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Abstract

In this study, while modeling the concrete elasticity modulus with
Artificial Neural Networks (ANN), the optimal determination of the
parameters of ANNs was carried out with the help of meta-heuristic
algorithms. The hyperparameters of ANNs are the number of hidden
layers, the number of neurons in hidden layers, and the activation
functions in hidden layers. ANNs have been successfully used in
classification —and  regression  problems. But determining
hyperparameters is a time-consuming process. Therefore, in this study,
hyperparameters were determined using meta-heuristic algorithms.
Whale Optimization Algorithm, Ant Lion Optimizer and Particle Swarm
Optimization algorithms were used because they are successful in
solving many engineering problems. The elastic modulus of normal and
high strength concrete was estimated using ANN, whose
hyperparameters were determined. The results obtained were
compared with previous studies in literature. The proposed method
outperformed the previous methods by showing better or equal results
in most experiments. In the training process, for high strength concrete,
it was more successful in 44.9%, equal in 34.8% and less successful in
20.3%. Overall, it performed equal to or better than the previous
methods in 79.7% of the training process and 76.4% in the testing
process. For normal strength concrete, the proposed method performed
better or equal in 59.6% of the training process and 69.2% of the testing
process, proving its effectiveness in both cases. As a result, better
modeling results were obtained than in previous studies. As a result of
modeling with different datasets, the R? value was found to be the
highest 0.98. It has been shown that better results can be obtained from
ANN used without tuning the hyperparameter.

Keywords: Artificial neural network, Elastic modulus, Optimization,
Meta-Heuristic.

Oz

Bu c¢alismada, beton elastisite modiilti Yapay Sinir Aglart (YSA)
kullanilarak modellenmistir. YSA'in yapisal parametrelerinin optimum
olarak belirlenmesi ise meta-sezgisel algoritmalar yardimiyla
gergeklestirilmistir. YSA'larin hiper parametreleri; gizli katman sayisi,
gizli katmanlardaki néron sayilart ve gizli katmanlarda kullanilan
aktivasyon  fonksiyonlaridir.  YSA, smiflandirma ve regresyon
problemlerinde bagarili sonuglar elde edebilen bir yéntemdir. Ancak
hiper parametrelerinin belirlenmesi zaman alicidir. Bu nedenle bu
calismada meta-sezgisel algoritmalar kullanilarak hiper parametreler
belirlenmistir. Bircok miihendislik probleminin ¢éziimiinde Balina
Optimizasyon Algoritmasi, Karinca Aslant Optimizasyonu ve Pargactk
Stirti Optimizasyon algoritmalar: basarili sonuglar elde edebildikleri
icin bu ¢alismada tercih edilmigslerdir. Normal ve yiiksek dayanimli
betonlarin elastisite modiilii, hiper parametreleri belirlenen YSA
kullanilarak tahmin edilmis ve elde edilen sonuglar literatiirdeki énceki
cahsmalarla karsilastirilmigtir. Onerilen yéntem, cogu deneyde daha iyi
veya esit sonuglar géstererek énceki yontemlerden daha iyi performans
gostermistir. Egitim asamasinda, yliksek dayammli beton igin
%44.9'nda daha bagsarili, %34.8'nde ayni basariyt géstermis ve
%20,3'nde ise daha az basarili olmustur. Genel olarak, egitim
asamasinin %79.7'sinde énceki yontemlere esit veya daha iyi, test
asamasinda ise %76.4 basari géstermistir. Normal dayanimli beton i¢in
amaclanan yéntem, egitim asamasinin %59.6'sinda ve test asamasinin
%69,2'sinde daha iyi veya ayni performanst géstermis ve her iki
durumda da etkinligini kanitlamistir. Sonug olarak énceki calismalara
gore daha iyi modelleme sonuclari elde edilmistir. Farkli veri kiimeleri
ile yapilan modelleme sonucunda R? degeri en yiiksek 0.98 olarak
bulunmustur. Hiper parametreler bulunmadan kullanilan YSA'dan
daha iyi sonuglar elde edilebilecegi gosterilmigtir.

Anahtar kelimeler: Yapay sinir ag), Elastisite modiilii, Optimizasyon,
Meta-Sezgisel.

1 Introduction

The Elastic Modulus (EM) is the measure of the elastic
deformation of the material under force. Due to the force
applied to a material, the shape of the material changes. The
ability of the material to return to its original shape after this
applied force is removed is expressed as EM. The EM is
calculated by taking a sample under ideal conditions and
measuring it. However, measurements made by taking samples
are not always practical. Therefore, with the developing
computer technology, a surrogate model can be created for EM.
With these surrogate models, predictions can be made for the
necessary calculations without causing any physical damage by

