

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

1

A variable neighbourhood descent algorithm with tabu mechanism for the
time-constrained family travelling salesman problem

Süre kısıtlı aile gezgin satıcı problemi için tabu mekanizmalı değişken
komşu iniş algoritması

Beyza Günesen Akansu1*

1Department of Industrial Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskisehir,
Türkiye.

beyza.gunesen@gmail.com

Received/Geliş Tarihi: 01.11.2024
Accepted/Kabul Tarihi: 06.10.2025

Revision/Düzeltme Tarihi: 18.09.2025 doi: 10.65206/pajes.34901
Research Article/Araştırma Makalesi

Abstract Öz

In this study, the Family Travelling Salesman Problem is considered and
time constraints are included in the model to better represent real-life
applications. The mathematical model for the proposed problem has
been adjusted as necessary and a metaheuristic method has been
developed in order to achieve good solutions in shorter times. The
method is a Variable Neighbour Descent algorithm using four different
neighbourhood structures and a tabu list is added to the algorithm to
be used in some neighbourhood movements to make the solution space
search more efficient. The perturbation operator also diversifies the
search by making large changes on the solution. The proposed
algorithm was compared with the mathematical model results and
performed better on the sample sets used.

 Bu çalışmada, Aile Gezgin Satıcı Problemi ele alınmış ve gerçek yaşam
uygulamalarını daha doğru yansıtabilmek için modele zaman kısıtları
dahil edilmiştir. Önerilen problemin matematiksel modeli gerektiği
şekilde uyarlanmış ve daha kısa sürelerde iyi çözümler elde edebilmek
amacıyla bir meta-sezgisel yöntem geliştirilmiştir. Bu yöntem, dört
farklı komşuluk yapısı kullanan ve bazı komşuluk hareketlerinde tabu
listesi eklenerek çözüm uzayının daha verimli taranmasını sağlayan
Değişken Komşu İniş algoritmasıdır. Ayrıca, çözüm üzerinde büyük
değişiklikler yaparak aramayı çeşitlendiren bir pertürbasyon operatörü
de uygulanmıştır. Önerilen algoritma, matematiksel modelin
sonuçlarıyla karşılaştırılmış ve kullanılan örnek setlerinde daha iyi
performans göstermiştir.

Keywords: Family travelling salesman problem, variable
neighbourhood descent, travelling salesman problem

 Anahtar: Aile gezgin satıcı problemi, değişken komşu iniş, gezgin
satıcı problemi

1 Introduction

Routing problems have been widely studied in operations

research due to their extensive real-life applications [1]. The

common objective in such problems is to generate optimised

routes that optimise an objective function, the most common

objective is cost minimisation. The Travelling Salesman

Problem (TSP) [2] is one of the most extensively researched

routing problems. Given a starting node (depot), a set of cities

and a matrix of costs between cities, the TSP aims to identify the

least-cost Hamiltonian tour. Over the years since the problem's

inception, numerous variants of the TSP representing real-life

problems have been introduced in different studies. A variant

of the Generalized Travelling Salesman Problem (GTSP) arises

when the visiting nodes are divided into clusters and exactly

one node from each cluster must be visited [3]. This is known

as the Family Travelling Salesman Problem (FTSP). However,

this problem includes the condition that not only one node from

each set of nodes must be visited, but a predetermined number

of nodes.

Generalized Covering Salesman Problem (GCSP), defined by [4]

is another problem that is similar to FTSP. The objective of the

GCSP is to identify the optimal route, in terms of cost, that

encompasses all specified nodes. The primary characteristic of

*Corresponding author/Yazışılan Yazar

this problem is that each data node is covered by at least one

route node, subject to the coverage constraint. In GCSP, the

nodes that fulfil the coverage constraint with each other are in

the same cluster, while in FTSP they are in the same family.

There are many studies in the literature for these problems

[5],[6].
The concept of FTSP was first introduced by [7] to describe the
order picking problem in warehouses where products of the
same type are stored in different locations, whether in different
warehouses or within the same warehouse. Considering the
recent technological developments, it is no longer necessary to
store the same products in the same departments. Warehouses
that adopt a chaotic storage system [8], where there are no
predetermined storage sections for storing products, are the
practical applications of FTSP. Such storage systems allow for
more flexible optimisation of order tracking and management.
In GCSP, the nodes are represented as clusters and all clusters
must be visited, in which case, if the clusters are considered as
single elements, the problem becomes a TSP and is classified as
an NP-hard problem like TSP [6]. FTSP is also a special subtype
of GCSP and is in the same difficulty level. Due to the NP-hard
nature of the problem, the use of heuristic algorithms becomes
inevitable as the problem size increases.

This study addresses FTSP, a topic that has received less
attention than similar issues in the existing literature. The
study's main contributions are outlined below.

2

• A new mathematical model has been devised by
incorporating the times for receiving and loading the
stored products into the practical applications of
FTSP.

• New test problems were generated by incorporating
the requisite parameters for the novel model into the
existing FTSP test problems documented in the
literature.

• A variable neighbour search-based meta-heuristic has
been developed to address the problem dimensions
where the mathematical model is insufficient.

The second section reviews the existing literature on FTSP,
followed by the third section, which introduces the developed
model. The fourth section explains the proposed metaheuristic
algorithm, and the final section provides a comparative analysis
of the model and metaheuristic results.

