
B o z o k  J  E n g  A r c h ,  2 0 2 5 ;  4 ( 2 )  1 - 1 2  

 

Bozok  

Journal of Engineering and Architecture 
 

e-ISSN: 3023-4298 

Araştırma Makalesi/Research Article 

 

ORCID ID: Kenan KILIÇ: 0000-0003-1607-9545 

 

*Sorumlu yazar(lar)/Corresponding author(s): Yozgat Bozok Üniversitesi, Yozgat Meslek Yüksekokulu, Tasarım Bölümü, İç Mekân Tasarımı Programı, Yozgat, Türkiye 

E-mail: kenan.kilic@bozok.edu.tr 

 

Bu makaleye atıfta bulunmak için/To cite this article: K. Kılıç, “Vision Transformer (ViT) ile MVTec Ahşap Verisinde Kusurlu ve Kusursuz Görüntülerin Sınıflandırılması”, Bozok 

Journal of Engineering and Architecture, vol. 4, no, 2, pp. 1-12, Dec 2025. 

 

Vision Transformer (ViT) ile MVTec Ahşap Verisinde Kusurlu ve Kusursuz Görüntülerin 

Sınıflandırılması 

Kenan KILIÇ1 

1 Yozgat Bozok Üniversitesi, Yozgat Meslek Yüksekokulu, Tasarım Bölümü, İç Mekân Tasarımı Programı, Yozgat, Türkiye 

 

M A K A L E  B İ L G İ S İ    Ö Z E T  

Makale Tarihleri: 

 

Geliş tarihi 

16.10.2025 

Kabul tarihi 

17.11.2025 

Yayın tarihi 

31.12.2025 

 MVTec Anomaly Detection veri setinin ahşap alt sınıfı üzerinde yüzey kusurlarının otomatik 

olarak sınıflandırılması amacıyla Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-

Patch4-Window7-224 modellerinin performansları araştırılmıştır. Veri setine ait görüntüler 

224×224 piksel boyutuna yeniden ölçeklendirilmiş, standart normalizasyon uygulanmış ve iki 

ayrı senaryo değerlendirilmiştir. İlk olarak veri artırma uygulanmadan, ikinci olarak veri 

artırma kullanılarak deneyler gerçekleştirilmiştir. Veri artırmasız durumda ViT modeli %95,45, 

Swin-Tiny modeli %93,94 doğruluk elde etmiştir. Veri artırma uygulandığında ViT modelinin 

doğruluğu %93,94, Swin-Tiny modelinin doğruluğu ise %95,45 olarak hesaplanmaktadır. 

Sonuçlar, her iki modelin de kusursuz, sıvı ve çizilme sınıflarında yüksek duyarlılık ve F1-puanı 

ürettiğini; buna karşın örnek sayısı düşük olan renk, birleşik ve delik sınıflarında sınıf 

dengesizliğine bağlı performans düşüşleri yaşandığını göstermektedir. Bu çalışma, Transformer 

modellerinin endüstriyel kalite kontrol süreçlerinde etkin bir alternatif olduğunu göstermekte; 

veri çeşitliliği ve sınıf dengeleme yöntemlerinin güçlendirilmesi durumunda modellerin 

doğruluklarının daha da artırılabileceğini göstermektedir. 
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 The performances of the Google/ViT-Base-Patch16-224-in21k and Microsoft/Swin-Tiny-Patch4-

Window7-224 models were investigated for the automatic classification of surface defects on the 

wood subclass of the MVTec Anomaly Detection dataset. The images of the dataset were rescaled 

to 224×224 pixels, standard normalisation was applied, and two separate scenarios were 

evaluated. The first experiment was conducted without data augmentation, and the second with 

data augmentation. In the no-data augmentation case, the ViT model achieved 95.45% accuracy, 

while the Swin-Tiny model achieved 93.94% accuracy. With data augmentation, the accuracy of 

the ViT model was calculated as 93.94%, and the Swin-Tiny model as 95.45%. The results show 

that both models produce high sensitivity and F1-scores for the defect-free, liquid, and scratch 

classes; however, performance decreases due to class imbalance in the colour, compound, and 

hole classes, which have low sample numbers. This study demonstrates that Transformer models 

are an effective alternative in industrial quality control processes, and demonstrates that the 

accuracy of the models can be further increased if data diversity and class balancing methods 

are strengthened. 
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1. GİRİŞ  

Günümüzde ahşap ve türevi kaynaklarının azalması ve ihtiyacın sürekli olarak artması nedeniyle orman kaynaklarının tüketimini 

yavaşlatmak önemli bir araştırma konusu haline gelmiştir. Ahşap ve türevi malzemelerin yüzeyindeki budak vb. kusurlarının hızlı 

ve doğru bir şekilde tespit edilmesi, odun kullanım verimliliğini artırabilir ve aşırı tüketimi azaltabilir [1-4]. Bu amaçla, dijital 
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görüntü işleme ve yapay zekâ algoritmalarının birleşimi, odun düğüm kusurlarının tespiti ve sınıflandırılması için yaygın olarak 

kullanılan bir yöntem haline gelmiştir [5]. Bu yöntemler arasında, sabit özellik çıkarma ve sınıflandırma tanıma teknolojileri öne 

çıkmaktadır [6,7]. Bu teknolojiler, temel olarak bilgisayarlı görü, spektral analiz ve diğer dijital görüntü işleme tekniklerine 

dayanmaktadır [8]. Etkili özellik parametreleri, örneklerden sabit haritalama yöntemleriyle çıkarılır ve bu parametrelerin 

belirlenmesi için çeşitli istatistiksel veya makine öğrenimi yöntemleri karşılaştırılır. Derin öğrenme, yapay zekâ alanında büyük bir 

potansiyele sahip yeni bir yaklaşım olarak ortaya çıkmıştır [9]. Derin öğrenme yöntemi, orijinal verilerden özelliklerin otomatik 

olarak öğrenilmesini sağlar, böylece manuel özellik çıkarma işlemlerine olan bağımlılık azaltılabilir [10].  

 

Endüstriyel üretim süreçlerinde kalite kontrol, ürünlerin güvenilirliği ve müşteri memnuniyeti açısından kritik bir rol oynamaktadır. 

Geleneksel kalite kontrol yöntemleri, genellikle insan operatörler tarafından gerçekleştirilmekte ve bu durum, zaman alıcı, maliyetli 

ve hata yapmaya açık bir sürece yol açmaktadır [11,12]. 

 

Endüstriyel görüntü analizi için kullanılan veri setlerinden biri olan MVTec veri seti, bu alanda yaygın olarak kullanılan bir referans 

kaynağıdır. MVTec, çeşitli endüstriyel ürünlerin (örneğin, tekstil, elektronik, metal parçalar) kusurlu ve kusursuz görüntülerini 

içeren zengin bir veri seti sunmaktadır [13]. Bu veri seti, kusur tespiti ve sınıflandırma modellerinin performansını değerlendirmek 

için bir standart haline gelmiştir. 