*Corresponding author/Yazisilan Yazar

taking samples. When the literature is examined, there are
many studies for predictive modeling of the EM of concrete.
Demir [1] aimed a model that predicts elastic modulus of
normal and high strength concrete using Artificial Neural
Networks (ANN). He aimed to develop the best prediction
model by using different ANN architectures. He tested the
method with different datasets and compared the results. It was
able to make high-accuracy predictions with the ANN method.
However, while tuning the ANN architecture, time wasted due
to manual adjustment. Farooq et al. made a modeling for
prediction the compressive strength of high strength concrete
in their study [2]. They developed a method using random
forest and gene expression programming methods together.
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Farooq et al. tested their methods with datasets consisting of
357 pieces of data. They also compared their developed
methods with ANN and decision tree. The random forest
method best modeled the compressive strength of high
strength concrete. Garcia et al. developed a model that predicts
compressive strengths and slump flow parameters using the
ANN method [3]. They used a total of 265 data, using 200 data
for training and 65 data for testing. The ANN method was
analyzed with different numbers of hidden layers and neurons.
They achieved the best modeling result by using a low number
of hidden layers and neurons to avoid over-fitting. Abdulla
developed a model with ANN to predict the axial compression
capacity and axial strain of concrete-filled plastic tubular
specimens [4]. The ANN architecture he uses has four neurons
in the input layer. These are the water-cement ratio, aggregate
cement ratio, slump, and the bias. There is also a single hidden
layer and an output layer consisting of a single neuron. He
selected six-neuron hidden layer for strain models, and seven-
neuron hidden layer for force models. When the studies are
examined, it is seen that the hidden layer numbers and neuron
numbers of the ANN models used are determined by the user
without any optimization. Manually tuning the ANN
architecture is a time-consuming process. In addition, it is not
always possible to set the best architecture. At this stage, tuning
the control parameters of optimal prediction models using
developing soft computing algorithms will be the best selection
for obtaining accurate results.

There are analytical methods developed for calculation of
elastic modulus of strength concrete besides soft computing
algorithms. Analytical formulas used in the literature to express
the relationship between compressive strength and elastic
modulus are shown in Egs. (1)-(5). Equations 1 and 2 refer to
normal strength concrete, while Equations 3, 4 and 5 refer to
high strength concrete.

E. = 4.73(f.)'/?, ACI 318-95 o)
E. = 3.25(f£)Y? + 14, TS-500 (2)
E. = 3.32(f£)Y? + 6.9, ACI 363 3)

E. = 10(f. + 8)'/3, CEB90 4
E. = 9.5(f.)>3, NS 3473 (5)

These methods are also frequently used in studies in literature.
However, it cannot give as successful results as soft computing
algorithms. Soft computing algorithms are used in civil
engineering as well as in solving problems in many other fields.
Al-Gburi et al. developed a neural network model for concrete
compressive strength prediction [5]. They used 13 input
parameters. They determined the optimum neural network
structure with different neural network structures and
different training-test ratios. Zeng et al. proposed a model that
predicts the 28-day compressive strength of concrete using
constituent material information parameters [6]. They
generated a dataset of 380 groups of concrete mixes. They
compared the success of their proposed deep neural network
model with other known modeling methods for testing. The
results show that the intended model is successful. Mohamad
Ali et al. developed a model that predicts the compressive
strength of concrete using three different ANN models [7]. They
developed an ANN model with eight inputs. Their model is
consisting of cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, fine aggregate, and age

inputs. They showed that concrete compressive strength can be
modeled successfully with ANN.

When the studies are examined, it has been observed that
artificial neural network-based methods give successful results.
However, determining the structure of the ANN is important to
obtaining successful results at the desired level. Determining
the optimum neural network structure manually is difficult.
Early studies on hyperparameter tuning were generally
performed by manual tuning. However, due to the complexity
of the ANN architecture, the applicability of this method has
been difficult. Later, random search techniques were found to
be more effective in hyperparameter tuning, paving the way for
the use of meta-heuristic algorithms [8]. This modeling method,
known as hyperparameter optimization, has been used in this
study and hyperparameter optimization method is used in
many different fields today [9]-[18]. Notably, the application of
these techniques in the context of predicting concrete
properties is highlighted by Haseli et al. [19]. Their work on
forecasting strength parameters of concrete using optimized
ANN approaches reported minimal discrepancies between
predicted and experimental values, underscoring the practical
significance of hyperparameter tuning in reducing prediction
errors. Franchini [20] introduced a “green” neural architecture
search method that minimizes the environmental impact of
extensive hyperparameter sweeps—an increasingly important
consideration as ANN-based approaches are scaled in practical
engineering applications. In this study, three different
optimization algorithms have been used to determine the
optimum ANN structure. These algorithms are Whale
Optimization Algorithm (WOA) [21], Ant Lion Optimizer (ALO)
[22] and Particle Swarm Optimization (PSO) [23] algorithms.

The used optimization and ANN methods are given in the
Section 2. Section 3 is experimental results, and the last section
is the conclusion of the study.

2 Material and methods

The dataset for the model to be developed in this study were
obtained from studies [24]-[27]. This dataset consists of 156
experimental data. Since there are studies on this dataset, I
chose this dataset. Thus, the success of the model could be
discussed. In this study, ANN was used for modelling. The
ANN's hyperparameters are tunned with three meta-heuristic
algorithms. The ANN and these algorithms are detailed below.

