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Abstract  Öz 

In this study, the Family Travelling Salesman Problem is considered and 
time constraints are included in the model to better represent real-life 
applications. The mathematical model for the proposed problem has 
been adjusted as necessary and a metaheuristic method has been 
developed in order to achieve good solutions in shorter times. The 
method is a Variable Neighbour Descent algorithm using four different 
neighbourhood structures and a tabu list is added to the algorithm to 
be used in some neighbourhood movements to make the solution space 
search more efficient. The perturbation operator also diversifies the 
search by making large changes on the solution. The proposed 
algorithm was compared with the mathematical model results and 
performed better on the sample sets used. 

 Bu çalışmada, Aile Gezgin Satıcı Problemi ele alınmış ve gerçek yaşam 
uygulamalarını daha doğru yansıtabilmek için modele zaman kısıtları 
dahil edilmiştir. Önerilen problemin matematiksel modeli gerektiği 
şekilde uyarlanmış ve daha kısa sürelerde iyi çözümler elde edebilmek 
amacıyla bir meta-sezgisel yöntem geliştirilmiştir. Bu yöntem, dört 
farklı komşuluk yapısı kullanan ve bazı komşuluk hareketlerinde tabu 
listesi eklenerek çözüm uzayının daha verimli taranmasını sağlayan 
Değişken Komşu İniş algoritmasıdır. Ayrıca, çözüm üzerinde büyük 
değişiklikler yaparak aramayı çeşitlendiren bir pertürbasyon operatörü 
de uygulanmıştır. Önerilen algoritma, matematiksel modelin 
sonuçlarıyla karşılaştırılmış ve kullanılan örnek setlerinde daha iyi 
performans göstermiştir. 

Keywords: Family travelling salesman problem, variable 
neighbourhood descent, travelling salesman problem 

 Anahtar: Aile gezgin satıcı problemi, değişken komşu iniş, gezgin 
satıcı problemi 

1 Introduction 

Routing problems have been widely studied in operations 

research due to their extensive real-life applications [1]. The 

common objective in such problems is to generate optimised 

routes that optimise an objective function, the most common 

objective is cost minimisation. The Travelling Salesman 

Problem (TSP) [2] is one of the most extensively researched 

routing problems. Given a starting node (depot), a set of cities 

and a matrix of costs between cities, the TSP aims to identify the 

least-cost Hamiltonian tour. Over the years since the problem's 

inception, numerous variants of the TSP representing real-life 

problems have been introduced in different studies. A variant 

of the Generalized Travelling Salesman Problem (GTSP) arises 

when the visiting nodes are divided into clusters and exactly 

one node from each cluster must be visited [3]. This is known 

as the Family Travelling Salesman Problem (FTSP). However, 

this problem includes the condition that not only one node from 

each set of nodes must be visited, but a predetermined number 

of nodes. 

Generalized Covering Salesman Problem (GCSP), defined by [4] 

is another problem that is similar to FTSP. The objective of the 

GCSP is to identify the optimal route, in terms of cost, that 

encompasses all specified nodes. The primary characteristic of 
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this problem is that each data node is covered by at least one 

route node, subject to the coverage constraint. In GCSP, the 

nodes that fulfil the coverage constraint with each other are in 

the same cluster, while in FTSP they are in the same family. 

There are many studies in the literature for these problems 

[5],[6]. 
The concept of FTSP was first introduced by [7] to describe the 
order picking problem in warehouses where products of the 
same type are stored in different locations, whether in different 
warehouses or within the same warehouse. Considering the 
recent technological developments, it is no longer necessary to 
store the same products in the same departments. Warehouses 
that adopt a chaotic storage system [8], where there are no 
predetermined storage sections for storing products, are the 
practical applications of FTSP. Such storage systems allow for 
more flexible optimisation of order tracking and management. 
In GCSP, the nodes are represented as clusters and all clusters 
must be visited, in which case, if the clusters are considered as 
single elements, the problem becomes a TSP and is classified as 
an NP-hard problem like TSP [6]. FTSP is also a special subtype 
of GCSP and is in the same difficulty level. Due to the NP-hard 
nature of the problem, the use of heuristic algorithms becomes 
inevitable as the problem size increases. 
 
