# On the Commutativity of a Prime *-Ring with a $*-\alpha$-Derivation 

Gülay BOSNALI, Neşet AYDIN, and Selin TÜRKMEN

Çanakkale Onsekiz Mart University, Department of Mathematics<br>e-mail: glaybosnal@gmail.com<br>Çanakkale Onsekiz Mart University, Department of Mathematics<br>e-mail: neseta@comu.edu.tr<br>Çanakkale Onsekiz Mart University, Lapseki Vocational School<br>e-mail: selinvurkac@gmail.com

Received 10 June 2018; Accepted :o2July 2018


#### Abstract

Let $R$ be a prime *-ring where * be an involution of $R, \alpha$ be an automorphism of $R, T$ be a nonzero left $\alpha$-*-centralizer on $R$ and $d$ be a nonzero *- $\alpha$-derivation on $R$. The aim of this paper is to prove the commutativity of a *-ring $R$ with the followings conditions: i) if $T$ is a homomorphism (or an antihomomorphism) on $R$,ii) if $d([x, y])=0$ for all $x, y \in R$, iii) if $[d(x), y]=[\alpha(x), y]$ for all $x, y \in R$, iv) if $d(x) \circ y=0$ for all $x, y \in R, v)$ if $d(x \circ y)=0$ for all $x, y \in R$.

Keywords: *-derivation, $*-\alpha$-derivation, left $*$-centralizer, left $\alpha-*$-centralizer. 2010 AMS Subject Classification: 16N60, 16A70, 17W25


## 1. Introduction

Let $R$ be a ring and $Z(R)$ be the center of $R . x, y \in R$ such that $x y-y x, x y+y x$ are denoted by $[x, y]$ and $x \circ y$ respectively and the followings are hold for all $x, y \in R$

- $[x, y z]=[x, y] z+y[x, z]$
- $[x y, z]=[x, z] y+x[y, z]$
- $(x y) \circ z=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z]$
- $x \circ(y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z$.
$R$ is called a prime (resp. semiprime) ring if $a, b \in R$ such that $a R b=(0)$ then either $a=0$ or $b=0$ (resp. If $a R a=(0)$ then $a=0) . *: R \rightarrow R$ is an additive mapping such that $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ is called an involution and a ring equipped with an involution is called a $*$-ring. If a $*$-ring is prime (resp. semiprime) then it is called a prime (resp. semiprime) *-ring.

An additive mapping $d$ of $R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. The authors have been trying to decide that whether a ring is commutative or not with the help of derivation that is defined over the ring. First study was made on this subject by Posner in [4]. Bresar and Vukman in [5] defined a *-derivation on a *-ring as follows: an additive mapping $d$ of $R$ is called a derivation if $d(x y)=d(x) y^{*}+x d(y)$ for all $x, y \in R$. Kim and Lee showed that in [2] the ring is commutative using some identities with a $*$-derivation which is defined on a prime $*-$ ring and semiprime $*$-ring where $*$ is an involution. Firstly, inspired by the definition of $*$-derivation, it is given that $d$ is a $*-\alpha$-derivation if $d(x y)=d(x) y^{*}+\alpha(x) d(y)$ for all $x, y \in R$ where $\alpha$ is a homomorphism on $R$. Same results are obtained using similar hypothesis in Kim and Lee's paper with $*-\alpha$-derivation which is defined on a prime $*$-ring and semiprime $*$-ring in this study.
In 1957, the reverse derivation is defined by Herstein in [6] as follows: the reverse derivation is an additive mapping $d$ of $R$ such that $d(x y)=d(y) x+y d(x)$ for all $x, y \in R$. After this definition, Breaser and Vukman defined the reverse $*$-derivation in [5] as follows: the reverse $*$-derivation is an additive mapping $d$ of $R$ such that $d(x y)=d(y) x^{*}+y d(x)$ for all $x, y \in R$. Inspired by the definition of reverse $*-$ derivation, it is given that $d$ is called a reverse $*-\alpha$-derivation if $d(x y)=d(y) x^{*}+$ $\alpha(y) d(x)$ for all $x, y \in R$ where $\alpha: R \longrightarrow R$ is a homomorphism. Kim and Lee showed in [2] that if $d$ is a reverse $*$-derivation of semiprime $*$-ring then it holds $[d(x), z]=0$ for all $x, z \in R$. This result is given for reverse $*-\alpha$-derivation in this study.
Zalar defined in [7] the left centralizer (etc. right centralizer) as follows: the left centralizer is an additive mapping $T$ on $R$ such that $T(x y)=T(x) y$ for all $x, y \in R$. Ali and Fosner in [8] defined the left $*$-centralizer on a $*$-ring where $*$ is an involution as follows: a left $*$-centralizer (etc. right $*$-centralizer) is an additive mapping $T$ such that $T(x y)=T(x) y^{*}$ for all $x, y \in R$. In [9], Koç and Gölbaşı said to a left $\alpha-*$-centralizer (etc. right $\alpha-*$-centralizer) that $T$ is an additive mapping such that $T(x y)=T(x) \alpha\left(y^{*}\right)$ for all $x, y \in R$ where $\alpha$ is a homomorphism. Kim et al. proved that in [2] if $R$ is a semiprime $*$-ring and $T: R \rightarrow R$ is a left $*-$ centralizer then $T: R \rightarrow Z(R)$. Rehman et al showed that in [3] if $R$ is a 2 -torsion free semiprime $*$-ring and $T$ is both a Jordan $*$-centralizer and a homomorphism on $R$ then $T: R \rightarrow Z(R)$. Furthermore, if $R$ is a 2 -torsion free prime $*$-ring and $T$ is a nonzero Jordan $*$-centralizer then $T=*$. In the following part of this study, based upon the results are proved by Kim and Lee in [2] and Rehman et al.in [3], if a left

