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A new family of distributions

Kadir KARAKAYA∗, �smail KINACI†, Co³kun KU�‡, Yunus AKDO�AN�¶

Abstract

In this study, a new family of distributions is introduced which is called
alpha log-transformation family. We consider a special case of this fam-
ily with exponential distribution in details. Several properties of the
proposed distribution including the raw moments, moment generating
function, quantile function and hazard rate function are obtained. Sta-
tistical inference is discussed based on complete and progressive cen-
sored samples. Simulation study is also performed to observe the per-
formance of the estimates and approximate con�dence intervals. A real
data is given to illustrate the capability of ALT- Exponential distribu-
tion for modelling real data.
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1. Introduction

Recently, there are several distributional families are introduced by using a trans-
formation of existing well-known distribution functions such as Exponentied and family
α−power family. The exponentied family is given by

F (x) = F0 (x)
α , α > 0,

where F0 (x) is well-known distribution(besline) functions such as exponential, Weibull
and etc. Exponentied distribution family is studied by Mudholkar and Srivastava (1993).
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Mahdavi and Kundu (in press) proposed an another generalized family called α−power
family which is de�ned by cumulative distribution function

F (x) =


αF0(x)−1
α−1

, α ∈ (0,∞)− {1}

F0 (x) α = 1

where F0 (x) is well-known arbitrary distribution function. In this paper, we introduce a
new distribution family in Section 2. The exponential case is considered in the introduced
family. Some distributional characteristics are studied in Section 3. In Section 4, the
statistical inference on distribution parameters are studied by maximum likelihood and
least squares methods. A simulation study is performed to compare the estimates in
Section 5. In Section 6, a numerical example with real data is also provided.

2. ALT Family

Let F0 (x) be the cumulative distribution function (cdf)�introduced before or well-
known� of a continuous random variable X, then the α−logarithmic transformation of
F0 (x) for α ∈ (−1,∞)− {0}, is de�ned as follows:

(2.1) F (x) =
log (1 + αF0 (x))

log (1 + α)
, xεR

This family is called α−logarithmic transformation (ALT). It is easily seen that
F satisfy the property of cdf. If F0 (x) is an absolute continuous distribution function
with the probability distribution function (pdf) f0 (x), then FALT (x) is also absolute
continuous distribution function with the pdf

(2.2) fALT (x) =
αf0 (x)

log (1 + α) (1 + αF0 (x))
.

3. ALT-Exp Distribution and Its Properties

In this section, we apply the ALT method to a speci�c class of distribution function,
namely to an exponential distribution, and call this new distribution as the two parameter
ALT-Exp distribution. Using Exponential distribution function(with mean β) as F0 (x)
in (2.1) and (2.2), the cdf and corresponding pdf are given, respectively, by

(3.1) F (x;α, β) =
log (1 + α (1− exp (−x/β)))

log (1 + α)
IR+ (x)

and

(3.2) f (x;α, β) =
α exp (−x/β)

β log (1 + α) (1 + α (1− exp (−x/β))) IR+ (x) ,

where IA (·) is the indicator function on set A and the α ∈ (−1,∞)−{0} and β ∈ (0,∞)
are parameters. The random variable X having pdf (3.2) is said to have a two parameter
ALT-Exp distribution denoted by ALT-Exp(α, β) . Pdf (3.2) of ALT-Exp are plotted in
Figure 1 for di�erent values of α. It can be seen that the pdf (3.2) is decreasing for all
α > −1. Indeed, for α > −1

d log (f (x;α, β))

dx
=

1 + α

β
(
−1− α+ α exp

(
− x
β

)) < 0

and it can be said that for all values of the parameters the density (3.2) is strictly
decreasing in x and tends to zero as x→∞. The mode of the distribution is at zero and
the modal value is α/ (β log (1 + α)). It is clear that lim

α→0
F (x;α, β) → 1 − exp (−x/β).

