# ON A GENERALIZATION OF LING'S BINOMIAL DISTRIBUTION 

Femin YALCIN<br>Department of Mathematics, Faculty of Arts and Sciences Izmir University of Economics, 35330, Balcova, Izmir, Turkey


#### Abstract

In a sequence of $n$ binary trials, distribution of the random variable $M_{n, k}$, denoting the number of overlapping success runs of length exactly $k$, is called Ling's binomial distribution or Type II binomial distribution of order $k$. In this paper, we generalize Ling's binomial distribution to Ling's $q$-binomial distribution using Bernoulli trials with a geometrically varying success probability. An expression for the probability mass function of this distribution is derived. For $q=1$, this distribution reduces to Ling's binomial distribution.


Key words: Binomial distribution of order $k$, Ling's binomial distribution, $q$-distributions, runs.
History: Submitted: 13 July 2013; Revised: 13 September 2013; Accepted: 1 October 2013

## 1. Introduction

Much attention has been paid to the distribution of the number of runs of fixed length, say $k$, in a sequence of $n(n \geq k)$ binary trials. Ling (1988) [4] introduced a binomial distribution of order $k$ which is based on overlapping counting. This distribution is also called Type II binomial distribution of order $k$ and differs from the Type I binomial distribution of order $k$, which was studied by Hirano (1986) [3] and Philippou and Makri (1986) [6]. The Type I binomial distribution of order $k$ is based on nonoverlapping counting scheme. In a sequence of $n$ binary trials, we use $N_{n, k}$ $\left(M_{n, k}\right)$ to denote a random variable which has Type I (Type II) binomial distribution of order $k$. $N_{n, k}\left(M_{n, k}\right)$ is actually the number of nonoverlapping (overlapping) success runs of length exactly $k$ in $n$ trials. Consider a sequence of $n=12$ trials 101110111110 assuming " $1 "$ as a success and " 0 " as a failure. If $k=3$, then $N_{12,3}=2$ and $M_{12,3}=4$.

Ling (1988) [4] obtained the following recursive and nonrecursive equations for the pmf of $M_{n, k}$ when the corresponding binary trials are independent and identically distributed with the probability of success $p$.

$$
P\left\{M_{n, k}=x\right\}= \begin{cases}p^{n} & \text { if } x=n-k+1,  \tag{1.1}\\ 2 p^{n-1} q & \text { if } x=n-k(>0), \\ \sum_{j=1}^{\sum_{j}} p^{j-1} q P\left\{M_{n-j, k}=x-\max (0, j-k)\right\} & \text { if } 0 \leq x<n-k\end{cases}
$$

and

$$
P\left\{M_{n, k}=x\right\}=\sum_{i=0}^{n} \sum_{\substack{n \\ \max (0, i-k+1)+x_{2}+\cdots+n x_{n}+i=n \\ j=k+1}}\binom{x_{1}+x_{2}+\cdots+x_{n}}{x_{1}, x_{2}, \ldots, x_{n}} p^{n}\left(\frac{q}{p}\right)^{\sum_{i=1}^{n} x_{i}} .
$$

Then, Godbole (1992) [2] derived a simpler formula

$$
P\left\{M_{n, k}=x\right\}= \begin{cases}p^{n} & \text { if } x=n-k+1,  \tag{1.2}\\
\sum_{y=\left\lfloor\frac{n}{k}\right\rfloor}^{n} q^{y} p^{n-y} \sum_{j=0}^{\left.\frac{n-y}{k}\right\rfloor}(-1)^{j}\binom{y+1}{j}\binom{n-j k}{y} & \text { if } x=0, \\
\sum_{y} q^{y} p^{n-y} \sum_{v}\binom{y}{v} & \\
\left\{\begin{array}{l}
\sum_{j}(-1)^{j}\binom{y-v}{j}\binom{x-j(n-k)-1}{y-v-1} \sum_{m}(-1)^{m}\binom{v+1}{m}\binom{n-x-k(y-v+m)}{v} \\
\left.\quad+\sum_{j}(-1)^{j}\binom{y-v+1}{j}\binom{x-j(n-k)-1}{y-v} \sum_{m}(-1)^{m}\binom{v}{m}\binom{n-x-k(y-v+1+m)}{v-1}\right\}
\end{array}\right.\end{cases}
$$