2 Literature rewiev

The objective of the literature review was to examine how the
FTSP has been addressed and the approaches that have been
adopted for solutions. Given that the FTSP is a novel variant of
the TSP, it has not yet been sufficiently examined in the existing
literature.
[7] introduced the FTSP for the management of warehouses
using modern technologies such as radio frequency
identification (RFID) where similar products are not stored
together, concluding that the TSP, which has been used to
model the warehouse management problem, is inadequate. A
binary integer mathematical programming model was
developed for the FTSP. Two metaheuristic algorithms, the
Biased Random-Key Genetic Algorithm (BRKGA) [9] and the
Greedy Randomized Adaptive Search Procedure (GRASP) with
Evolutionary Path Relinking (GRASP+evPR) [10], are proposed
for larger-size problems where the CPLEX solver is not
sufficiently effective. To assess the efficacy of the proposed
methodologies, seven instances from the TSPLIB library [11]
have been adapted to the FTSP domain, and a total of 21 test
instances have been formulated. The results demonstrate that
both algorithms exhibit promising performance on large-scale
instances, with BRGA exhibiting a notable advantage over
GRASP+ evPR on both large and medium-sized problem sets.
[12] proposed mixed-integer models for FTSP that differ in
subtour elimination constraints. The models are classified into
two categories: compact and non-compact. Compact models
comprise flow variables, whereas non-compact models include
cut inequalities. The results demonstrate that non-compact
models are more time-efficient. Furthermore, the authors
propose an Iterative Local Search (ILS) approach for large-scale
instances of FTSP and develop best known upper bounds.
[13] proposed a hybrid algorithm, Iterative Local Search (ILS)
and Genetic Algorithm (GA) [14] metaheuristics that
incorporate branch-and-cut and local search. In [12], two novel
neighbourhood mechanisms and a solution perturbation
operator were incorporated into the proposed ILS. The two
new metaheuristics enhanced the optimal upper bounds
documented in the literature for the problem. In addition to the
test instances, [7] devised a test instance generator based on
the cost matrices employed in TSP test instances in the
literature and presented new FTSP test instances.
[15] proposed an Incompatibility Constrained FTSP model that
considers the constraint of nodes in the same family that are
incompatible with each other. This constraint provides the
conditions that members of the same family should not be on
the same route. Incompatibility constraints are modelled by

defining appropriate graphs for each family. Compact and non-
compact mixed-integer mathematical models are developed
and optimal solutions are obtained up to sample sets consisting
of 127 nodes by branch-and-bound method. Two
metaheuristics, ILS and Ant Colony Optimisation (ACO) [16],
were developed and optimal solutions for the new problem
were obtained in shorter times than the exact method.
[17] introduced clustered FTSP to model warehouse systems
with scattered storages. The authors developed mixed-integer
models for multi-depot FTSP, hard clustered multi-depot FTSP,
and soft clustered multi-depot FTSP. Branch-and-cut based
algorithms were developed for solving the models, and the
validity of the models was tested using instance sets comprising
up to 200 nodes and 40 depots. The differences between the
three new proposed problems are presented, and it is found
that the hard clustered multi-depot FTSP problem is a more
challenging problem in terms of computational efficiency.
[18] focused on solving FTSP with the DNA computational
Adleman-Lipton model [19],[20]. DNA computing seeks to
solve the problem by mimicking biological processes applied to
DNA molecules. Due to the parallel processing capabilities of
DNA computing, it is stated that such problems can be solved
more efficiently compared to classical digital computing.
In the matheuristic approach proposed by [21], mathematical
programming is used for the local search process in different
parts of the solution and Genetic Algorithm is used for the
combination of solution parts. The generation of feasible
solutions was conducted using a GA, while the selection
between feasible solutions was performed using an Simulated
Annealing (SA) [22]. Subsequently, the solutions are enhanced
through a procedure devised in accordance with the concept of
Partial Optimisation Metaheuristic Under Special
Intensification Conditions (POPMUSIC) [23]. This improvement
is conducted on a part of the solution each time by applying the
mathematical programming model.
[24] defined the Capacitated FTSP (CFTSP), which differs from
the classical FTSP in that it has more than one agent and takes
into account the capacities of the agents. They stated that
capacitated agents better reflect the real-life problems of order
picking from warehouses. They proposed integer linear
programming models with five different subtour inequalities. A
Biased Random-Key Genetic Algorithm (BRKGA) with four
different decoding approaches was developed to produce
quality solutions in a short time.
The first algorithm proposed by [25] for FTSP is the Parallel
Branch Cut Method (P-BC), where the parallel processing
capability is provided by local search. The branch-and-bound
component is responsible for ensuring the optimality of the
route and identifying interesting node clusters on the same
route. The second component comprises new node search
strategies that take these clusters into account, thereby
enabling rapid pruning of nodes in the branch-and-bound tree
and local search. Another method proposed for the problem is
the Biased Random Key Genetic Algorithm with Q- Learning
(BRKGA-Q) [26], which combines metaheuristic and machine
learning techniques.
The Q-learning algorithm provides control of the parameters in
the evolutionary processes in BRKGA. P-BC reached optimal
solutions in the vast majority of known test cases and
approximately 75% of the test instances with unknown optimal
values. The metaheuristic method obtained the best known
solutions in a reasonable time for large-scale problems.
[27] developed a hyperheuristic method in which three
different Large Neighbourhood Search (LNS) [28] algorithms
are represented as low-level heuristics, taking into account the

3

subset selection and permutation properties of the problem. In
the hyperheuristic method, the selection of low-level heuristics
is either greedy or randomized. In computations utilizing
existing test cases, the proposed approach obtained optimal
solutions in a shorter time than existing methods. Furthermore,
new test instances were introduced for the problem, and the
hyperheuristic technique demonstrated satisfactory
performance on these cases as well.
The FTSP has been addressed through exact models and a
variety of metaheuristic approaches, including ILS, GA, BRKGA,
ACO, and hybrid methods. Several extensions such as
incompatibility-constrained, clustered, and capacitated FTSP
have also been studied. Overall, the literature shows that while
important progress has been achieved, further research is
needed to develop efficient algorithms for large-scale and real-
world applications.

