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Abstract

In this study, the Family Travelling Salesman Problem is considered and
time constraints are included in the model to better represent real-life
applications. The mathematical model for the proposed problem has
been adjusted as necessary and a metaheuristic method has been
developed in order to achieve good solutions in shorter times. The
method is a Variable Neighbour Descent algorithm using four different
neighbourhood structures and a tabu list is added to the algorithm to
be used in some neighbourhood movements to make the solution space
search more efficient. The perturbation operator also diversifies the
search by making large changes on the solution. The proposed
algorithm was compared with the mathematical model results and
performed better on the sample sets used.

Keywords: Family travelling salesman problem, variable
neighbourhood descent, travelling salesman problem
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0z r\m
Bu ¢alismada, Aile Gezgin 1Wfoblemi ele alinmis ve gercek yasam
uygulamalarint daha dog itabilmek icin modele zaman kisitlari
dahil edilmistir. Onerf oblelhin matematiksel modeli gerektigi
sekilde uyarlanmigs v stirelerde iyi ¢éziimler elde edebilmek
amactyla bir me Z, lyontem gelistirilmistir. Bu yontem, dért
farkli komsuluk 1siWyllanan ve bazi komsuluk hareketlerinde tabu
listesi eklenel ONyn uzayinin daha verimli taranmasini saglayan
Degisken o is algoritmasidir. Ayrica, ¢é6ziim lizerinde biiyiik
de, "i)s‘% aparak aramayi cesitlendiren bir pertiirbasyon operatért
U

mistir.  Onerilen algoritma, matematiksel modelin
nu a karsilastirilmis ve kullanilan érnek setlerinde daha iyi
p rifjans gostermigtir.

#Anahtar: Aile gezgin satic1 problemi, degisken komsu inis, gezgin
saticl problemi

K
1 Introduction ) \

Routing problems have been widely studidd in ®pehattons

research due to their extensive real-life applicatio . The

common objective in such problems is fo até®optimised

routes that optimise an objective functi ost common
objective is cost minimisation. T rayelling Salesman
Problem (TSP) [2] is one of the tehsively researched
routing problems. Given a sta (depot), a set of cities
and a matrix of costs betweerl\git e TSP aims to identify the
least-cost Hamiltonian toQ the years since the problem's
inception, numero \% of the TSP representing real-life
problems have b \ ced in different studies. A variant
of the Generalj rayelling Salesman Problem (GTSP) arises
when the vj '%0 es are divided into clusters and exactly
one na}e % cluster must be visited [3]. This is known
1

ravelling Salesman Problem (FTSP). However,

as,
thi
each sé

aroblem includes the condition that not only one node from
of nodes must be visited, but a predetermined number
of nodes.

Generalized Covering Salesman Problem (GCSP), defined by [4]
is another problem that is similar to FTSP. The objective of the
GCSP is to identify the optimal route, in terms of cost, that
encompasses all specified nodes. The primary characteristic of

*Corresponding author/Yazisilan Yazar

this problem is that each data node is covered by at least one
route node, subject to the coverage constraint. In GCSP, the
nodes that fulfil the coverage constraint with each other are in
the same cluster, while in FTSP they are in the same family.
There are many studies in the literature for these problems
[5].[6].

The concept of FTSP was first introduced by [7] to describe the
order picking problem in warehouses where products of the
same type are stored in different locations, whether in different
warehouses or within the same warehouse. Considering the
recent technological developments, it is no longer necessary to
store the same products in the same departments. Warehouses
that adopt a chaotic storage system [8], where there are no
predetermined storage sections for storing products, are the
practical applications of FTSP. Such storage systems allow for
more flexible optimisation of order tracking and management.
In GCSP, the nodes are represented as clusters and all clusters
must be visited, in which case, if the clusters are considered as
single elements, the problem becomes a TSP and is classified as
an NP-hard problem like TSP [6]. FTSP is also a special subtype
of GCSP and is in the same difficulty level. Due to the NP-hard
nature of the problem, the use of heuristic algorithms becomes
inevitable as the problem size increases.