In other words, ALT-Exp distribution behaves like exponential when α lies around zero.
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Figure 1. Probability density function

Survival (reliability) function and the hazard rate function for ALT-Exp distribution
are obtained, respectively, by

S (x;α, β) =
log (1 + α)− log (1 + α (1− exp (−x/β)))

log (1 + α)

and

h (x;α, β) =
α exp (−x/β)

β (1 + α− α exp (−x/β)) (log (1 + α)− log (1 + α− α exp (−x/β))) .
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Figure 2. Hazard rate function

Some plots of hazard rate functions are provided in Fig. 2. From Fig. 2, it appears
that hazard function is increasing (IFR, increasing failure rate) for α < 0 and decreasing
(DFR, decreasing failure rate) for α > 0. When α → 0 the hazard function is constant.
It can be concluded that the ALT-Exp distribution is �exible to modelling to real data
which comes from DFR or IFR distribution. It should be point out that some well-known
distributions such as Weibull and Gamma have this property. Note that DFR or IFR
property is not discussed here.

The rth raw moments, expected value and variance of ALT-Exp distribution are given,
respectively, by

(3.3) E (Xr) =
r!βrpoly log

(
r + 1, α

1+α

)
log (1 + α)

, r ∈ N+

E (X) =
βpoly log

(
2, α

1+α

)
log (1 + α)

,



306

and

V ar (X) =
2β2poly log

(
3, α

1+α

)
log (1 + α)

−

βpoly log
(
2, α

1+α

)
log (1 + α)

2

.
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Figure 3. Expected value for di�erent α
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Figure 4. Variance value for di�erent α

Note that α→ 0 then E (X)→ β and α→∞ then E (X)→ 0. Moreover α→ 0 then
V ar (X) → β2 and α → ∞ then V ar (X) → 0. From Figs 3-4, one can conclude that
when α increases, the expected value and variance of ALT-Exp distribution decrease.

By using Eq. (3.3), moment generation function of ALT-Exp distribution can be
written by

MX (t) =
1

log (1 + α)

∞∑
r=0

trr!βrpoly log

(
r + 1,

α

1 + α

)
.

The quantile function of the ALT-Exp distribution is obtained by

Q (u) = −β (log (α+ 1− (1 + α)u)− log (α)) , 0 < u < 1.

In a special case, the median of ALT-Exp distribution is also given by

Q (0.5) = −β
(
log
(
α+ 1− (1 + α)0.5

)
− log (α)

)
.

4. Parameter Estimation

In this section, we discuss the maximum likelihood and least squares estimates of the
ALT-Exp parameters based on complete and progressive censored samples.
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4.1. Maximum Likelihood Method based on Complete Sample. LetX1, X2, · · · , Xn
be a random sample from ALT-Exp(α, β), then the likelihood and log-likelihood function
are given, respectively, by

L (α, β) =

n∏
i=1

(
α exp (−xi/β)

β log (1 + α) (1 + α (1− exp (−xi/β)))

)
,

` (α, β) = n log (α)− n log (β)−
∑n
i=1 xi

β
− n log (log (1 + α))

−
n∑
i=1

log (1 + α (1− exp (−xi/β))) .(4.1)

Hence, the gradients are found to be

∂` (α, β)

∂α
=

n

α
− n

(1 + α) log(1 + α)
−

n∑
i=1

(1− exp (−xi/β))
log (1 + α (1− exp (−xi/β)))

∂` (α, β)

∂β
=
−n
β

+

n∑
i=1

xi

β2
+

∑n
i=1 αxi exp (−xi/β)

β2
.

Maximum likelihood estimates of α and β can be obtained by using any numerical

method. The MLEs of α and β will be denoted by α̂ and β̂ later. In our study, fminsearch

command of Matlab Software is used to maximize the log-likelihood (4.1). fminsearch

command uses the Nelder-Mead simplex algorithm as described in Lagarias et al. (1998).

4.2. Least-Squares Method based on Complete Sample. Consider the distribu-
tion function is given in Eq. (3.1). That is

(4.2) F (x) =
log (1 + α (1− exp (−x/β)))

log (1 + α)
, x > 0

(4.3) F
(
x(i)
)
=

log
(
1 + α

(
1− exp

(
−x(i)/β

)))
log (1 + α)

, i = 1, 2, . . . , n.

Empirical distribution function (denoted by F ∗
(
x(i)
)
) can be used to estimate F

(
x(i)
)
.