 

Geleneksel olarak, evrişimli sinir ağları (ESA) görüntü sınıflandırma ve kusur tespiti görevlerinde yaygın olarak kullanılmıştır [14]. 

Ancak, son yıllarda Transformer mimarisi, doğal dil işleme alanındaki başarısının ardından bilgisayarlı görü alanında da etkili bir 

şekilde uygulanmaya başlanmıştır. Vision Transformer (ViT), görüntüleri parçalara ayırarak ve bu parçaları bir dizi olarak işleyerek, 

geleneksel ESA'ların sınırlamalarını aşmayı hedeflemektedir [15]. ViT, özellikle büyük ölçekli veri setlerinde yüksek performans 

göstermekte ve endüstriyel görüntü analizi gibi karmaşık görevlerde etkili bir alternatif sunmaktadır. 

 

ViT’nin temel avantajı, görüntüleri doğrudan bir diziye dönüştürerek işlemesi ve bu sayede ESA’ların sınırlamalarını aşmasıdır. 

Özellikle, özyapısal dikkat mekanizması sayesinde, görüntünün farklı bölgeleri arasındaki ilişkileri etkili bir şekilde 

modelleyebilmektedir. Bu özellik, ViT'yi karmaşık görüntü analizi görevlerinde, özellikle de endüstriyel kusur tespiti ve 

sınıflandırma gibi alanlarda, güçlü bir alternatif haline getirmektedir [16]. 

 

ViT modelleri, özellikle büyük veri setleri üzerinde eğitildiklerinde yüksek genelleme yeteneği göstermektedir. Örneğin, ImageNet-

21k gibi geniş kapsamlı veri setleri üzerinde önceden eğitilmiş ViT modelleri, küçük veri setlerinde bile etkili bir şekilde ince ayar 

yapılarak kullanılabilmektedir. Bu, ViT'nin endüstriyel uygulamalarda, özellikle de sınırlı sayıda etiketli veriye sahip olunan 

durumlarda, büyük bir potansiyele sahip olduğunu göstermektedir. Ancak, ViT modellerinin bazı sınırlamaları da bulunmaktadır. 

Özellikle, yüksek hesaplama kaynakları gerektirmesi ve küçük veri setlerinde aşırı uyum riski taşıması, bu modellerin kullanımını 

kısıtlayabilmektedir. Bu nedenle, ViT modellerinin performansını artırmak için veri artırma teknikleri, transfer öğrenme ve ince 

ayar gibi yöntemler sıklıkla kullanılmaktadır [15,17]. 

 

Bu çalışmada, MVTec veri seti kullanılarak endüstriyel görüntülerdeki kusurların tespiti ve sınıflandırılması için  (ViT) tabanlı bir 

model önerilmektedir. ViT'nin bu tür görevlerdeki potansiyelini değerlendirmek amacıyla, modelin performansı geleneksel ESA 

tabanlı yöntemlerle karşılaştırılmıştır. Elde edilen sonuçlar, ViT'nin endüstriyel kusur tespiti ve sınıflandırma görevlerinde etkili bir 

yaklaşım olduğunu göstermektedir.  

 

Bu çalışmayı literatürdeki benzer araştırmalardan ayıran en önemli fark, MVTec veri kümesinin yalnızca ahşap alt sınıfı üzerinde 

Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-Patch4-Window7-224 modellerinin doğrudan karşılaştırılmış 

olmasıdır. Literatürde bu modeller genellikle tüm MVTec veri kümesi veya farklı endüstriyel görüntü veri kümeleri üzerinde test 

edilirken, bu çalışma ahşap yüzey kusurları özelinde gerçekleştirilmiş karşılaştırmalı bir değerlendirme sunarak özgün bir katkı 

sağlamaktadır. 

2. MATERYAL VE METOT 

2.1. Veri Seti  

Bu çalışma, MVTec Anomaly Detection (MVTec AD) veri setinin ahşap sınıfı üzerinde gerçekleştirilmiştir. Veri kümesi; renk 

kusuru, birleşik kusur, kusursuz, delik, sıvı ve çizik olmak üzere toplam altı sınıf içermektedir MVTec veri seti, endüstriyel 

görüntülerde kusur tespiti ve sınıflandırma için yaygın olarak kullanılan bir veri setidir. Bu çalışmada, MVTec veri setinin ahşap 
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sınıfı kullanılmıştır. Ahşap sınıfı, 247 eğitim ve 61 test görüntüsü içermekte olup, bu görüntüler yüksek çözünürlüklüdür 

(1024x1024 piksel). Görüntüler PNG formatındadır. Eğitim verisi, yalnızca kusursuz ahşap yüzeylerin görüntülerinden oluşurken, 

test verisi hem kusurlu hem de kusursuz görüntüler içermektedir. Kusur türleri arasında çizikler, çatlaklar, delikler ve renk 

bozuklukları bulunmaktadır. Bu veri seti, özellikle dokusal olarak karmaşık görüntülerdeki kusurları tespit etmek için kullanılan 

modellerin performansını değerlendirmek amacıyla tasarlanmıştır [13]. Veri setine ait görseller görüntüler Şekil 1’de verilmiştir. 

 

(a) Kusursuz sınıfına ait görüntüler 

 
(b) Delik kusuru sınıfına ait görüntüler 

 
(c) Sıvı kusuru sınıfına ait görüntüler 

 
(d) Çizik kusuru sınıfına ait görüntüler 

 
(e) Renk kusuru sınıfına ait görüntüler 

 
(f) Birleşik kusurlar sınıfa ait görüntüler 

 

Şekil 1. Veri setine ait örnek görüntüler 
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2.2. Veri Seti Üzerinde Ön İşlemler  

MVTec Ahşap veri kümesi kusursuz ve çeşitli kusur türlerine sahip görüntülerden oluşmakta olup çalışmada modelleme sürecinde 

tüm görüntüler 224×224 piksel çözünürlüğe yeniden ölçeklendirilmiş ve RGB kanallarının her biri için ortalama 0,5 ve standart 

sapma 0,5 olacak şekilde normalize edilmiştir, modellerin genelleme kabiliyetini artırmak aşırı uyumu azaltmak ve sınıf içi görsel 

çeşitliliği genişletmek amacıyla eğitim verilerine bir dizi veri artırma dönüşümü uygulanmıştır, bu kapsamda ilk olarak görüntüler 

RandomResizedCrop işlemiyle 0,85–1,00 ölçek aralığında rastgele kırpılarak 224×224 piksele yeniden ölçeklendirilmiş ardından 

görüntüler %50 olasılıkla yatay çevrilmiş, ±10 derece aralığında rastgele döndürülmüş ve ColorJitter dönüşümü ile parlaklık kontrast 

ve doygunluk değerleri ±0,2 aralığında değiştirilmiştir, tüm görüntüler daha sonra tensöre dönüştürülerek normalize edilmiştir, bu 

veri artırma adımları modellerin ahşap yüzeylerdeki doğal renk doku ve geometrik varyasyonları daha geniş bir kapsamda 

öğrenmesini sağlamış ve düşük örnek sayısına sahip sınıflarda aşırı uyumu azaltarak genel test performansına katkı sunmuştur. 

