Generalized Reverse Derivations On Closed Lie Ideals

Özge ATAY, Neşet AYDIN, and Barış ALBAYRAK
Çanakkale Onsekiz Mart University, Department of Mathematics, ÇANAKKALE / TURKEY
e-mail: ozgee_atay@hotmail.com
Çanakkale Onsekiz Mart University, Department of Mathematics, ÇANAKKALE / TURKEY
e-mail: neseta@comu.edu.tr
Çanakkale Onsekiz Mart University, Department of Banking and Finance, ÇANAKKALE / TURKEY
e-mail: balbayrak77@gmail.com

[^0]Keywords: Prime ring, Lie ideal, Reverse derivation, Generalized reverse derivation.

2010 AMS Subject Classification: Primary 16N60; Secondary 16U80, 16W25

1. Introduction

Let R be a ring with center $Z(R)$. Recall that R is prime if for any $x, y \in R$, $x R y=(0)$ implies $x=0$ or $y=0$. An additive mapping d form R into R is called derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In [3], Bresar generalized concept of derivation as the following: An additive mapping F from R into R is called generalized derivation with associated derivation d if $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. In [4], Bresar and Vukman introduced reverse derivation and in [1], Abuabakar and Gonzalez introduced generalized reverse derivation. Let d from R into R be an additive mapping. If $d(x y)=d(y) x+y d(x)$ holds for all $x, y \in R$, then d is called right reverse derivation. Let F from R into R be an additive mapping. If $F(x y)=d(y) x+y F(x)$ holds for all $x, y \in R$, then F is called right generalized reverse derivation with associated reverse derivation d.

For any $x, y \in R$ denote the notation $[x, y]$ for commutator $x y-y x$ and $x \circ y$ for anti-commutator $x y+y x$. We use the following basic identities.

- $[x y, z]=x[y, z]+[x, z] y$
- $[x, y z]=[x, y] z+y[x, z]$
- $(x y) \circ z=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z]$
- $x \circ(y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z$

Let L be an additive subgroup of R. L is said to be a Lie ideal of R if $[L, R] \subseteq R$. A Lie ideal L is said to be a square closed Lie ideal if $x^{2} \in L$ for all $x \in L$.

In [5], Posner showed that two important properties of prime rings with derivation. In a prime ring R with char $R \neq 2$, if the iterate of two derivations is a derivation, then one of them is zero, and if d is a derivation and $[a, d(a)] \in Z(R)$ for all $a \in R$, then either R is commutative or d is zero. After that, several authors have proved commutativity theorems for prime rings with derivation and generalized derivation. Also many researchers have generalized results to ideals and Lie ideals of ring. In [2], Al-Omary and Rehman showed that if L is a square closed Lie ideal of prime ring with generalized derivation, then $L \subseteq Z(R)$ under several conditions.

In this study, we generalize previous studies on prime rings with reverse derivation. Let R be a prime ring with char $R \neq 2, F: R \rightarrow R$ be a nonzero right generalized reverse derivation with associated right reverse derivation $d: R \rightarrow R$ and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. We study following conditions and prove $L \subseteq Z(R) .(i)[F(x), x] \in Z(R)$ for all $x \in L$. (ii) $F(x) \circ x \in$ $Z(R)$ for all $x \in L$. (iii) $F(x \circ y)-[x, y] \in Z(R)$ for all $x, y \in L$. (iv) $F[x, y]-x \circ y \in$ $Z(R)$ for all $x, y \in L .(v)[F(x), d(y)]-[x, y] \in Z(R)$ for all $x, y \in L .(v i)$ $[F(x), F(y)]-[x, y] \in Z(R)$ for all $x, y \in L$. (vii) $F(x) \circ F(y)-x \circ y \in Z(R)$ for all $x, y \in L .(v i i i)[F(x), F(y)]-x \circ y \in Z(R)$ for all $x, y \in L .(i x) F(x) \circ F(y)-[x, y] \in$ $Z(R)$ for all $x, y \in L .(x)[F(x), F(y)]-F[x, y] \in Z(R)$ for all $x, y \in L .(x i)$ $F(x) \circ F(y)-F(x \circ y) \in Z(R)$ for all $x, y \in L$. (xii) $F[x, y]-[F(x), y] \in Z(R)$ for all $x, y \in L$. (xiii) $F[x, y]+[F(x), y]-[F(x), F(y)] \in Z(R)$ for all $x, y \in L$. (xiv) $F[x, y]-F(x) \circ y-[d(y), x] \in Z(R)$ for all $x, y \in L$.