This study addresses FTSP, a topic that has received less
attention than similar issues in the existing literature. The
study's main contributions are outlined below.



e A new mathematical model has been devised by defining appropriate graphs for each family. Compact and non-

incorporating the times for receiving and loading the compact mixed-integer mathematical models are developed
stored products into the practical applications of and optimal solutions are obtained up to sample sets consisting
FTSP. of 127 nodes by branch-and-bound method. Two
e New test problems were generated by incorporating metaheuristics, ILS and Ant Colony Optimisation (ACO) [16],
the requisite parameters for the novel model into the were developed and optimal solutions for the new problem
existing FTSP test problems documented in the were obtained in shorter times than the exact method.
literature. [17] introduced clustered FTSP to model warehouse systems
e  Avariable neighbour search-based meta-heuristic has with scattered storages. The authors developed mixed-integer
been developed to address the problem dimensions models for multi-depot FTSP, hard clustered multi-depot FTSP,
where the mathematical model is insufficient. and soft clustered multi-depot FTSP. Branch-and-eut“gased
The second section reviews the existing literature on FTSP, algorithms were developed for solving the mo the
followed by the third section, which introduces the developed validity of the models was tested using instanc x Mprising
model. The fourth section explains the proposed metaheuristic up to 200 nodes and 40 depots. The diffe tween the
algorithm, and the final section provides a comparative analysis three new proposed problems are pre , it is found
of the model and metaheuristic results. that the hard clustered multi-depot 'l% lem is a more
. . challenging problem in terms Qf co tiofal efficiency.
2 Literature rewiev [18] focused on solving FTSPNwith DNA computational
The objective of the literature review was to examine how the Adleman-Lipton model [19][ NA computing seeks to
FTSP has been addressed and the approaches that have been solve the problem by migic gical processes applied to
adopted for solutions. Given that the FTSP is a novel variant of DNA molecules. Due toka lel processing capabilities of
the TSP, it has not yet been sufficiently examined in the existing DNA computing, it is sgte t such problems can be solved
literature. more efficiently co classical digital computing.
[7] introduced the FTSP for the management of warehouses In the matheurj ach proposed by [21], mathematical
using modern technologies such as radio frequency programmin for the local search process in different
identification (RFID) where similar products are not stored parts of th ion and Genetic Algorithm is used for the
together, concluding that the TSP, which has been used to combinagion solution parts. The generation of feasible
model the warehouse management problem, is inadequate. A sqlutf conducted using a GA, while the selection
binary integer mathematical programming model was betwe sible solutions was performed using an Simulated
developed for the FTSP. Two metaheuristic algorithms, the nedling (SA) [22]. Subsequently, the solutions are enhanced
Biased Random-Key Genetic Algorithm (BRKGA) [9] and the 'thr a procedure devised in accordance with the concept of
Greedy Randomized Adaptive Search Procedure (GRASP) with Partial ~ Optimisation  Metaheuristic ~ Under  Special
Evolutionary Path Relinking (GRASP+evPR) [10], are propos Intensification Conditions (POPMUSIC) [23]. This improvement
for larger-size problems where the CPLEX solver s %0 is conducted on a part of the solution each time by applying the
sufficiently effective. To assess the efficacy of the p e mathematical programming model.
methodologies, seven instances from the TSPLIB® [ [24] defined the Capacitated FTSP (CFTSP), which differs from
have been adapted to the FTSP domain, and agfotd est the classical FTSP in that it has more than one agent and takes
instances have been formulated. The results da%r e that into account the capacities of the agents. They stated that
both algorithms exhibit promising perfogmagtce ondarge-scale capacitated agents better reflect the real-life problems of order
instances, with BRGA exhibiting a nota antage over picking from warehouses. They proposed integer linear
GRASP+ evPR on both large and medi ciSroblem sets. programming models with five different subtour inequalities. A
[12] proposed mixed-integer model SP that differ in Biased Random-Key Genetic Algorithm (BRKGA) with four
subtour elimination constraints. THehodels are classified into different decoding approaches was developed to produce
two categories: compact an aathact. Compact models quality solutions in a short time.
comprise flow variables, whéea -compact models include The first algorithm proposed by [25] for FTSP is the Parallel
cut inequalities. The res%' onstrate that non-compact Branch Cut Method (P-BC), where the parallel processing
models are mores ti icieht. Furthermore, the authors capability is provided by local search. The branch-and-bound
propose an Iterative %arch (ILS) approach for large-scale component is responsible for ensuring the optimality of the
instances of FTS elop best known upper bounds. route and identifying interesting node clusters on the same
[13] propose i algorithm, Iterative Local Search (ILS) route. The second component comprises new node search
and Ggn rithm (GA) [14] metaheuristics that strategies that take these clusters into account, thereby
incorpbr. -and-cut and local search. In [12], two novel enabling rapid pruning of nodes in the branch-and-bound tree
neighbg mechanisms and a solution perturbation and local search. Another method proposed for the problem is
op e incorporated into the proposed ILS. The two the Biased Random Key Genetic Algorithm with Q- Learning
new Metaheuristics enhanced the optimal upper bounds (BRKGA-Q) [26], which combines metaheuristic and machine
documented in the literature for the problem. In addition to the learning techniques.
test instances, [7] devised a test instance generator based on The Q-learning algorithm provides control of the parameters in
the cost matrices employed in TSP test instances in the the evolutionary processes in BRKGA. P-BC reached optimal
literature and presented new FTSP test instances. solutions in the vast majority of known test cases and
[15] proposed an Incompatibility Constrained FTSP model that approximately 75% of the test instances with unknown optimal
considers the constraint of nodes in the same family that are values. The metaheuristic method obtained the best known
incompatible with each other. This constraint provides the solutions in a reasonable time for large-scale problems.
conditions that members of the same family should not be on [27] developed a hyperheuristic method in which three
the same route. Incompatibility constraints are modelled by different Large Neighbourhood Search (LNS) [28] algorithms