2.1 Artificial neural network

Artificial Neural Network (ANN) is a supervised learning
method that establishes a relationship between input and
output. There are layers and neurons in the ANN. These layers
consist of three groups as input, hidden and output layers

(Figure 1).
ﬁutlayer hidden layer output layer \

VN

S~

Figure 1. ANN architecture; layers and neurons.
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The number of neurons in the input layer is equal to the number
of features. The number of neurons in the output layer is equal
to the output number of the dataset. The number of hidden
layers and the number of neurons are important parameters of
the ANN that need to be adjusted. The hidden layer structure
differs according to the problem.

The neurons in each layer are multiplied by a weight coefficient,
then summed and passed through an activation function.
Different activation functions can be preferred. Just as the
hidden layer structure needs to be adjusted, the activation
function is also a hyperparameter that needs to be adjusted.

2.2  Whale optimization algorithm

Whale Optimization Algorithm (WOA) is a meta-heuristic
optimization algorithm inspired by the hunting techniques of
humpback whales [21]. Humpback whales create a bubble net
to hunt small schools of fish. So, they create a bubble barrier
that prevents small fish from escaping. They, also, hide
themselves with this barrier. Figure 2 illustrates this behavior.

Figure 2. Hunting behavior of humpback whales [21].

The WOA is a three-step algorithm. These are encircling,
bubble-net attacking and searching for prey steps.

Humpback whales encircle their prey to identify their location.
Other whales update their positions considering the position of
the whale with the best fitness. The positions of the whales are
updated at each iteration. And the update is modeled according
to Equations 6 and 7.

D=|C-X*(@)-X®)| (6)
Xt+1)=X(t)—A4-D 7

where t is the current iteration, X* is the best
whale position vector, and 4 and C are the coefficient vectors.
Equations (8) and (9) show the calculation of A and(C
coefficients.

A=2-d-7—ad (8)
=27 9)

Here, r is the random number in the range of [0,1] and a is the
coefficient decreasing from 2 to 0 as the iteration progresses. In
WOA, humpback whales attack their prey with two methods:
Shrinking encircling and Spiral position update. The shrinking
encircling method is performed by decreasing the number a.
The spiral position update method is operated according to
Equation 10.

X(t+1) =D e cos(2ml) + X*(t) (10)

Here, vector D' represents the distance between X* and X(t). [
is the random number in the range of [—1,1]. b is a constant for
the formation of the spiral shape. The WOA algorithm decides
with equal probability which of the Shrinking encircling and
spiral position update methods to use. This probability
procedure is expressed in Equation 11.

. Xt)—A-D 0.5
X(t+1)={:() . P < (11
D' -ebl.cos(2nl) + X*(t) ,p =05

p is the random number in the range of [0,1].

2.3  Antlion optimizer

Ant Lion Optimizer (ALO) has been developed inspired by the
hunting strategies of ant lions during their larval stages [22].
The ALO algorithm is a meta-heuristic algorithm developed
based on the ant lion larva digging a cone-shaped hole with its
large jaw. The ant lion hides at the bottom of the cone-shaped
pit and waits for the ants to fall into the pit. Figure 3 shows the
trap dug by the ant lion. The trapped ants easily slide towards
the bottom of the pit. Because the trap has slippery and sharp
edges. Ants are struggling to get out. The ant lion, on the other
hand, throws sand from the bottom to the top of the pit when
an ant falls into the trap, and slides the feet of the ants.
Eventually, the ants fall to the bottom and are hunted by the ant
lion.

7NN WIS
AN AN
’1/“",\\ %é i)

Figure 3. Ant lion's pit and ants [22].

The ALO algorithm starts with the random walks of the ants. In
Equations 12, 13 and 14, the random walks of the ants are
expressed mathematically.

X = [0,c2r(t) —1),c@r(ty) = 1), ., c@rt) - D] (12)

_ (1 rand(0,1) > 0.5

r(®) = {O rand(0,1) < 0.5 (13)
Xt —a;) x (dt —cb)

t_ Yt i i t 14

Xl (bl — ai) + C; ( )

where, n represents the maximum number of iterations, t
represents the steps of random walks, function ¢ represents the
cumulative sum, and r(t) represents random walks. ¢} and df
values represent the minimum and maximum values of the it"
dimension at t*" iteration, respectively. Ants are prevented
from leaving the search space with Equation 14. The sliding of
ants towards the bottom of the trap is modeled in Equation 15
and 16.

cf = Antlion* + c*, df = Antlion* + d* (15)
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t t
c d
t — t —
ct=—,d" =— (16)
J J
Antlion® represents the selected ant lion at the current
iteration. J sliding ratio is calculated according to Equation 17.

t
1+ 102 . 01T <t < 0.5T gy
max
1+ 103 , 05Ty <t <0.75Tmax
Tmax
t
1+ 10* , 0.75T, <t <097,
] = Thax max max (17)
t
1+ 10° , 09T mex <t < 0.95T 0
max
t
1+ 10° , 0.95Thax <t < Thax
max

1, otherwise

The positions of the ants are calculated according to Equations
18 and 19.