$$
*-\alpha \text {-Derivations of Prime } * \text {-Rings }
$$

$\alpha$-*-centralizer defined over a prime $*$-ring where $\alpha$ is an automorphism, is also a homomorphism (or an anti-homomorphism), then the ring is commutative.

Throughout this paper, $R$ is a prime or semiprime $*$-ring where $*$ is an involution, $\alpha: R \rightarrow R$ is an automorphism, $d$ is a nonzero $*-\alpha$-derivation of $R$ and $T$ is a left $\alpha$-*-centralizer on $R$.

The material in this work is a part of first author's Master's Thesis which is supervised by Prof. Dr. Neşet Aydın.

## 2. Results

Lemma 2.1. [1,Lemma 1.1.4] Suppose that $R$ is semi-prime and that $a \in R$ is such that $a(a x-x a)=0$ for all $x \in R$. Then $a \in Z(R)$, the center of $R$.

Theorem 2.2. Let $R$ be a *-ring where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism of $R$ and $T$ be a nonzero left $\alpha-*$-centralizer on $R$.
i) If $R$ is semiprime then the mapping $T$ is $R$ into $Z(R)$.
ii) If $R$ is prime and $T$ is a homomorphism (or an anti-homomorphism) on $R$, then $R$ is commutative.

Proof. i) Let $R$ be semiprime. If it is observed $T\left(x z^{*} y^{*}\right)$ for $x, y, z \in R$, it is obtained respectively for all $x, y, z \in R$

$$
\begin{align*}
T\left(x z^{*} y^{*}\right) & =T\left(x\left(z^{*} y^{*}\right)\right)=T(x) \alpha\left(\left(z^{*} y^{*}\right)^{*}\right)=T(x) \alpha(y z)  \tag{1}\\
& =T(x) \alpha(y) \alpha(z)
\end{align*}
$$

and

$$
\begin{align*}
T\left(x z^{*} y^{*}\right) & =T\left(\left(x z^{*}\right) y^{*}\right)=T\left(x z^{*}\right) \alpha\left(\left(y^{*}\right)^{*}\right)=T(x) \alpha\left(\left(z^{*}\right)^{*}\right) \alpha(y)  \tag{2}\\
& =T(x) \alpha(z) \alpha(y)
\end{align*}
$$

Combining the equation (1) and (2), it holds that

$$
T(x)[\alpha(y), \alpha(z)]=0 \text { for all } x, y, z \in R .
$$

Since $\alpha$ is onto mapping, replacing $\alpha(y)$ by $T(x)$ in last equation, it holds

$$
T(x)[T(x), \alpha(z)]=0 \text { for all } x, y, z \in R .
$$

Since $\alpha$ is onto mapping, this means that

$$
T(x)[T(x), z]=0 \text { for all } x, y, z \in R .
$$

From Lemma 2.1, it gets $T(x) \in Z(R)$ for all $x \in R$ which means that $T: R \rightarrow Z(R)$.
ii) Let $R$ be prime and $T$ be a homomorphism of $R$. Since $T$ is a homomorphism, it holds

$$
\begin{equation*}
T(x y)=T(x) T(y) \text { for all } x, y \in R \tag{3}
\end{equation*}
$$