are represented as low-level heuristics, taking into account the



subset selection and permutation properties of the problem. In
the hyperheuristic method, the selection of low-level heuristics
is either greedy or randomized. In computations utilizing
existing test cases, the proposed approach obtained optimal
solutions in a shorter time than existing methods. Furthermore,
new test instances were introduced for the problem, and the
hyperheuristic ~ technique = demonstrated  satisfactory
performance on these cases as well.

The FTSP has been addressed through exact models and a
variety of metaheuristic approaches, including ILS, GA, BRKGA,
ACO, and hybrid methods. Several extensions such as
incompatibility-constrained, clustered, and capacitated FTSP
have also been studied. Overall, the literature shows that while
important progress has been achieved, further research is
needed to develop efficient algorithms for large-scale and real-
world applications.

3 Problem definition and mathematical model

The Family Travelling Salesman Problem (FTSP) has the
properties that nodes in the same family are located in different
locations and a certain number of nodes from each family must
be visited. This problem is introduced in order to ensure that
the products are collected with minimum cost in warehouses
where RFID system is used. In this study, it is aimed to increase
the similarity of the problem to real life situations by including
the time taken during the transfer of the products in the model.
In cases where products must be collected within a certain
period of time, or where the energy source (charge, fuel, battery
percentage, etc.) of the material handling system responsible
for product collection and unloading is limited, it may become
necessary to collect products within a certain time frame.
Moreover, these times may vary for each product.
FTSP can be represented by a fully connected graph, denot
by G(V,A). V = {0,1,2,..., N} is a set of nodes consistingtﬁ +
nodes, where node 0 is the starting node, i.e. the depot. %
Sets Explanation o

14 Set of nodes including depot. V N U
Set of nodes.

N

e
A Set of edges A = {(i,))|i,j \
L

Set of families L = {1,

Parameters Explanation
f Number of famili
E Number of figd &mbers) from family
l

L Le {12,
VA %; (members) from family [ which
isi

d
KN m i er of nodes to be visited;
VN =121
F. F. F Witioned sets corresponding to families;
AR LWUFRUFRU.LFU{0}=V
i Costofedge 4 € (i,))
Service (processing) time of node i
Available total service

time
Variables Explanation
X Binary decision variable that equals 1 if
Y edge (i,j) is included in the solution
u Continuous auxiliary variable used in
i

Miller-Tucker-Zemlin (MTZ) subtour elimination
constraints to track node positions in the tour.
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Equation (1), which expresses the objective function, ensures
that the distance or cost is minimised. Constraints (2) and (3)
define that the tour should start from the depot and end at the
depot. The constraints that ensure that a node is visited only
once and then left are expressed by constraints (4) and (5). The
sum of the number of visits in all families determines the total
number of nodes that need to be visited and this is defined by
constraint (6). Constraints (7) and (8) ensure that the required
number of nodes from each family are visited and left. In
contrast to the models presented in previous studies, constraint
(9) considers the total processing time of the nodes to be visited
in order to ensure that the total time available is not exceeded.
(10) represent the subtour elimination constraints, also known
as Miller-Tucker-Zemlin constraints [29]. (11) and (12)
describe the properties of the decision variables. The
mathematical model is based on the model proposed by [7],
with the exception of (9), which prevents time violations, and
(10), which prevents subtours.

Figure 1. shows a feasible solution for the instance Bayg_29.
The points scattered on the coordinate plane represent the
nodes to be visited. Nodes of the same family are visualized
with the same color. According to the constraints in the
mathematical model of the problem, given the number of
members in each family and the number of nodes to visit from
that family, the shortest possible route between the nodes to be



visited is determined without exceeding the maximum time
available.