This study addresses FTSP, a topic that has received less 
attention than similar issues in the existing literature. The 
study's main contributions are outlined below. 
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• A new mathematical model has been devised by 
incorporating the times for receiving and loading the 
stored products into the practical applications of 
FTSP. 

• New test problems were generated by incorporating 
the requisite parameters for the novel model into the 
existing FTSP test problems documented in the 
literature. 

• A variable neighbour search-based meta-heuristic has 
been developed to address the problem dimensions 
where the mathematical model is insufficient. 

The second section reviews the existing literature on FTSP, 
followed by the third section, which introduces the developed 
model. The fourth section explains the proposed metaheuristic 
algorithm, and the final section provides a comparative analysis 
of the model and metaheuristic results. 

2  Literature rewiev 

The objective of the literature review was to examine how the 
FTSP has been addressed and the approaches that have been 
adopted for solutions. Given that the FTSP is a novel variant of 
the TSP, it has not yet been sufficiently examined in the existing 
literature. 
[7] introduced the FTSP for the management of warehouses 
using modern technologies such as radio frequency 
identification (RFID) where similar products are not stored 
together, concluding that the TSP, which has been used to 
model the warehouse management problem, is inadequate. A 
binary integer mathematical programming model was 
developed for the FTSP. Two metaheuristic algorithms, the 
Biased Random-Key Genetic Algorithm (BRKGA) [9] and the 
Greedy Randomized Adaptive Search Procedure (GRASP) with 
Evolutionary Path Relinking (GRASP+evPR) [10], are proposed 
for larger-size problems where the CPLEX solver is not 
sufficiently effective. To assess the efficacy of the proposed 
methodologies, seven instances from the TSPLIB library [11] 
have been adapted to the FTSP domain, and a total of 21 test 
instances have been formulated. The results demonstrate that 
both algorithms exhibit promising performance on large-scale 
instances, with BRGA exhibiting a notable advantage over 
GRASP+ evPR on both large and medium-sized problem sets. 
[12] proposed mixed-integer models for FTSP that differ in 
subtour elimination constraints. The models are classified into 
two categories: compact and non-compact. Compact models 
comprise flow variables, whereas non-compact models include 
cut inequalities. The results demonstrate that non-compact 
models are more time-efficient. Furthermore, the authors 
propose an Iterative Local Search (ILS) approach for large-scale 
instances of FTSP and develop best known upper bounds. 
[13] proposed a hybrid algorithm, Iterative Local Search (ILS) 
and Genetic Algorithm (GA) [14] metaheuristics that 
incorporate branch-and-cut and local search. In [12], two novel 
neighbourhood mechanisms and a solution perturbation 
operator were incorporated into the proposed ILS. The two 
new metaheuristics enhanced the optimal upper bounds 
documented in the literature for the problem. In addition to the 
test instances, [7] devised a test instance generator based on 
the cost matrices employed in TSP test instances in the 
literature and presented new FTSP test instances. 
[15] proposed an Incompatibility Constrained FTSP model that 
considers the constraint of nodes in the same family that are 
incompatible with each other. This constraint provides the 
conditions that members of the same family should not be on 
the same route. Incompatibility constraints are modelled by 