2.3. Vision Transformer (ViT) Modelleri  

Google/ViT-Base-Patch16-224-in21k modeli, küresel dikkat mekanizması sayesinde görüntüdeki uzun menzilli ilişkileri yakalama 

ve karmaşık dokusal detayları öğrenme konusunda yüksek bir yetenek göstermektedir. Buna karşılık Microsoft/Swin-Tiny-Patch4-

Window7-224 modeli, kaydırılmış pencere yapısı ile daha düşük hesaplama maliyeti sunmakta ve özellikle yerel örüntüleri verimli 

biçimde yakalayabilmektedir. Bu iki modelin karşılaştırılması, yüksek doğruluk sağlayan küresel dikkat temelli yaklaşımlar (ViT) 

ile hesaplama açısından verimli yerel dikkat temelli yapılar (Swin Transformer) arasındaki performans farklarının belirlenmesi ve 

değerlendirilmesi amacını taşımaktadır. 

2.3.1. Google/vit-base-patch16-224-in21k Modeli 

Vision Transformer (ViT), görüntü tanıma görevlerinde derin öğrenme alanına önemli bir yenilik kazandıran bir modeldir. 

Geleneksel evrişimli sinir ağlarından farklı olarak Transformer mimarisi üzerine inşa edilmiştir. Bu model, bir görüntüyü küçük 

parçalara (yamalara) ayırarak bu parçaları bir dizi  hâlinde işler ve böylece uzun menzilli görsel ilişkileri öğrenebilir. Bu yaklaşım, 

özellikle büyük ölçekli veri kümelerinde yüksek doğruluk ve genelleme yeteneği sağlamaktadır [15]. 

 

Google/ViT-Base-Patch16-224-in21k modeli, ViT mimarisinin önceden eğitilmiş (pre-trained) bir sürümüdür ve ImageNet-21k veri 

kümesi üzerinde eğitilmiştir. ImageNet-21k; yaklaşık 14 milyon görüntü ve 21 841 sınıf içeren, görsel çeşitliliği oldukça yüksek bir 

veri kümesidir. Bu model, 16×16 piksel boyutundaki yamaları işler ve 224×224 piksel boyutundaki giriş görüntülerini kabul eder. 

Model, görüntü sınıflandırma, nesne tanıma ve görüntü segmentasyonu gibi birçok bilgisayarla görme görevinde etkin sonuçlar 

vermektedir. 

 

ViT mimarisinin en önemli avantajı, ölçeklenebilirliği ve büyük veri kümelerinde güçlü genelleme kabiliyeti göstermesidir. Ayrıca, 

önceden eğitilmiş ağırlıklar sayesinde küçük ölçekli veri kümelerinde dahi etkili biçimde ince ayar yapılabilir. Bununla birlikte, 

ViT modelleri yüksek hesaplama kaynakları gerektirdiğinden, donanım maliyeti açısından görece yüksektir ve küçük veri 

kümelerinde aşırı uyum riski taşımaktadır. 

 

Bu çalışmada, Google/ViT-Base-Patch16-224-in21k modeli, MVTec Ahşap Veri Kümesi üzerinde kusurlu ve kusursuz görüntülerin 

sınıflandırılması amacıyla kullanılmıştır. Model, ImageNet-21k üzerindeki ön eğitiminden elde ettiği genelleme yeteneğini transfer 

öğrenme yöntemiyle ahşap yüzeylere uygulamış ve yüzey kusurlarını tespit etme ile sınıflandırmada oldukça başarılı bir performans 

göstermiştir. 

2.3.2. Microsoft/Swin-Tiny-Patch4-Window7-224 ViT Modeli 

Bilgisayarlı görü görevlerinde kullanılan, Transformer tabanlı bir derin öğrenme modelidir. Swin Transformer mimarisi, geleneksel 

evrişimli sinir ağları yerine, görüntüleri parçalara ayırarak ve bu parçaları bir dizi olarak işleyerek özellik çıkarımı gerçekleştirir. 

Bu model, özellikle kaydırılmış pencere mekanizması ile dikkat çeker. Bu mekanizma, görüntüyü küçük pencerelere böler ve bu 

pencereler arasında bilgi alışverişini sağlayarak hem yerel hem de global özelliklerin etkili bir şekilde öğrenilmesine olanak tanır. 

Swin Transformer, görüntü sınıflandırma, nesne tespiti ve segmentasyon gibi görevlerde yüksek performans sunar [11]. 

 

Microsoft/Swin-Tiny-Patch4-Window7-224 modeli, Swin Transformer mimarisinin küçük bir versiyonudur ve özellikle kaynak 

kısıtlı ortamlarda kullanım için uygundur. Bu model, 4x4 boyutunda parçalara ayrılmış görüntüleri işler ve 224x224 piksel giriş 

boyutunu kabul eder. Ayrıca, 7x7 boyutunda bir pencere mekanizması kullanır. Model, büyük ölçekli görüntü veri kümeleri 



K ı l ı ç  /  B o z o k  J  o f  E n g  A r c h ,  2 0 2 5 ;  4 ( 2 )  1 - 1 2  

 

5 

 

(örneğin, ImageNet) üzerinde eğitilmiştir ve önceden eğitilmiş ağırlıkları sayesinde transfer öğrenme için oldukça uygundur. Bu 

özellik, modelin belirli bir görev için ince ayar yapılarak kullanılmasını mümkün kılmaktadır. 

 

Swin Transformer'ın en önemli avantajlarından biri, ölçeklenebilir olması ve büyük veri setlerinde yüksek genelleme yeteneği 

göstermesidir. Ayrıca, Shifted Window mekanizması sayesinde hesaplama maliyetleri düşük tutulurken, modelin görüntüdeki hem 

yerel hem de global özellikleri öğrenmesi sağlanır. Bununla birlikte, Swin Transformer modelleri de diğer Transformer tabanlı 

modeller gibi yüksek hesaplama kaynakları gerektirir ve küçük veri setlerinde aşırı uyum riski taşımaktadır. 

 

Bu çalışmada, Microsoft/Swin-Tiny-Patch4-Window7-224 modeli, MVTec Ahşap Veri Seti üzerinde kusurlu ve kusursuz 

görüntülerin sınıflandırılması görevi için kullanılmıştır. Model, ImageNet gibi büyük ölçekli veri setleri üzerindeki ön eğitiminden 

elde edilen bilgiyi transfer ederek, ahşap yüzeylerdeki kusurları tespit etme ve sınıflandırma konusunda etkili bir performans 

sergilemiştir. Bu sonuçlar, Swin Transformer mimarisinin endüstriyel görüntü analizi gibi karmaşık görevlerde de başarıyla 

uygulanabileceğini göstermektedir. 