Substituting the Empirical distribution function in Eq. (4.3), following model is obtained:

F ∗
(
x(i)
)
=

log
(
1 + α

(
1− exp

(
−x(i)/β

)))
log (1 + α)

+ εi, i = 1, 2, . . . , n,

where εi is the error term for ith observation. Now, least squares estimate (LSE) of the
parameters can be obtained by minimizing the following equation with respect to α and
β:

(4.4) Q(α, β) =

n∑
i=1

ε2i =
n∑
i=1

(
F ∗
(
x(i)
)
− log (1 + α (1− exp (−xi/β)))

log (1 + α)

)2

.

The LSEs of α and β will be denoted by α̃ and β̃ later. The fminsearch command
in Matlab Software can be also used to minimize the function Q(α, β) given in (4.4).

4.3. Maximum Likelihood Method based on Progressive Censored Sample.

The model of progressive type-II right censoring is of importance in the �eld of reliability
and life testing. Suppose n identical units are placed on a lifetime test. At the time of the
i-th failure, ri surviving units are randomly withdrawn from the experiment, 1 ≤ i ≤ m.
Thus, if m failures are observed then r1+ · · ·+rm units are progressively censored; hence,
n = m+r1+· · ·+rm. Let Xr

1:m:n ≤ Xr
2:m:n ≤ · · · ≤ Xr

m:m:n be the progressively censored
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failure times, where r = (r1, . . . , rm) denotes the censoring scheme. As a special case,
if r = (0, . . . , 0) where no withdrawals are made, we obtain the ordinary order statistics
Bairamov and Eryilmaz (2006). If r = (0, . . . , 0, n−m) the progressive type-II censoring
becomes type-II censoring. For more details see Balakrishnan and Aggarwala (2000).

Let Xr
1:m:n < Xr

2:m:n < · · · < Xr
m:m:n denote a progressive type-II right censored order

statistics from ALT-Exp distribution. Then the log-likelihood function is given by

` (α, β) ≈
∑m

i=1
log (f(xi:m:n)) +

∑m

i=1
ri log(1− F (xi:m:n))

=
∑m

i=1
log

(
α exp (−xi/β)

β log (1 + α) (1 + α (1− exp (−xi/β)))

)
+
∑m

i=1
ri log

(
1−

log
(
1 + α

(
1− exp

(
−x(i)/β

)))
log (1 + α)

)
.(4.5)

Let x(1) < x(2) < · · · < x(n) denote the ordered observations from ALT-Exp with param-
eters α and β.

The fminsearch command in Matlab Software can be used to maximize the log-
likelihood (4.5). The approximate con�dence intervals for α and β can be found by taking(
α̂, β̂

)
to be bivariate normally distributed with mean (α, β) and covariance matrix with

inverse of Fisher information matrix, where
(
α̂, β̂

)
is ML estimates of (α, β). Hence for

any 0 < α < 1, 100 (1− α)% approximate con�dence intervals for parameters α and
β can be obtained using ML estimates and their approximate variances as following,
respectively:(
α̂− zα/2

√
V ar (α̂), α̂+ zα/2

√
V ar (α̂)

)
and

(
β̂ − zα/2

√
V ar

(
β̂
)
, β̂ + zα/2

√
V ar

(
β̂
))

,

where V ar (α̂) and V ar
(
β̂
)
are the approximate variances of the ML estimates of the α

and β, respectively. This values can be estimated by using observed Fisher information
matrix. Also zα be the percentile of standard normal distribution with right-tail proba-
bility α. Approximate variances can be obtained using the inverse of Fisher information
matrix which is obtained by second derivatives of negative log-likelihood.

5. Simulation Study

In this section, a simulation study is performed to compare the performance of ML
and least-square estimates. In the simulation, we have generated 5000 random samples
with size of n from the ALT-Exp distribution and then computed the MLEs, LSEs of
parameters. We then compared the performances of these estimates in terms of their
biases and mean square errors (MSEs). The results are given in Table 1 and 3.

Another simulation study is performed to assess the accuracy of the approximation
of the variances of the MLEs determined from the information matrix described above.
We have carried out a simulation study for complete sample and di�erent choices of r
given in Table 2. It is noted that the algorithm of Balakrishnan and Sandhu (1995) is
used to generate the progressive censored sample. The simulated values of V ar(α̂) and

V ar(β̂) as well as the approximate values determined by averaging the corresponding
values obtained from the information matrix are presented in Table 4-5. The coverage
probabilities(CP) of asymptotic con�dence intervals based on �sher information matrix
are also given in Table 4-5. The nominal level of CI is taken to be 0.95 in the simulation.