In addition, we investigate commutative property for two nonzero right generalized reverse derivations $F, G: R \rightarrow R$ with associated right reverse derivations d, g : $R \rightarrow R$ respectively. We study following conditions and prove $L \subseteq Z(R) .(i)$ $[F(x), G(y)]-[x, y] \in Z(R)$ for all $x, y \in L$. (ii) $[F(x), x]-[x, G(x)] \in Z(R)$ for all $x, y \in L$. (iii) $F(x) \circ x-x \circ G(x) \in Z(R)$ for all $x, y \in L$. (iv) $F[x, y]-[y, G(x)] \in$ $Z(R)$ for all $x, y \in L .(v) F(x \circ y)-y \circ G(x) \in Z(R)$ for all $x, y \in L$.

2. Preliminaries

Well-known fact about prime rings:
Remark 2.1. Let R be a prime ring. For an elements $a \in Z(R)$ and $b \in R$, if $a b \in Z(R)$, then $b \in Z(R)$ or $a=0$.

Remark 2.2. Let R be a prime ring with char $R \neq 2$ and L be a square closed Lie ideal of R. Then $2 a b \in L$ for all $a, b \in L$.

Lemma 2.3. [6, Lemma 2.6] Let R be a 2 -torsion free semiprime ring and L be a nonzero Lie ideal of R. If L is a commutative Lie ideal of R, i. e., $[x, y]=0$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Lemma 2.4. [7, Lemma 2.5] Let R be a 2 -torsion free semiprime ring and L be a nonzero Lie ideal of R. Then $Z(L) \subseteq Z(R)$.

3. Results

Lemma 3.1. Let R be a prime ring with char $(R) \neq 2$ and L be a nonzero square closed Lie ideal of R. If $[x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof. Let $[x, y] \in Z(R)$ for all $x, y \in L$. Then $[r,[x, y]]=0$ for all $x, y \in L, r \in R$. Replacing x by $2 x y$, we get $0=[r,[2 x y, y]]=2[r,[x y, y]]$ and using $\operatorname{char}(R) \neq 2$, we have $[x, y][r, y]=0$. Replacing r by $r s$ for any $s \in R$, we find $[x, y] r[s, y]=0$ for all $x, y \in L, r, s \in R$. Since R is a prime ring, we obtain

$$
[x, y]=0 \text { or }[s, y]=0 \text { for all } x, y \in L, s \in R .
$$

If $[s, y]=0$, then $y \in Z(R)$ and satisfy condition $[x, y]=0$. So, $[x, y]=0$ for all $x, y \in L$ in both cases. From the Lemma 2.3 we get $L \subseteq Z(R)$.

Lemma 3.2. Let R be a prime ring with char $(R) \neq 2$ and L be a nonzero square closed Lie ideal of R. If $x \circ y \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof. Let $x \circ y \in Z(R)$ for all $x, y \in L$. Then $[r, x \circ y]=0$ for all $x, y \in L, r \in R$. Replacing x by $2 x y$, we get $0=[r, 2 x y \circ y]=2[r, x y \circ y]$ and using $\operatorname{char}(R) \neq 2$, we have $(x \circ y)[r, y]=0$. Replacing r by $r s$ for any $s \in R$, we find $(x \circ y) r[s, y]=0$ for all $x, y \in L, r, s \in R$. Since R is a prime ring, we obtain

$$
x \circ y=0 \text { or }[s, y]=0 \text { for all } x, y \in L, s \in R .
$$

Let $A=\{y \in L \mid x \circ y=0$ for all $x \in L\}$ and $B=\{y \in L \mid[s, y]=0$ for all $s \in R\}$. A and B are additive subgroups of L whose $L=A \cup B$, but a group can not be
written as a union of two proper subgroups of its and hence $L=A$ or $L=B$. If $L=A$, then $x \circ y=0$ for all $x \in L$. Replacing y by $2 y z$ for any $z \in L$ and using $\operatorname{char}(R) \neq 2$, we get $[x, y] z=0$ for all $x, y, z \in L$. In this equation, replacing z by $[z, r]$ for any $r \in R$ we find $[x, y][z, r]=0$ for all $x, y, z \in L, r \in R$. Again replacing r by $r s$ for any $s \in R$, we get $[x, y] r[z, s]=0$ for all $x, y, z \in L, r, s \in R$. Since R is a prime ring, we obtain