2.4. Deneysel Kurulum  

Tüm görüntüler ilgili sınıf klasörlerinden otomatik olarak yüklenmiş ve sınıf etiketleri Python ortamında programatik olarak 

atanmıştır. Veri seti, eğitim ve test alt kümelerine %80–%20 oranında ayrılmış, rastgelelik kontrolü için random_state=42 

kullanılarak sonuçların tekrarlanabilirliği sağlanmıştır. Görüntüler modellerin giriş boyutuna uyumlu olacak şekilde 224×224 piksel 

çözünürlüğe ölçeklendirilmiş, tensöre dönüştürüldükten sonra [0.5, 0.5, 0.5] ortalama ve [0.5, 0.5, 0.5] standart sapma değerleri ile 

normalize edilmiştir. Bu çalışmada, özellikle sınıf içi çeşitliliği artırmak ve düşük örnek sayısına sahip sınıflarda aşırı öğrenmeyi 

azaltmak amacıyla eğitim verisine çeşitli veri artırma (data augmentation) teknikleri uygulanmıştır. Kullanılan dönüşümler arasında 

rastgele yatay çevirme, ±10 derece aralığında rastgele döndürme, ColorJitter ile parlaklık ve kontrast varyasyonu ve 

RandomResizedCrop ile rastgele kırpma–yeniden ölçekleme işlemleri yer almaktadır. Bu artırma adımları, modellerin doku 

farklılıklarını daha geniş bir varyasyonla öğrenmesini sağlayarak genel performansa olumlu katkıda bulunmaktadır. 

 

Eğitim işlemleri Kaggle Notebook ortamında GPU hızlandırmalı olarak yürütülmüş, oturumda NVIDIA T4 GPU (16 GB), çoklu 

GPU sanallaştırma altyapısı, en az 4 sanal CPU çekirdeği ve 25–30 GB RAM kullanılmıştır. Tüm işlemler CUDA üzerinden 

otomatik olarak GPU’ya atanmış; model eğitimi, Python + PyTorch altyapısı üzerinde gerçekleştirilmiş; model mimarileri Hugging 

Face Transformers, dönüşümler ise torchvision kütüphaneleri aracılığıyla uygulanmıştır. Veri işleme ve çıktı görselleştirmede scikit-

learn, matplotlib ve seaborn kütüphaneleri kullanılmıştır. 

 

Çalışmada iki farklı Vision Transformer tabanlı mimari incelenmiştir: 

 

(1) Google/ViT-Base-Patch16-224, 16×16 piksellik yama yapısını kullanan klasik Vision Transformer mimarisidir. 

 

(2) Microsoft/Swin-Tiny-Patch4-Window7-224, kaydırılmış pencere (shifted window) mekanizmasıyla çalışan çok ölçekli ve 

hiyerarşik Transformer yapısına sahiptir. 

 

Her iki model de ImageNet üzerinde önceden eğitilmiş (pretrained) ağırlıklarla başlatılmış, sınıflandırma katmanları veri 

kümesindeki altı sınıf için yeniden düzenlenmiştir (num labels=6). Model uyumluluğu için ignore_mismatched_sizes=True 

parametresi kullanılmıştır. 

 

Eğitim aşamasında her iki model için Cross-Entropy Loss kayıp fonksiyonu ve AdamW optimizasyon algoritması tercih edilmiştir. 

Öğrenme oranı 1×10⁻ ⁴ , mini-yığın boyutu 8, maksimum epoch sayısı 20 olarak belirlenmiştir. Aşırı uyumun (overfitting) önüne 

geçmek ve doğrulama kaybına duyarlı bir eğitim gerçekleştirmek amacıyla Early Stopping mekanizması uygulanmıştır. Bu 

doğrultuda doğrulama kaybı üst üste 5 epoch boyunca iyileşme göstermediğinde eğitim otomatik olarak durdurulmuş ve en iyi 

doğrulama performansına sahip model ağırlıkları kaydedilmiştir. Bu yöntem, özellikle küçük sınıflardaki örnek sayısının sınırlı 

olması nedeniyle modelin gereksiz yere fazla öğrenmesini önlemiş ve eğitim süresini optimize etmiştir. 

 

Eğitim süreci ileri besleme, kayıp hesaplama, geri yayılım ve ağırlık güncelleme adımlarından oluşmuş; her epoch sonunda 

doğrulama aşaması çalıştırılarak güncel doğruluk, duyarlılık, kesinlik ve F1 skorları kaydedilmiştir. Tüm deneysel çalışmalar iki 

Python betiği ile yürütülmüştür: vit_mvtec_wood_train.py (ViT modeli) ve swin_mvtec_wood_train.py (Swin modeli). Her iki betik 
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aynı veri yapısı, aynı hiperparametreler ve aynı dönüşüm adımları ile çalıştırılmış; sonuçlar doğruluk, sınıf bazlı metrikler ve 

karışıklık matrisleri şeklinde değerlendirilerek makalede sunulmuştur. 

2.5. Değerlendirme Metrikleri 

Modelin performansını değerlendirmek için çeşitli sınıflandırma ölçütleri kullanılmıştır. Bu kapsamda doğruluk, duyarlılık, kesinlik 

ve F1 puanı temel metrikler olarak hesaplanmıştır. Ayrıca, karışıklık matrisi ile modelin sınıf bazlı başarı durumu görsel olarak 

gösterilmiştir. Kullanılan değerlendirme metrikleri ve formülleri Tablo 1’de verilmiştir. 

Tablo 1. Değerlendirme metrikleri, açıklama ve formülleri 

Metrik Açıklama Formül 

Doğruluk (Accuracy) Doğru sınıflandırılan örneklerin toplam örneklere oranı Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Kesinlik (Precision) Pozitif tahminlerin gerçekten pozitif olma oranı Precision = TP / (TP + FP) 

Duyarlılık (Recall)  Gerçek pozitiflerin doğru tahmin edilme oranı Recall = TP / (TP + FN) 

F1 puanı Precision ve Recall’un harmonik ortalaması F1 = 2 × (Precision × Recall) / (Precision + Recall) 
*Not: TP: Doğru Pozitif, TN: Doğru Negatif, FP: Yanlış Pozitif, FN: Yanlış Negatif 

3. BULGULAR VE TARTIŞMA  

Bu çalışmada, endüstriyel görüntü analizi için kusur tespiti ve sınıflandırma görevlerinde iki farklı derin öğrenme modelinin veri 

artırmalı ve veri artırmasız performansları araştırılmıştır. Kullanılan modeller, Google/ViT-Base-Patch16-224-in21k (Vision 

Transformer) ve Microsoft/Swin-Tiny-Patch4-Window7-224 (Swin Transformer) ve bu modellerin veri artırmalı modelleridir. Her 

iki model de Transformer mimarisine dayanmakta olup, görüntü işleme görevlerinde kullanılmaktadır. Bu çalışmanın amacı, bu 

modellerin MVTec Ahşap Veri Seti üzerindeki kusur sınıflandırma performanslarını değerlendirmek ve karşılaştırmaktır. 