2250
2000
1750 f/ \__
1500

i\’ o ™~
1250 /L - >

1000
-
750 < /‘-—_ﬂ.\* -
.’ _“‘"‘--..‘l
. .
500 .

0 250 500 750 1000 1250 1500 1750
Figure 1. A feasible solution for Bayg_29.

4 Methodology

In TSPs, which are easy to define but very difficult to solve, the
increase in the number of cities makes it difficult to find a
solution in an acceptable time period with exact solution
methods. Due to this feature, heuristic and metaheuristic
methods are frequently used to solve the TSP, which is

classified as NP-Hard [30]. Metaheuristic algorithms can find
optimal solutions in a short time [31]. Since FTSP is in the NP-
Hard problem class, a metaheuristic algorithm is needed to
reach efficient solutions in a short time, so a Variable Neighbour
Descent (VND) algorithm [32], which includes Tabu Search and
perturbation mechanisms, is proposed in this study. VND is a
local search algorithm that starts with an initial solution and
improves the solution by iteratively searching between
different neighbourhoods. While the VND algorithm allows for
intensification during the search, the Tabu Search mechanism
is embedded in the proposed algorithm in a similar a h to
[33] in order to provide diversification. Thus, i ed to
perform a more efficient search among th . Tabu
Search (TS) is a memory-oriented search oposed by
[34]. Unlike Local Search algorithms, it i %}; ant method
that has been used by researchers r%& ue to its high
performance in exploring different Fegigns ®fthe solution space
thanks to its memory featu In proposed method,
diversification is achieved b iding the same similar
solutions by preventing the Tepe n of the movements made
in some of the neighbo odsglised in the proposed method
during the tabu tenurefDiveksification is enhanced by the tabu

mechanism and a on operator. Algorithm 1 contains
the pseudocod (Q posed algorithm.

[ e\

Algorithm 1: VND with Tabu Tool

c\J

Input: Max_Time, Max_Iter, NolmproveLimit, Tabu_Tenure, aW}

Output: Global Best Solution
Current « Create_Initial_Solution();
Global_Best « Current
no_improve_counter = 0

For iter = 1 to max_iter do

best solution = None <
For all neighbourhoods %
n

new_solution < Neighbourhoogdfc
if new_solution(time)< _ti new_solution(cost)<best _solution(cost) then

best_solution<new_solut

if best_solution<curre‘1t
current<best_soluti %
Update(Tabu_list C\

counter);

if current < glo

global_b ogal_Search(current);
if no_im coynt greater than NolmproveLimit
cur, turbation(current);
Return glob, t
A

The algorith Q\Nith an initial solution. The initial

solution, i agible solution obtained by running the
mathematigal\medel for a specific period of time for small-
si lelns. For medium and large size problems, the
init on is determined as a random feasible solution

since asible solution cannot be found in a short period of
time with the exact solution methods of the mathematical
model. The max_sure in the input parameters expresses the
available time constraint of the problem. Tabu list and tabu
tenure are the elements of the tabu search mechanism defined
as parameters and used in the algorithm. If the algorithm fails
to improve for a certain number of iterations, this is a stopping
condition and as a result the algorithm stops. If no
improvement can be achieved for a smaller number of
iterations before the stopping condition is reached, the

Figure 2. Pseudecode for proposed algorithm.

perturbation mechanism is activated and a different region of
the solution space is searched. VND allows iterative search
between neighbourhoods, = where four  different
neighbourhood structures are defined in the proposed
algorithm. Based on the current solution, a certain number of
neighbouring solutions are generated from a neighbourhood
structure and saved as new_solution.

The best solution among the new solutions generated with the
relevant neighbourhood structure is saved as best_solution.
Best_solution is assigned as the current solution if it has a
better result than the current solution. If the neighbourhood
structure is one of the neighbourhood structures to be
included in the tabu list, the tabu list is updated and the
global_best check is performed. The loop is completed for all
neighbourhoods and if there is no change in global_best during



a certain number of iterations, the perturbation operator is
called and the current solution is modified and the algorithm
continues over the new current solution. When a certain
number of iterations is reached, the algorithm stops and
returns the best solution found.

Neighbourhood structures determine the strategy for
exploring the solution space and have a significant impact on
the performance of the algorithm. The proposed VND includes
four different neighbourhood procedures. The first
neighbourhood structure is given in Algorithm 2 a random
node from the current route is selected. The family of this node
is identified, and then another node from the same family that
has not yet been visited is randomly chosen. The visited node
is removed from the route, and the unvisited family member is
inserted into every possible position in the route. Finally, the
best position is selected based on the minimum route cost.
The second neighbourhood given in Algorithm 3 procedure
involves a similar approach to the first neighbourhood. While

in the first neighbourhood a random node is first selected from
the current route, in the second neighbourhood a random
family is selected. A member of the selected family that is
present in the current route is replaced by any of the
remaining unvisited members of the family. After the
replacement process, the newly added member is placed in the
lowest cost position in the current route.