defining appropriate graphs for each family. Compact and non-
compact mixed-integer mathematical models are developed 
and optimal solutions are obtained up to sample sets consisting 
of 127 nodes by branch-and-bound method. Two 
metaheuristics, ILS and Ant Colony Optimisation (ACO) [16], 
were developed and optimal solutions for the new problem 
were obtained in shorter times than the exact method. 
[17] introduced clustered FTSP to model warehouse systems 
with scattered storages. The authors developed mixed-integer 
models for multi-depot FTSP, hard clustered multi-depot FTSP, 
and soft clustered multi-depot FTSP. Branch-and-cut based 
algorithms were developed for solving the models, and the 
validity of the models was tested using instance sets comprising 
up to 200 nodes and 40 depots. The differences between the 
three new proposed problems are presented, and it is found 
that the hard clustered multi-depot FTSP problem is a more 
challenging problem in terms of computational efficiency. 
[18] focused on solving FTSP with the DNA computational 
Adleman-Lipton model [19],[20]. DNA computing seeks to 
solve the problem by mimicking biological processes applied to 
DNA molecules. Due to the parallel processing capabilities of 
DNA computing, it is stated that such problems can be solved 
more efficiently compared to classical digital computing. 
In the matheuristic approach proposed by [21], mathematical 
programming is used for the local search process in different 
parts of the solution and Genetic Algorithm is used for the 
combination of solution parts. The generation of feasible 
solutions was conducted using a GA, while the selection 
between feasible solutions was performed using an Simulated 
Annealing (SA) [22]. Subsequently, the solutions are enhanced 
through a procedure devised in accordance with the concept of 
Partial Optimisation Metaheuristic Under Special 
Intensification Conditions (POPMUSIC) [23]. This improvement 
is conducted on a part of the solution each time by applying the 
mathematical programming model. 
[24] defined the Capacitated FTSP (CFTSP), which differs from 
the classical FTSP in that it has more than one agent and takes 
into account the capacities of the agents. They stated that 
capacitated agents better reflect the real-life problems of order 
picking from warehouses. They proposed integer linear 
programming models with five different subtour inequalities. A 
Biased Random-Key Genetic Algorithm (BRKGA) with four 
different decoding approaches was developed to produce 
quality solutions in a short time. 
The first algorithm proposed by [25] for FTSP is the Parallel 
Branch Cut Method (P-BC), where the parallel processing 
capability is provided by local search. The branch-and-bound 
component is responsible for ensuring the optimality of the 
route and identifying interesting node clusters on the same 
route. The second component comprises new node search 
strategies that take these clusters into account, thereby 
enabling rapid pruning of nodes in the branch-and-bound tree 
and local search. Another method proposed for the problem is 
the Biased Random Key Genetic Algorithm with Q- Learning 
(BRKGA-Q) [26], which combines metaheuristic and machine 
learning techniques.  
The Q-learning algorithm provides control of the parameters in 
the evolutionary processes in BRKGA. P-BC reached optimal 
solutions in the vast majority of known test cases and 
approximately 75% of the test instances with unknown optimal 
values. The metaheuristic method obtained the best known 
solutions in a reasonable time for large-scale problems. 
[27] developed a hyperheuristic method in which three 
different Large Neighbourhood Search (LNS) [28] algorithms 
are represented as low-level heuristics, taking into account the 
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subset selection and permutation properties of the problem. In 
the hyperheuristic method, the selection of low-level heuristics 
is either greedy or randomized. In computations utilizing 
existing test cases, the proposed approach obtained optimal 
solutions in a shorter time than existing methods. Furthermore, 
new test instances were introduced for the problem, and the 
hyperheuristic technique demonstrated satisfactory 
performance on these cases as well. 
The FTSP has been addressed through exact models and a 
variety of metaheuristic approaches, including ILS, GA, BRKGA, 
ACO, and hybrid methods. Several extensions such as 
incompatibility-constrained, clustered, and capacitated FTSP 
have also been studied. Overall, the literature shows that while 
important progress has been achieved, further research is 
needed to develop efficient algorithms for large-scale and real-
world applications. 

3 Problem definition and mathematical model 

The Family Travelling Salesman Problem (FTSP) has the 
properties that nodes in the same family are located in different 
locations and a certain number of nodes from each family must 
be visited. This problem is introduced in order to ensure that 
the products are collected with minimum cost in warehouses 
where RFID system is used. In this study, it is aimed to increase 
the similarity of the problem to real life situations by including 
the time taken during the transfer of the products in the model. 
In cases where products must be collected within a certain 
period of time, or where the energy source (charge, fuel, battery 
percentage, etc.) of the material handling system responsible 
for product collection and unloading is limited, it may become 
necessary to collect products within a certain time frame. 
Moreover, these times may vary for each product. 
FTSP can be represented by a fully connected graph, denoted 
by G(V,A). 𝑉 =  {0,1,2, … , 𝑁} is a set of nodes consisting of N+1 
nodes, where node 0 is the starting node, i.e. the depot.  

Sets Explanation 

𝑽 Set of nodes including depot. 𝑉 = 𝑁 ∪ 𝑂 

𝑵 Set of nodes. 