$$
[x, y]=0 \text { or }[z, s]=0 \text { for all } x, y, z \in L, s \in R
$$

If $[x, y]=0$, then from the Lemma 2.3 we get $L \subseteq Z(R)$. If $[z, s]=0$, then $z \in Z(R)$ for all $z \in L$ and $L \subseteq Z(R)$. If $L=B$, then $[s, y]=0$ for all $s \in R, y \in L$. Hence, we obtain $y \in Z(R)$ for all $y \in L$ and $L \subseteq Z(R)$.

Lemma 3.3. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If $[F(x), x] \in Z(R)$ for all $x, y, z \in L$, then $L \subseteq Z(R)$.

Proof. Let $[F(x), x] \in Z(R)$ for all $x, y, z \in L$. Replacing x by $x+y$, we get

$$
\begin{equation*}
[F(x), y]+[F(y), x] \in Z(R) \text { for all } x, y \in L \tag{1}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (1) and using $\operatorname{char}(R) \neq 2$, we get
$d(z)[x, y]+[d(z), y] x+z[F(x), y]+[z, y] F(x)+[F(y), x] z+x[F(y), z] \in Z(R)$
In this expression, using $z, d(z) \in Z(R)$ and Equation (1), we have

$$
d(z)[x, y] \in Z(R) \text { for all } x, y \in L
$$

Hence, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain $[x, y] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.1 we get $L \subseteq Z(R)$.

Lemma 3.4. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If $F(x) \circ x \in Z(R)$ for all $x, y, z \in L$, then $L \subseteq Z(R)$.

Proof. Let $F(x) \circ x \in Z(R)$ for all $x, y, z \in L$. Replacing x by $x+y$, we get

$$
\begin{equation*}
F(x) \circ y+F(y) \circ x \in Z(R) \text { for all } x, y \in L \tag{2}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (2) and using $\operatorname{char}(R) \neq 2$, we get

$$
(d(z) x) \circ y+(z F(x)) \circ y+F(y) \circ(x z) \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (2), we have

$$
d(z)(x \circ y) \in Z(R) \text { for all } x, y \in L
$$

Hence, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain $x \circ y \in Z(R)$ for all $x, y \in L$. From the Lemma 3.2 we get $L \subseteq Z(R)$.

Theorem 3.5. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If one of the following conditions is satisfy, then $L \subseteq Z(R)$.
i) $F(x \circ y)-[x, y] \in Z(R)$ for all $x, y \in L$.
ii) $F[x, y]-x \circ y \in Z(R)$ for all $x, y \in L$.
iii) $[F(x), d(y)]-[x, y] \in Z(R)$ for all $x, y \in L$.

Proof. i) By hypothesis,

$$
\begin{equation*}
F(x \circ y)-[x, y] \in Z(R) \text { for all } x, y \in L \tag{3}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (3) and using $\operatorname{char}(R) \neq 2$, we get

$$
F((x \circ y) z+x[z, y])-x[z, y]-[x, y] z \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (3), we have

$$
d(z)(x \circ y) \in Z(R) \text { for all } x, y \in L
$$

Hence, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain $x \circ y \in Z(R)$ for all $x, y \in L$. From the Lemma 3.2 we get $L \subseteq Z(R)$.
ii) By hypothesis,

$$
\begin{equation*}
F[x, y]-x \circ y \in Z(R) \text { for all } x, y \in L \tag{4}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (4) and using
$\operatorname{char}(R) \neq 2$, we get

$$
F(x[z, y]+[x, y] z)-(x \circ y) z-x[z, y] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (4), we obtain

$$
d(z)[x, y] \in Z(R) \text { for all } x, y \in L
$$

Hence, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have $[x, y] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.1 we get $L \subseteq Z(R)$.
iii) By hypothesis,

$$
\begin{equation*}
[F(x), d(y)]-[x, y] \in Z(R) \text { for all } x, y \in L \tag{5}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (5) and using $\operatorname{char}(R) \neq 2$, we get

$$
[F(x), d(z) y+z d(y)]-[x, y] z-y[x, z] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (5), we get

$$
d(z)[F(x), y] \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[F(x), y] \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we obtain $[F(x), x] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.3 we get $L \subseteq Z(R)$.