Also, since $T$ is a left $\alpha-*$-centralizer, it has

$$
\begin{equation*}
T(x y)=T(x) \alpha\left(y^{*}\right) \text { for all } x, y \in R . \tag{4}
\end{equation*}
$$

Combining equations (3) and (4) it holds

$$
\begin{equation*}
T(x) T(y)=T(x) \alpha\left(y^{*}\right) \text { for all } x, y \in R . \tag{5}
\end{equation*}
$$

Replacing $y$ by $y^{*} z^{*}$ where $z \in R$ in equation (5), it is obtained

$$
T(x) T\left(y^{*}\right) \alpha(z)=T(x) \alpha(z) \alpha(y) \text { for all } x, y, z \in R
$$

By using (5) it gets

$$
T(x) \alpha(y) \alpha(z)=T(x) \alpha(z) \alpha(y) \text { for all } x, y, z \in R .
$$

And so,

$$
T(x)[\alpha(z), \alpha(y)]=0 \text { for all } x, y, z \in R
$$

is obtained. In the last equation, replacing $x$ by $x s^{*}$ where $s \in R$ and using that $\alpha$ is an onto mapping, it gets

$$
T(x) R[\alpha(z), \alpha(y)]=(0) \text { for all } x, y, z \in R .
$$

Since $R$ is a prime $*$-ring, it implies either $T=0$ or $[\alpha(z), \alpha(y)]=0$ for all $y, z \in R$. Since $T$ is nonzero, it implies that $R$ is commutative.

Now let $R$ be prime and $T$ be an anti-homomorphism of $R$. Since $T$ is an antihomomorphism, it gets

$$
\begin{equation*}
T(x y)=T(y) T(x) \text { for all } x, y \in R \tag{6}
\end{equation*}
$$

Moreover, since $T$ is a left $\alpha-*$-centralizer, it has

$$
\begin{equation*}
T(x y)=T(x) \alpha\left(y^{*}\right) \text { for all } x, y \in R \tag{7}
\end{equation*}
$$

If the equations (6) and (7) are considered together and edited, it follows

$$
\begin{equation*}
T(y) T(x)=T(x) \alpha\left(y^{*}\right) \text { for all } x, y \in R . \tag{8}
\end{equation*}
$$

Replacing $x$ by $z x^{*}$ and $y$ by $y^{*}$ where $z \in R$ in the last equation, it holds

$$
T\left(y^{*}\right) T\left(z x^{*}\right)=T\left(z x^{*}\right) \alpha\left(\left(y^{*}\right)^{*}\right) \text { for all } x, y, z \in R .
$$

$$
*-\alpha \text {-Derivations of Prime } * \text {-Rings }
$$

The last equation is edited by using the equation (8), it follows

$$
T(z)[\alpha(x), \alpha(y)]=0 \text { for all } x, y, z \in R
$$

Replacing $z$ by $z t^{*}$ where $t \in R$ in the last equation and using $\alpha$ is an onto mapping it gets

$$
T(z) R[\alpha(x), \alpha(y)]=(0) \text { for all } x, y, z \in R .
$$

Since $R$ is a prime $*$-ring, it implies that either $T=0$ or $[\alpha(x), \alpha(y)]=0$ for all $x, y \in R$. Since $\alpha$ is an onto mapping and $T$ is a nonzero mapping, it gets that $R$ is commutative.

Theorem 2.3. Let $R$ be $a$ *-ring where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism of $R$ and $d$ be a nonzero $*-\alpha$-derivation on $R$.
i) If $R$ is semiprime, then $d$ is $R$ into $Z(R)$.
ii) If $R$ is prime and $d$ acts as a homomorphism on $R$, then $d=\alpha$.
iii) If $R$ is prime and $d$ acts as anti-homomorphism, then $d=*$.