3 Problem definition and mathematical model

The Family Travelling Salesman Problem (FTSP) has the
properties that nodes in the same family are located in different
locations and a certain number of nodes from each family must
be visited. This problem is introduced in order to ensure that
the products are collected with minimum cost in warehouses
where RFID system is used. In this study, it is aimed to increase
the similarity of the problem to real life situations by including
the time taken during the transfer of the products in the model.
In cases where products must be collected within a certain
period of time, or where the energy source (charge, fuel, battery
percentage, etc.) of the material handling system responsible
for product collection and unloading is limited, it may become
necessary to collect products within a certain time frame.
Moreover, these times may vary for each product.
FTSP can be represented by a fully connected graph, denoted
by G(V,A). 𝑉 = {0,1,2, … , 𝑁} is a set of nodes consisting of N+1
nodes, where node 0 is the starting node, i.e. the depot.

Sets Explanation

𝑽 Set of nodes including depot. 𝑉 = 𝑁 ∪ 𝑂

𝑵 Set of nodes.

𝑨 Set of edges 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉}

𝑳 Set of families 𝐿 = {1,2, … , 𝑓}

Parameters Explanation

𝒇 Number of families

𝑬𝒍
Number of nodes (members) from family
𝑙; 𝑙 ∈ {1,2, … , 𝑓}

 𝒁𝒍 Number of nodes (members) from family 𝑙 which
must be visited

𝑲𝑵
Total number of nodes to be visited;
𝐾𝑁 = ∑ 𝑧𝑙

𝐿
𝑙=1

𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … , 𝑭𝒇
Partitioned sets corresponding to families;
 𝐹1 ∪ 𝐹2 ∪ 𝐹3 ∪ … 𝐹𝑓 ∪ {0} = 𝑉

𝒄𝒊𝒋 Cost of edge 𝐴 ∈ (𝑖, 𝑗)

𝒕𝒊 Service (processing) time of node i
𝑻 Available total service

time

Variables Explanation

𝒙𝒊𝒋
Binary decision variable that equals 1 if
edge (i,j) is included in the solution

𝒖𝒊

Continuous auxiliary variable used in
Miller–Tucker–Zemlin (MTZ) subtour elimination
constraints to track node positions in the tour.

𝑀𝑖𝑛 𝑧 = ∑ 𝑥𝑖𝑗𝑐𝑖𝑗

(𝑖,𝑗)∈𝐴

(1)

∑ 𝑥0𝑗

𝑗∈𝑁

= 1
(2)

∑ 𝑥𝑖0

𝑖∈𝑁

= 1
(3)

∑ 𝑥𝑖𝑗 ≤ 1

𝑗∈𝑉

∀𝑖∈ 𝑁 (4)

∑ 𝑥𝑖𝑗 ≤ 1

𝑖∈𝑉

∀𝑗∈ 𝑁 (5)

∑ ∑ 𝑥𝑖𝑗 ≤ 𝐾𝑁 + 1

𝑗∈𝑉𝑖∈𝑉

 (6)

∑ ∑ 𝑥𝑖𝑗

𝑗∈𝑉

= 𝑍𝑙

𝑖∈𝐹𝑙

𝑙 = {1,2, … , 𝑓} (7)

∑ ∑ 𝑥𝑖𝑗

𝑖∈𝑉

= 𝑍𝑙

𝑗∈𝐹𝑙

𝑙 = {1,2, … , 𝑓} (8)

∑ 𝑡𝑗𝑥𝑖𝑗 ≤ 𝑇

(𝑖,𝑗)∈𝐴

 (9)

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖𝑗) ∀𝑖,𝑗∈𝑉
(10)

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖,𝑗∈𝑉
(11)

𝑢𝑖 ∈ 𝐼𝑅 ∀𝑖∈𝑉
(12)

Equation (1), which expresses the objective function, ensures
that the distance or cost is minimised. Constraints (2) and (3)
define that the tour should start from the depot and end at the
depot. The constraints that ensure that a node is visited only
once and then left are expressed by constraints (4) and (5). The
sum of the number of visits in all families determines the total
number of nodes that need to be visited and this is defined by
constraint (6). Constraints (7) and (8) ensure that the required
number of nodes from each family are visited and left. In
contrast to the models presented in previous studies, constraint
(9) considers the total processing time of the nodes to be visited
in order to ensure that the total time available is not exceeded.
(10) represent the subtour elimination constraints, also known
as Miller-Tucker-Zemlin constraints [29]. (11) and (12)
describe the properties of the decision variables. The
mathematical model is based on the model proposed by [7],
with the exception of (9), which prevents time violations, and
(10), which prevents subtours.
Figure 1. shows a feasible solution for the instance Bayg_29.
The points scattered on the coordinate plane represent the
nodes to be visited. Nodes of the same family are visualized
with the same color. According to the constraints in the
mathematical model of the problem, given the number of
members in each family and the number of nodes to visit from
that family, the shortest possible route between the nodes to be

4

visited is determined without exceeding the maximum time
available.

Figure 1. A feasible solution for Bayg_29.

4 Methodology

In TSPs, which are easy to define but very difficult to solve, the
increase in the number of cities makes it difficult to find a
solution in an acceptable time period with exact solution
methods. Due to this feature, heuristic and metaheuristic
methods are frequently used to solve the TSP, which is

classified as NP-Hard [30]. Metaheuristic algorithms can find
optimal solutions in a short time [31]. Since FTSP is in the NP-
Hard problem class, a metaheuristic algorithm is needed to
reach efficient solutions in a short time, so a Variable Neighbour
Descent (VND) algorithm [32], which includes Tabu Search and
perturbation mechanisms, is proposed in this study. VND is a
local search algorithm that starts with an initial solution and
improves the solution by iteratively searching between
different neighbourhoods. While the VND algorithm allows for
intensification during the search, the Tabu Search mechanism
is embedded in the proposed algorithm in a similar approach to
[33] in order to provide diversification. Thus, it is aimed to
perform a more efficient search among the solutions. Tabu
Search (TS) is a memory-oriented search method proposed by
[34]. Unlike Local Search algorithms, it is an important method
that has been used by researchers for years due to its high
performance in exploring different regions of the solution space
thanks to its memory feature. In the proposed method,
diversification is achieved by avoiding the same similar
solutions by preventing the repetition of the movements made
in some of the neighbourhoods used in the proposed method
during the tabu tenure. Diversification is enhanced by the tabu
mechanism and a perturbation operator. Algorithm 1 contains
the pseudocode of the proposed algorithm.