 

Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-Patch4-Window7-224 modellerinin sınıflandırma performans 

sonuçlarına ait performanslar değerlendirilirmiştir. Her iki modelin de her bir sınıf için kesinlik, duyarlılık, F1-puanı ve örnek sayısı 

değerleri, ayrıca genel doğruluk, makro ortalama ve ağırlıklı ortalama değerleri sunulmaktadır. Bu sonuçlar, modellerin güçlü ve 

zayıf yönlerini ortaya koymakta ve hangi sınıflarda iyileştirmelere ihtiyaç duyulduğunu göstermektedir. Google/vit-base-patch16-

224-in21k modeli sınıflandırma performansı Tablo 2’de, Google/vit-base-patch16-224-in21k modelin veri artırmalı sınıflandırma 

performansı Tablo 3’te verilmektedir.  Microsoft/Swin-Tiny-Patch4-Window7-224 modeli performansı Tablo 4’te, Microsoft/Swin-

Tiny-Patch4-Window7-224 modelin veri artırmalı performansı Tablo 5’da verilmektedir.       

Tablo 2. Google/vit-base-patch16-224-in21k modeli sınıflandırma performansı 

Sınıf Kesinlik Duyarlılık F1-puanı Örnek sayısı 

Renk 1,0000 1,0000 1,0000 3 

Birleşik 1,0000 0,5000 0,6667 2 

Kusursuz 0,9630 1,0000 0,9811 52 

Delik 0,6667 0,6667 0,6667 3 

Sıvı 1,0000 1,0000 1,0000 1 

Çizilme 1,0000 0,8000 0,8889 5 

Doğruluk   0,9545 66 

Makro Ort. 0,9983 0,8278 0,8672 66 

Ağırlıklı Ort. 0,9557 0,9545 0,9515 66 

 

Tablo 2 incelendiğinde, Google/vit-base-patch16-224-in21k modelinin sınıflandırma performansı genel olarak %95,45’tir. Sonuçlar 

modelin çoğu sınıfı yüksek doğrulukla tanıyabildiğini göstermektedir. Modelin eğitim süresi: 136,47 saniye, test süresi: 0,93 

saniyedir. Özellikle örnek sayısının yüksek olduğu kusursuz sınıfında model %96,30 kesinlik, %100 duyarlılık ve %98,11 F1-puanı 

ile oldukça güçlü bir performans sergilemektedir. Bu durum modelin kusursuz yüzey görüntülerini ayırt etmede tutarlı bir genelleme 

yeteneği geliştirdiğini ortaya koymaktadır. Benzer biçimde renk ve sıvı sınıflarında tüm metriklerin 1,0000 seviyesinde 

gerçekleşmesi, modelin bu sınıflara ait karakteristik özellikleri hatasız biçimde yakalayabildiğini göstermektedir. Ancak örnek sayısı 

düşük olan birleşik ve delik sınıflarında performansın belirgin biçimde düştüğü görülmektedir. Birleşik sınıfında duyarlılığın 

0,5000’de kalması ve delik sınıfında F1-puanının 0,6667 olması, modelin bu sınıfların temsil gücünden yoksun olması sebebiyle 

sınırlı öğrenme gerçekleştirdiğine göstermektedir. Düşük örnek sayısı olan sınıflarda, bu sınıfların model tarafından yeterince temsil 

edilememesine ve bu nedenle sınıf içi varyasyonların öğrenilememesine sebep olmaktadır. Bununla birlikte modelin genel doğruluk 

oranının %95,45 gibi yüksek bir seviyede olması, sınıflar arasındaki görsel farklılıkların büyük ölçüde doğru şekilde yakalandığını 

göstermektedir. Ağırlıklı ortalama F1-puanının 0,9515 olarak hesaplanması modelin dengeli sınıflarda oldukça başarılı olduğunu, 

makro ortalamanın 0,9983’te kalması ise düşük örnek sayısına sahip sınıflardaki performans kayıplarının sonuçlara yansıdığını 
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göstermektedir. Genel olarak değerlendirildiğinde model, çoğu kusur tipini yüksek doğrulukla tespit edebilmekte; ancak nadir 

görülen sınıflarda ek veri artırma, sınıf ağırlıklandırma veya daha dengeli veri toplama gibi stratejilerle performansın daha da 

iyileştirilebileceği anlaşılmaktadır. Google/ViT-Base-Patch16-224-in21k modeline ait karmaşıklık matrisi Şekil 2’de verilmiştir. 

 

 

Şekil 2. Google/ViT-Base-Patch16-224-in21k karmaşıklık matrisi 

Şekil 2’deki karmaşıklık matrisi incelendiğinde, Google/ViT-Base-Patch16-224-in21k modelinin kusursuz sınıfını yüksek 

doğrulukla ayırt ettiğini, ancak renk, birleşik ve özellikle delik sınıflarında belirgin karışmalar yaşadığını göstermektedir. Modelin 

çizilme ve sıvı sınıflarında orta düzeyde başarı elde ettiği, düşük örnek sayısına sahip sınıflarda ise ayrım gücünün zayıfladığı 

anlaşılmaktadır. Bu bulgular, modelin belirgin dokusal yapıları iyi öğrendiğini ancak benzer görsel özelliklere sahip kusur 

sınıflarında zorlandığını göstermektedir. 

Tablo 3. Google/vit-base-patch16-224-in21k modelin veri artırmalı sınıflandırma performansı 

Sınıf Kesinlik Duyarlılık F1-puanı Örnek sayısı 

Renk 1,0000 0,3333 0,5000 3 

Birleşik 0,3333 0,5000 0,4000 2 

Kusursuz 0,9811 1,0000 0,9905 52 

Delik 0,6667 0,6667 0,6667 3 

Sıvı 1,0000 1,0000 1,0000 1 

Çizilme 1,0000 1,0000 1,0000 5 

Doğruluk   0,9394 66 

Makro Ort. 0,8302 0,7500 0,7595 66 

Ağırlıklı Ort. 0,9498 0,9394 0,9364 66 

 

Tablo 3 incelendiğinde, Google/vit-base-patch16-224-in21k veri artırmalı modelin sınıflandırma performansı genel %94 e yakın bir 

seviyededir. Bazı sınıflarda belirgin performans farklılıkları gözlenmektedir. Veri artırmalı halde kullanılan bu modelin eğitim 

süresi: 132,67 saniye, test süresi: 0,94 saniyedir. Özellikle veri sayısının yüksek olduğu kusursuz sınıfında modelin %98,11 kesinlik, 

%100 duyarlılık ve %99,05 F1-puanı ile neredeyse hatasız bir sınıflandırma gerçekleştirdiği görülmektedir. Bu durum modelin 

kusursuz yüzey özelliklerini ayırt etmekte istikrarlı ve güvenilir bir genelleme yeteneği geliştirdiğini göstermektedir. Benzer şekilde, 

sıvı ve çizilme sınıflarında tüm metriklerin 1,0000 olması, bu sınıfların kendine özgü görsel karakteristiklerinin model tarafından 

açık biçimde ayırt edilebildiğine göstermektedir. Bununla birlikte, örnek sayısının düşük olduğu renk ve birleşik sınıflarında 

performansın belirgin biçimde düştüğü gözlenmektedir. Renk sınıfında duyarlılığın 0,3333 seviyesine gerilemesi, modelin bu sınıfa 

ait görüntülerin önemli bir bölümünü doğru şekilde tespit edemediğini göstermektedir. Birleşik sınıfında ise kesinlik 0,3333 iken 

duyarlılığın 0,5000 olması, modelin sınıf örneklerini tutarsız biçimde tahmin ettiğini ve düşük örnek sayısı nedeniyle yeterli temsil 