An even simpler formula was obtained by Makri, Philippou, and Psillakis (2007) [5]. For $s=0$ and $l=k-1$, Theorem 2.1. of [5] gives

$$
P\left\{M_{n, k}=x\right\}= \begin{cases}\sum_{y=\left\lfloor\frac{n}{k}\right\rfloor}^{n} q^{y} p^{n-y} C(n-y, y+1, k-1) & \text { if } x=0,  \tag{1.3}\\ \sum_{y=\left\lfloor\frac{n+x(k-1)}{k}\right\rfloor-x}^{n-k-(x-1)} q^{y} p^{n-y} \sum_{i=1}^{\left\lfloor\frac{n-y}{k}\right\rfloor}\binom{y+1}{i}\binom{x-1}{i-1} & \text { if } x \neq 0, \\ \times C(n-y-i k-(x-i) ; i, y+1-i ; 0, k-1) & \end{cases}
$$

where

$$
C(\alpha ; i, r-i ; m-1, n-1)=\sum_{j_{1}=0}^{\left\lfloor\frac{\alpha}{m}\right\rfloor} \sum_{j_{2}=0}^{\left\lfloor\frac{\alpha-m j_{1}}{n}\right\rfloor}(-1)^{j_{1}+j_{2}}\binom{i}{j_{1}}\binom{r-i}{j_{2}}\binom{\alpha-m j_{1}-n j_{2}+r-1}{r-1}
$$

and

$$
C(\alpha, r, m-1)=C(\alpha ; i, r-i ; m-1, m-1)=\sum_{j=0}^{\left\lfloor\frac{\alpha}{m}\right\rfloor}(-1)^{j}\binom{r}{j}\binom{\alpha-m j+r-1}{r-1} .
$$

Charalambides (2010) [1] studied discrete $q$-distributions on Bernoulli trials with a geometrically varying success probability. Let us consider a sequence $X_{1}, \ldots, X_{n}$ of zero (failure)-one (success) Bernoulli trials such that the trials of the subsequences after the $(i-1)$ st zero until the $i$ th zero are independent with failure probability

$$
\begin{equation*}
q_{i}=1-\theta q^{i-1}, \quad i=1,2, \ldots, 0<\theta<1,0<q \leq 1 . \tag{1.4}
\end{equation*}
$$

The probability mass function of the number $Z_{n}$ of successes in $n$ trials $X_{1}, \ldots, X_{n}$ is given by

$$
P\left\{Z_{n}=r\right\}=\left[\begin{array}{l}
n  \tag{1.5}\\
r
\end{array}\right]_{q} \theta^{r} \prod_{i=1}^{n-r}\left(1-\theta q^{i-1}\right)
$$

for $r=0,1, \ldots, n$, where

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}=\frac{[n]_{r, q}}{[r]_{q}!}
$$

and $[x]_{k, q}=[x]_{q}[x-1]_{q} \cdots[x-k+1]_{q},[x]_{q}=\left(1-q^{x}\right) /(1-q),[x]_{q}!=[1]_{q}[2]_{q} \cdots[x]_{q}$ ([1]). The distribution given by 1.5 is called a $q$-binomial distribution.

Yalcin and Eryilmaz (2014) [7] obtained the distribution of $N_{n, k}$ for the model 1.4. The resulting distribution is the Type I $q$-binomial distribution of order $k$. In this paper, we study the distribution of $M_{n, k}$ under the model 1.4. The new distribution is called Type II $q$-binomial distribution of order $k$ or Ling's $q$-binomial distribution.

Note that, throughout the paper, for integers $n$ and $m$, and real number $x$, let $\binom{n}{m}$ and $\lfloor x\rfloor$ denote the binomial coefficients and the greatest integer less than or equal to $x$, respectively. We also assume for convenience that if $a>b$, then $\sum_{i=a}^{b}=0$ and $\prod_{i=a}^{b}=1$.