Algorithm 1: VND with Tabu Tool

Input: Max_Time, Max_Iter, NoImproveLimit, Tabu_Tenure, Tabu_List = {}
Output: Global Best Solution
Current ← Create_Initial_Solution();
Global_Best ← Current
no_improve_counter = 0
For iter = 1 to max_iter do
best_solution = None
 For all neighbourhoods
 new_solution ← Neighbourhood(current);
 if new_solution(time)< max_time and new_solution(cost)≤best_solution(cost) then
 best_solution←new_solution;
 if best_solution<current
 current←best_solution;
 Update(Tabu_list);
 Update(no_improve_counter);
 if current < global_best
 global_ best ← Local_Search(current);
 if no_improve_count greater than NoImproveLimit
 current ← perturbation(current);

Return global_best

Figure 2. Pseudecode for proposed algorithm.

The algorithm starts with an initial solution. The initial
solution is a feasible solution obtained by running the
mathematical model for a specific period of time for small-
sized problems. For medium and large size problems, the
initial solution is determined as a random feasible solution
since a feasible solution cannot be found in a short period of
time with the exact solution methods of the mathematical
model. The max_sure in the input parameters expresses the
available time constraint of the problem. Tabu list and tabu
tenure are the elements of the tabu search mechanism defined
as parameters and used in the algorithm. If the algorithm fails
to improve for a certain number of iterations, this is a stopping
condition and as a result the algorithm stops. If no
improvement can be achieved for a smaller number of
iterations before the stopping condition is reached, the

perturbation mechanism is activated and a different region of
the solution space is searched. VND allows iterative search
between neighbourhoods, where four different
neighbourhood structures are defined in the proposed
algorithm. Based on the current solution, a certain number of
neighbouring solutions are generated from a neighbourhood
structure and saved as new_solution.
The best solution among the new solutions generated with the
relevant neighbourhood structure is saved as best_solution.
Best_solution is assigned as the current solution if it has a
better result than the current solution. If the neighbourhood
structure is one of the neighbourhood structures to be
included in the tabu list, the tabu list is updated and the
global_best check is performed. The loop is completed for all
neighbourhoods and if there is no change in global_best during

5

a certain number of iterations, the perturbation operator is
called and the current solution is modified and the algorithm
continues over the new current solution. When a certain
number of iterations is reached, the algorithm stops and
returns the best solution found.
Neighbourhood structures determine the strategy for
exploring the solution space and have a significant impact on
the performance of the algorithm. The proposed VND includes
four different neighbourhood procedures. The first
neighbourhood structure is given in Algorithm 2 a random
node from the current route is selected. The family of this node
is identified, and then another node from the same family that
has not yet been visited is randomly chosen. The visited node
is removed from the route, and the unvisited family member is
inserted into every possible position in the route. Finally, the
best position is selected based on the minimum route cost.
The second neighbourhood given in Algorithm 3 procedure
involves a similar approach to the first neighbourhood. While

in the first neighbourhood a random node is first selected from
the current route, in the second neighbourhood a random
family is selected. A member of the selected family that is
present in the current route is replaced by any of the
remaining unvisited members of the family. After the
replacement process, the newly added member is placed in the
lowest cost position in the current route.
Neighbourhood 3 and Neighbourhood 4 structures are
designed based on the LNS_1 and LNS_2 methods proposed by
[27]. In their study, Pandiri and Singh [27] proposed a hyper-
heuristic that selects between Large Neighbourhood
algorithms. Among the algorithms, which they call LNS,
selections are made according to different criteria. In the
method proposed in this study, these search methods are
added to the LNS algorithm as neighbourhood.

Algorithm 2: First Neighborhood Procedure

Input: A feasible solution, best_distance = ∞

Output: New solution, move

 element1 ← Choose a random element from solution;

 Family[i] ← Find family index for element1;

 element2 ← Choose a random unvisited member from Family[i];

 Extract (element1) from solution;

 For each (index) in solution;

 New_solution ← solution(element2)

 New_distance ← calculate cost for new solution

 if new_distance < best_distance then;

 best_distance ← new_distance

 best_location ← [index]

 move ← (element1, element2)

Return New_solution, move

Figure 3. Pseudecode for neighbourhood-1.

Algorithm 3: Second Neighborhood Procedure

Input: A feasible solution, best_distance = ∞
Output: New solution, move
 Family[i] ← Choose random family index for element1;
 element1 ← Chooese a random visited member from Family[i];
 element2 ← Choose a random unvisited member from Family[i];
 Extract (element1) from solution;
 For each (index) in solution;
 New_solution ← solution(element2)
 New_distance ← calculate cost for new solution
 if new_distance < best_distance then;
 best_distance ← new_distance
 best_location ← [index]
 move ← (element1, element2)
Return New_solution, move

Figure 4. Pseudecode for neighbourhood-2.

6

Algorithm 4: Third Neighborhood Procedure

Input: A feasible solution, best_distance = ∞
Output: New solution
 n ← number of elements of feasible solution

 Min_removed ← 1

 Max_removed ← n

 Num_removed←random number(min_removed,max_removed)

 Removed_elements ← Extract num_removed number of elements from feasible solution and Add;

 New_solution ← Extract Removed_elements from feasible solution;

 For each elements in Removed_elements;
 New_solution ←Add element[i] best position in New_solution;

Return New_solution

Figure 5. Pseudecode for neighbourhood-3.