Ry,+R
2
t t . t
Antlion £ = { Ant; . f(Ant;) < f(Antlion ) (19)
Antlion otherwise

R, and Rg represent an ant lion and the elite ant lion in the
population selected by roulette wheel method, respectively.

2.4 Particle swarm optimization

Particle Swarm Optimization (PSO) is a meta-heuristic
algorithm inspired by the social behavior of bird flocking or fish
schooling while searching for food [23]. In the PSO algorithm,
the particles in the population have position and velocity
vectors. The positions of the particles are updated, considering
the best positions of the particles themselves and the best
position obtained during all iterations at each iteration step.
Updates of particles in the population are expressed in
Equations 20 and 21.

ViE+1D)=w+V(@) +c %1y *(ﬁ(t)—)?(t))+cz

w1+ (PI() - (1)) 20

Xt+1D)=X@®)+V(+1) (21)

Here t is iteration. X and V are the positions and velocities of
the particles, respectively. w = 0.7298, ¢; = ¢, = 1.49445 are
constant coefficients [28] while r;, r, represent random
numbers in the range of [0,1].

2.5 Cost Function

In this study, meta-heuristic algorithms are used to optimize
the hyperparameters of the ANN. The fitness values of the
individuals in the population of the optimization algorithms are
calculated by the prediction success of the candidate ANN
structure. The prediction success of the ANN was measured
with the Mean Absolute Error (MAE) metric. The MAE
calculation formula is given in Equation 22.

N
1
MAE ==y~ 9] (22)
i=1

Here N is the number of samples. y is the actual value and y is
the predicted value. As the MAE value decreases to 0, the
prediction success of the ANN increases.

3 Experimental results

In this study, a dataset consisting of experimental data of the
concrete elasticity modulus obtained from different studies
was used. There are 156 experimental samples in this dataset.
There is a study that models this dataset using ANN [1].
However, different ANN architectures without hyperparameter
optimization have been tried. In this study, hyperparameter
optimization was performed and the modeling results were
compared with previous studies. The ANN consists of 1 to 3
hidden layers, with each layer having up to 10 neurons. The
activation function for each layer is selected from 'tansig’,
'logsig’, or 'purelin’. These hyperparameters are optimized
using a meta-heuristic algorithm to improve the model's
performance. Table 1 shows the ranges of the parameters
tuned.

Table 1. Hyperparameter ranges for ANN architecture

Parameter Range
The Number of Hidden Layers 1-3
Neurons Per Layer 1-10

Activation Function 'tansig’, 'logsig’, 'purelin’

All experiments in this study were performed on a computer
with the following specifications: Intel i7-10870H CPU, 16 GB
RAM, 64-bit operating system. Additionally, the coding
operations were carried out using MATLAB.

To ensure a fair comparison of all the models, the initial weight
values and bias values of ANN were set to 0. ANN’s learning rate
was set to 0.01. By preventing random initialization, the
comparison was made in an objective manner. Similarly, all
three meta-heuristic algorithms used were run with a
population size of 10 and for 30 iterations.

In this study, modeling was performed with high strength
concrete and normal strength concrete data. From the data in
Table 2~5, f.(MPa) is used as the input parameter and E.(GPa)
is used as the output parameter of the model. The references
from which the data were obtained are shown in the first
column of the tables. The accuracy of the model's predictions
was evaluated by calculating the ratio of the actual value to the
predicted value. A ratio close to 1 indicates that the model's
prediction is close to the actual value. When the ratio is less
than 1, the model has under-predicted value, and when the
ratio is greater than 1, the model has over-predicted value. A
ratio equal to 1 signifies a perfect match between the predicted
and actual values. The data in the table show the prediction
ratios of the calculation methods in the literature and the
prediction ratio of this study. In the modeling conducted in this
study, the MAE value was used as the loss function. The goal
was to minimize the MAE value as much as possible, aiming for
avalue close to 0. Additionally, the R? value was also considered
to understand the success of the modeling. The pseudocode for
the software developed for hyperparameter optimization
applied in this study is provided in Figure 4.

The dataset is divided into two groups as training and testing.
In order to make an objective comparison, the training-test data
were divided as in previous studies. The high strength concrete
estimation results are given for the training data in Table 2. In
Table 3, the test data estimation results are presented.
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Algorithm 1 Hyvperparameter Optimization using Metahenristic Algorithms

[ = -

—_— e
==

._.._.._.
oo

11i:

fifi:

: Define the problem parameters

: Set number_of layers = [1, 3]

: Set neurons_per_layer range = [1, 10]

: Set activation functions = {tansig, logsig, purelin}
. Initialize Metaheuristic Algorithm Parameters
: Set population_size = 10

: Set max_iterations = 30

: Sel learning rate = (L01

9: Define Fitness Function (Error Measurement )

; function FITNESS FUNCTION] hyperparameters)
Build the Neural Network with given hyperparameters
network = build_network{ hyperparameters)