Neighbourhood 3 and Neighbourhood 4 structures are
designed based on the LNS_1 and LNS_2 methods proposed by
[27]. In their study, Pandiri and Singh [27] proposed_a hyper-
heuristic that selects between Large Nei ood
algorithms. Among the algorithms, whiche th NS,
selections are made according to differen In the
method proposed in this study, these &K thods are

d

added to the LNS algorithm as neighon .

>

Algorithm 2: First Neighborhood Procedure

Input: A feasible solution, best_distance = co

Output: New solution, move
elementl < Choose a random element from solution;
Family[i] < Find family index for element1;

element2 < Choose a random unvisited member from Family([i];

Extract (element1) from solution;
For each (index) in solution;
New_solution < solution(element2)
New_distance « calculate cost for new solution
if new_distance < best_distance then; K3
best_distance « new_distance
best_location « [index] <
move « (elementl, element?) Q

Return New_solution, move

S

re"3. Pseudecode for neighbourhood-1.

Algorithm 3: Second Neighb

Input: A feasible solution,
Output: New solution,

Family[i] < Ch aRdom family index for element1;
elementl « random visited member from Family[i];
element2 oSe a random unvisited member from Family/[i];
Extrac 1) from solution;

For ) in solution;

ution < solution(element2)
istance « calculate cost for new solution
° w ew_distance < best_distance then;
% best_distance <« new_distance
best_location « [index]

move « (elementl, element2)
eturn New_solution, move

Figure 4. Pseudecode for neighbourhood-2.



Algorithm 4: Third Neighborhood Procedure

Input: A feasible solution, best_distance = co
Output: New solution
n < number of elements of feasible solution

Min_removed « 1

Max_removed < n

Num_removed—random number(min_removed,max_removed)

Removed_elements < Extract num_removed number of elements from feasible solution and Add;

New_solution « Extract Removed_elements from feasible solution;

For each elements in Removed_elements;

New_solution —Add element[i] best position in New_solution;

Return New_solution

Figure 5. Pseudecode for neighbourhood-3.

Algorithm 5: Fourth Neighborhood Procedure

Input: A feasible solution, best_distance = co
Output: New solution
n < number of elements of feasible solution

Min_removed « 1
Max_removed < n

Num_removed«random number(min_removed,max_removed)
Removed_elements < Extract num_removed number of elementsffto

NN

st position in new_solution

New_solution « Extract removed_Elements from feasi

For each element in removed_elements;
Family [i] «<Find family index for element

For unvisited_elements in Family[i];
New_solution < Add unvisited_elemen

New_distance « calculate cost forh

Return New_solution

Q/\)
S
\\Qa

sible solution and Add;

Fig eudecode for neighbourhood-4.

cedures involve
g one node on

Neighbourhood 1 and neighbourhood
low levels of perturbation and repair b,
the feasible solution. In Neighbo
number of nodes between 1 and ber of nodes in the
turbation in the route
is higher. For Neighbourh

the route is inserted to i

r owest cost. Neighbourhood 4, on
the other hand, alloV rge-scale change and the family
indices of the be removed from the route are
determined a uhvisited member within these families
is placed i osition in the route. Among the unvisited
membg s, themember with the best cost value is selected and
0'‘thelbest position sequence. Algorithms 4 and 5 show
o-codes of neighbourhood 3 and neighbourhood 4
§€s respectively.
Neighbourhood 1 and neighbourhood 2 allow to change a
single node on the current route and this movement does not
cause a significant change in the solution. In order to prevent
these neighbourhoods from making the same movements over
and over again and to scan the solution space more efficiently,
their movements are stored in the tabu memory and the same
movement is prevented from repeating for a certain period of
time.

g

Within the scope of the algorithm, a better solution is obtained
with neighbourhood functions, but this solution may not be
locally best. If the new solution obtained in one iteration is
better than the current solution, it is assigned as the current
solution and the 2-optlocal search algorithm can be applied to
create a better route by correcting unnecessary long routes in
the route and creating a shorter route. 2-opt creates a shorter
route by selecting two edges in the current route and
rearranging (reversing) these edges. If the distance between
two nodes can be improved, these two edges are swapped,
thus reducing the total distance.