Algorithm 5: Fourth Neighborhood Procedure

Input: A feasible solution, best_distance = ∞
Output: New solution
 n ← number of elements of feasible solution

 Min_removed ← 1

 Max_removed ← n

 Num_removed←random number(min_removed,max_removed)

 Removed_elements ← Extract num_removed number of elements from feasible solution and Add;

 New_solution ← Extract removed_Elements from feasible solution;

 For each element in removed_elements;

 Family [i] ←Find family index for element

 For unvisited_elements in Family[i];
 New_solution ←Add unvisited_element[i] best position in new_solution

 New_distance ← calculate cost for new solution
 if new_distance < best_distance then;
 best_distance ← new_distance

Return New_solution

Figure 6. Pseudecode for neighbourhood-4.

Neighbourhood 1 and neighbourhood 2 procedures involve
low levels of perturbation and repair by replacing one node on
the feasible solution. In Neighbourhood 3 and 4, a random
number of nodes between 1 and the number of nodes in the
route (n) are replaced, so the level of perturbation in the route
is higher. For Neighbourhood 3, each element removed from
the route is inserted to its best position in the route, i.e. the
position that will provide the lowest cost. Neighbourhood 4, on
the other hand, allows a large-scale change and the family
indices of the nodes to be removed from the route are
determined and each unvisited member within these families
is placed in the best position in the route. Among the unvisited
members, the member with the best cost value is selected and
added to the best position sequence. Algorithms 4 and 5 show
the pseudo-codes of neighbourhood 3 and neighbourhood 4
structures respectively.
Neighbourhood 1 and neighbourhood 2 allow to change a
single node on the current route and this movement does not
cause a significant change in the solution. In order to prevent
these neighbourhoods from making the same movements over
and over again and to scan the solution space more efficiently,
their movements are stored in the tabu memory and the same
movement is prevented from repeating for a certain period of
time.

Within the scope of the algorithm, a better solution is obtained
with neighbourhood functions, but this solution may not be
locally best. If the new solution obtained in one iteration is
better than the current solution, it is assigned as the current
solution and the 2-opt local search algorithm can be applied to
create a better route by correcting unnecessary long routes in
the route and creating a shorter route. 2-opt creates a shorter
route by selecting two edges in the current route and
rearranging (reversing) these edges. If the distance between
two nodes can be improved, these two edges are swapped,
thus reducing the total distance.
The perturbation operator is used when the solution cannot be
improved for a given number of iterations. The operator takes
a sequence of the current route and inverts it. Perturbation
allows the algorithm to explore different solution spaces.
When all improvement opportunities in a given region are
exhausted in local searches, the perturbation operator is used
to move to a different region of the solution space.
In this study, computational experiments were carried out on
benchmark instances of three different sizes to investigate the
impact of the proposed neighborhood structures, both
individually and in combination, on solution performance.
To ensure a fair comparison, the total number of candidate
solutions generated in each iteration was kept constant. The
strategies were defined according to the specific combinations

7

of neighborhoods employed. Here, N1, N2, N3, and N4
correspond to Neighborhood–1, Neighborhood–2,
Neighborhood–3, and Neighborhood–4, respectively. Each
strategy was evaluated over 10 independent runs for each test
instance, and the minimum and average solution costs
obtained were recorded.

Table 1. comparison of neighborhood strategies

Instance bier_127_1
T = 173

a_280_1
T = 480

pr_264_1
T = 380

Strategy Min Avg Min Avg Min Avg

N1 45989.70 75953.81 2035.29 2079.66 36815.0 39126.4

N2 46528.82 76007.72 2066.05 2104.93 37383.0 39392.6

N3 64470.82 78838.47 2125.33 2180.64 39242.0 41710.5
N4 64260.79 78200.18 2261.97 2339.27 40592.0 44010.4

N1→N3 43273.20 75682.16 1942.88 1996.02 35727.0 36747.2
N2→N3 47881.32 76142.97 1911.63 2012.48 36590.0 38092.2
N2→N4 49625.90 76317.43 2081.08 2152.13 36487.0 39415.5
N1→N4 50375.86 76392.42 2038.49 2094.55 37723.0 40093.9

N2→N1→N3 42225.81 75577.42 1918.76 2002.83 35572.0 36699.3
N1→N3→N4 42501.39 75604.97 1917.89 2013.62 36087.0 37822.6
N2→N1→N4 47031.97 76058.03 1919.96 2002.03 36748.0 38746.2
N2→N3→N4 48440.09 76198.84 1982.61 2041.81 37946.0 39268.3

N2→N1→N3→N4 41931.75 75548.01 1878.50 1961.29 35483.0 36668.5

Figure 7. Trend of minimum solution values across
neighborhood strategies

According to the results presented in Table 1 and Figure 7, the
performance of different neighborhood strategies varies
notably depending on whether they are applied individually or
in combination. Single and paired neighborhoods yield
relatively weaker results, while three-neighborhood strategies
achieve moderate improvements. However, the four-
neighborhood strategy (N2→N1→N3→N4) consistently
outperforms the others across all benchmark instances,
delivering the lowest minimum and average solution costs.
These findings highlight that the proposed four-neighborhood
strategy is the most effective approach, as the diversity of
neighborhood structures significantly enhances the
performance of the VND algorithm.

5 Computational experiments

In this study, which also considers the time constraint for
FTSP, the instances first defined in the literature by [7] and
recently added to the literature by [27] are used as a basis for
comparing the mathematical programming model and
algorithm and measuring their performance. Time parameters
were added to some of the instance sets taken from these two
studies, and they were made appropriate for the defined
model.
All computational experiments were performed on a PC with
Intel Core™ i5-8400 processor, 2.80GHz and 16 GB RAM. The
algorithm and mathematical model were written in PYTHON
version 3.8 and GUROBI 9.1.1 solver was used to solve the
model.
In the first set of test instances shared by [7], the problem size
ranged from 14 to 280. Each example was solved three times

