
Turk. J. Math. Comput. Sci.
9(2018) 1–13
c©MatDer
http://dergipark.gov.tr/tjmcs
http://tjmcs.matder.org.tr MATDER

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman
Problem

Abid Hussaina,∗, Yousaf ShadMuhammada, Muhammad Nauman Sajidb

aDepartment of Statistics, Quaid-i-Azam University, Islamabad, Pakistan.
bDepartment of Software Engineering, Foundation University, Islamabad, Pakistan.

Received: 04-03-2018 • Accepted: 06-08-2018

Abstract. The genetic algorithm is one of the best algorithms in order to solve many combinatorial optimization
problems, especially traveling salesman problem. The application of genetic algorithms to problems which are not
amenable to bit string representation and traditional crossover has been a growing area of interest. One approach
has been to represent solutions by permutations of a list, and permutation crossover operators have been introduced
to preserve the legality of offspring. There are many existing schemes for permutation representation like PMX,
OX, and CX etc. In this paper, we extend the CX scheme which produces healthy offspring based on survival of the
fittest theory. Comparison of the proposed operator with other ones for ten benchmarks TSPLIB instances vividly
show its pros at the same accuracy level. Also, it requires less time for tuning of genetic parameters and provides
narrower confidence intervals on the results than other operators.

2010 AMS Classification: 65C60, 90C05, 97K80.

Keywords: Genetic algorithm, NP-hard, traveling salesman problems, path-representation, crossover operators.

1. Introduction

Genetic algorithms (GAs) are stochastic-based approaches which depend on biological evolutionary processes pro-
posed by Holland [15]. After Holland’s work, his students made development in his idea with some new directions
and today it is a powerful tool to solving search and optimization problems. A lot of work and applications have been
done about GAs in a frequently cited book by Goldberg [13]. The selection criteria, crossover and mutation are three
major operators but crossover play a vital role in GAs. A lot of crossover operators have been introduced in literature
and all have their own significant importance. With the help of these operators, GAs consumes less memory than
other optimization algorithms and work efficiently. GAs work with population of chromosomes that are represented by
some underlying parameters set codes. They operate in cycles called generations that produce successive individuals
by survival-of-the-fittest selection followed by genetic operators and other die-off. Till the time a desirable condition
is achieved, the process is continued to be repeated. The flow chart that how GAs work is given in Figure 1.

The traveling salesman problem (TSP) is one of the typical benchmark, significant, historic and very hard combi-
natorial optimization problem. TSP was documented by Euler in 1759, whose interest was in solving the knight’s tour
problem [20]. In the literature of computer science, engineering, operations research, discrete mathematics and graph
theory etc., TSP is a fundamental problem. TSP can be described as the minimization of the total distance traveled by

*Corresponding Author
Email addresses: abid0100gmail.com (A. Hussain), yousuf@qau.edu.pk (Y. S. Muhammad), mn.nauman@gmail.com (M. N. Sajid)

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 2

Figure 1. Layout of a Typical Genetic Algorithm

touring all cities exactly once and return to depot city. The traveling salesman problems (TSPs) are differentiated into
two groups on the basis of the structure of the distance matrix as symmetric and asymmetric.The TSP is symmetric if
ci j = c ji,∀i, j, where i and j represent the row and column of a distance (cost) matrix respectively, otherwise asym-
metric. The given n cities, a distance matrix C = [ci j] is searched for a permutation λ : {0, ..., n − 1} −→ {0, ..., n − 1},
where ci j is the distance from city i to j, which minimizes the traveled distance, f (λ,C).

f (λ,C) =

n−1∑
i=0

d(cλ(i), cλ(i+1)) + d(cλ(n), cλ(1))

where λ(i) represents the location of city i in each tour, d(ci, c j) is the distance between city i to j and (xi, x j) is a
specified position of each city in a tour in the plane, and the Euclidean distances of the distance matrix C between the
city i and j is expressed as:

ci j =

√
(xi − x j)2 + (yi − y j)2.