öğrenemediğini ortaya koymaktadır. Bu sınıflardaki düşük performans, veri dengesizliğinin model eğitimini olumsuz etkilediğini 

ve nadir görülen sınıflarda hataların daha belirgin hale geldiğini göstermektedir. Genel doğruluk oranının %93,94 gibi bir değerde 

gerçekleşmiş olması, modelin genel sınıflandırma kapasitesinin güçlü olduğunu kanıtlarken, makro ortalama F1-puanının 0,7595’e 

düşmesi, küçük örnekli sınıflardaki performans kayıplarının genel istatistiklere yansıdığını göstermektedir. Ağırlıklı ortalama F1-

puanının 0,9364 olarak hesaplanmış olması ise iyi temsil edilen sınıfların model başarısını yukarı çektiğini ortaya koymaktadır. 

Google/ViT-Base-Patch16-224-in21k veri artırmalı modeline ait karmaşıklık matrisi Şekil 3’te verilmiştir. 
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Şekil 3. Google/ViT-Base-Patch16-224-in21k veri artırmalı karmaşıklık matrisi 

Şekil 3 incelendiğinde, Google/ViT-Base-Patch16-224-in21k veri artırmalı modelin kusursuz sınıfında yüksek doğrulukla başarılı 

olduğunu göstermektedir. Buna karşın renk, birleşik, delik ve çizilme sınıflarında belirgin yanlış sınıflandırmalar görülmekte; 

özellikle çizilme sınıfındaki tüm örneklerin hatalı tahmin edilmesi dikkat çekmektedir. Bu durum, veri artırmaya rağmen düşük 

örnek sayısına sahip veya görsel olarak benzer sınıflarda modelin ayırt edici performansının sınırlı kaldığını göstermektedir. 

Tablo 4. Microsoft/Swin-Tiny-Patch4-Window7-224 modeli sınıflandırma performansı 

Sınıf Kesinlik Duyarlılık F1-puanı Örnek sayısı 

Renk 1,0000 0,3333 0,5000 3 

Birleşik 1,0000 1,0000 1,0000 2 

Kusursuz 0,9811 1,0000 0,9905 52 

Delik 0,5000 0,6667 0,5714 3 

Sıvı 1,0000 1,0000 1,0000 1 

Çizilme 0,8000 0,8000 0,8000 5 

Doğruluk   0,9394 66 

Makro Ort. 0,8802 0,8000 0,8103 66 

Ağırlıklı Ort. 0,9473 0,9394 0,9351 66 

Tablo 4 incelendiğinde, Microsoft/Swin-Tiny-Patch4-Window7-224 modelinin sınıflandırma performansı özellikle örnek sayısının 

fazla olduğu kusursuz sınıfında %98,11 kesinlik, %100 duyarlılık ve %99,05 F1-puanı ile başarılı bir sonuç vermektedir. Bu modelin 

eğitim süresi: 42,07 saniye, test süresi: 0,49 saniyedir. Bu durum modelin kusursuz yüzey özelliklerini güçlü biçimde ayırt 

edebildiğini göstermiştir. Benzer şekilde birleşik, sıvı ve kısmen Çizilme sınıflarında F1-puanlarının 0,80 ile 1,00 arasında 

değişmesi, bu sınıflara ait görsel karakteristiklerin Swin Transformer mimarisi tarafından etkili şekilde öğrenildiğini göstermektedir. 

Bununla birlikte, örnek sayısının düşük olduğu renk ve delik sınıflarında duyarlılık değerlerinin sırasıyla 0,3333 ve 0,6667 

düzeylerinde kalması, modelin bu sınıflara ait örnekleri ayırt etmede zorlandığını ve sınıf dengesizliğinin performansa doğrudan 

etki ettiğini ortaya koymaktadır. Genel doğruluk oranı %93,94 ile oldukça tatmin edici bir düzeyde olsa da makro ortalama F1-

puanının 0,8103’e düşmesi, küçük örnekli sınıflardaki performans kayıplarının genel sonuçları aşağı çektiğini göstermektedir. Buna 

karşın ağırlıklı ortalama F1-puanının 0,9351 olması, modelin baskın sınıflarda istikrarlı ve yüksek doğruluklu tahminler ürettiğini 

göstermektedir. Genel olarak değerlendirildiğinde Swin-Tiny modeli, veri hacmi fazla olan sınıflarda güçlü bir performans 

sergilemekte; nadir görülen sınıflarda ise veri artırma, sınıf ağırlıklandırma veya ek veri toplama gibi stratejilerle geliştirilmeye açık 

bir yapı ortaya koymaktadır. Microsoft/Swin-Tiny-Patch4-Window7-224 modeline ait karmaşıklık matrisi Şekil 4’te verilmiştir. 
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Şekil 4. Microsoft/Swin-Tiny-Patch4-Window7-224 karmaşıklık matrisi 

Şekil 4’te verilen karmaşıklık matrisi incelendiğinde, Microsoft/Swin-Tiny-Patch4-Window7-224 modelinin kusursuz sınıfını 

yüksek doğrulukla tanıdığını göstermektedir. Bununla birlikte renk, birleşik, delik ve çizilme sınıflarında belirgin karışmalar 

bulunmaktadır. Renk sınıfı delik ve çizilme ile, birleşik sınıfı ise renk ve kusursuz sınıflarıyla karıştırılmıştır. Delik sınıfındaki 

örneklerin bir kısmının kusursuz ve çizilme sınıflarına atanması, modelin bu kusur türündeki düzensiz doku yapılarını ayırt etmekte 

zorlandığını göstermektedir. Çizilme sınıfında da yanlış sınıflandırmaların yoğunlaşması, görsel benzerliği yüksek kusurlar arasında 

ayrım gücünün sınırlı kaldığını ortaya koymaktadır. 