with different time constraint (T) values. T values were
determined to be smaller than the total time value obtained in
the solution without time constraint. The nodes to be visited
are selected and sorted in such a way that the family member
constraints are met, the maximum time available, i.e. the T
value, is not exceeded and the total cost is minimised. Table 1
summarises the results of the province data set group. The
GUROBI results of the model for different T values and the
results of the proposed heuristic for the problem are
presented in the table. In order to prove the time efficiency of
the method, the solution time results of the method are given
in seconds in the Time column. The method is run ten times for
each instance and the results are shared with maximum,
minimum and average values.
The model solution time was set to 120 seconds for results
marked with (*) and 240 seconds for results marked with (**).
In all problems where the model can reach the best solution,
the proposed method has achieved the best results in
minimum and average values. The proposed method showed
better performance in all criteria in the results that the model
could reach within the specified time.
The solutions obtained with the instances taken from the data
sets shared by [27] in their study are given in Table 2. For these
instance sets, the mathematical solution time was set as 300
seconds and no optimal solution was obtained in the specified
time for any problem. The proposed VND algorithm with tabu
mechanism achieved better results in much shorter times in all
instances. In order to test the significance of the differences
between the objective functions of the mathematical model
and the proposed method, a statistical t-test was applied on
the average results of the proposed method. Before the t-test,
normality test was performed on both sets of results and it was
determined that the values were normally distributed.
The null hypothesis was designed to state that there is no
difference between the averages of both samples and the
alternative hypothesis was designed to state that the average
of the values including the method results is less. The
confidence level for the t-test was set to 95%. If the p-value is
less than 0.05 as a result of the analysis performed at the
specified confidence interval, it will be concluded that the
alternative hypothesis should be accepted, that is, it is
statistically ensured that the metaheuristic method has better
values according to the objective function. As a result of the
analysis, p-value = 0.023 is found and since it is less than the
threshold value, the method has lower total tour cost values.

40000,00

45000,00

50000,00

55000,00

60000,00

65000,00

M
in

Strategy

8

Table 3. Results for second instance set.
 Gurobi Matheuristic Gurobi Matheuristic Gurobi Matheuristic

Instance Min Max Avr Time Min Max Avr Time Min Max Avr Time

gr_137_1
T = 273 T = 260 T = 250

59599 45251 47381 46336.1 15.89 57663 46134 49938 48005.4 14.0 62036 47343 51008 49085.4 13.80

gr_137_2
T= 170 T= 160 T = 150

44238 37096 39032 38046.3 5.43 43793 36909 39785 38835.7 5.58 47417 38324 42120 39768.2 5.88

gr_137_3
T=365 T = 350 T= 345

64707 56243 59472 57522.1 25.25 68406 56404 61174 58269.5 24.49 59720 57852 62387 59141.7 26

kro_150_1
T = 235 T = 220 T = 210

19413 15429 16671 160035 19.29 21028 15761 17369 16522.5 22.17 17159 16279 18386 17042.0 20.70

kro_150_2
T= 155 T= 140 T = 130

11948 10597 12543 11470.0 6.88 14925 10495 14301 12091.0 6.96 13388 10989 13926 12436 6.3

kro_150_3
T=350 T = 340 T= 320

29057 21532 22473 21927.0 32.88 32467 21372 22923 22195 36.45 27978 22761 24747 23618.0 152.58

rat_195_1
T=275 T=260 T=250

1809 1317 1431 1384.0 24.36 1758 1357 1477 1411.0 23.03 1932 1346 1444 1409.0 24.57

rat_195_2
T= 195 T = 180 T= 170

1428 954 1046 1006.0 9.90 1207 952 1052 9967 9.21 1275 956 1066 1009 9.54

rat_195_3
T = 430 T=410 T = 390

2221 1854 1954 19048 61.05 2339 1872 2004 19192 55.09 2403 1891 2018 1938.0 60.68

gr_202_1
T= 320 T = 300 T = 290

33590 23098 24407 23796.0 51.80 37991 23284 25467 24356.0 51.01 32859 23884 28452 25277.0 57.54

gr_202_2
T = 210 T = 200 T = 185

26918 15680 17974 16742.0 17.46 21326 15347 17251 16411.0 16.88 24237 15347 17251 16411 16.88

gr_202_3
T = 455 T = 440 T = 430

46780 35308 36925 35942.0 77.22 45567 35697 37382 36349 81.38 43790 35971 38115 36786.0 58.72

pr_264_1
T = 405 T = 390 T = 380

66310 34828 36075 35377.0 88.45 56168 35157 36478 35575.0 77.96 48864 35345 38122 36488.0 85.19

pr_264_2
T = 270 T = 250 T = 240

44553 28949 30173 29498.0 31.10 44099 28839 30077 29329.0 30.05 47772 29138 30071 297357 29.6

pr_264_3
T = 635 T= 620 T = 610

79124 41658 43911 42789.0 188.85 75154 41656 46944 436394 187.87 68808 41553 45454 43353.0 185.64

6 Conclusion and future work

In this paper, we focus on FTSP, a new type of TSP, which is a
well-known problem proposed to be adapted in real-life
applications. Unlike the other works in the literature that deal
with the TSP, in this study, a more real-life-like proposal is
presented by defining times for the visited nodes and adding
the constraint that the available time should not be exceeded

while creating the route. A mathematical model of the problem
is defined and a metaheuristic method is developed to
approach efficient solutions in a shorter time. The proposed
metaheuristic is a Variable Neighbour Descent algorithm with
four different neighbourhood procedures. Two of the
neighbourhood structures provide diversification and
intensification by allowing small-scale changes while the other
two provide diversification and intensification by allowing

Table 2. Results for first instance set.