For n cities, there are (n − 1)! possible ways to find the tour after fixing the starting city for asymmetric and its
half for symmetric TSP. If we have only 10 cities then 362,880 and 181,440 ways for asymmetric and symmetric
TSP respectively. This is the reason to say TSP is a non-deterministic polynomial (NP-hard) problem. This type
of problems cannot be solved using traditional optimization approaches like derivative-based methods. To achieve
the optimal solution within reasonable time is only by heuristic approaches because they are efficient as handling the
NP-hard problems [21].

Over the last three decades, TSP received considerable attention and various approaches are proposed to solve
the problem, such as branch-and bound [9], cutting planes [23], 2-opt [21], particle swarm [17], simulated annealing
[18], ant colony [7, 8], neural network [2], tabu search [12], and genetic algorithms [4, 16, 20, 22, 24, 28]. Some
of these methods are exact, while others are heuristic algorithms. A comprehensive study about GAs approaches
are successfully applied to the TSP [10]. A survey of GAs approaches for TSP presented [28]. A new sequential
constructive crossover generates high quality solution to the TSP [1]. A new genetic algorithm for asymmetric TSP is
proposed [25]. Three new variations for order crossover are presented with improvements [6]. A study presented about
an algorithm with MATLAB programming to solve TSP [11]. A study associated with profit based genetic algorithm
for TSP and obtaining good results to tested on networks of cities in some voivodships of Poland [27]. A comparative
analysis of different crossover operators for TSP and showed partially-mapped crossover gives shortest path in [19].
The latest study to compare the various crossover operators with the modified form of cycle crossover operator for TSP
is presented by Hussain et al. [16].

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 3

TSP has many applications such as variety of routing and scheduling problems, computer wiring, movement of
people, X-ray crystallography [3] and automatic drilling of printed circuit boards and threading of scan cells in a
testable Very-Large-Scale-Integrated (VLSI) circuits [29].

Rest of the paper is organized as: Section 2 reprints the background of crossover operators for TSP, proposed a
new crossover operators for path representation in Section 3, computational results and discussion in Section 4 and
summary in Section 5.

2. Crossover Operators for TSP

In literature, there are binary, path, adjacency, ordinal and matrix crossover representations to solve the TSP with
using the GAs. A path representation is our desired because it is most natural and legal way to represent a tour.

2.1. Path Representation. The most natural way to present a legal tour is probably by using path representation. For
example, a tour 3−→4−→8−→2−→7−→1−→6−→5 can be represented simply as (3 4 8 2 7 1 6 5). Since the TSPs
in combinatorial with the path representation and the classical crossover operators such as one-point, two-point and
uniform crossovers are not suitable. Further classification of path representation as:

2.1.1. Partially-mapped Crossover Operator. The partially-mapped crossover (PMX) was proposed by Goldberg et
al. [14]. After choosing two random cut points on parents to builds offspring, the portion between cut points, the one
parent’s string is mapped onto the other parent’s string and the remaining information is exchanged. Consider, for an
example of the two parents tours with randomly one cut point between 3rd and 4th bits and other cut point between 6th
and 7th bits are (the two cut points marked with ‘|′):

P1 = (3 4 8 | 2 7 1 | 6 5) and

P2 = (4 2 5 | 1 6 8 | 3 7).
The mapping sections are between the cut points. In this example, the mappings are 2 ←→ 1, 7 ←→ 6 and 1 ←→ 8.
Now two mapping sections are copied with each other to make offspring as:

O1 = (× × × | 1 6 8 | × ×) and

O2 = (× × × | 2 7 1 | × ×).
Then we can fill further bits (from the original parents), for those which have no conflict as:

O1 = (3 4 × | 1 6 8 | × 5) and

O2 = (4 × 5 | 2 7 1 | 3 ×).
Hence, the first × in the first offspring is 8 which comes from first parent but 8 is already in this offspring, so we

check mapping 1 ←→ 8 and see again 1 is exist in this offspring, again check mapping 2 ←→ 1, so 2 occupy at first
×. Similarly, the second × in first offspring is 6 which comes from first parent but 6 is exist in this offspring, check
mapping as well 7←→ 6, so 7 occupy at second ×. Thus the offspring 1 is:

O1 = (3 4 2 | 1 6 8 | 7 5).