## 2. Type II $q$-binomial distribution of order $k$

We first note the following Lemma which will be useful in the sequel.
Lemma 1. For $0<q \leq 1$, define

$$
B_{q}(r, s, t)=\sum_{\substack{y_{1}+\cdots+y_{r}=s \\ I_{1} y_{1}+\cdots+y_{r}+y_{r}-(k-1)\left(I_{1}+\cdots+I_{r}\right)=t \\ y_{j} \geq 0, j=1,2, \ldots, r}} \cdots q^{y_{2}+2 y_{3}+\cdots+(r-1) y_{r}},
$$

where

$$
I_{j}=\left\{\begin{array}{l}
1 \text { if } y_{j} \geq k, \\
0 \text { otherwise }
\end{array}\right.
$$

and $y_{j} s$ are nonnegative integers, $j=1,2, \ldots, r$. Then $B_{q}(r, s)$ obeys the following recurrence relation

$$
B_{q}(r, s, t)= \begin{cases}\sum_{j=0}^{k-1} q^{(r-1) j} B_{q}(r-1, s-j, t) & \text { if } r>1, s \geq 0, \text { and } t \geq 0, \\
+\sum_{j=k}^{s} q^{(r-1) j} B_{q}(r-1, s-j, t-j+k-1) & \\
1 & \text { if }(r=1, s \geq k \text { and } t=s-k+1) \\
0 & \begin{array}{l}
\text { or }(r=1,0 \leq s<k \text { and } t=0), \\
\text { otherwise. }
\end{array}\end{cases}
$$

Proof. Considering the values that $y_{r}$ can take, we have

$$
\begin{aligned}
& B_{q}(r, s, t)=\sum_{\substack{y_{1}+\cdots+y_{r-1}=s \\
I_{1} y_{1}+\cdots+I_{r-1} y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t \\
y_{j} \geq 0, j=1,2, \ldots, r-1}} \cdots q^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}} \\
& +q^{r-1} \sum_{\substack{y_{1}+\cdots+y_{r-1}=s-1 \\
I_{1} y_{1}+\cdots+I_{r-1} y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t \\
y_{j} \geq 0, j=1,2, \ldots, r-1}} q^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}} \\
& +q^{2(r-1)} \sum_{\substack{y_{1}+\cdots+y_{r-1}=s-2 \\
I_{1} y_{1}+\cdots+I_{r}-1 y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t \\
y_{j} \geq 0, j=1,2, \ldots, r-1}} q^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}} \\
& +\cdots+q^{(k-1)(r-1)} \quad \sum_{y_{1}+\cdots+y_{r-1}=s-k+1} \cdots \sum_{y^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}}} \\
& I_{1} y_{1}+\cdots+I_{r-1} y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t \\
& +q^{k(r-1)} \sum_{\substack{y_{1}+\cdots+y_{r-1}=s-k \\
I_{1} y_{1}+\cdots+I_{r-1} y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t-1 \\
y_{j} \geq 0, j=1,2, \ldots, r-1}} q^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}}
\end{aligned}
$$

$$
\begin{aligned}
& +q^{(k+1)(r-1)} \sum_{y_{1}+\cdots+y_{r-1}=s-k-1} \cdots \sum^{y_{2}+2 y_{3}+\cdots+(r-2) y_{r-1}} \\
& I_{1} y_{1}+\cdots+I_{r-1} y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t-2 \\
& +\cdots+q^{s(r-1)} \sum_{\substack{ \\
y_{1}+\cdots+y_{r-1}=0}} \sum^{I_{1} y_{1}+\cdots+I_{r-1} \begin{array}{l}
y_{r-1}-(k-1)\left(I_{1}+\cdots+I_{r-1}\right)=t-s+k-1 \\
y_{j} \geq 0, j=1,2, \ldots, r-1
\end{array}} q^{y_{2}+\cdots+(r-2) y_{r-1}} \\
& =B_{q}(r-1, s, t)+q^{r-1} B_{q}(r-1, s-1, t)+q^{2(r-1)} B_{q}(r-1, s-2, t) \\
& +\cdots+q^{(k-1)(r-1)} B_{q}(r-1, s-k+1, t)+q^{k(r-1)} B_{q}(r-1, s-k, t-1) \\
& +q^{(k+1)(r-1)} B_{q}(r-1, s-k-1, t-2)+\cdots+q^{s(r-1)} B_{q}(r-1,0, t-s+k-1)
\end{aligned}
$$

for $r>1, s \geq 0$, and $t \geq 0$. The other parts of the recurrence are obvious.
THEOREM 1. For $0<q \leq 1$, the probability mass function of the number of overlapping success runs of length $k$ in $n$ trials is given by

$$
\begin{equation*}
P\left\{M_{n, k}=x\right\}=\sum_{i=0}^{n} \theta^{n-i} \prod_{j=1}^{i}\left(1-\theta q^{j-1}\right) B_{q}(i+1, n-i, x) \tag{2.1}
\end{equation*}
$$