Theorem 3.6. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If one of the following conditions is satisfy, then $L \subseteq Z(R)$.
i) $[F(x), F(y)]-[x, y] \in Z(R)$ for all $x, y \in L$.
ii) $F(x) \circ F(y)-x \circ y \in Z(R)$ for all $x, y \in L$.
iii) $[F(x), F(y)]-x \circ y \in Z(R)$ for all $x, y \in L$.
iv) $F(x) \circ F(y)-[x, y] \in Z(R)$ for all $x, y \in L$.

Proof. i) By assumption,

$$
\begin{equation*}
[F(x), F(y)]-[x, y] \in Z(R) \text { for all } x, y \in L \tag{6}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (6) and using $\operatorname{char}(R) \neq 2$, we have

$$
[d(z) x+z F(x), F(y)]-x[z, y]-[x, y] z \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (6), we obtain

$$
d(z)[x, F(y)] \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, F(y)] \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we get $[x, F(x)] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.3 we get $L \subseteq Z(R)$.
ii) By assumption,

$$
\begin{equation*}
F(x) \circ F(y)-x \circ y \in Z(R) \text { for all } x, y \in L \tag{7}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (7) and using $\operatorname{char}(R) \neq 2$, we get

$$
(d(z) x+z F(x)) \circ F(y)-(x \circ y) z-x[z, y] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (7), we obtain

$$
d(z)(x \circ F(y)) \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
x \circ F(y) \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we get $x \circ F(x) \in Z(R)$ for all $x, y \in L$. From the Lemma 3.4 we get $L \subseteq Z(R)$.
iii) By assumption,

$$
\begin{equation*}
[F(x), F(y)]-x \circ y \in Z(R) \text { for all } x, y \in L \tag{8}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (8) and using $\operatorname{char}(R) \neq 2$, we obtain

$$
[d(z) x, F(y)]+[z F(x), F(y)]-x z \circ y \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (8), we get

$$
d(z)[x, F(y)] \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, F(y)] \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we have $[x, F(x)] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.3 we get $L \subseteq Z(R)$.
iv) By assumption,

$$
\begin{equation*}
F(x) \circ F(y)-[x, y] \in Z(R) \text { for all } x, y \in L \tag{9}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (9) and using $\operatorname{char}(R) \neq 2$, we obtain

$$
(d(z) x \circ F(y))+(z F(x) \circ F(y))-x[z, y]-[x, y] z \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (9), we get

$$
d(z)(x \circ F(y)) \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
x \circ F(y) \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we have $x \circ F(x) \in Z(R)$ for all $x, y \in L$. From the Lemma 3.4 we get $L \subseteq Z(R)$.

Theorem 3.7. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If one of the following conditions is satisfy, then $L \subseteq Z(R)$.
i) $[F(x), F(y)]-F[x, y] \in Z(R)$ for all $x, y \in L$.
ii) $F(x) \circ F(y)-F(x \circ y) \in Z(R)$ for all $x, y \in L$.
iii) $F[x, y]-[F(x), y] \in Z(R)$ for all $x, y \in L$.

Proof. i) For all $x, y \in L$, let

$$
\begin{equation*}
[F(x), F(y)]-F[x, y] \in Z(R) \tag{10}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (10) and using $\operatorname{char}(R) \neq 2$, we get

$$
[d(z) x, F(y)]+[z F(x), F(y)]-F([x, y] z) \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (10), we get

$$
d(z)([x, F(y)]-[x, y]) \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, F(y)]-[x, y] \in Z(R) \text { for all } x, y \in L
$$