Analogously, we complete second offspring as well:

O2 = (4 8 5 | 2 7 1 | 3 6).

2.1.2. Order Crossover Operator. The order crossover (OX) was proposed by Davis [5]. It builds offspring by choos-
ing a sub-tour of a parent and preserving the relative order of bits of the other parent. Consider, for a example of the
two parents tours (with randomly two cut points marked by ‘|′):

P1 = (3 4 8 | 2 7 1 | 6 5) and

P2 = (4 2 5 | 1 6 8 | 3 7).
The offspring are produced in the following way. First, the bits are copied down between the cuts with similar way into
the offspring, which gives:

O1 = (× × × | 2 7 1 | × ×) and

O2 = (× × × | 1 6 8 | × ×).

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 4

After this, starting from the second cut point of one parent, the bits from the other parent are copied in the same order
omitting existing bits. As the sequence of the bits in the second parent from the second cut point is:

3 − 7 − 4 − 2 − 5 − 1 − 6 − 8

after removal of bits 2, 7 and 1, which are already in the first offspring, the new sequence is:

3 − 4 − 5 − 6 − 8.

This sequence is placed in the first offspring starting from the second cut point:

O1 = (5 6 8 | 2 7 1 | 3 4).

Analogously, we complete second offspring as well:

O2 = (4 2 7 | 1 6 8 | 5 3).

2.1.3. Cycle Crossover Operator. The cycle crossover (CX) operator was first proposed by Oliver et al. [26]. Using
this technique to create offspring in such a way that each bit with its position comes from one of the parents. For
example, consider the tours of two parents:

P1 = (1 2 3 4 5 6 7 8) and

P2 = (8 5 2 1 3 6 4 7)

Now its up to us that how we choose the first bit for the offspring to be either from the first or from the second parent.
In our example, the first bit of the offspring has to be a 1 or a 8. Let we choose it be 1,

O1 = (1 × × × × × × ×)

Now every bit in the offspring should be taken from one of its parents with the same position, it means, further we do
not have any choice, so the next bit to be considered must be bit 8, as the bit from the second parent just below the
selected bit 1. In first parent this bit is at 8th position, thus

O1 = (1 × × × × × × 8)

This turn out, implies bit 7, which is the bit of second parent just below the selected bit at 7th position in first parent.
Thus

O1 = (1 × × × × × 7 8)

The next it forced us to put the 4 at 4th position, as

O1 = (1 × × 4 × × 7 8)

After this, 1 comes which is already in the list, thus we have completed a cycle and filling the remaining blank positions
with the bits of those positions which are in second parent.

O1 = (1 5 2 4 3 6 7 8)

Similarly the second offspring is:
O2 = (8 2 3 1 5 6 4 7)

But there is a drawback that some times this technique produces same offspring, for example the following two parents:

P1 = (3 4 8 2 7 1 6 5) and

P2 = (4 2 5 1 6 8 3 7)

After applying CX technique, the resultant offspring are:

O1 = (3 4 8 2 7 1 6 5) and

O2 = (4 2 5 1 6 8 3 7)

The offspring looks similar to their parents.

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 5

2.1.4. Modified-cycle Crossover Operator. The modified-cycle crossover (CX2) operator was proposed by Hussain et
al. [16]. Using this technique to create offspring in such a way that first bit of second parent is the the first bit of first
offspring and then search that bit in first parent and choose the exact same location bit from second parent and again
search it in first parent and again choose exact same location bit from second parent and that bit is the first bit of the
second offspring. For example, consider the tours of two parents:

P1 = (3 4 8 2 7 1 6 5) and

P2 = (4 2 5 1 6 8 3 7).

The first bit of second parent is the first bit of first offspring:

O1 = (4 × × × × × × ×).

The selected bit is 4 and 4 is searching at second position in first parent and the bit at this position in second parent is
2. For again searching 2 is at fourth position in first parent and 1 is at same position in second parent, so 1 is selected
for second offspring as:

O2 = (1 × × × × × × ×).