The perturbation operator is used when the solution cannot be
improved for a given number of iterations. The operator takes
a sequence of the current route and inverts it. Perturbation
allows the algorithm to explore different solution spaces.
When all improvement opportunities in a given region are
exhausted in local searches, the perturbation operator is used
to move to a different region of the solution space.

In this study, computational experiments were carried out on
benchmark instances of three different sizes to investigate the
impact of the proposed neighborhood structures, both
individually and in combination, on solution performance.

To ensure a fair comparison, the total number of candidate
solutions generated in each iteration was kept constant. The
strategies were defined according to the specific combinations



of neighborhoods employed. Here, N1, N2, N3, and N4
correspond to Neighborhood-1, Neighborhood-2,
Neighborhood-3, and Neighborhood-4, respectively. Each
strategy was evaluated over 10 independent runs for each test
instance, and the minimum and average solution costs
obtained were recorded.

Table 1. comparison of neighborhood strategies

Instance bier_127_1 a_280_1 pr_264_1
T=173 T =480 T=380
Strategy Min Avg Min Avg Min Avg

N1 45989.70 75953.81 2035.29 2079.66 368150 39126.4

N2 4652882 76007.72 2066.05 210493 37383.0 39392.6

N3 6447082 7883847 2125.33 2180.64 39242.0 417105

N4 64260.79 78200.18 2261.97 2339.27 40592.0 440104

N1-N3 43273.20 75682.16 1942.88 1996.02 35727.0 36747.2
N2-N3 4788132 7614297 1911.63 201248 36590.0 38092.2
N2-N4 4962590 7631743 2081.08 2152.13 36487.0 39415.5
N1-N4 50375.86 76392.42 203849 2094.55 37723.0 40093.9
N2-N1-N3 4222581 7557742 191876 2002.83 35572.0 36699.3
N1-N3-N4 42501.39 75604.97 1917.89 2013.62 36087.0 37822.6
N2-N1-N4 47031.97 76058.03 1919.96 2002.03 36748.0 38746.2
N2-N3-N4 48440.09 76198.84 1982.61 2041.81 37946.0 39268.3

N2-N1-N3-N4 41931.75 75548.01 1878.50 1961.29 35483.0 36668.5
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40000,00
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Figure 7. Trend of minimum solution values across
neighborhood strategies

]

)
According to the results presented in Table 1 and Figure %
ar

performance of different neighborhood strategie

notably depending on whether they are applied jndiyi or
in combination. Single and paired neighb ield
relatively weaker results, while three-nel_i‘&hb hood strategies
achieve moderate improvements. Ho % the four-
neighborhood strategy (N2-N1-N consistently
outperforms the others across al ark instances,
delivering the lowest minimum rage solution costs.
These findings highlight that th four-neighborhood
strategy is the most effecti ach, as the diversity of

neighborhood  structur ificantly enhances the
performance of the VN

I

onal experiments

In this study, so considers the time constraint for
FTSP, the in t% rst defined in the literature by [7] and
recent&}’ e literature by [27] are used as a basis for
compa mathematical programming model and
measuring their performance. Time parameters

studies,”and they were made appropriate for the defined
model.

All computational experiments were performed on a PC with
Intel Core™ i5-8400 processor, 2.80GHz and 16 GB RAM. The
algorithm and mathematical model were written in PYTHON
version 3.8 and GUROBI 9.1.1 solver was used to solve the
model.

In the first set of test instances shared by [7], the problem size
ranged from 14 to 280. Each example was solved three times

with different time constraint (T) values. T values were
determined to be smaller than the total time value obtained in
the solution without time constraint. The nodes to be visited
are selected and sorted in such a way that the family member
constraints are met, the maximum time available, i.e. the T
value, is not exceeded and the total cost is minimised. Table 1
summarises the results of the province data set group. The
GUROBI results of the model for different T values and the
results of the proposed heuristic for the problem are
presented in the table. In order to prove the time efficiency of
the method, the solution time results of the method\aretgiven
in seconds in the Time column. The method iseu % es for
each instance and the results are shared maximum,
minimum and average values.
The model solution time was set to 1 co for results
marked with (*) and 240 seconds for\reSults n¥arked with (**).
In all problems where the mqde acl the best solution,
the proposed method has ieved@®the best results in
minimum and average values. roposed method showed
better performance in all c 1 the results that the model
ime.
The solutions obtained withwhe instances taken from the data
iwstudy are given in Table 2. For these
instance sets, . atical solution time was set as 300
seconds and 116,optimal solution was obtained in the specified
time for a m. The proposed VND algorithm with tabu
mechanism aehfeved better results in much shorter times in all
ins N order to test the significance of the differences
b e objective functions of the mathematical model
d the proposed method, a statistical t-test was applied on
the"average results of the proposed method. Before the t-test,
normality test was performed on both sets of results and it was
determined that the values were normally distributed.
The null hypothesis was designed to state that there is no
difference between the averages of both samples and the
alternative hypothesis was designed to state that the average
of the values including the method results is less. The
confidence level for the t-test was set to 95%. If the p-value is
less than 0.05 as a result of the analysis performed at the
specified confidence interval, it will be concluded that the
alternative hypothesis should be accepted, that is, it is
statistically ensured that the metaheuristic method has better
values according to the objective function. As a result of the
analysis, p-value = 0.023 is found and since it is less than the
threshold value, the method has lower total tour cost values.