Replacing x by $2 d(z) y$ in above expression and using $\operatorname{char}(R) \neq 2$, we obtain

$$
d(z)[y, F(y)] \in Z(R) \text { for all } x, y \in L
$$

Again, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we get

$$
[y, F(y)] \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.3 we obtain $L \subseteq Z(R)$.
ii) For all $x, y \in L$, let

$$
\begin{equation*}
F(x) \circ F(y)-F(x \circ y) \in Z(R) \tag{11}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (11) and using char $(R) \neq 2$, we get

$$
(d(z) x+z F(x)) \circ F(y)-F((x \circ y) z+x[z, y]) \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (11), we have

$$
d(z)(x \circ F(y)-x \circ y) \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain

$$
x \circ F(y)-x \circ y \in Z(R) \text { for all } x, y \in L
$$

Replacing y by $2 y z$ in above expression and using $\operatorname{char}(R) \neq 2$, we get

$$
d(z)(x \circ y) \in Z(R) \text { for all } x, y \in L
$$

Again, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain

$$
x \circ y \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.2 we get $L \subseteq Z(R)$.
iii) For all $x, y \in L$, let

$$
\begin{equation*}
F[x, y]-[F(x), y] \in Z(R) \tag{12}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (12) and using char $(R) \neq 2$, we get

$$
F([x, y] z+y[x, z])-[F(x), y] z-y[F(x), z] \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (12), we have

$$
d(z)[x, y] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain

$$
[x, y] \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.1 we get $L \subseteq Z(R)$.

Theorem 3.8. Let R be a prime ring with char $(R) \neq 2,0 \neq F: R \longrightarrow R$ be a right generalized reverse derivation with associated right reverse derivation d and L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$. If one of the following conditions is satisfy, then $L \subseteq Z(R)$.
i) $F[x, y]+[F(x), y]-[F(x), F(y)] \in Z(R)$ for all $x, y \in L$.
ii) $F[x, y]-F(x) \circ y-[d(y), x] \in Z(R)$ for all $x, y \in L$.

Proof. i) By assumption,

$$
\begin{equation*}
F[x, y]+[F(x), y]-[F(x), F(y)] \in Z(R) \text { for all } x, y \in L \tag{13}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (13) and using $\operatorname{char}(R) \neq 2$, we get

$$
F[x, y z]+[F(x), y z]-[F(x), F(y z)] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (13), for all $x, y \in L$ we obtain

$$
d(z)[x, y]+z F[x, y]+[F(x), y] z-d(z)[F(x), y]-z[F(x), F(y)] \in Z(R)
$$

and from this

$$
d(z)([x, y]-[F(x), y]) \in Z(R) \text { for all } x, y \in L
$$

By using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, y]-[F(x), y] \in Z(R) \text { for all } x, y \in L
$$

Replacing y by $2 d(z) x$ in above expression and using $z, d(z) \in Z(R)$ and $\operatorname{char}(R) \neq$ 2, we have

$$
d(z)[F(x), x] \in Z(R) \text { for all } x, y \in L
$$

Again, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we get

$$
[F(x), x] \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.3 we get $L \subseteq Z(R)$.
ii) By assumption,

$$
\begin{equation*}
F[x, y]-F(x) \circ y-[d(y), x] \in Z(R) \text { for all } x, y \in L \tag{14}
\end{equation*}
$$

Since $d(Z(L)) \neq(0)$, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (14) and using $\operatorname{char}(R) \neq 2$, we have

$$
F[x, y z]-F(x) \circ y z-[d(y z), x] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $z, d(z) \in Z(R)$ and Equation (13), for all $x, y \in L$ we get

$$
d(z)[x, y]+z F[x, y]-(F(x) \circ y) z-d(z)[y, x]-z[d(y), x] \in Z(R)
$$

and from this

$$
2 d(z)[x, y] \in Z(R) \text { for all } x, y \in L
$$

By using char $(R) \neq 2,0 \neq d(z) \in Z(R)$ and Remark 2.1, we obtain

$$
[x, y] \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.1 we get $L \subseteq Z(R)$.
Theorem 3.9. Let R be a prime ring with char $(R) \neq 2,0 \neq F, G: R \longrightarrow R$ are right generalized reverse derivations with associated right reverse derivation d and
g respectively, L be a nonzero square closed Lie ideal of R such that $d(Z(L)) \neq(0)$ and $g(Z(L)) \neq(0)$. If one of the following conditions is satisfy, then $L \subseteq Z(R)$.
i) $[F(x), G(y)]-[x, y] \in Z(R)$ for all $x, y \in L$.
ii) $F[x, y]-[y, G(x)] \in Z(R)$ for all $x, y \in L$.
iii) $F(x \circ y)-y \circ G(x) \in Z(R)$ for all $x, y \in L$.