The previous bit was 1 and it is locates at 6th position in first parent and at this position bit is 8 in second parent, so

O1 = (4 8 × × × × × ×).

And for two moves as below 8 is 5 and below 5 is 7, so

O2 = (1 7 × × × × × ×)

Hence similarly;

O1 = (4 8 6 2 5 3 1 7) and

O2 = (1 7 4 8 6 2 5 3)

We see that the last bit of second offspring is 3 which was the 1st bit of first parent. Hence this scheme is over within
one cycle. Sometimes it is not over within one cycle, consider another example as:

P1 = (1 2 3 4 5 6 7 8) and

P2 = (2 7 5 8 4 1 6 3)

To work as previous example as:

O1 = (2 1 6 7 × × × ×) and

O2 = (6 7 2 1 × × × ×)

Now stop because the bit 1 has comes in second offspring which was in 1st position of first parent. One cycle is over
and before starting other cycle, we match first offspring’s bits with second parent or vice versa and left out the existing
bits with their position in both parents as:

P1 = (• • 3 4 5 • • 8) and

P2 = (• • 5 8 4 • • 3)

Now filled positions of parents and ‘×’ positions of offspring are considered 1st, 2nd and 3rd positions etc., so we can
completes it as usual:

O1 = (2 1 6 7 | 5 3 8 4) and

O2 = (6 7 2 1 | 8 4 5 3)

Hence this scheme is over.

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 6

3. Proposed Crossover Operator

We extend our previous study CX2, which was the modified form of CX. In CX2, both offspring built on the same
time as one bit for first offspring, other bit for second offspring. But in this study, one offspring will be complete first
before starting the other one, similarly as original CX pattern. This is the much better improved form of CX, that is
reason to suggest it as an improved form of cycle crossover (ICX). We provide the complete scenario of the algorithm
step-by-step in following example:

Consider the tours of two parents:

P1 = (3 4 8 2 7 1 6 5) and

P2 = (4 2 5 1 6 8 3 7).
The first bit of second parent is the first bit of first offspring as:

O1 = (4 × × × × × × ×).

When 4 in first parent was searched out, it was located at second position. Keeping this in view, the bit of same position
which is in the other parent is to be chosen for the next bit of offspring.

O1 = (4 2 × × × × × ×).

Continuing the process, searching 2 in first parent again which is at fourth location and taking the bit which is located
at exact position in second parent as the next bit of first offspring leads to the following result:

O1 = (4 2 1 × × × × ×)

Similarly, the process is going on and first offspring comes as:

O1 = (4 2 1 8 5 7 6 3).

The process is over with in one stage and for more understanding we display it in Figure 2.
Analogously, for second offspring:

P2 = (4 2 5 1 6 8 3 7)

P1 = (3 4 8 2 7 1 6 5). and

Figure 2. The ICX operator (within one step)

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 7

The first bit of first parent is the first bit of second offspring as:

O2 = (3 × × × × × × ×).

When 3 in second parent was searched out, it was located at seventh position. Keeping this in view, the bit of same
position which is in the other parent is to be chosen for the next bit of offspring.

O2 = (3 6 × × × × × ×).

Similarly, the process is going on and second offspring comes as:

O2 = (3 6 7 5 8 1 2 4).

The last bit of first offspring must be the first bit of first parent (highlighted with gay color in Figure 2) and similar
condition must exist in second offspring and parent. Such conditions are not met i.e. the first bit of first (second) parent
is come in the first (second) offspring before the ending bit (highlighted with gray color in Figure 3), then the algorithm
will go in the following way (more stages):

For this, we take two new tours as:

P1 = (1 2 3 4 5 6 7 8) and

P2 = (6 8 4 3 1 2 5 7).

To work as previous example and first offspring is:

O1 = (6 2 8 7 5 1 × ×).

The process is halted at this stage because the bit of last filled-position in first offspring and the first bit of first parent
are same. So stage one is over and now we start stage two as:
All bits are left out from both parents which are exiting in first offspring as:

P1 = (• • 3 4 • • • •) and

P2 = (• • 4 3 • • • •).