Train the neural network
trained_network = train_network({network, train_data, train_labels, learning rate)
Predict using the trained network
predictions = testonetwork(trained network, testodata)
Calculate the error metrics (MAE, R¥)
crror = caloulate_error(best labels, predictions)
return error
»emd function
: Particle Swarm Optimization (PS0)
¢ function PSO_opTiRzaTION
Initialize particles with random values
for iteration = 1 to max_iterations do
for each particle do
Calculate the fitness of each particle using fAtness fonetion
Update particle’s best-known position and global best position
Update partiche velocities and positions using PSO equations
end for
Update swarm’s global best solution
end for
return best solution
» end function
¢ Ant Lion Optimizer (ALO)
: function ALO_OPTIMIZATION
Initialize antlicns with random values
for iteration = 1 to max_iterations do
for each antlion do
Calculate the fitness of cach anthion using fitness_function
Update the position of antlions using ALO equations
end for
Upadate the hest solution found
end for
return best salution
» end function
: Whale Optimization Algorithm [WOA)

T fumetion WOA _GPTIMEEATION

Initialize whales with random values
for iteration = 1 to max_iterations do
for each whale do
Calculate the fitness of each whale nsing fitness_function
Update position using WOA equations
end for
Update the best solution found
end for
return hest solution

7 end function

: Main Optimizgation Process

0: Set chesen algorithm = "PS0" or "ALO" or "WOA"

if chosen_algorithm == "PS0" then
best_hvperparameters = PSSO _optimization()

i else il chosen_algorithm == "ALO" then

best_hyperparameters = ALO _optimization()

o else if chosen_algorithm == "WOA” then
best_hyperparameters = WOA _optimization )

end if

Figure 4. Pseudocode for the software used in hyperparameter optimization.
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Table 2. The high strength concrete estimation results and comparisons for training data.

Data f.(MPa) E.(GPa) Ejcr363/Ec Ecpp/E. Eng3473/Ec Demir [1] This Study
[27] 63.2 41.8 0.80 0.99 0.79 1.02 0.98
[27] 70.2 43.0 0.81 0.99 0.79 1.02 0.97
[27] 65.1 415 0.81 1.01 0.80 1.03 0.99
(27] 70.5 40.4 0.86 1.06 0.84 1.09 1.04
[27] 715 414 0.84 1.04 0.83 1.07 1.02
(27] 63.6 426 0.78 0.97 0.78 1.00 0.96
[27] 85.9 45.0 0.84 1.01 0.80 1.01 0.99
[27] 90.2 44.4 0.87 1.04 0.83 1.03 1.01
(27] 85.9 443 0.85 1.03 0.82 1.03 1.00
[27] 81.2 43.9 0.84 1.02 0.81 1.03 1.01
[27] 88.1 445 0.86 1.03 0.82 1.03 1.00
[27] 81.6 438 0.84 1.02 0.81 1.03 1.01
[27] 84.8 472 0.79 0.96 0.76 0.96 0.94
[27] 85.6 456 0.82 1.00 0.79 1.00 0.97
[27] 96.2 46.6 0.85 1.01 0.80 1.02 0.98
[27] 46.4 35.2 0.84 1.08 0.85 1.04 1.02
[27] 73.9 416 0.85 1.04 0.83 1.07 1.03
[27] 87.6 445 0.85 1.03 0.82 1.03 1.00
[27] 93.1 45.4 0.86 1.03 0.82 1.05 1.00
[27] 953 452 0.87 1.04 0.82 1.05 1.02
[27] 102.1 46.1 0.88 1.04 0.83 1.03 1.01
[27] 102.8 46.7 0.87 1.03 0.82 1.02 1.01
(27] 106.3 48.4 0.85 1.00 0.80 0.99 1.01
[27] 104.2 46.3 0.88 1.04 0.83 1.03 1.03
(27] 94.6 473 0.83 0.99 0.79 1.00 0.97
[27] 94.0 46.3 0.84 1.01 0.80 1.03 0.99
[27] 96.6 46.5 0.85 1.01 0.80 1.02 0.98
[27] 915 45.9 0.84 1.01 0.80 1.03 0.98
[27] 91.7 46.0 0.84 1.01 0.80 1.03 0.98
[27] 119.9 49.1 0.88 1.03 0.81 1.00 1.00
[27] 125.6 50.9 0.87 1.00 0.80 1.00 091
[24] 77.2 47.1 0.77 0.93 0.74 0.95 1.02
(24] 66.5 46.8 0.73 0.90 0.72 0.92 1.01
[24] 70.7 47.3 0.74 091 0.72 0.93 1.02
[24] 61.8 45.4 0.73 0.91 0.72 0.93 0.99
[24] 68.9 476 0.72 0.89 0.71 0.92 1.01
[24] 62.2 45.4 0.73 0.91 0.72 0.93 0.99
[24] 75.8 43.0 0.83 1.02 0.81 1.04 112
[24] 67.7 482 0.71 0.88 0.70 0.90 0.99
[24] 53.6 46.2 0.68 0.85 0.68 0.86 0.97
[24] 92.9 46.4 0.84 1.00 0.80 1.02 1.05
[24] 94.0 483 0.81 0.97 0.77 0.98 1.02
[24] 97.7 47.0 0.85 1.01 0.80 1.01 1.06
[24] 102 4838 0.83 0.98 0.78 0.98 1.02
[24] 86.2 47.1 0.80 0.97 0.77 0.97 0.97
[24] 87.9 43.0 0.88 1.06 0.85 1.06 1.06
[24] 82.7 454 0.82 0.99 0.79 1.00 1.01
(24] 79.1 44.7 0.81 0.99 0.79 1.01 1.07
(24] 86.6 46.1 0.82 0.99 0.79 0.99 0.99
[24] 85.5 443 0.85 1.02 0.81 1.03 1.03
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Table 2. Continued.