$x=0,1, \ldots, n-k+1$.
Proof. Let $S_{n}$ denote the total number of zeros (failures) in $n$ binary trials. Then

$$
P\left\{M_{n, k}=x\right\}=\sum_{i} P\left\{M_{n, k}=x, S_{n}=i\right\}
$$

The joint event $\left\{M_{n, k}=x, S_{n}=i\right\}$ can be described with the following binary sequence which consists of $i$ zeros.

where

$$
\begin{aligned}
& y_{1}+y_{2}+\cdots+y_{i+1}=n-i \\
& \text { s.t. } \\
& I_{1}\left(y_{1}-k+1\right)+I_{2}\left(y_{2}-k+1\right)+\cdots+I_{i+1}\left(y_{i+1}-k+1\right)=x \\
& y_{j} \geq 0 \text { and } I_{j}=\left\{\begin{array}{l}
1 \text { if } y_{j} \geq k, \\
0 \text { otherwise, }
\end{array} \quad j=1,2, \ldots, i+1 .\right.
\end{aligned}
$$

Under the model 1.4,

$$
\begin{aligned}
& P\left\{M_{n, k}=x\right\}= \sum_{i} \cdots \sum_{\substack{y_{1}+\cdots+y_{i+1}=n-i \\
I_{1} y_{1}+\cdots+I_{i+1} y_{i+1}-(k-1)\left(I_{1}+\cdots+I_{i+1}\right)=x}}\left(\theta q^{0}\right)^{y_{1}}\left(1-\theta q^{0}\right)(\theta q)^{y_{2}}(1-\theta q) \cdots\left(\theta q^{i-1}\right)^{y_{i}} \\
&\left.=\sum_{i=0}^{n} \theta^{n-i} \prod_{j=1}^{i}\left(1-\theta q^{j-1}\right) \sum_{\substack{ \\
y_{1}+\cdots+y_{i+1}=n-i \\
I_{1} y_{1}+\cdots+I_{i+1} y_{i+1}-(k-1)\left(I_{1}+\cdots+I_{i+1}\right)=x \\
y_{j} \geq 0, j=1,2, \ldots, i+1}} \cdots \sum^{i-1}\right)\left(\theta q^{i}\right)^{y_{i+1}} \\
& q^{y_{2}+2 y_{3}+\cdots+(i-1) y_{i}+i y_{i+1}} \\
&= \sum_{i=0}^{n} \theta^{n-i} \prod_{j=1}^{i}\left(1-\theta q^{j-1}\right) B_{q}(i+1, n-i, x)
\end{aligned}
$$

Thus the proof is completed.

Remark 1. For $q=1$, the probability mass function of $M_{n, k}$ given in 2.1 is an alternative to 1.1, 1.2, and, 1.3 because the Type II 1-binomial distribution of order $k$ is actually Ling's binomial distribution.

Example 1. For $n=5$ and $k=2$, below we compute the pmf of $M_{n, k}$.