Proof.
i) Let $R$ be semiprime. If it is observed $d\left(x y^{*} z^{*}\right)$ for $x, y, z \in R$ by using that $d$ is a nonzero $*-\alpha$-derivation, it is obtained

$$
\begin{equation*}
d\left(x y^{*} z^{*}\right)=d\left(x\left(y^{*} z^{*}\right)\right)=d(x) z y+\alpha(x) d\left(y^{*}\right) z+\alpha\left(x y^{*}\right) d\left(z^{*}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x y^{*} z^{*}\right)=d\left(\left(x y^{*}\right) z^{*}\right)=d(x) y z+\alpha(x) d\left(y^{*}\right) z+\alpha\left(x y^{*}\right) d\left(z^{*}\right) \tag{10}
\end{equation*}
$$

Combining the equations (9) and (10), it implies

$$
d(x)[z, y]=0 \text { for all } x, y, z \in R .
$$

Replacing $z$ by $d(x)$ in last equation, by using the Lemma 2.1 the desired result is obtained.
ii) Let $R$ be prime and $d$ be a homomorphism. Since $d$ is both a homomorphism and a $*$ - $\alpha$-derivation, it holds

$$
d(x y)=d(x) y^{*}+\alpha(x) d(y)=d(x) d(y) \text { for all } x, y \in R
$$

Replacing $x$ by $x z$ where $z \in R$ in the last equation and by using that $d$ is a homomorphism, it implies for all $x, y, z \in R$

$$
d(x) d(z) y^{*}+\alpha(x) \alpha(z) d(y)=d(x) d(z) d(y)=d(x) d(z y)
$$

is obtained.

$$
d(x) d(z) y^{*}+\alpha(x) \alpha(z) d(y)=d(x) d(z) y^{*}+d(x) \alpha(z) d(y) \text { for all } x, y, z \in R .
$$

Since $\alpha$ is onto mapping, it follows

$$
(\alpha(x)-d(x)) R d(y)=(0) \text { for all } x, y \in R .
$$

Since $R$ is a prime $*$-ring and $d$ is a nonzero mapping, it is obtained that $d=\alpha$.
iii) Let $R$ be prime and $d$ be an anti-homomorphism. Since $d$ is both an antihomomorphism and a $*-\alpha$-derivation,

$$
d(x y)=d(x) y^{*}+\alpha(x) d(y)=d(y) d(x) .
$$

Replacing $y$ by $x y^{*}$ in last equation and by using that $d$ is an anti-homomorphism, it follows

$$
d(x) y x^{*}+\alpha(x) d\left(y^{*}\right) d(x)=d(x) y d(x)+\alpha(x) d\left(y^{*}\right) d(x) .
$$

So, it implies

$$
d(x) R\left(d(x)-x^{*}\right)=(0) \text { for all } x \in R .
$$

Since $R$ is prime $*$-ring, it implies that either $d(x)=x^{*}$ or $d(x)=0$. We set that $A=\left\{x \in R \mid d(x)=x^{*}\right\}$ and $B=\{x \in R \mid d(x)=0\}$. Then $A$ and $B$ are both additive subgroups of $R$ and $R$ is the union $A$ and $B$ but a group can not be set union of its two proper subgroups. Hence, $R$ equals that either $A$ or $B$. Assume that $B=R$ which means that $d=0$ which is a contradiction. So it follows that $A=R$ which means that $d=*$.

Theorem 2.4. Let $R$ be a prime $*$-ring where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism of $R$ and $d$ be a nonzero $*-\alpha$-derivation on $R$. If $d([x, y])=0$ for all $x, y \in R$, then $R$ is commutative.

Proof. Replacing $x$ by $x y$ in the hypothesis and by using that $d$ is a $*-\alpha$-derivation, it holds

$$
\alpha([x, y]) d(y)=0 \text { for all } x, y \in R .
$$

Replacing $x$ by $x s$ where $s \in R$ in last equation and using that $\alpha$ is an onto mapping, it hold

$$
\alpha([x, y]) R d(y)=(0) \text { for all } x, y \in R .
$$

Since $R$ is a prime $*$-ring, it implies that either $\alpha([x, y])=0$ or $d(y)=0$ for all $x, y \in R$. Since $d$ is nonzero and $\alpha$ is onto, it follows that $R$ is commutative by using the similar method in the proof of (iii) of Theorem 2.3.

$$
*-\alpha \text {-Derivations of Prime } * \text {-Rings }
$$

Theorem 2.5. Let $R$ be a prime $*$-ring where $*: R \rightarrow R$ be an involution, $\alpha: R \rightarrow R$ be an automorphism and $d: R \rightarrow R$ be a nonzero $*-\alpha$-derivation. If $[d(x), y]=[\alpha(x), y]$ for all $x, y \in R$, then $R$ is commutative.