Data f.(MPa) E.(GPa) Ejcr363/Ec Ecpp/E. Eng3a73/Ec Demir [1] This Study
[24] 91.1 46.8 0.82 0.99 0.79 1.01 1.01
[24] 96.7 53.2 0.74 0.89 0.70 0.89 0.93
[24] 91.2 49.3 0.78 0.94 0.75 0.96 0.96
[24] 83.8 45.9 0.81 0.98 0.78 0.99 0.99
[24] 87.1 47.7 0.79 0.96 0.76 0.96 0.96
[24] 93.2 46.2 0.84 1.01 0.80 1.03 1.06
[24] 86.9 46.1 0.82 0.99 0.79 0.99 0.99
[24] 90.7 48.1 0.80 0.96 0.76 0.98 0.98
[24] 89.5 47.6 0.80 0.97 0.77 0.96 0.97
[24] 87.8 45.4 0.84 1.01 0.80 1.01 1.01
[24] 95.2 50.8 0.77 0.92 0.73 0.94 0.98
[24] 92.2 50.0 0.78 0.93 0.74 0.95 0.97
[24] 97.6 49.3 0.81 0.96 0.76 0.97 1.01
[24] 87.5 48.5 0.78 0.94 0.75 0.94 0.94
[24] 80.4 43.2 0.85 1.03 0.82 1.04 1.09
[24] 86.5 44.2 0.85 1.03 0.82 1.03 1.03
[24] 83.9 44.3 0.84 1.02 0.81 1.03 1.03
[24] 80.9 44.6 0.82 1.00 0.80 1.01 1.05
[24] 85.7 45.1 0.83 1.01 0.80 1.01 1.01
Table 3. The high strength concrete estimation results and comparisons for test data.

Data f:(MPa) E_ (GPa) Eyci363/Ec Ecgp/E; Epng3473/Ec Demir [1] This Study
[27] 69.70 41.50 0.83 1.03 0.82 1.06 1.00
[27] 78.30 44.30 0.82 1.00 0.79 1.01 0.99
[27] 82.60 44.20 0.84 1.02 0.81 1.03 1.00
[27] 65.80 40.80 0.83 1.03 0.82 1.06 1.01
[27] 100.60 45.80 0.88 1.04 0.83 1.04 0.99
[27] 92.80 45.80 0.85 1.02 0.81 1.04 0.99
[27] 93.60 47.10 0.83 0.99 0.79 1.01 0.97
[24] 71.50 48.00 0.73 0.90 0.71 0.92 1.00
[24] 59.10 40.90 0.79 0.99 0.79 1.01 1.08
[24] 57.90 44.50 0.72 0.91 0.72 0.92 0.99
[24] 93.70 50.50 0.77 0.92 0.73 0.94 0.97
[24] 85.30 45.00 0.83 1.01 0.80 1.01 1.01
[24] 99.70 47.60 0.84 1.00 0.79 1.00 1.04
[24] 85.10 44.70 0.84 1.01 0.81 1.02 1.02
[24] 90.30 45.00 0.85 1.03 0.82 1.02 1.04
[24] 87.20 41.10 0.92 1.11 0.88 1.11 111
[24] 84.50 45.30 0.83 1.00 0.79 1.00 1.00

When the training process for high strength concrete
estimation is examined, it will be seen that the proposed
method is much more successful than previous studies. In 31 of
69 observations, the intended method is better. While it
showed the same success in 24 of all the experiments, it fell
behind in 14 of them. In other words, the intended method was
the same or more successful in 79.7% of the experiments.

If the results obtained with the test data of the trained model
are examined, it is seen that the developed model is more
successful in more than half of the experiments. The model
developed in 76.4% of the experiments has the same or better
performance.

The developed model was performed for normal strength
concrete estimation after high strength concrete estimation.
The normal strength concrete estimation results are presented
in Tables 4 and 5. Just as with high strength concrete
estimation, the proposed model is also successful for normal
strength concrete estimation. The better or the same results
were obtained with this model in 59.6% of the train
experiments. In addition, the better results were obtained in
69.2% of the test data. The results of hyperparameter tuning
using meta-heuristic algorithms are presented in Table 6.
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Table 4. The normal strength concrete estimation results and comparisons for training data.