𝑨 Set of edges 𝐴 =  {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉} 

𝑳 Set of families 𝐿 = {1,2, … , 𝑓} 

 
Parameters Explanation 

𝒇 Number of families 

𝑬𝒍 
Number of nodes (members) from family  
𝑙;   𝑙 ∈ {1,2, … , 𝑓} 

 𝒁𝒍 Number of nodes (members) from family 𝑙 which 
must be visited 

𝑲𝑵 
Total number of nodes to be visited;  
𝐾𝑁 =  ∑ 𝑧𝑙

𝐿
𝑙=1   

𝑭𝟏, 𝑭𝟐, 𝑭𝟑, … , 𝑭𝒇 
Partitioned sets corresponding to families; 
 𝐹1 ∪ 𝐹2 ∪ 𝐹3 ∪ … 𝐹𝑓 ∪ {0} = 𝑉 

𝒄𝒊𝒋 Cost of edge 𝐴 ∈ (𝑖, 𝑗) 

𝒕𝒊 Service (processing) time of node i 
𝑻 Available total service 

time  
 

Variables Explanation 

𝒙𝒊𝒋 
Binary decision variable that equals 1 if  
edge (i,j) is included in the solution 

𝒖𝒊 

 
Continuous auxiliary variable used in  
Miller–Tucker–Zemlin (MTZ) subtour elimination 
constraints to track node positions in the tour. 

 

 

𝑀𝑖𝑛 𝑧 =  ∑ 𝑥𝑖𝑗𝑐𝑖𝑗

(𝑖,𝑗)∈𝐴

 
(1) 

∑ 𝑥0𝑗

𝑗∈𝑁

= 1 
(2) 

∑ 𝑥𝑖0

𝑖∈𝑁

= 1 
(3) 

∑ 𝑥𝑖𝑗 ≤ 1

𝑗∈𝑉 

 
∀𝑖∈ 𝑁 (4) 

∑ 𝑥𝑖𝑗 ≤ 1

𝑖∈𝑉

 
∀𝑗∈ 𝑁 (5) 

∑ ∑ 𝑥𝑖𝑗 ≤ 𝐾𝑁 + 1

𝑗∈𝑉𝑖∈𝑉

 
 (6) 

∑ ∑ 𝑥𝑖𝑗

𝑗∈𝑉

= 𝑍𝑙

𝑖∈𝐹𝑙

 
𝑙 = {1,2, … , 𝑓} (7) 

∑ ∑ 𝑥𝑖𝑗

𝑖∈𝑉

= 𝑍𝑙

𝑗∈𝐹𝑙

 
𝑙 = {1,2, … , 𝑓} (8) 

∑ 𝑡𝑗𝑥𝑖𝑗 ≤ 𝑇

(𝑖,𝑗)∈𝐴

 
 (9) 

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖𝑗) ∀𝑖,𝑗∈𝑉 
(10) 

𝑥𝑖𝑗 ∈  {0,1} ∀𝑖,𝑗∈𝑉 
(11) 

𝑢𝑖 ∈ 𝐼𝑅 ∀𝑖∈𝑉 
(12) 

 
Equation (1), which expresses the objective function, ensures 
that the distance or cost is minimised. Constraints (2) and (3) 
define that the tour should start from the depot and end at the 
depot. The constraints that ensure that a node is visited only 
once and then left are expressed by constraints (4) and (5). The 
sum of the number of visits in all families determines the total 
number of nodes that need to be visited and this is defined by 
constraint (6).  Constraints (7) and (8) ensure that the required 
number of nodes from each family are visited and left. In 
contrast to the models presented in previous studies, constraint 
(9) considers the total processing time of the nodes to be visited 
in order to ensure that the total time available is not exceeded. 
(10) represent the subtour elimination constraints, also known 
as Miller-Tucker-Zemlin constraints [29]. (11) and (12) 
describe the properties of the decision variables. The 
mathematical model is based on the model proposed by [7], 
with the exception of (9), which prevents time violations, and 
(10), which prevents subtours. 
Figure 1. shows a feasible solution for the instance Bayg_29. 
The points scattered on the coordinate plane represent the 
nodes to be visited. Nodes of the same family are visualized 
with the same color. According to the constraints in the 
mathematical model of the problem, given the number of 
members in each family and the number of nodes to visit from 
that family, the shortest possible route between the nodes to be 
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visited is determined without exceeding the maximum time 
available. 
 

 
Figure 1. A feasible solution for Bayg_29. 