$$
\begin{aligned}
P\left\{M_{5,2}=0\right\}= & \theta^{3}(1-\theta)(1-\theta q) q^{3}+\theta^{2}(1-\theta)(1-\theta q)\left(1-\theta q^{2}\right)\left(q+q^{2}+2 q^{3}+q^{4}+q^{5}\right) \\
& +\theta(1-\theta)(1-\theta q)\left(1-\theta q^{2}\right)\left(1-\theta q^{3}\right)\left(1+q+q^{2}+q^{3}+q^{4}\right) \\
& +(1-\theta)(1-\theta q)\left(1-\theta q^{2}\right)\left(1-\theta q^{3}\right)\left(1-\theta q^{4}\right), \\
P\left\{M_{5,2}=1\right\}= & \theta^{3}(1-\theta)(1-\theta q)\left(q+2 q^{2}+2 q^{4}+q^{5}\right) \\
& +\theta^{2}(1-\theta)(1-\theta q)\left(1-\theta q^{2}\right)\left(1+q^{2}+q^{4}+q^{6}\right), \\
P\left\{M_{5,2}=2\right\}= & \theta^{4}(1-\theta)\left(q+q^{2}+q^{3}\right)+\theta^{3}(1-\theta)(1-\theta q)\left(1+q^{3}+q^{6}\right), \\
P\left\{M_{5,2}=3\right\}= & \theta^{4}(1-\theta)\left(1+q^{4}\right), \\
P\left\{M_{5,2}=4\right\}= & \theta^{5} .
\end{aligned}
$$

In Table 1 and Table 2, we respectively compute the probability mass function of $M_{10,2}$ for selected values of the parameters $\theta$ and $q$ and the expected value of $M_{n, k}$ for different choices of $k, n$ and the parameters $\theta$ and $q$. The numerical results indicate that $E\left(M_{n, k}\right)$ is increasing in both $\theta$ and $q$.

| $x$ | $\theta=0.5, q=0.5$ | $\theta=0.5, q=0.8$ | $\theta=0.9, q=0.5$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.68854 | 0.48212 | 0.14144 |
| 1 | 0.16216 | 0.24141 | 0.08809 |
| 2 | 0.07597 | 0.13410 | 0.07780 |
| 3 | 0.03699 | 0.07168 | 0.06976 |
| 4 | 0.01828 | 0.03682 | 0.06291 |
| 5 | 0.00913 | 0.01880 | 0.05812 |
| 6 | 0.00453 | 0.00833 | 0.05202 |
| 7 | 0.00244 | 0.00465 | 0.06236 |
| 8 | 0.00098 | 0.00111 | 0.03882 |
| 9 | 0.00098 | 0.00098 | 0.34868 |

Table 1. Probability mass function of $M_{10,2}$.

| $n$ | $k$ | $\theta=0.5, q=0.5$ | $\theta=0.5, q=0.8$ | $\theta=0.9, q=0.5$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 2 | 0.6048 | 1.0661 | 5.1925 |
|  | 3 | 0.2721 | 0.4288 | 4.2369 |
| 20 | 2 | 0.6067 | 1.1416 | 7.3807 |
|  | 3 | 0.2734 | 0.4485 | 6.3441 |
|  | 5 | 0.0638 | 0.0866 | 4.8372 |

Table 2. Expected value of $M_{n, k}$.

## Acknowledgements

The author would like to express her sincere thanks to the anonymous referee for careful reading of the first version of this paper and his/her useful comments and suggestions.

## References

[1] Charalambides, C.A., 2010, The $q$-Bernstein Basis as a $q$-Binomial Distributions, Journal of Statistical Planning and Inference, 140, 2184-2190.
[2] Godbole, A.P., 1992 The Exact and Asymptotic Distribution of Overlapping Success Runs, Communications in Statistics-Theory and Methods, 21, 953-967.
[3] Hirano, K., 1986, Some Properties of the Distributions of Order $k$, Fibonacci Numbers and Their Applications (eds. G.E. Bergum, A.N. Philippou, and A.F. Horadam), 43-53.
[4] Ling, K.D., 1988, On Binomial Distribution of Order $k$, Statistics \& Probability Letters, 6, 247-250.
[5] Makri, F. S., Philippo, A. N., and Psillakis, Z. M., 2007, Polya, Inverse Polya, and Circular Polya Distributions of Order $k$ for $l$-Overlapping Success Runs, Communications in Statistics-Theory and Methods, 36, 657-668.
[6] Philippou, A.N. and Makri, F.S., 1986, Success Runs and Longest Runs, Statistics \& Probability Letters, 4, 211-215.
[7] Yalcin, F. and Eryilmaz, S., 2014, $q$-Geometric and $q$-Binomial Distributions of Order $k$, Journal of Computational and Applied Mathematics, 271, 31-38.