Data f.(MPa) E.(GPa) Ejcr318/E; TS500/E, Demir [1] This Study
[26] 314 30.4 0.87 1.06 0.97 1.00
[26] 27.8 29.1 0.86 1.07 0.97 0.92
[26] 28.5 26.8 0.94 1.17 1.06 1.04
[26] 29.4 315 0.81 1.00 091 0.92
[26] 26.4 30.0 0.81 1.02 0.92 0.88
[26] 28.5 29.0 0.87 1.08 0.98 0.96
[26] 32.6 324 0.83 1.00 0.93 0.93
[26] 29.9 30.2 0.86 1.05 0.96 0.99
[26] 29.8 27.5 0.94 1.15 1.05 1.08
[26] 28.0 30.8 0.81 1.01 0.92 0.88
[26] 27.3 26.5 0.93 1.17 1.05 0.99
[26] 27.5 25.2 0.98 1.23 1.11 1.05
[26] 27.0 27.2 0.90 1.14 1.02 0.97
[26] 28.5 27.3 0.92 1.15 1.04 1.02
[26] 26.4 26.5 0.92 1.16 1.04 0.99
[26] 27.1 239 1.03 1.29 1.17 1.10
[26] 26.3 24.0 1.01 1.28 1.15 1.10
[26] 26.1 24.9 0.97 1.23 1.10 1.06
[26] 27.8 25.3 0.99 1.23 1.11 1.06
[26] 25.7 25.7 0.93 1.19 1.06 1.02
[26] 27.8 26.0 0.96 1.20 1.08 1.03
[26] 28.6 27.5 0.92 1.14 1.04 1.01
[26] 27.9 26.2 0.95 1.19 1.08 1.03
[26] 18.4 219 0.93 1.28 1.14 1.07
[26] 23.4 26.3 0.87 1.13 1.01 0.93
[26] 29.9 30.4 0.85 1.05 0.95 0.98
[26] 229 26.5 0.85 1.12 0.99 0.88
[26] 23.7 27.2 0.85 1.10 0.98 0.93
[26] 27.4 27.1 091 1.14 1.03 0.97
[26] 14.0 15.6 1.13 1.68 1.53 1.44
[26] 16.9 20.5 0.95 1.33 1.20 1.10
[25] 17.1 26.3 0.74 1.04 0.94 0.85
[25] 18.0 28.8 0.70 0.96 0.86 0.78
[25] 18.5 30.1 0.68 0.93 0.83 0.75
[25] 21.8 20.9 1.06 1.40 1.24 1.15
[25] 25.8 28.6 0.84 1.07 0.96 0.90
[25] 27.3 329 0.75 0.94 0.85 0.79
[25] 30.3 35.9 0.73 0.89 0.81 0.89
[25] 29.6 36.8 0.70 0.86 0.78 0.87
[25] 19.6 23.1 0.91 1.23 1.10 0.98
[25] 19.4 30.3 0.69 0.93 0.84 0.75
[25] 20.9 239 0.90 1.21 1.08 0.98
[25] 21.2 26.5 0.82 1.09 0.97 0.89
[25] 23.6 321 0.72 0.93 0.83 0.79
[25] 24.2 33.6 0.69 0.89 0.80 0.76
[25] 31.8 25.5 1.05 1.27 1.17 1.21
[25] 32.2 27.4 0.98 1.18 1.09 1.12
[25] 30.6 28.6 091 1.12 1.03 1.11
[25] 29.6 31.6 0.81 1.00 091 1.01
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Table 4. Continued.

Data f.(MPa) E.(GPa) Ejcr318/E; TS500/E, Demir [1] This Study
[25] 35.0 35.6 0.79 0.93 0.88 0.89
[25] 32.8 36.7 0.74 0.89 0.82 0.84
[25] 38.4 26.6 1.10 1.28 1.24 1.21
[25] 35.7 30.1 0.94 1.11 1.05 1.05
[25] 42.7 34.1 0.91 1.03 1.03 0.95
[25] 36.8 29.3 0.98 1.15 1.10 1.09
[25] 40.1 28.4 1.05 1.22 1.19 1.14
[25] 47.7 29.6 1.10 1.23 1.26 1.37
Table 5. The normal strength concrete estimation results and comparisons for test data.
Data f:(MPa) E_.(GPa) Eyci318/Ec TS500/E, Demir [1] This Study
[26] 29.40 33.02 0.78 0.96 0.87 0.88
[26] 28.80 28.97 0.88 1.08 0.98 0.97
[26] 27.70 25.64 0.97 1.22 1.10 1.04
[26] 22.10 21.80 1.02 1.34 1.20 1.06
[26] 28.90 26.83 0.95 1.17 1.07 1.05
[26] 20.60 23.87 0.90 1.20 1.07 0.97
[26] 25.30 28.09 0.85 1.08 0.97 0.93
[25] 16.20 23.26 0.82 1.16 1.05 0.96
[25] 23.20 23.88 0.95 1.24 1.11 1.05
[25] 17.90 17.99 1.11 1.54 1.38 1.25
[25] 23.90 30.48 0.76 0.98 0.88 0.83
[25] 27.10 24.67 1.00 1.25 1.13 1.05
[25] 37.50 32.61 0.89 1.04 1.00 0.99
Table 6. Results of hyperparameter tuning using meta-heuristic algorithms.