Table 1 indicates that MLEs have better MSEs and bias than LSEs have. It can be
also said that MLEs and LSEs are biased but asymptotically unbiased based on complete
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and censored samples. Furthermore, as the sample size n increases, the bias and MSE of
the MLEs and LSEs reduce as expected. According to Table 3, in progressive censoring
scheme, when removals are all made in the �rst stage of experiment, the variances of
MLEs are smaller than the other schemes given in Table 2. From Table 4-5, it can
be observed that the asymptotic variances of MLEs obtained from Fisher information
matrix and simulated variance are almost identical and CPs of asymptotic CI reach to
the nominal levels 0.95 for n ≥ 500. In other words, asymptotic CI based on Fisher
information can be used without any doubt for moderate sample size.

Table 1. Bias and MSEs of MLEs and LSEs based on complete sample

α β n α̂ β̂ α̃ β̃

MSE Bias MSE Bias MSE Bias MSE Bias
−0.9 2 50 0.0880 0.0958 0.3014 0.0789 0.2709 0.1664 0.7328 -0.0167

100 0.0203 0.0376 0.1569 0.0110 0.0621 0.0719 0.3624 -0.0138
200 0.0067 0.0159 0.0820 -0.0051 0.0168 0.0320 0.1808 -0.0131
500 0.0022 0.0046 0.0352 -0.0092 0.0047 0.0121 0.0728 -0.0052
1000 0.0011 0.0035 0.0179 -0.0001 0.0021 0.0062 0.0361 -0.0028

−0.3 2 50 1.0938 0.2446 0.2896 -0.0126 2.9829 0.4506 0.5761 -0.0481
100 0.4134 0.1216 0.1598 -0.0113 0.7512 0.1949 0.2737 -0.0388
200 0.1620 0.0534 0.0805 -0.0083 0.2769 0.1022 0.1373 -0.0109
500 0.0570 0.0189 0.0331 -0.0053 0.0976 0.0387 0.0586 -0.0059
1000 0.0268 0.0089 0.0161 -0.0041 0.0429 0.0225 0.0279 -0.0009

0.5 2 50 3.9275 0.4722 0.2864 0.0036 9.6879 0.7718 0.5643 -0.0512
100 1.3165 0.2014 0.1519 -0.0122 2.5654 0.3797 0.2786 -0.0147
200 0.5686 0.0918 0.0790 -0.0077 0.9879 0.1639 0.1387 -0.0129
500 0.2112 0.0358 0.0313 -0.0045 0.3211 0.0740 0.0540 -0.0041
1000 0.1048 0.0132 0.0171 -0.0049 0.1601 0.0335 0.0284 -0.0045

2 2 50 15.6787 0.9579 0.3028 0.0260 29.2288 1.2958 0.5478 -0.0469
100 4.3404 0.3248 0.1493 -0.0132 8.8150 0.6184 0.2834 -0.0259
200 2.0705 0.1642 0.0799 -0.0117 3.3662 0.3179 0.1410 -0.0095
500 0.7529 0.0630 0.0337 -0.0030 1.1834 0.1384 0.0566 -0.0012
1000 0.3536 0.0259 0.0163 -0.0042 0.5153 0.0631 0.0269 -0.0011

2 0.8 50 13.4871 0.7161 0.0513 -0.0059 30.1599 1.4741 0.0920 -0.0078
100 4.7189 0.3330 0.0250 -0.0065 8.7841 0.6425 0.0440 -0.0059
200 2.2368 0.2145 0.0136 0.0008 3.3332 0.3085 0.0219 -0.0040
500 0.7698 0.0646 0.0055 -0.0004 1.1008 0.1354 0.0091 -0.0006
1000 0.3626 0.0364 0.0027 -0.0004 0.5248 0.0570 0.0044 -0.0008
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Table 2. The sample size m and censoring scheme r
Case m Ri, i = 1, 2, · · · ,m
1 200 1,1, · · · ,1
2 200 100,0, · · · ,100
3 200 200,0, · · · ,0
4 200 0,0, · · · ,200
5 300 1,1, · · · ,1
6 300 150,0, · · · ,150
7 300 300,0, · · · ,0
8 300 0,0, · · · ,300
9 1000 1,1, · · · ,1
10 1000 500,0, · · · ,500
11 1000 1000,0, · · · ,0
12 1000 0,0, · · · ,1000