4  Methodology 

In TSPs, which are easy to define but very difficult to solve, the 
increase in the number of cities makes it difficult to find a 
solution in an acceptable time period with exact solution 
methods. Due to this feature, heuristic and metaheuristic 
methods are frequently used to solve the TSP, which is 

classified as NP-Hard [30]. Metaheuristic algorithms can find 
optimal solutions in a short time [31]. Since FTSP is in the NP-
Hard problem class, a metaheuristic algorithm is needed to 
reach efficient solutions in a short time, so a Variable Neighbour 
Descent (VND) algorithm [32], which includes Tabu Search and 
perturbation mechanisms, is proposed in this study. VND is a 
local search algorithm that starts with an initial solution and 
improves the solution by iteratively searching between 
different neighbourhoods. While the VND algorithm allows for 
intensification during the search, the Tabu Search mechanism 
is embedded in the proposed algorithm in a similar approach to 
[33] in order to provide diversification. Thus, it is aimed to 
perform a more efficient search among the solutions. Tabu 
Search (TS) is a memory-oriented search method proposed by 
[34]. Unlike Local Search algorithms, it is an important method 
that has been used by researchers for years due to its high 
performance in exploring different regions of the solution space 
thanks to its memory feature. In the proposed method, 
diversification is achieved by avoiding the same similar 
solutions by preventing the repetition of the movements made 
in some of the neighbourhoods used in the proposed method 
during the tabu tenure. Diversification is enhanced by the tabu 
mechanism and a perturbation operator. Algorithm 1 contains 
the pseudocode of the proposed algorithm.  

 

Algorithm 1: VND with Tabu Tool 

Input: Max_Time, Max_Iter, NoImproveLimit, Tabu_Tenure, Tabu_List = {} 
Output: Global Best Solution 
Current ← Create_Initial_Solution(); 
Global_Best ← Current 
no_improve_counter = 0 
For iter = 1 to max_iter do 
best_solution = None 
 For all neighbourhoods 
 new_solution ← Neighbourhood(current); 
 if new_solution(time)< max_time and new_solution(cost)≤best_solution(cost)  then 
 best_solution←new_solution; 
 if best_solution<current  
 current←best_solution; 
 Update(Tabu_list);  
 Update(no_improve_counter); 
 if current < global_best 
 global_ best ← Local_Search(current); 
 if no_improve_count greater than NoImproveLimit 
 current ← perturbation(current); 

Return global_best 

Figure 2. Pseudecode for proposed algorithm. 

 
The algorithm starts with an initial solution. The initial 
solution is a feasible solution obtained by running the 
mathematical model for a specific period of time for small-
sized problems. For medium and large size problems, the 
initial solution is determined as a random feasible solution 
since a feasible solution cannot be found in a short period of 
time with the exact solution methods of the mathematical 
model. The max_sure in the input parameters expresses the 
available time constraint of the problem. Tabu list and tabu 
tenure are the elements of the tabu search mechanism defined 
as parameters and used in the algorithm. If the algorithm fails 
to improve for a certain number of iterations, this is a stopping 
condition and as a result the algorithm stops. If no 
improvement can be achieved for a smaller number of 
iterations before the stopping condition is reached, the 

perturbation mechanism is activated and a different region of 
the solution space is searched. VND allows iterative search 
between neighbourhoods, where four different 
neighbourhood structures are defined in the proposed 
algorithm. Based on the current solution, a certain number of 
neighbouring solutions are generated from a neighbourhood 
structure and saved as new_solution.  
The best solution among the new solutions generated with the 
relevant neighbourhood structure is saved as best_solution. 
Best_solution is assigned as the current solution if it has a 
better result than the current solution. If the neighbourhood 
structure is one of the neighbourhood structures to be 
included in the tabu list, the tabu list is updated and the 
global_best check is performed. The loop is completed for all 
neighbourhoods and if there is no change in global_best during 
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a certain number of iterations, the perturbation operator is 
called and the current solution is modified and the algorithm 
continues over the new current solution. When a certain 
number of iterations is reached, the algorithm stops and 
returns the best solution found. 
Neighbourhood structures determine the strategy for 
exploring the solution space and have a significant impact on 
the performance of the algorithm. The proposed VND includes 
four different neighbourhood procedures. The first 
neighbourhood structure is given in Algorithm 2 a random 
node from the current route is selected. The family of this node 
is identified, and then another node from the same family that 
has not yet been visited is randomly chosen. The visited node 
is removed from the route, and the unvisited family member is 
inserted into every possible position in the route. Finally, the 
best position is selected based on the minimum route cost. 
The second neighbourhood given in Algorithm 3 procedure 
involves a similar approach to the first neighbourhood. While 