Data Algorithms The number of Layer Neurons per Layer Activation Function R? MAE

WOA 3 [9,8,8] ['purelin’, 'tansig’, 'tansig'] 0.95 0.47

The }Cliﬁlhcjgzngth ALO 3 [9,3,7] [logsig', "purelin’, logsig'] 0.94 0.46

PSO 3 [4,7,10] ['logsig', 'logsig’, 'tansig'] 0.98 0.36

WOA 3 [1,8,5] ['tansig', 'logsig', 'purelin’] 0.75 1.59

Strg:gig‘z::?l}ete ALO 3 [1,8,5] ['tansig’, 'logsig’, 'purelin’] 0.75 1.59

PSO 3 [1,8,5] ['tansig', 'logsig', 'purelin’] 0.75 1.59

For high strength concrete, PSO achieved the best performance
with the highest R* (0.98) and the lowest MAE (0.36),
suggesting the model is highly accurate and reliable. For normal
strength concrete, the performance of the three algorithms is
very similar, with all achieving an R? of 0.75 and MAE values
ranging between 1.59 and 1.64.

Based on the analyses, the best result was obtained with the
PSO algorithm. MAE was used as the cost function during the
optimization process. Figure 5 shows the change in MAE value
over 30 iterations of PSO. Upon examining the graph, it can be
seen that the optimum point is reached and the number of 30
iterations is sufficient.

Figure 6 presents the error graph of the neural network trained
with the optimum hyperparameters over the epochs. In the
MATLAB program, the neural network tool uses Mean Squared
Error (MSE) as the loss function. The training process is
automatically stopped when no further improvement is
observed in the error.
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Figure 5. MAE values of PSO across iterations.
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Figure 6. Change in MSE value during training of ANN with

optimized hyperparameters.
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The training error graph, showing an R? value of 0.98 achieved
through hyperparameter optimization, is displayed in Figure 6.
This graph also confirms that the training process has been
successfully completed. The results indicate that the normal
strength concrete estimation problem is more challenging
compared to high strength concrete estimation. Despite using
different meta-heuristic algorithms, the R? values remain
relatively low, and the MAE values are relatively high. This
suggests that the model may be underfitting the data, possibly
due to limitations in the selected hyperparameter ranges. To
improve the performance of the model for normal strength
concrete, it would be beneficial to expand the search space for
hyperparameters, such as increasing the number of neurons
per layer. The results indicate that the use of three layers
generally yields the best performance across all algorithms for
both high strength concrete and normal strength concrete
estimation. This suggests that a deeper network structure is
more effective in capturing complex relationships within the
data. Therefore, employing a three-layer architecture seems to
be the most effective approach for this study, highlighting the
importance of depth in neural network performance for
concrete estimation.

4 Conclusion

In this study, the modeling of the concrete elasticity modulus
has been carried out using the ANN. ANN is a method that has
been used for many years and has achieved successful results
for many engineering problems. However, when using ANN or
other modeling methods, the biggest challenge is to determine
the optimum parameters of the modeling methods. Because
although the method is suitable for the problem, if the optimum
parameters are not set, unfortunately, good results cannot be
obtained. Different methods have different numbers of
parameters that need to be set. The parameters of the ANN to
be adjusted are the number of hidden layers, the number of
neurons in the hidden layers and the activation functions of the
hidden layers. Although ANN has 3 different parameters, it is
difficult and time consuming to manually adjust these
parameters because the range of each parameter is wide.
Sometimes the most suitable parameters cannot be found. In
this case, the hyperparameter optimization process, which is
among the popular topics of recent years, is used. Parameters
that need to be adjusted with hyperparameter optimization are
determined with the help of a meta-heuristic optimization
algorithm. This saves time and takes into account all possible
search space. In this study, WOA, ALO, PSO algorithms were
used to determine the hyperparameters of the ANN. These
algorithms have been selected among the current and
successful algorithms in the literature. As a result of the
analysis made, the most successful results were obtained with
the PSO. The pair of PSO and ANN has been the best choice for
modeling the concrete elasticity modulus. The modeling of the
concrete elasticity modulus was compared with previous
studies. In 71% of the comparisons, the method in this study
achieved the same or better results than previous studies. More
successful results were obtained in 51% of these comparisons.
The successful results obtained all indicate that a three-layered
neural network should be used. Although the problem
addressed in this study involves a small amount of data, it is
evident from the results that it is a challenging modeling task.
Especially in modeling normal strength concrete, all algorithms
achieved the same result. However, the R? and MAE values did
not reach the desired levels. Despite this, better results were
obtained compared to previous studies in literature. Therefore,

it can be concluded that the proposed model is successful. As a
result, the method aimed with this study was more successful
than previous studies. It has been shown that better results can
be obtained with hyperparameter optimization. It can be a
guide for the use of hyperparameter optimization in future
studies.
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