Table 3. Bias and MSE of MLE based on progressive censored data

(α, β) α̂ β̂

Case Bias MSE Bias MSE

(−0.5, 1) 1 0.0566 0.1433 -0.0074 0.0442
2 0.0995 0.2747 -0.0048 0.0724
3 0.0420 0.0918 -0.0047 0.0202
4 0.2039 0.7584 0.0031 0.1826
5 0.0333 0.0877 -0.0073 0.0307
6 0.0249 0.0610 -0.0058 0.0198
7 0.0215 0.0538 -0.0054 0.0134
8 0.1211 0.3576 -0.0055 0.1174
9 0.0076 0.0238 -0.0040 0.0094
10 0.0202 0.0404 -0.0008 0.0148
11 0.0055 0.0145 -0.0015 0.0040
12 0.0351 0.0792 -0.0015 0.0336

(1, 3) 1 0.1652 1.4699 -0.0040 0.4063
2 0.2761 2.3490 0.0222 0.5595
3 0.1108 0.9495 -0.0140 0.1818
4 0.4100 4.4580 0.0369 1.1606
5 0.0693 0.9044 -0.0252 0.2742
6 0.1397 1.3249 -0.0123 0.3566
7 0.0862 0.6199 -0.0077 0.1222
8 0.2873 2.7478 0.0219 0.7908
9 0.0172 0.2482 -0.0104 0.0824
10 0.0430 0.3629 -0.0043 0.1114
11 0.0292 0.1754 -0.0014 0.0377
12 0.0818 0.6550 0.0058 0.2318
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Table 4. Variances of the MLEs and Coverage Probabilities for selected parameters
(Complete Sample Case)

Simulated From Information CP

α β n V ar (α̂) V ar
(
β̂
)

V ar (α̂) V ar
(
β̂
)

α̂ β̂

−0.9 2 100 0.0208 0.1613 0.0279 0.1926 0.8832 0.9690
200 0.0067 0.0845 0.0081 0.0916 0.8932 0.9528
500 0.0023 0.0346 0.0024 0.0359 0.9172 0.9494
1000 0.0011 0.0187 0.0011 0.0179 0.9258 0.9432

−0.3 2 100 0.3907 0.1565 0.4805 0.1686 0.8796 0.9368
200 0.1498 0.0776 0.1717 0.0816 0.9114 0.9436
500 0.0570 0.0330 0.0586 0.0324 0.9262 0.9418
1000 0.0269 0.0164 0.0271 0.0160 0.9316 0.9408

0.5 2 100 1.3403 0.1576 1.7190 0.1701 0.8986 0.9408
200 0.5948 0.0802 0.6523 0.0820 0.9050 0.9402
500 0.2079 0.0329 0.2151 0.0322 0.9240 0.9388
1000 0.1020 0.0160 0.1036 0.0161 0.9382 0.9452

2 2 100 4.2442 0.1542 5.4052 0.1688 0.8886 0.9294
200 1.9017 0.0807 2.1302 0.0831 0.9132 0.9336
500 0.7397 0.0331 0.7614 0.0331 0.9330 0.9408
1000 0.3541 0.0169 0.3595 0.0165 0.9398 0.9418

2 0.8 100 5.0876 0.0271 5.8839 0.0277 0.8826 0.9288
200 1.9386 0.0127 2.2035 0.0134 0.9134 0.9372
500 0.7478 0.0052 0.7646 0.0053 0.9360 0.9488
1000 0.3659 0.0027 0.3614 0.0026 0.9390 0.9422
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Table 5. Variances of the MLEs and Coverage Probabilities for selected parameters
(Progressively censored Sample Case)

Simulated From Information CP

(α, β) Case V ar (α̂) V ar
(
β̂
)

V ar (α̂) V ar
(
β̂
)