 Gurobi Metaheuristic Gurobi Metaheuristic Gurobi Metaheuristic

Instance Min Max Avr Time Min Max Avr Time Min Max Avr Tine

burma_14_1

T = 8 T = 9 T = 10

21.32580 21.32580 21.32580 21.32580 0.16 15.73500 15.73500 15.73500 15.73500 0.16 13.9323 13.9323 13.9323 13.9323 0.15

burma_14_2

T = 30 T = 27 T = 25

25.6562 25.6562 25.6562 25.6562 0.28 25.8494 25.8494 25.8494 25.8494 0.29 25.8494 25.8494 25.8494 25.8494 0.29

burma_14_3

T = 5 T = 6 T = 7

19.9526 19.9526 19.9526 19.9526 0.32 14.3618 14.3618 14.3618 14.3618 0.44 11.8860 11.8860 11.8860 11.8860 0.50

bayg_29_1

T= 42 T= 37 T = 34

5345.86 5345.86 5345.86 5345.86 0.56 5366.08 5366.08 5366.08 5366.08 1.28 5394.01 5394.01 5394.01 5394.01 1.32

bayg_29_2

T= 42 T = 40 T = 38

5791.01 5791.01 5791.01 5791.01 1.21 5813.39 5813.39 5813.39 5813.39 1.81 5863.23 5863.23 5863.23 5863.23 1.75

bayg_29_3

T= 44 T = 41 T = 36

5544.33 5544.33 5544.33 5544.33 2.77 5775.91 5775.91 5775.91 5775.91 1.41 6171.53 6171.53 6171.53 6171.53 1.02

att_48_1
T= 100 T=90 T = 86

23686.02 23686.02 23686.02 23686.02 13.27 25584.55 25584.55 25584.55 25584.55 13.39 27639.26 27639.26 27639.26 27639.26 7.8

att_48_2

T= 74 T = 70 T = 65

20826.23* 20609.08 20826.23 20646.75 12.18 21232.54* 20653 20991 20754 12.2 20950.43* 20812.61 21246.49 20930.29 12.19

att_48_3

T= 47 T = 40 T = 35

9335.07* 9024.58 9100.79 9044.49 11.11 9292.32 9292.32 9353.1 9347.02 20.9 10482.19* 10420.58 10482.19 10463.7 23.2

bier_127_1

T= 173 T = 165 T = 160

44911.4* 37946.62 39256.71 38573.10 98.30 47072.4822* 38129.81 39935.12 39147.11 95.87 48465.92* 38423.47 50985.20 42297.82 98.4

bier_127_2

T= 245 T= 230 T = 210

105539.66* 90005.35 92751.26 91876.98 135.60 106276.36* 92668.14 94753 93910 144.0 113974.212* 97586.75 100619.82 99157.8 149.8

bier_127_3

T = 182 T= 170 T=160

53835.46* 47827.02 48557.07 48312.03 80.02 59381.88* 48698.96 49767.74 48900.25 80.29 56256.19* 49993.43 51468.62 50525.75 79.9

a_280_1

T= 520 T = 500 T = 480

3229.11** 1902.99 2376.16 1979.85 142.88 3323.622** 1814.82 1952.65 1891.82 202.19 3100.35** 1903.86 2040.91 1957.22 190.2

a_280_2

T=443 T=430 T= 410

3110.5** 1679.10 1775.66 1726.52 153.19 2998.08** 1699.32 1850.44 1748.49 151.2 2960.45** 1741.57 1832.20 1776.39 127.7

a_280_3

T = 403 T= 390 T = 370

2620.97** 1504.73 1631.23 1583.91 106.04 2826.9** 1500.3 1668.48 1598.15 102 2779.29** 1571.26 1709.8 1637.56 107.6

9

large-scale changes. The tabu mechanism, on the other hand,
prevents returning to the same solutions in the near future and
contributes to diversification by taking the actions in the first
neighbourhood to the tabu list. By applying the 2-opt
algorithm on the existing solutions, the improvement rate is
increased in each iteration. If no improvement is observed as
the iterations progress, the perturbation operator makes
significant changes to the current solution, allowing different
regions to be searched. The proposed algorithm is tested using
test instances from the literature. In this study, time
information for each visit node was added to the existing
information in the test instances. Since the mathematical
model solutions require a long time, a threshold value was set
for the solution time and the performance was measured
according to the results found within this solution time. Each
of the test cases was solved using different T values. As a result,
VND achieved the best solutions in small size problems and as
the problem size increased, it achieved better solutions in
much shorter times compared to the mathematical model
solver.
In future work, a new VND algorithm with different
neighbourhood structures and more complex algorithmic
improvements can be designed. Hybrid approaches can be
developed to improve the performance of this algorithm. For
example, simulated annealing can be used to improve initial
solutions, and genetic algorithm operators can be used to
provide diversity and avoid local optima. In addition, machine
learning algorithms can be integrated to harmonise the
algorithm with the learning processes and make it adaptive.
This hybrid VND algorithm can produce more flexible and
efficient solutions by adapting itself according to different
problem characteristics.
For performance evaluation, making use of all datasets defined
on FTSP in the existing literature allows for more
comprehensive comparative analyses. In this context, the
strengths and weaknesses of the algorithm can be identified by
performing detailed analyses on the data sets. In addition,
simulating different scenarios by creating new instances and
studying the generalisability of the algorithm can increase the
adaptability of the model to practical implementations.

7 Author contribution statements

In the scope of this study, Author 1 in the formation of the idea,
the design, the assessment of obtained results, the literature
review, supplying the data used, and examining the results.

8 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared. There is no conflict of
interest with any person/institution in the article prepared.

9 References

[1] Dursunoglu CF, Arslan O, Demir SM, Kara BY, Laporte
G. “A unifying framework for selective routing
problems”. European Journal of Operational
Research, 2024.

[2] Dantzig G, Fulkerson R, Johnson S. “Solution of a

large-scale traveling-salesman problem”. Journal of
the Operations Research Society of America, 2(4), 393-
410, 1954.

[3] Fischetti M, Salazar González J J, Toth P. “A branch-
and-cut algorithm for the symmetric generalized

traveling salesman problem”. Operations Research,
45(3), 378-394, 1997.

[4] Golden B, Naji-Azimi Z, Raghavan S, Salari M, Toth P.
“The generalized covering salesman problem”.
INFORMS Journal on Computing, 24(4), 534-553,
2012.

[5] Shaelaie MH, Salari M, Naji-Azimi Z. “The generalized
covering traveling salesman problem”. Applied Soft
Computing, 24, 867-878, 2014.