Proof. Replacing $x$ by $x z$ where $z \in R$ and by using that $d$ is a $*-\alpha$-derivation, it holds

$$
\begin{equation*}
\left[d(x) z^{*}, y\right]+[\alpha(x) d(z), y]=\alpha(x)[\alpha(z), y]+[\alpha(x), y] \alpha(z) \text { for all } x, y, z \in R \tag{11}
\end{equation*}
$$

Replacing $y$ by $\alpha(x)$ in hypothesis, it holds

$$
[d(x), \alpha(x)]=0
$$

Furthermore, replacing $y$ by $\alpha(x)$ in (11) and by using that $[d(x), \alpha(x)]=0$, it implies

$$
d(x)\left[z^{*}, \alpha(x)\right]=0 \text { for all } x, z \in R .
$$

Replacing $z$ by $(z r)^{*}$ where $r \in R$ and by using the last equation, it holds

$$
d(x) R[r, \alpha(x)]=(0) \text { for all } x, r \in R .
$$

Since $R$ is prime *-ring, it implies that either $d(x)=0$ or $[r, \alpha(x)]=0$ for all $x, r \in R$. Since $d$ is nonzero and $\alpha$ is onto, it follows that $R$ is commutative by using the similar method in the proof of (iii) of Theorem 2.3.

Theorem 2.6. Let $R$ be a prime $*$-ring where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism and $d$ be a nonzero $*-\alpha$-derivation on $R$. If $a \in R$ such that $[d(x), \alpha(a)]=0$ for all $x \in R$ then $d(a)=0$ or $a \in Z(R)$.

Proof. Replacing for $x$ by $x y$ where $y \in R$ in the hypothesis and by using that $d$ is a $*-\alpha$-derivation, it implies

$$
d(x)\left[y^{*}, \alpha(a)\right]+[\alpha(x), \alpha(a)] d(y)=0 \text { for all } x, y \in R .
$$

Replacing $x$ by $a$ in the last equation

$$
d(a)\left[y^{*}, \alpha(a)\right]=0 \text { for all } y \in R .
$$

Replacing $y$ by $(y r)^{*}$ where $r \in R$ in the last equation, it implies

$$
d(a) R[r, \alpha(a)]=(0) \text { for all } r \in R .
$$

Since $R$ is a prime $*-$ ring and $\alpha$ is an onto mapping, it follows that either $d(a)=0$ or $a \in Z(R)$.

Theorem 2.7. Let $R$ be a semiprime $*$-ring where $*: R \rightarrow R$ be an involution and $\alpha$ be an automorphism of $R$. If $d$ is a nonzero reverse $*-\alpha$-derivation on $R$, the mapping $d$ is $R$ into $Z(R)$.

Proof. Since $d$ is a reverse $*-\alpha$-derivation, it holds

$$
d(x y)=d(y) x^{*}+\alpha(y) d(x) \text { for all } x, y \in R .
$$

Replacing $x$ by $x z$ and $y$ by $z y$ where $z \in R$ in the last equation respectively, it gets that for all $x, y, z \in R$

$$
\begin{equation*}
d((x z) y)=d(y) z^{*} x^{*}+\alpha(y) d(z) x^{*}+\alpha(y) \alpha(z) d(x) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
d(x(z y))=d(y) z^{*} x^{*}+\alpha(y) d(z) x^{*}+\alpha(z) \alpha(y) d(x) \tag{13}
\end{equation*}
$$

Combining equations (12) and (13), it implies

$$
\begin{equation*}
[\alpha(y), \alpha(z)] d(x)=0 \text { for all } x, y, z \in R . \tag{14}
\end{equation*}
$$

Replacing $y$ by $y r$ where $r \in R$ in the last equation, it holds

$$
\begin{equation*}
[\alpha(y), \alpha(z)] \alpha(r) d(x)=0 \text { for all } x, y, z, r \in R . \tag{15}
\end{equation*}
$$

On the other hand, the equation (14) multiplies by $\alpha(r)$ from right side, it holds

$$
\begin{equation*}
[\alpha(y), \alpha(z)] d(x) \alpha(r)=0 \text { for all } x, y, z, r \in R . \tag{16}
\end{equation*}
$$

Combining equations(15) and (16), it implies

$$
[\alpha(y), \alpha(z)][\alpha(r), d(x)]=0 \text { for all } x, y, z, r \in R .
$$