Now filled positions of parents and ‘×’ positions of offspring are considered 1st, 2nd and 3rd positions etc., so we can
completes it as is afore-mentioned.

O1 = (6 2 8 7 5 1 4 3).

Analogously, we complete the second offspring as well:

O2 = (1 5 7 8 2 6 3 4).

For better understanding we display it in Figure 3.

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 8

Figure 3. The ICX operator (within two steps)

To apply this crossover operator, we made a MATLAB code for GAs and have given pseudo-code in Figure 4.

Figure 4. The Pseudo-code of ICX

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 9

4. Computational Results and Discussion

To evaluate the performances of the proposed ICX, computational experiments have been tested by using ten bench-
mark instances which are taken from traveling salesman problem library (TSPLIB) [30]. We divide these instances
into two parts as symmetric traveling salesman problems (TSPs) and asymmetric traveling salesman problems (AT-
SPs). The experiments are performed 30 times (30 runs) for each instance. In our simulation experiments, all GA
programs were implemented in MATLAB version R2017a. The common parameters used in simulations are given in
Table 1.

For better comparisons, we employ statistical hypothesis testing using the two-sampled pooled t-test because GAs
belong to the group of stochastic search algorithms. We set the null hypothesis: ‘ICX does provide better performance
when performed for 30 trials′. The significance level at p = 0.05 (95% confidence) can be indicted according to
the two-sample pooled t-test. The statistical value indicates whether a significant improvement by ICX (t ≤ - 2.00)
or significant degradation by ICX (t ≥ 2.00). The resulting result of the t-value (−2.00 < t < 2.00) do not ensure
enough statistical evidence to confirm or refute the null hypothesis, which shows similar performance between the two
crossover operators.

Table 1. Parametric configuration for GA
Parameter Value
population size 150
Selection scheme Roulette-wheel selection
Mutation method Swap
Crossover probability 80%
Mutation probability 5%
Maximum generation 1000
Replacement percentage 20%

Table 2 summarizes the average result and standard deviation (S.D) of the 30 trials for of each method for the five
symmetric benchmark instances. For instance gr21, the proposed crossover operator gives a significant improvement
performance than PMX and CX operators but other two approaches are not statistically significant than it. For in-
stance bays29, the t-Test values are indicated that proposed operator is not statistically significant with each other used
crossover operators. CX2 outperforms than the proposed one for instance dantzig42 but ICX significant better perform-
ing than PMX and non-significant with all others. The only CX2 is statistically non-significant for the benchmark eil76
and ICX outperforms the other three crossover approaches (PMX, OX and CX). For instance brg180, the proposed
operator ICX statistically significant with better performance than all used crossovers except OX. The overall results of
Table 2 indicated that the proposed operator is significantly better than all other operators which are used in this paper.
For more close comparison, we display all average results of Table 2 in Figure 5.

Table 3 summarizes the average result and S.D of the 30 trials for each method for the five asymmetric benchmark
instances. The t-Test values of instance ftv33, ftv38, rbg323 and rbg443 do not provide us with enough statistical
evidence to confirm that which operator is better than other. But negative values of these instances indicate an improved
average performance of the proposed method. For the benchmark ft53, the proposed approach gives significantly
improved performance than CX and CX2 and other two methods (PMX and OX) are statistically same behave with it.
The overall results of Table 3 indicate that proposed method is performing statistically better or do not ensure evidence
to confirm that which one is better with 95% confidence level. Moreover, the results confirm that there is no t-Test
value which is significant degradation (t ≥ 2.00) by ICX. For more close comparison, we display all average results of
Table 3 in Figure 6.