[6] Pop PC, Cosma O, Sabo C, Sitar CP. “A comprehensive
survey on the generalized traveling salesman
problem”. European Journal of Operational Research,
314(3), 819-835, 2024.

[7] Morán-Mirabal L F, González-Velarde JL, Resende
MG. “Randomized heuristics for the family traveling
salesperson problem”. International Transactions in
Operational Research, 21(1), 41-57, 2014.

[8] Papcun P, Cabadaj J, Kajati E, Romero D, Landryova L,
Vascak J, Zolotova I. “Augmented reality for humans-
robots interaction in dynamic slotting 'chaotic
storage' smart warehouses”. In Advances in
Production Management Systems. Production
Management for the Factory of the Future: IFIP WG
5.7 International Conference, APMS 2019, Austin, TX,
USA, September 1–5, 2019, Proceedings, Part I, pp.
633-641, Springer International Publishing, 2019.

[9] Gonçalves JF, Resende MG. “Biased random-key
genetic algorithms for combinatorial optimization”.
Journal of Heuristics, 17(5), 487-525, 2011.

[10] Festa P, Pardalos PM, Resende MG, Ribeiro CC.
“Randomized heuristics for the MAX-CUT problem”.
Optimization Methods and Software, 17(6), 1033-
1058, 2002.

[11] Reinelt G. “TSPLIB—a traveling salesman problem
library”. ORSA Journal on Computing, 3, 376–384,
1991.

[12] Bernardino R, Paias A. “Solving the family traveling
salesman problem”. European Journal of Operational
Research, 267(2), 453-466, 2018.

[13] Bernardino R, Paias A. “Heuristic approaches for the
family traveling salesman problem”. International
Transactions in Operational Research, 28(1), 262-
295, 2021.

[14] Holland JH. “Adaptation in natural and artificial
systems: an introductory analysis with applications
to biology, control, and artificial intelligence”. MIT
Press, 1992.

[15] Bernardino R, Paias A. “The family traveling
salesman problem with incompatibility constraints”.
Networks, 79(1), 47-82, 2022.

[16] Dorigo M, Birattari M, Stutzle T. “Ant colony
optimization”. IEEE Computational Intelligence
Magazine, 1(4), 28-39, 2006.

[17] Bernardino R, Gouveia L, Paias A, Santos D. “The
multi-depot family traveling salesman problem and
clustered variants: Mathematical formulations and
branch-&-cut based methods”. Networks, 80(4), 502-
571, 2022.

[18] Wu X, Wang Z, Wu T, Bao X. “Solving the family
traveling salesperson problem in the Adleman–
Lipton model based on DNA computing”. IEEE
Transactions on NanoBioscience, 21(1), 75-85, 2021.

[19] Adleman LM. “Molecular computation of solutions to
combinatorial problems”. Science, 266(5187), 1021-
1024, 1994.

10

[20] Lipton RJ. “DNA solution of hard computational
problems”. Science, 268(5210), 542-545, 1995.

[21] Nourmohammadzadeh A, Sarhani M, Voß S. “A
matheuristic approach for the family traveling
salesman problem”. Journal of Heuristics, 29(4), 435-
460, 2023.

[22] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. “Optimization
by simulated annealing”. Science, 220(4598), 671-
680, 1983.

[23] Ribeiro CC, Hansen P, Taillard ED, Voss S.
“POPMUSIC-Partial optimization metaheuristic
under special intensification conditions”. Essays and
Surveys in Metaheuristics, 613-629, 2002.

[24] Domínguez-Casasola S, González-Velarde JL, Ríos-
Solís YÁ, Reyes-Vega KA. “The capacitated family
traveling salesperson problem”. International
Transactions in Operational Research, 31(4), 2123-
2153, 2024.

[25] Chaves AA, Vianna BL, da Silva TT, Schenekemberg
CM. “A parallel branch-and-cut and an adaptive
metaheuristic to solve the Family Traveling
Salesman Problem”. Expert Systems with
Applications, 238, 121735, 2024.

[26] Chaves AA, Lorena LHN. "An adaptive and near
parameter-free BRKGA using Q-learning method".
2021 IEEE Congress on Evolutionary Computation
(CEC), Kraków, Poland, 2021, June 28.

[27] Pandiri V, Singh A. “Solution of the family traveling
salesman problem using a hyper-heuristic
approach”. Engineering Applications of Artificial
Intelligence, 133, 108193, 2024.

[28] Shaw P. “Using constraint programming and local
search methods to solve vehicle routing problems”.
In International Conference on Principles and Practice
of Constraint Programming, pp. 417-431, Berlin,
Heidelberg, 1998.

[29] Miller CE, Tucker AW, Zemlin RA. “Integer
programming formulation of traveling salesman
problems”. Journal of the ACM, 7(4), 326-329, 1960.

[30] Şahin Y, Karagül K. “Gezgin satıcı probleminin melez
akışkan genetik algoritma (MAGA) kullanarak
çözümü”. Pamukkale Üniversitesi Mühendislik
Bilimleri Dergisi, 25(1), 106-114, 2019.

[31] Wen X, Zhang X, Xing H, Ye G, Li H, Zhang Y, Wang H.
“An improved genetic algorithm based on
reinforcement learning for aircraft assembly
scheduling problem”. Computers & Industrial
Engineering, 110263, 2024.

[32] Hansen P, Mladenović N. “An introduction to variable
neighborhood search”. Meta-heuristics: Advances and
Trends in Local Search Paradigms for Optimization,
pp. 433-458. Boston, MA: Springer US, 1999.

[33] Crispim J, Brandão J. “Metaheuristics applied to
mixed and simultaneous extensions of vehicle
routing problems with backhauls”. Journal of the
Operational Research Society, 56(11), 1296-1302,
2005.

[34] Glover F. “Tabu search—part I”. ORSA Journal on
Computing, 1(3), 190-206, 1989.