Proof. i) For all $x, y \in L$, let

$$
\begin{equation*}
[F(x), G(y)]-[x, y] \in Z(R) \tag{15}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing x by $2 x z$ in Equation (15) and using char $(R) \neq 2$, we get

$$
[d(z) x, G(y)]+[z F(x), G(y)]-x[z, y]-[x, y] z \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (15), we obtain

$$
d(z)[x, G(y)] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, G(y)] \in Z(R) \text { for all } x, y \in L
$$

Replacing y by x in above expression, we have $[x, G(x)] \in Z(R)$ for all $x, y \in L$. From the Lemma 3.3 we get $L \subseteq Z(R)$.
ii) For all $x, y \in L$, let

$$
\begin{equation*}
F[x, y]-[y, G(x)] \in Z(R) \tag{16}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (16) and using char $(R) \neq 2$, we get

$$
F([x, y] z+y[x, z])-y[z, G(x)]-[y, G(x)] z \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (16), we get

$$
d(z)[x, y] \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
[x, y] \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.1 we obtain $L \subseteq Z(R)$.
iii) For all $x, y \in L$, let

$$
\begin{equation*}
F(x \circ y)-y \circ G(x) \in Z(R) \tag{17}
\end{equation*}
$$

By hypothesis, $d(Z(L)) \neq(0)$. Then, we choose fixed element $0 \neq z \in Z(L)$ which $d(z) \neq 0$. Also, $z, d(z) \in Z(R)$ from the Lemma 2.4. Replacing y by $2 y z$ in Equation (17) and using char $(R) \neq 2$, we get

$$
F((x \circ y) z-y[x, z])-(y \circ G(x)) z-y[z, G(x)] \in Z(R) \text { for all } x, y \in L
$$

By using the fact that $z, d(z) \in Z(R)$ and Equation (17), we obtain

$$
d(z)(x \circ y) \in Z(R) \text { for all } x, y \in L
$$

In this expression, using $0 \neq d(z) \in Z(R)$ and Remark 2.1, we have

$$
x \circ y \in Z(R) \text { for all } x, y \in L
$$

From the Lemma 3.2 we get $L \subseteq Z(R)$.
Example 3.10. Let $R=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}$ and $L=\left\{\left.\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \right\rvert\, a \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers. We define the mappings $F, d: R \rightarrow R$ as following:

$$
F\left(\begin{array}{ll}
x & y \\
0 & x
\end{array}\right)=\left(\begin{array}{cc}
-x & 0 \\
0 & -x
\end{array}\right) \quad, \quad d\left(\begin{array}{ll}
x & y \\
0 & x
\end{array}\right)=\left(\begin{array}{ll}
0 & y \\
0 & 0
\end{array}\right)
$$

It is easy to show that, L is square closed Lie ideal of ring R, d is right reverse derivation and F is right generalized reverse derivation with associated d. Moreover, since $\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \in Z(L)$ and $d\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \neq\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ for any $0 \neq a \in \mathbb{Z}$, condition $d(Z(L)) \neq(0)$ is satisfied.

References

[1] ABUABAKAR A., GONZALEZ S.,2015 Generalized Reverse Derivations on Semiprime Rings, Siberian Math. Journal,56(2),199-205.
[2] AL-OMARY R. M., REHMAN N., 2016 Lie Ideals and Centralizeing Mappings with Generalized Derivations, Journal of Scientific Research and Reports, 11(3), 1-8.
[3] BRESAR M., 1991, On the Distance of the Composition of Two Derivations to the Generalized Derivations, Glaskow Math. J., 33, 89-93.
[4] BRESAR M., VUKMAN J., 1989, On some Additive Mappings in Rings with Involution, Aequation Math., 38, 178-185.
[5] POSNER E., 1957, Derivations in Prime Rings, Proc. Amer. Marh. Soc., 8, 1093-1100.
[6] REHMAN N., 2002, On commutativity of Rings with Generalized Derivations, Math. J. Okayama Univ., 44, 43-49.
[7] REHMAN N, HANGAN, M. and AL-OMARY R. M., 2014, Centralizing Mappings, Morita Context and Generalized (α, β) - derivations, J. Taibah Univ. Sci., 8(4), 370-374.

[^0]: Abstract: In this study, we investigate commutavity of prime ring R with generalized reverse derivations F and G. Also, we proved that if L is a square closed Lie ideal, then L is contained in center $Z(R)$ under given conditions in theorems.