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 10

Table 2. Comparison Results of Crossover Operators for TSPs
Instance N Optimum value Results PMX OX CX CX2 ICX

Average 2969 2843 2974 2902 2861
gr21 21 2707 S.D 96 117 145 149 81

t-Test -4.63 0.68 -3.66 -1.30 -

Average 2599 2561 2610 2621 2588
bays29 29 2020 S.D 110 95 183 202 175

t-Test -0.29 0.73 -0.47 -0.66 -

Average 1225 1101 1007 802 1048
dantzig42 42 699 S.D 188 219 166 98 103

t-Test -4.45 -1.18 1.13 9.32 -

Average 562 555 563 546 549
eil76 76 538 S.D 9 10 11 5 8

t-Test -5.81 -2.52 -5.54 1.71 -

Average 2148 2131 2221 2210 2113
brg180 202 1950 S.D 51 62 63 57 33

t-Test -3.10 -1.38 -8.18 -7.93 -

Figure 5. Comparative convergence of the TSPs problems

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 11

Table 3. Comparison Results of Crossover Operators for ATSPs
Instance N Optimum value Results PMX OX CX CX2 ICX

Average 1728 1832 1841 1887 1791
ftv33 34 1286 S.D 211 199 272 194 181

t-Test 1.22 -0.81 -0.82 -1.95 -

Average 2154 2077 2158 2199 2120
ftv38 39 1530 S.D 172 162 190 226 233

t-Test -0.63 0.82 -0.68 -1.31 -

Average 11763 10887 11975 12498 11370
ft53 53 6905 S.D 628 949 804 1331 1069

t-Test -1.71 1.82 -2.43 -3.56 -

Average 3099 2937 3109 3136 3008
rbg323 323 1326 S.D 971 848 1030 939 978

t-Test -0.36 0.30 -0.38 -0.51 -

Average 4529 4445 4572 4681 4533
rbg443 443 2720 S.D 1025 1329 918 1169 1002

t-Test 0.02 0.28 -0.15 -0.52 -

Figure 6. Comparative convergence of the ATSPs problems

An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem 12

5. Conclusion

This article represents a comprehensive overview of the performance of GAs in NP-hard problems like TSP and
keenly observes how GAs create a solution without having any prior knowledge about the traveling routes. Unlike
other heuristic methods, GA uses natural rules of selection, crossover and mutation to make the computation easier and
fast. These things make it more valuable, better performing and efficient algorithm over those. The various crossover
operators have been introduced for TSP by using GAs. We also proposed a new crossover operator for TSP. This
proposed operator ICX upgrade the path-represented CX and used to improve the quality of offspring. ICX is easy to
execute and always generates a valid tour of offspring. Ten benchmarks from the TSPLIB have been used to assess its
performance along with other operators, for comparison and to investigate how they statistically better or degradation
on the basis of t-Test results with 95% confidence level. All statistical results show that ICX is effective. Hence
proposed operator might be a good candidate to get accurate convergent results. Moreover, researchers might be more
confident to apply it for comparisons.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

[1] Ahmed, Z.H., Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator, Int J Biom Bioinfor-
matics. 3(2010), 96–105. 1

[2] Bhide, S., John, N., Kabuka, M.R., A Boolean neural network approach for the traveling salesman problem, IEEE T COMPUT., 42(1993),
1271–1278. 1

[3] Bland, R.G., Shallcross, D.F., Large traveling salesmen problems arising from experiments in x-ray crystallography, Oper. Res. Lett., 8(1988),
125–128. 1

[4] Bolanos, R.I., Eliana, M.T.O., and Mauricio, G.E., . A population-based algorithm for the multi traveling salesman problem, International
Journal of Industrial Engineering Computations, 7(2016), 245–256. 1

[5] Davis, L., Applying Adaptive Algorithms to Epistatic Domains, In: Proceedings of the International Joint Conference on Artificial Intelligence,
1985, 162–164. 2.1.2

[6] Deep, K., Adane, H.M., New variations of order crossover for traveling salesman problem International Journal of Combinatorial Optimization
Problems and Informatics, 2(2011), 2–13. 1

[7] Dorigo, M., Gambardella, L.M., Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE T EVOLUT
COMPUT., 1(1997), 53–66. 1

[8] Dorigo, M., Maniezzo, V., Colorni, A., Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 26(1996), 29–41. 1

[9] Finke, G., Claus, A., Gunn, E.,A two-commodity network flow approach to the traveling salesman problem, Congressus Numerantium,
41(1984), 167–178. 1