Since $\alpha$ is onto, it holds

$$
\begin{equation*}
[y, z][r, d(x)]=0 \text { for all } x, y, z, r \in R . \tag{17}
\end{equation*}
$$

Replacing $y$ by $r$ and $z$ by $d(x) s$ where $s \in R$ in the last equation and by using the equation (17), it follows

$$
[r, d(x)] R[r, d(x)]=(0) \text { for all } r, x \in R .
$$

Since $R$ is a semiprime $*$-ring, $d$ is $R$ into $Z(R)$ which means that $d: R \rightarrow Z(R)$.
Theorem 2.8. Let $R$ be a prime $*$-ring where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism and d be a nonzero $*-\alpha$-derivation on $R$. If $d(x) \circ y=0$ for all $x, y \in R$, then $R$ is commutative.

$$
*-\alpha \text {-Derivations of Prime } * \text {-Rings }
$$

Proof. Replacing $x$ by $x z$ where $z \in R$ in the hypothesis, it holds

$$
d(x)\left[z^{*}, y\right]-[\alpha(x), y] d(z)=0 \text { for all } x, y, z \in R .
$$

Replacing $y$ by $\alpha(x)$ in last equation,

$$
d(x)\left[z^{*}, \alpha(x)\right]=0 \text { for all } x, y \in R
$$

is obtained. Replacing $z$ by $(r z)^{*}$ where $r \in R$ in the last equation and by using $\alpha$ is an onto mapping with the last equation, it gets

$$
d(x) R[z, \alpha(x)]=(0) \text { for all } x, z \in R .
$$

Since $R$ is a prime $*$-ring, it follows that either $d(x)=0$ or $[z, \alpha(x)]=0$ for all $z, x$ $\in R$. Since $d$ is nonzero and $\alpha$ is onto, it follows that $R$ is commutative by using the similar method in the proof of (iii) of Theorem 2.3.

Theorem 2.9. Let $R$ be a prime *-ring, where $*: R \rightarrow R$ be an involution, $\alpha$ be an automorphism and d be a nonzero $*-\alpha$-derivation on $R$. If $d(x \circ y)=0$ for all $x, y \in R$, then $R$ is commutative.

Proof. Replacing $x$ by $x y$ in hypothesis, it holds

$$
d((x \circ y) y)=\alpha(x \circ y) d(y)=0 \text { for all } x, y \in R .
$$

Furthermore replacing $x$ by $x z$ where $z \in R$ in the last equation and by using that $\alpha$ is an onto mapping

$$
\alpha([x, y]) R d(y)=(0) \text { for all } x, y \in R
$$

is obtained. Since $R$ is a prime $*$-ring, it implies that either $\alpha([x, y])=0$ or $d(y)=$ 0 for all $x, y \in R$. Since $d$ is nonzero and $\alpha$ is onto, it follows that $R$ is commutative by using the similar method in the proof of (iii) of Theorem 2.3.

## References

[1] HERSTEIN I.N., 1976, Rings with Involutions, Chicago Univ., Chicago Press.
[2] KIM K. H. and LEE Y. H., 2017, A Note on $*$-Derivation of Prime $*$-Rings, International Mathematical Forum, 12(8), 391-398.
[3] REHMAN N., ANSARI A. Z. and HAETINGER C., 2013, A Note on Homomorphisims and Anti- Homomorphisims on *-Ring, Thai Journal of Mathematics, 11(3), 741-750.
[4] POSNER E.C.,1957, Derivations in Prime Rings, Proc. Amer. Math. Soc., 8:1093-1100.
[5] BRESAR M. and VUKMAN J.,1989, On Some Additive Mappings in Rings with Involution, Aequationes Math., 38, 178-185.
[6] HERSTEIN I.N.,1957, Jordan Derivations of Prime Rings, Proc. Amer. Math. Soc., 8(6), 11041110.
[7] ZALAR B., 1991, On Centralizers of Semiprime Rings, Comment. Math. Univ. Caroline, 32(4), 609-614.
[8] SALHI A. and FOSNER A., 2010, On Jordan $(\alpha, \beta)^{*}$-Derivations In Semiprime Rings, Int J. Algebra, 4(3), 99-108
[9] KOÇ E., GÖLBASI Ö., 2017, Results On $\alpha-*$-Centralizers of Prime and Semiprime Rings with Involution, commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), 172-178.

