0.144(0.990) 0.180(0.937) 0.176(0.858) 0.176(0.949)
10 10 0/25 0.326(0.950) 0.295(0.993) 0.332(0.991) 0.285(0.989) 0.329(0.926) 0.325(0.866) 0.325(0.951)
10 10 0/5 0.406(0.955) 0.365(0.997) 0.422(0.994) 0.369(0.992) 0.411(0.923) 0.406(0.874) 0.406(0.953)
10 15 0/1 0.157(0.950) 0.194(0.926) 0.153(0.991) 0.135(0.991) 0.167(0.947) 0.165(0.878) 0.165(0.948)
10 15 0/25 0.296(0.947) 0.274(0.991) 0.300(0.989) 0.264(0.988) 0.308(0.932) 0.305(0.874) 0.305(0.949)
10 15 0/5 0.375(0.946) 0.347(0.995) 0.388(0.989) 0.349(0.989) 0.379(0.919) 0.375(0.887) 0.375(0.945)
15 5 0/1 0.220(0.957) 0.269(0.251) 0.216(0.996) 0.148(0.993) 0.186(0.899) 0.182(0.822) 0.182(0.931)
15 5 0/25 0.387(0.950) 0.314(0.991) 0.395(0.991) 0.291(0.986) 0.354(0.899) 0.348(0.833) 0.348(0.938)
15 5 0/5 0.460(0.948) 0.370(0.996) 0.481(0.990) 0.377(0.988) 0.465(0.901) 0.457(0.839) 0.457(0.930)
15 10 0/1 0.159(0.952) 0.207(0.707) 0.157(0.992) 0.131(0.991) 0.153(0.931) 0.151(0.869) 0.151(0.947)
15 10 0/25 0.300(0.952) 0.271(0.993) 0.305(0.992) 0.261(0.990) 0.294(0.923) 0.291(0.878) 0.291(0.949)
15 10 0/5 0.375(0.949) 0.336(0.997) 0.388(0.994) 0.339(0.993) 0.378(0.915) 0.375(0.867) 0.375(0.953)
15 15 0/1 0.139(0.955) 0.176(0.891) 0.136(0.995) 0.121(0.995) 0.140(0.936) 0.138(0.875) 0.138(0.954)
15 15 0/25 0.268(0.953) 0.249(0.994) 0.270(0.993) 0.243(0.992) 0.269(0.937) 0.267(0.898) 0.267(0.954)
15 15 0/5 0.340(0.955) 0.315(0.998) 0.349(0.995) 0.317(0.993) 0.342(0.929) 0.339(0.899) 0.339(0.954)

Table 2. Expected lengths and coverage rates (in parentheses) of the confidence intervals with (1-α)=0.90

n m R ML Bayes J.B E.B Norm Basic Perc
5 5 0/1 0.223(0.903) 0.295(0.608) 0.213(0.975) 0.154(0.971) 0.235(0.903) 0.222(0.787) 0.222(0.901)
5 5 0/25 0.381(0.894) 0.364(0.920) 0.398(0.976) 0.303(0.973) 0.387(0.853) 0.381(0.766) 0.381(0.893)
5 5 0/5 0.462(0.914) 0.393(0.990) 0.497(0.972) 0.395(0.969) 0.464(0.845) 0.462(0.776) 0.462(0.915)
5 10 0/1 0.182(0.892) 0.229(0.919) 0.176(0.969) 0.145(0.967) 0.215(0.924) 0.203(0.809) 0.203(0.891)
5 10 0/25 0.331(0.905) 0.328(0.952) 0.339(0.971) 0.284(0.970) 0.357(0.892) 0.351(0.809) 0.351(0.892)
5 10 0/5 0.410(0.890) 0.367(0.983) 0.435(0.971) 0.367(0.966) 0.409(0.840) 0.409(0.778) 0.409(0.881)
5 15 0/1 0.169(0.913) 0.206(0.934) 0.163(0.977) 0.139(0.973) 0.207(0.947) 0.195(0.836) 0.195(0.900)
5 15 0/25 0.311(0.897) 0.308(0.970) 0.316(0.969) 0.272(0.965) 0.342(0.887) 0.336(0.811) 0.336(0.871)
5 15 0/5 0.393(0.909) 0.353(0.981) 0.411(0.959) 0.352(0.959) 0.391(0.860) 0.391(0.814) 0.391(0.891)
10 5 0/1 0.195(0.902) 0.239(0.405) 0.184(0.963) 0.131(0.960) 0.179(0.891) 0.173(0.826) 0.173(0.903)
10 5 0/25 0.338(0.895) 0.315(0.948) 0.348(0.961) 0.262(0.959) 0.319(0.850) 0.316(0.800) 0.316(0.887)
10 5 0/5 0.411(0.912) 0.344(0.985) 0.435(0.960) 0.343(0.957) 0.410(0.842) 0.410(0.783) 0.410(0.890)
10 10 0/1 0.146(0.894) 0.180(0.722) 0.141(0.961) 0.119(0.961) 0.151(0.905) 0.146(0.827) 0.146(0.950)
10 10 0/25 0.279(0.899) 0.275(0.980) 0.279(0.965) 0.239(0.963) 0.276(0.876) 0.273(0.822) 0.273(0.898)
10 10 0/5 0.345(0.904) 0.313(0.987) 0.360(0.971) 0.313(0.969) 0.345(0.867) 0.345(0.824) 0.345(0.906)
10 15 0/1 0.131(0.900) 0.159(0.784) 0.127(0.670) 0.112(0.967) 0.140(0.915) 0.136(0.850) 0.136(0.897)
10 15 0/25 0.250(0.897) 0.254(0.989) 0.253(0.967) 0.226(0.965) 0.258(0.882) 0.255(0.837) 0.255(0.899)
10 15 0/5 0.318(0.901) 0.296(0.989) 0.330(0.974) 0.296(0.971) 0.318(0.875) 0.318(0.841) 0.318(0.897)
15 5 0/1 0.178(0.907) 0.218(0.183) 0.173(0.961) 0.121(0.957) 0.156(0.860) 0.152(0.801) 0.152(0.890)
15 5 0/25 0.323(0.902) 0.293(0.970) 0.329(0.968) 0.243(0.964) 0.297(0.847) 0.296(0.793) 0.296(0.887)
15 5 0/5 0.392(0.893) 0.321(0.981) 0.411(0.959) 0.319(0.955) 0.391(0.849) 0.391(0.791) 0.391(0.884)
15 10 0/1 0.131(0.909) 0.179(0.605) 0.129(0.973) 0.108(0.970) 0.129(0.890) 0.126(0.841) 0.126(0.907)
15 10 0/25 0.251(0.902) 0.250(0.985) 0.256(0.977) 0.219(0.975) 0.247(0.874) 0.245(0.835) 0.245(0.898)
15 10 0/5 0.318(0.893) 0.287(0.988) 0.330(0.971) 0.287(0.967) 0.317(0.858) 0.318(0.824) 0.318(0.892)
15 15 0/1 0.115(0.898) 0.137(0.724) 0.113(0.967) 0.101(0.963) 0.118(0.899) 0.115(0.841) 0.115(0.900)
15 15 0/25 0.225(0.907) 0.228(0.988) 0.227(0.974) 0.204(0.972) 0.226(0.894) 0.224(0.861) 0.224(0.906)
15 15 0/5 0.287(0.903) 0.268(0.991) 0.296(0.977) 0.268(0.974) 0.287(0.876) 0.287(0.856) 0.287(0.902)