α̂ β̂

(−0.5, 1) 1 0.1428 0.0447 0.1737 0.0490 0.8848 0.9380
2 0.2502 0.0699 0.3199 0.0778 0.8690 0.9468
3 0.0901 0.0202 0.0981 0.0205 0.8976 0.9342
4 0.6432 0.1765 0.8792 0.1944 0.8468 0.9680
5 0.0895 0.0314 0.1024 0.0324 0.9028 0.9352
6 0.1587 0.0498 0.1793 0.0505 0.8830 0.9390
7 0.0564 0.0134 0.0607 0.0137 0.9188 0.9500
8 0.3420 0.1156 0.4211 0.1238 0.8582 0.9638
9 0.0247 0.0099 0.0249 0.0094 0.9282 0.9390
10 0.0389 0.0346 0.0411 0.0147 0.9218 0.9470
11 0.0153 0.0041 0.0155 0.0041 0.9386 0.9420
12 0.0763 0.0334 0.0828 0.0338 0.9086 0.9488

(1, 3) 1 1.4464 0.4072 1.6557 0.4256 0.8882 0.9294
2 2.2808 0.5522 2.6782 0.5928 0.8936 0.9330
3 0.9682 0.1811 1.0689 0.1862 0.9132 0.9410
4 5.0169 1.2506 6.0785 1.3235 0.8640 0.9320
5 0.8667 0.2632 0.9746 0.2784 0.9104 0.9338
6 1.3784 0.3695 1.5150 0.3802 0.9004 0.9364
7 0.6129 0.1225 0.6423 0.1223 0.9166 0.9372
8 2.4604 0.7688 2.9648 0.8161 0.8832 0.9332
9 0.2472 0.0797 0.2555 0.0817 0.9418 0.9516
10 0.3616 0.1116 0.3710 0.1111 0.9342 0.9472
11 0.1634 0.1360 0.1714 0.0365 0.9406 0.9488
12 0.6228 0.2284 0.6576 0.2308 0.9276 0.9420

6. Real Data Application

In this section, we �t the ALT model to a real data set and show that the ALT-Exp dis-
tribution is more �exible in analyzing of the data than of the Beta-Pareto (BP)(Akinsete
et al. 2008), Generalized Exponential(GE)(Gupta and Kundu,1999), Exponential Pois-
son (EP) (Kus, 2007), Beta Generalized Half-Normal (BGHN) (Pescim et. al. 2009) and
Generalized Half-Normal (GHN)(Cooray and Ananda, 2008) distributions. In order to
compare the models, we used following four criteria: Akaike InformationCriterion(AIC),
Bayesian Information Criterion (BIC), log-likelihood values, where the lower values of
AIC, BIC and the upper value of log-likelihood values for models indicate that these
models could be chosen as the best model to �t the data. The data set is given in Feigl
and Zelen (1965) for the patients who died of acute myelogenous leukemia. Feigl and
Zelen (1965) represent observed survival times (weeks) for AG negative. The data set is:
56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. Torabi and Montazeri (2012) used this
data and K-S values are given in their paper for selected models. The data analysis is
given in Table 6 according to Torabi and Montazeri (2012).
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Table 6. Estimates of the model parameters for leukemia data and the measures AIC,
BIC log-likelihood and K-S

Model Parameters AIC BIC ` K-S

ALT-Exp α̂ = 1.935, β̂ = 24.198 128.9 130.5 -62.4 0.135

BGHN â = 148.23, b̂ = 94.77, α̂ = 0.06, θ̂ = 136.5 131.9 134.98 -83.4 0.23

GHN α̂ = 0.74, θ̂ = 22.79 130.2 131.8 -86.3 0.22

GE α̂ = 0.097, θ̂ = 0.053 129.5 131.0 -86.8 0.24

EP α̂ = 1.01, θ̂ = 0.04 129.1 130.6 -87.3 0.211

BP â = 1.53, b̂ = 9.88, α̂ = 1.86, θ̂ = 0.09 129.7 132.8 -90.8 0.22

From the Table 6 and Fig. 5, ALT-Exp is quite e�ectively to provide better �t to data
than the others.
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Figure 5. Emprical and �tted distribution function based on leukemia data
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