in the first neighbourhood a random node is first selected from 
the current route, in the second neighbourhood a random 
family is selected. A member of the selected family that is 
present in the current route is replaced by any of the 
remaining unvisited members of the family. After the 
replacement process, the newly added member is placed in the 
lowest cost position in the current route. 
Neighbourhood 3 and Neighbourhood 4 structures are 
designed based on the LNS_1 and LNS_2 methods proposed by 
[27]. In their study, Pandiri and Singh [27] proposed a hyper-
heuristic that selects between Large Neighbourhood 
algorithms. Among the algorithms, which they call LNS, 
selections are made according to different criteria. In the 
method proposed in this study, these search methods are 
added to the LNS algorithm as neighbourhood. 
 

 
 

Algorithm 2: First Neighborhood Procedure 

Input: A feasible solution, best_distance = ∞  

Output: New solution, move 

 element1 ← Choose a random element from solution; 

 Family[i] ← Find family index for element1; 

 element2 ← Choose a random unvisited member from Family[i]; 

 Extract (element1) from solution; 

 For each (index) in solution; 

 New_solution ← solution(element2)  

 New_distance ← calculate cost for new solution 

 if new_distance < best_distance then; 

 best_distance ← new_distance 

 best_location ← [index] 

 move ← (element1, element2) 

Return New_solution, move 

Figure 3. Pseudecode for neighbourhood-1. 
 

Algorithm 3: Second Neighborhood Procedure 

Input: A feasible solution, best_distance = ∞  
Output: New solution, move 
 Family[i] ← Choose random family index for element1; 
 element1 ← Chooese a random visited member from Family[i]; 
 element2 ← Choose a random unvisited member from Family[i]; 
 Extract (element1) from solution; 
 For each (index) in solution; 
 New_solution ← solution(element2)  
 New_distance ← calculate cost for new solution 
 if new_distance < best_distance then; 
 best_distance ← new_distance 
 best_location ← [index] 
 move ← (element1, element2) 
Return New_solution, move 

Figure 4. Pseudecode for neighbourhood-2. 
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Algorithm 4: Third Neighborhood Procedure 

Input: A feasible solution, best_distance = ∞ 
Output: New solution 
 n ← number of elements of feasible solution 

 Min_removed ← 1 

 Max_removed ← n 

 Num_removed←random number(min_removed,max_removed) 

 Removed_elements ← Extract num_removed number of elements from feasible solution and Add; 

 New_solution ← Extract Removed_elements from feasible solution; 

 For each elements in Removed_elements; 
 New_solution ←Add element[i] best position in New_solution; 

Return New_solution 

Figure 5. Pseudecode for neighbourhood-3. 
 

Algorithm 5: Fourth Neighborhood Procedure 

Input: A feasible solution, best_distance = ∞ 
Output: New solution 
 n ← number of elements of feasible solution 

 Min_removed ← 1 

 Max_removed ← n 

 Num_removed←random number(min_removed,max_removed) 

 Removed_elements ← Extract num_removed number of elements from feasible solution and Add; 

 New_solution ← Extract removed_Elements from feasible solution; 

 For each element in removed_elements; 

  Family [i] ←Find family index for element  

  For unvisited_elements in Family[i]; 
 New_solution ←Add unvisited_element[i] best position in new_solution 

 New_distance ← calculate cost for new solution 
       if new_distance < best_distance then; 
          best_distance ← new_distance 

Return New_solution 

Figure 6. Pseudecode for neighbourhood-4. 
 