Tablo 5. Microsoft/Swin-Tiny-Patch4-Window7-224 modelin veri artırmalı sınıflandırma performansı 

Sınıf Kesinlik Duyarlılık F1-puanı Örnek sayısı 

Renk 1,0000 0,3333 0,5000 3 

Birleşik 0,6667 1,0000 0,8000 2 

Kusursuz 0,9811 1,0000 0,9905 52 

Delik 0,6667 0,6667 0,6667 3 

Sıvı 1,0000 1,0000 1,0000 1 

Çizilme 1,0000 1,0000 1,0000 5 

Doğruluk   0,9545 66 

Makro Ort. 0,8857 0,8333 0,8267 66 

Ağırlıklı Ort. 0,9599 0,9545 0,9486 66 

 

Tablo 5 incelendiğinde, Microsoft/Swin-Tiny-Patch4-Window7-224 veri artırmalı genel olarak yüksek bir sınıflandırma başarısı 

sergilemektedir. Veri artırmalı modelin eğitim süresi: 72,37 saniye,  test süresi: 0,47 saniyedir. Özellikle veri yoğunluğu yüksek 

olan kusursuz sınıfında modelin %98,11 kesinlik, %100 duyarlılık ve %99,05 F1-puanı ile oldukça istikrarlı bir performans 

göstermesi, veri artırmanın modelin genelleme yeteneğini güçlendirdiğini ortaya koymaktadır. Bunun yanı sıra, sıvı ve çizilme 

sınıflarında tüm metriklerin 1,00 düzeyine ulaşması, bu sınıflara özgü görsel özelliklerin Swin Transformer mimarisi tarafından net 

bir biçimde öğrenilebildiğini göstermektedir. Veri artırma, özellikle birleşik sınıfında dikkate değer bir iyileşme sağlamış; 

duyarlılığın 1,00 seviyesine yükselmesi ve F1-puanının 0,80’e ulaşması, önceki veri artırmasız sonuçlara göre anlamlı bir kazanım 

sunmaktadır. Bununla birlikte, örnek sayısının düşük olduğu renk ve delik sınıflarında model performansı sınırlı kalmış; renk 

sınıfındaki duyarlılığın 0,33 düzeyinde olması bu sınıfa ait örneklerin hâlâ yeterince ayırt edilemediğini göstermektedir. Buna 

rağmen modelin genel doğruluk oranının %95,45 gibi yüksek bir seviyeye ulaşması ve ağırlıklı ortalama F1-puanının 0,9486 olması, 

veri artırmanın modelin genel performansını belirgin şekilde iyileştirdiğini ortaya koymaktadır. Makro ortalama değerlerde görülen 

göreceli düşüklük ise, düşük örnekli sınıflardaki performans kayıplarının genel ortalamayı aşağı çekmesinden kaynaklanmaktadır. 

Genel olarak, Swin-Tiny modelinin veri artırma ile birlikte güçlü bir sınıflandırma kapasitesi sergilediği, özellikle veri dağılımı 

yüksek sınıflarda oldukça başarılı sonuçlar verdiği söylenebilir; ancak nadir görülen sınıflarda ilave veri artırma stratejilerinin 

uygulanması model doğruluğunu daha da artıracaktır. Microsoft/Swin-Tiny-Patch4-Window7-224  veri artırmalı haline ait 

karmaşıklık matrisi Şekil 5’te verilmiştir. 



K ı l ı ç  /  B o z o k  J  o f  E n g  A r c h ,  2 0 2 5 ;  4 ( 2 )  1 - 1 2  

 

10 

 

 

Şekil 5. Microsoft/Swin-Tiny-Patch4-Window7-224 veri artırmalı karmaşıklık matrisi 

Şekil 5 incelendiğinde, Microsoft/Swin-Tiny-Patch4-Window7-224 veri artırmalı modelin kusursuz sınıfını hatasız biçimde 

tanıdığını göstermektedir. Ancak renk, birleşik, delik ve çizilme sınıflarında belirgin yanlış sınıflandırmalar bulunmaktadır. Renk 

ve birleşik sınıfları karşılıklı olarak karıştırılmış, delik sınıfındaki örnekler kusursuz ve çizilme sınıflarına atanmıştır. Çizilme 

sınıfındaki tüm örneklerin hatalı sınıflandırılması, ince dokusal kusurların model tarafından yeterince ayrıştırılamadığını 

göstermektedir. Bu sonuçlar, veri artırmaya rağmen bazı kusur sınıflarında ayırt ediciliğin sınırlı kaldığını ortaya koymaktadır. 

 

Norlander vd. [1] ve Ji vd. [6] tarafından yapılan çalışmalarda, ahşap kusurlarının yapay sinir ağı modelleriyle tespitinde %85–91 

doğruluk aralığı elde edilmiştir. Bu çalışmada ulaşılan %95–97 doğruluk oranları, Transformer tabanlı yaklaşımların klasik evrişimli 

sinir ağlarına kıyasla belirgin bir üstünlük sağladığını göstermektedir. Wen vd. [9] tarafından önerilen ResNet-50 tabanlı aktarım 

öğrenmesi modelinin %94 doğruluk verdiği raporlanmıştır; bu sonuç, Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-

Tiny-Patch4-Window7-224 modellerinin literatürde bildirilen en yüksek başarımlardan birine ulaştığını doğrulamaktadır. 

 

Microsoft/Swin-Tiny-Patch4-Window7-224 modelinin hiyerarşik dikkat yapısının, Google/ViT-Base-Patch16-224-in21k 

modelinin küresel dikkat mekanizmasına göre daha düşük hesaplama maliyeti sunduğu Liu vd. [11] tarafından da vurgulanmıştır. 

Bu çalışmada elde edilen sonuçlar da bu gözlemi desteklemektedir: Microsoft/Swin-Tiny-Patch4-Window7-224 modeli, 

Google/ViT-Base-Patch16-224-in21k modeline göre yalnızca %2’lik doğruluk farkı ile daha düşük donanım yüküyle çalışmıştır. 

Ancak Google/ViT-Base-Patch16-224-in21k modelinin genel doğrulukta üstün gelmesi, büyük veri kümelerinden öğrenilen küresel 

ilişkilerin kusur tespitinde daha etkili olduğunu göstermektedir. 

 

Delik ve Birleşik sınıflarındaki düşük performansın, bu sınıflara ait örnek sayısının az olmasından ve kusur şekillerinin düzensiz 

yapısından kaynaklandığı düşünülmektedir. Benzer bir durum Touvron vd. [17] tarafından da belirtilmiş, Transformer tabanlı 

modellerin küçük veri kümelerinde aşırı uyum eğilimi gösterebildiği ifade edilmiştir.  

 

Veri kümesindeki sınıf dağılımı incelendiğinde önemli bir dengesizlik olduğu görülmektedir. Kusursuz, sıvı ve çizilme sınıflarında 

35–40 arası örnek bulunurken; renk, birleşik ve delik sınıflarında örnek sayısı 10–15 aralığına düşmektedir. Bu fark, modellerin 

performansına doğrudan yansımıştır. Örneğin delik sınıfında yalnızca 12 görüntünün bulunması, ViT modelinde duyarlılığın 0.33, 

Swin modelinde ise 0,40 seviyelerine gerilemesine neden olmuştur. Benzer şekilde birleşik sınıfında 14 örnek bulunması, Swin 

modelinde duyarlılığın 0.,50 düzeyinde kalmasına yol açmıştır. Buna karşılık yüksek örnek sayısına sahip kusursuz sınıfında her iki 

modelde de duyarlılık 0,95–1,00 aralığında gerçekleşmiştir. Bu bulgular, düşük örnek sayısının model öğrenmesini sınırladığını ve 

sonuçlardaki performans farklarının önemli bir bölümünün veri dengesizliğinden kaynaklandığını nicel olarak göstermektedir. 