Table 2. Results for first instance set.

Gurobi Metaheuristic Gurobi Metaheuristic Gurobi Metaheuristic
Instance Min Max Avr Time Min Max Avr Time Min Max Avr Tine
T=8 T=9 T=10
burma_14_1 21.32580 21.32580 21.32580 21.32580 0.16 15.73500 15.73500 15.73500 15.73500 0.16 13.9323 13.9323 13.9323 13.9323 0.15
T=30 T=27 T=25
burma_14_2 25.6562 25.6562 25.6562 25.6562 0.28 25.8494 25.8494 25.8494 25.8494 0.29 25.8494 25.8494 25.8494 25.8494 0.29
T=5 T=6 T=7
burma_14_3 19.9526 19.9526 19.9526 19.9526 0.32 14.3618 14.3618 14.3618 14.3618 0.44 11.8860 11.8860 11.8860 11.8860 0.50
T=42 T=37 T=34
bayg_29_1 5345.86 5345.86 5345.86 5345.86 0.56 5366.08 5366.08 5366.08 5366.08 1.28 5394.01 5394.01 5394.01 39 1.32
T=42 T =40 T=88
bayg_29_2 5791.01 5791.01 5791.01 5791.01 1.21 5813.39 5813.39 5813.39 5813.39 1.81 5863.23 5863.23 63.23 1.75
T= 44 T=41
bayg_29.3 5544.33 5544.33 5544.33 5544.33 2.77 577591 577591 577591 577591 1.41 6171.53 6171.53 6171.53 1.02
T=100 T=90
att_48_1 23686.02 23686.02 23686.02 23686.02 13.27 25584.55 25584.55 25584.55 25584.55 13.39 27639.26 9. 7639.26  27639.26 7.8
T=74 T=70 T=65
att_48_2 20826.23*  20609.08 20826.23 20646.75 12.18 21232.54* 20653 20991 20754 12.2 20950. 2081261 21246.49 20930.29 12.19
T=47 T =40 T=35
att_48_3 9335.07* 9024.58 9100.79 9044.49 11.11 9292.32 9292.32 9353.1 9347.02 0420.58 10482.19 10463.7 23.2
T=173 T =165 T =160
bier_127_1 44911.4* 37946.62 39256.71 38573.10 9830 | 47072.4822* 38129.81 39935.12 39147.11 38423.47 50985.20 42297.82 98.4
T=245 T=230 T=210
bier_127_2 105539.66* 90005.35 92751.26 91876.98 135.60 | 106276.36% 92668.14 94753 93910 14 '113974.212* 97586.75 100619.82 99157.8 149.8
T=182 T=170 T=160
bier_127_3 53835.46% 47827.02 48557.07 48312.03 80.02 59381.88* 4869896 49767.74 48 % 0.29 56256.19* 4999343 51468.62 50525.75 799
T=520 T =500 T =480
a_280_1 3229.11%* 1902.99 2376.16 1979.85 142.88 | 3323.622** 1814.82 1952, 90 1482 202.19 3100.35%* 1903.86 204091 1957.22  190.2
T=443 T=410
a_280_2 3110.5% 1679.10 1775.66 1726.52  153.19 2998.08** 1699.32 1748.49 151.2 2960.45%* 1741.57 1832.20 177639  127.7
T =403 T=370
a_280_3 2620.97** 1504.73 1631.23 158391 106.04 2826.9** 1500.3’ 1668.48 1598.15 102 2779.29** 1571.26 1709.8 1637.56  107.6
econd instance set.
Gurobi Matheuristic Matheuristic Gurobi Matheuristic
Instance Min Max Avr Max Avr Time Min Max Avr Time
T=273 T =260 T =250
gr 1371 59599 45251 47381 46336.1 49938 48005.4 14.0 62036 47343 51008 49085.4 13.80
T=170 T=160 T =150
gr 1372 44238 37096 39032 38046.3 39785 38835.7 5.58 47417 38324 42120 39768.2 5.88
T=365 T =350 T= 345
gr 1373 64707 56243 59472 57522.1 61174 58269.5 24.49 59720 57852 62387 59141.7 26
T =235 T =220 T=210
kro_150_1 19413 15429 16671 160085 17369 16522.5 2217 17159 16279 18386 17042.0 20.70
T=155 T=140 T =130
kro_150_2 11948 10597 12543 14925 10495 14301 12091.0 6.96 13388 10989 13926 12436 6.3
T=350 T =340 T=320
kro_150_3 29057 21532 22473 32.88 32467 21372 22923 22195 36.45 27978 22761 24747 23618.0 152.58
T=27 T=260 T=250
rat_195_1 1809 1317 1431 24.36 1758 1357 1477 1411.0 23.03 1932 1346 1444 1409.0 24.57
T: T =180 T=170
rat_195_2 1428 954 1006.0 9.90 1207 952 1052 9967 9.21 1275 956 1066 1009 9.54
= T=410 T =390
rat_195_3 2221 18 1 19048 61.05 2339 1872 2004 19192 55.09 2403 1891 2018 1938.0 60.68
320 T =300 T =290
gr.202_1 33590 4407 23796.0 51.80 37991 23284 25467 24356.0 51.01 32859 23884 28452 25277.0 57.54
T =210 T =200 T=185
gr_202_2 2691 17974 16742.0 17.46 21326 15347 17251 16411.0 16.88 24237 15347 17251 16411 16.88
T =455 T = 440 T =430
gr_202_3 308 36925 35942.0 77.22 45567 35697 37382 36349 81.38 43790 35971 38115 36786.0 58.72
T =405 T =390 T =380
pr264_.1¢ 6 34828 36075 35377.0 88.45 56168 35157 36478 35575.0 77.96 48864 35345 38122 36488.0 85.19
® T=270 T =250 T =240
3 28949 30173 29498.0 31.10 44099 28839 30077 29329.0 30.05 47772 29138 30071 297357 29.6
T =635 T=620 T=610
79124 41658 43911 42789.0 188.85 75154 41656 46944 436394 187.87 68808 41553 45454 43353.0 185.64