Neighbourhood 1 and neighbourhood 2 procedures involve 
low levels of perturbation and repair by replacing one node on 
the feasible solution. In Neighbourhood 3 and 4, a random 
number of nodes between 1 and the number of nodes in the 
route (n) are replaced, so the level of perturbation in the route 
is higher. For Neighbourhood 3, each element removed from 
the route is inserted to its best position in the route, i.e. the 
position that will provide the lowest cost. Neighbourhood 4, on 
the other hand, allows a large-scale change and the family 
indices of the nodes to be removed from the route are 
determined and each unvisited member within these families 
is placed in the best position in the route. Among the unvisited 
members, the member with the best cost value is selected and 
added to the best position sequence. Algorithms 4 and 5 show 
the pseudo-codes of neighbourhood 3 and neighbourhood 4 
structures respectively. 
Neighbourhood 1 and neighbourhood 2 allow to change a 
single node on the current route and this movement does not 
cause a significant change in the solution. In order to prevent 
these neighbourhoods from making the same movements over 
and over again and to scan the solution space more efficiently, 
their movements are stored in the tabu memory and the same 
movement is prevented from repeating for a certain period of 
time. 

Within the scope of the algorithm, a better solution is obtained 
with neighbourhood functions, but this solution may not be 
locally best. If the new solution obtained in one iteration is 
better than the current solution, it is assigned as the current 
solution and the 2-opt local search algorithm can be applied to 
create a better route by correcting unnecessary long routes in 
the route and creating a shorter route. 2-opt creates a shorter 
route by selecting two edges in the current route and 
rearranging (reversing) these edges. If the distance between 
two nodes can be improved, these two edges are swapped, 
thus reducing the total distance. 
The perturbation operator is used when the solution cannot be 
improved for a given number of iterations. The operator takes 
a sequence of the current route and inverts it. Perturbation 
allows the algorithm to explore different solution spaces. 
When all improvement opportunities in a given region are 
exhausted in local searches, the perturbation operator is used 
to move to a different region of the solution space.  
In this study, computational experiments were carried out on 
benchmark instances of three different sizes to investigate the 
impact of the proposed neighborhood structures, both 
individually and in combination, on solution performance.  
To ensure a fair comparison, the total number of candidate 
solutions generated in each iteration was kept constant. The 
strategies were defined according to the specific combinations 
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of neighborhoods employed. Here, N1, N2, N3, and N4 
correspond to Neighborhood–1, Neighborhood–2, 
Neighborhood–3, and Neighborhood–4, respectively. Each 
strategy was evaluated over 10 independent runs for each test 
instance, and the minimum and average solution costs 
obtained were recorded. 
 

Table 1. comparison of neighborhood strategies 

Instance bier_127_1 
T = 173 

a_280_1 
T = 480 

pr_264_1 
T = 380 

Strategy Min  Avg Min  Avg Min  Avg 

N1 45989.70 75953.81 2035.29 2079.66 36815.0 39126.4 

N2 46528.82 76007.72 2066.05 2104.93 37383.0 39392.6 

N3 64470.82 78838.47 2125.33 2180.64 39242.0 41710.5 
N4 64260.79 78200.18 2261.97 2339.27 40592.0 44010.4 

N1→N3 43273.20 75682.16 1942.88 1996.02 35727.0 36747.2 
N2→N3 47881.32 76142.97 1911.63 2012.48 36590.0 38092.2 
N2→N4 49625.90 76317.43 2081.08 2152.13 36487.0 39415.5 
N1→N4 50375.86 76392.42 2038.49 2094.55 37723.0 40093.9 

N2→N1→N3 42225.81 75577.42 1918.76 2002.83 35572.0 36699.3 
N1→N3→N4 42501.39 75604.97 1917.89 2013.62 36087.0 37822.6 
N2→N1→N4 47031.97 76058.03 1919.96 2002.03 36748.0 38746.2 
N2→N3→N4 48440.09 76198.84 1982.61 2041.81 37946.0 39268.3 

N2→N1→N3→N4 41931.75 75548.01 1878.50 1961.29 35483.0 36668.5 

 

 
Figure 7. Trend of minimum solution values across 
neighborhood strategies 
 
According to the results presented in Table 1 and Figure 7, the 
performance of different neighborhood strategies varies 
notably depending on whether they are applied individually or 
in combination. Single and paired neighborhoods yield 
relatively weaker results, while three-neighborhood strategies 
achieve moderate improvements. However, the four-
neighborhood strategy (N2→N1→N3→N4) consistently 
outperforms the others across all benchmark instances, 
delivering the lowest minimum and average solution costs. 
These findings highlight that the proposed four-neighborhood 
strategy is the most effective approach, as the diversity of 
neighborhood structures significantly enhances the 
performance of the VND algorithm. 