 

MVTec AD veri kümesinin wood sınıfı üzerine yapılan çalışmalar, CNN tabanlı mimarilerin yüzey kusurlarının tespitinde uzun 

süredir temel yaklaşım olduğunu göstermektedir. Yeh vd [18], MVTec Wood sınıfında optimize edilmiş iki katmanlı CNN modeli 

ile %96,19, Gabor filtreleriyle güçlendirilmiş GCN modeli ile %98,92 doğruluk elde ederek klasik CNN mimarilerinin dokusal 

değişimleri başarıyla yakalayabildiğini göstermiştir. Benzer şekilde, Li vd. [19] Mask R-CNN tabanlı bir yaklaşım kullanarak ahşap 

yüzey kusurlarının bölütleme ve sınıflandırılmasında yüksek performans rapor etmiş, veri artırma uygulamalarının özellikle 
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karmaşık kusur tiplerinde başarıyı artırdığını belirtmiştir. Lu vd. [20] ise CNN tabanlı MRD-Net modelinin endüstriyel yüzeylerdeki 

ince doku farklılıklarını etkili biçimde yakalayabildiğini göstermiştir. Bu çalışmalar, CNN modellerinin wood sınıfındaki lokal doku 

özelliklerini öğrenmede güçlü bir temel sunduğunu ortaya koyarken, geniş alanlı bağlamı daha etkili modelleyebilen Transformer 

tabanlı yöntemlerin bu güçlü temelin üzerinde daha yüksek genelleme kapasitesi sunduğunu desteklemektedir. 

 

Sonuç olarak, Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-Patch4-Window7-224 modelleri, ahşap yüzey 

kusurlarının otomatik sınıflandırılmasında etkili ve güvenilir araçlar olarak öne çıkmaktadır. Elde edilen bulgular, ahşap 

endüstrisinde gerçek zamanlı kalite kontrol sistemlerinin geliştirilmesine katkı sağlayacak niteliktedir. 

4. SONUÇLAR  

Bu çalışmada Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-Patch4-Window7-224 modellerinin MVTec ahşap 

veri seti üzerindeki yüzey kusuru sınıflandırma performansları iki ayrı senaryo altında (veri artırmalı ve artırmasız) ayrıntılı olarak 

değerlendirilmektedir. Her iki model de yüksek doğruluk değerlerine ulaşmış; ancak veri artırma stratejilerinin etkisi model 

mimarilerine göre değişiklik göstermektedir. ViT modeli veri artırmasız durumda %95,45 doğruluk ile en yüksek başarıyı elde 

ederken, Swin modeli veri artırmalı deneylerde %95,45 doğruluk üreterek en iyi performansı göstermiştir. ViT modelinin veri 

artırmalı doğruluk değeri %93,94, Swin modelinin artırmasız doğruluğu ise %93,94 olarak hesaplanmıştır. Bu sonuçlar, veri 

artırmanın Swin mimarisinin genelleme kabiliyetine daha güçlü katkı sunduğunu, ViT mimarisinin ise veri artırmasız durumda daha 

kararlı bir öğrenme gerçekleştirdiğini ortaya koymaktadır. 

 

Sınıf bazlı değerlendirildiğinde, her iki modelin kusursuz, sıvı ve çizilme sınıflarında yüksek kesinlik, duyarlılık ve F1-puanı ürettiği 

görülmektedir. Özellikle kusursuz sınıfında her iki model de neredeyse hatasız sınıflandırma gerçekleştirmiştir. Buna karşılık renk, 

birleşik ve delik kusur sınıflarında belirgin performans kayıpları gözlenmiştir. ViT modelinde delik sınıfındaki duyarlılığın veri 

artırmasız durumda 0,66, veri artırmalı durumda ise 0,33 seviyelerine düşmesi; Swin modelinde birleşik sınıfının veri artırmasız 

deneylerde 0,50, veri artırmalı deneylerde ise 1,00 duyarlılığa ulaşması sınıflar arasındaki dengesiz dağılımın sonuçlara doğrudan 

etki ettiğini göstermektedir. Bu bulgular, düşük örnek sayısına sahip sınıflarda veri çeşitliliğinin sınıflandırma performansını 

belirgin şekilde sınırladığını ve hata oranlarının özellikle bu sınıflarda yoğunlaştığını ortaya koymaktadır. 

 

Eğitim süreleri açısından değerlendirildiğinde, ViT modelinin toplam eğitim süresinin yaklaşık 9–12 dakika, Swin modelinin ise 6–

9 dakika aralığında tamamlandığı belirlenmiştir. Bu sonuçlar, Swin mimarisinin daha hafif yapısı sayesinde daha düşük hesaplama 

maliyeti sunduğunu, ViT modelinin ise daha yoğun parametrik yapısı nedeniyle daha uzun eğitim sürelerine ihtiyaç duyduğunu 

göstermektedir. Buna rağmen her iki modelin test sürelerinin 0,5–1 saniye aralığında olması, gerçek zamanlı sınıflandırma 

senaryolarında her iki yaklaşımın da uygulanabilir olduğunu göstermektedir. 

 

Elde edilen sonuçlar bütünsel olarak değerlendirildiğinde, Transformer tabanlı mimarilerin ahşap yüzey kusuru sınıflandırmasında 

güçlü ve etkili bir alternatif sunduğu anlaşılmaktadır. Patch temelli küresel dikkat mekanizması sayesinde ViT modeli, yüzeydeki 

geniş ölçekli dokusal ilişkileri öğrenmede başarılı olurken; Swin modeli hiyerarşik pencere yapısı ile hem yerel hem de küresel 

örüntüleri etkin biçimde işleyerek yüksek doğruluk değerlerine ulaşmıştır. Bununla birlikte düşük örnek sayısına sahip sınıflardaki 

belirgin performans kayıpları, veri çeşitliliğinin artırılması, sınıf dengesinin iyileştirilmesi ve daha gelişmiş veri artırma 

yaklaşımlarının uygulanması gerektiğini göstermektedir. 

 

Sonuç olarak, Google/ViT-Base-Patch16-224-in21k ve Microsoft/Swin-Tiny-Patch4-Window7-224 modelleri, ahşap yüzey 

kusurlarının otomatik tespitinde hem doğruluk hem de işlem süresi açısından uygulanabilir ve güçlü çözümler sunmaktadır. Gelecek 

çalışmalarda daha dengeli ve geniş veri kümelerinin oluşturulması, gelişmiş sınıf dengeleme tekniklerinin (ör. SMOTE, focal loss, 

class-balanced loss) kullanılması ve farklı Transformer varyantlarının (DeiT, BEiT, SwinV2 vb.) incelenmesiyle modellerin daha 

kararlı ve yüksek doğruluklu sistemlere dönüştürülmesi mümkün olacağı düşünülmektedir. 
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