[10] Gen M, Cheng R. Genetic algorithms and Engineering design. John Wiley and Sons, London, UK. 1997. 1
[11] Ghadle, K.P., and Muley, Y.M., Traveling salesman problem with MATLAB programming, International Journal of Advances in Applied

Mathematics and Mechanics, 2(2015), 258–266. 1
[12] Glover, F., Artificial intelligence, heuristic frameworks and tabu search, Managerial and Decision Economics, 11(1990):365–375. 1
[13] Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, 1989. 1
[14] Goldberg, D.E., Lingle, R., Alleles, loci, and the traveling salesman problem, In: Proceedings of the 1st International Conference on Genetic

Algorithms and Their Applications. Hillsdale, New Jersey: Lawrence Erlbaum, 1985, 154–159. 2.1.1
[15] Holland, J.H., Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelli-

gence. University of Michigan Press, Oxford, UK, 1975. 1
[16] Hussain, A., Muhammad, Y.S., Sajid M.N., Hussain, I., Shoukry A.M., Gani, S., Genetic Algorithm for Traveling Salesman Problem with

Modified Cycle Crossover Operator, COMPUT INTEL NEUROSC., 2017(2017), 1–7. 1, 2.1.4
[17] Kennedy, J., Eberhart, R.C., and Shi, Y., Swarm intelligence, morgan kaufmann publishers. Inc., San Francisco, CA, 2001. 1
[18] Kirkpatrick, S. and Toulouse, G., Configuration space analysis of traveling salesman problems, Journal de Physique, 46(1985), 1277–1292. 1
[19] Kumar, N., Karambir, R.K., A comparative analysis of PMX, CX and OX crossover operators for solving traveling salesman problem, Interna-

tional journal of Latest Research in science and technology, 1(2012), 98–101. 1
[20] Larranaga, P., Kuijpers, C.M., Murga, R.H., Inza, I., Dizdarevic, S., Genetic algorithms for the traveling salesman problem: A review of

representations and operators, ARTIF INTELL REV, 13(1999), 129–170. 1
[21] Lin, S., Kernighan, B.W., An effective heuristic algorithm for the traveling salesman problem, OPER RES, 21(1973), 498–516. 1
[22] Michalewicz, Z., Genetic Algorithms+ Data Structures= Evolution Programs. Springer, 3rd edition, 1996. 1
[23] Miliotis, P., Using cutting planes to solve the symmetric traveling salesman problem, MATH PROGRAM, 15(1978), 177–188. 1
[24] Moon, C., Kim, J., Choi, G., Seo, Y., An efficient genetic algorithm for the traveling salesman problem with precedence constraints, EUR J

OPER RES., 140(2002), 606–617. 1

A. Hussain, Y. S. Muhammad, M. N. Sajid, Turk. J. Math. Comput. Sci., 9(2018), 1–13 13

[25] Nagata, Y., Soler, D., A new genetic algorithm for the asymmetric traveling salesman problem, EXPERT SYST APPL., 39(2012), 8947–8953.
1

[26] Oliver, I.M., Smith, D., Holland, J.R., Study of permutation crossover operators on the traveling salesman problem, In: Grefenstette, J. J. (ed.)
Genetic Algorithms and Their Applications, Proceedings of the Second International Conference. Hillsdale, New Jersey: Lawrence Erlbaum,
1987, 224–230. 2.1.3

[27] PiwoAska, A. Genetic algorithm finds routes in traveling salesman problem with profits, Zeszyty Naukowe Politechniki BiaAostockiej. Infor-
matyka, (2010), 51–65. 1

[28] Potvin, J.Y., Genetic algorithms for the traveling salesman problem, ANN OPER RES., 63(1996), 337–370. 1
[29] Ravikumar, C.P., Parallel techniques for solving large scale traveling salesperson problems, Microprocessors and Microsystems, 16(1992),

149–158. 1
[30] Reinelt G. TSPLIB http://www. iwr. uni-heidelberg. de/groups/comopt/software. TSPLIB95. 2014. 4

	An Improved Genetic Algorithm Crossover Operator for Traveling Salesman Problem. By