6 Conclusion and future work

In this paper, we focus on FTSP, a new type of TSP, which is a
well-known problem proposed to be adapted in real-life
applications. Unlike the other works in the literature that deal
with the TSP, in this study, a more real-life-like proposal is
presented by defining times for the visited nodes and adding
the constraint that the available time should not be exceeded

while creating the route. A mathematical model of the problem
is defined and a metaheuristic method is developed to
approach efficient solutions in a shorter time. The proposed
metaheuristic is a Variable Neighbour Descent algorithm with
four different neighbourhood procedures. Two of the
neighbourhood structures provide diversification and
intensification by allowing small-scale changes while the other
two provide diversification and intensification by allowing



large-scale changes. The tabu mechanism, on the other hand,
prevents returning to the same solutions in the near future and
contributes to diversification by taking the actions in the first
neighbourhood to the tabu list. By applying the 2-opt
algorithm on the existing solutions, the improvement rate is
increased in each iteration. If no improvement is observed as
the iterations progress, the perturbation operator makes
significant changes to the current solution, allowing different
regions to be searched. The proposed algorithm is tested using
test instances from the literature. In this study, time
information for each visit node was added to the existing
information in the test instances. Since the mathematical
model solutions require a long time, a threshold value was set
for the solution time and the performance was measured
according to the results found within this solution time. Each
of the test cases was solved using different T values. As a result,
VND achieved the best solutions in small size problems and as
the problem size increased, it achieved better solutions in
much shorter times compared to the mathematical model
solver.

In future work, a new VND algorithm with different
neighbourhood structures and more complex algorithmic
improvements can be designed. Hybrid approaches can be
developed to improve the performance of this algorithm. For
example, simulated annealing can be used to improve initial
solutions, and genetic algorithm operators can be used to
provide diversity and avoid local optima. In addition, machine
learning algorithms can be integrated to harmonise the
algorithm with the learning processes and make it adaptive.
This hybrid VND algorithm can produce more flexible and
efficient solutions by adapting itself according to different
problem characteristics.

For performance evaluation, making use of all datasets define
on FTSP in the existing literature allows for oh
comprehensive comparative analyses. In this conte %
strengths and weaknesses of the algorithm can be ige d
performing detailed analyses on the data se
simulating different scenarios by creating ne
studying the generalisability of the algorith i ase the
adaptability of the model to practical imp
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