5  Computational experiments 

In this study, which also considers the time constraint for 
FTSP, the instances first defined in the literature by [7] and 
recently added to the literature by [27] are used as a basis for 
comparing the mathematical programming model and 
algorithm and measuring their performance. Time parameters 
were added to some of the instance sets taken from these two 
studies, and they were made appropriate for the defined 
model. 
All computational experiments were performed on a PC with 
Intel Core™ i5-8400 processor, 2.80GHz and 16 GB RAM. The 
algorithm and mathematical model were written in PYTHON 
version 3.8 and GUROBI 9.1.1 solver was used to solve the 
model. 
In the first set of test instances shared by [7], the problem size 
ranged from 14 to 280. Each example was solved three times 

with different time constraint (T) values. T values were 
determined to be smaller than the total time value obtained in 
the solution without time constraint. The nodes to be visited 
are selected and sorted in such a way that the family member 
constraints are met, the maximum time available, i.e. the T 
value, is not exceeded and the total cost is minimised. Table 1 
summarises the results of the province data set group. The 
GUROBI results of the model for different T values and the 
results of the proposed heuristic for the problem are 
presented in the table. In order to prove the time efficiency of 
the method, the solution time results of the method are given 
in seconds in the Time column. The method is run ten times for 
each instance  and the results are shared with maximum, 
minimum and average values.  
The model solution time was set to 120 seconds for results 
marked with (*) and 240 seconds for results marked with (**). 
In all problems where the model can reach the best solution, 
the proposed method has achieved the best results in 
minimum and average values. The proposed method showed 
better performance in all criteria in the results that the model 
could reach within the specified time. 
The solutions obtained with the instances taken from the data 
sets shared by [27] in their study are given in Table 2. For these 
instance sets, the mathematical solution time was set as 300 
seconds and no optimal solution was obtained in the specified 
time for any problem. The proposed VND algorithm with tabu 
mechanism achieved better results in much shorter times in all 
instances. In order to test the significance of the differences 
between the objective functions of the mathematical model 
and the proposed method, a statistical t-test was applied on 
the average results of the proposed method. Before the t-test, 
normality test was performed on both sets of results and it was 
determined that the values were normally distributed.  
The null hypothesis was designed to state that there is no 
difference between the averages of both samples and the 
alternative hypothesis was designed to state that the average 
of the values including the method results is less. The 
confidence level for the t-test was set to 95%. If the p-value is 
less than 0.05 as a result of the analysis performed at the 
specified confidence interval, it will be concluded that the 
alternative hypothesis should be accepted, that is, it is 
statistically ensured that the metaheuristic method has better 
values according to the objective function. As a result of the 
analysis, p-value = 0.023 is found and since it is less than the 
threshold value, the method has lower total tour cost values. 
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Table 3. Results for  second instance set. 
 Gurobi Matheuristic Gurobi Matheuristic Gurobi Matheuristic 

Instance  Min Max Avr Time  Min Max Avr Time  Min Max Avr Time 

gr_137_1 
T = 273 T = 260 T = 250 

59599 45251 47381 46336.1 15.89 57663 46134 49938 48005.4 14.0 62036 47343 51008 49085.4 13.80 

gr_137_2 
T= 170 T= 160 T = 150 

44238 37096 39032 38046.3 5.43 43793 36909 39785 38835.7 5.58 47417 38324 42120 39768.2 5.88 

gr_137_3 
T=365 T = 350 T= 345 

64707 56243 59472 57522.1 25.25 68406 56404 61174 58269.5 24.49 59720 57852 62387 59141.7 26 

kro_150_1 
T = 235 T = 220 T = 210 

19413 15429 16671 160035 19.29 21028 15761 17369 16522.5 22.17 17159 16279 18386 17042.0 20.70 

kro_150_2 
T= 155 T= 140 T = 130 

11948 10597 12543 11470.0 6.88 14925 10495 14301 12091.0 6.96 13388 10989 13926 12436 6.3 

kro_150_3 
T=350 T = 340 T= 320 

29057 21532 22473 21927.0 32.88 32467 21372 22923 22195 36.45 27978 22761 24747 23618.0 152.58 

rat_195_1 
T=275 T=260 T=250 

1809 1317 1431 1384.0 24.36 1758 1357 1477 1411.0 23.03 1932 1346 1444 1409.0 24.57 

rat_195_2 
T= 195 T = 180 T= 170 

1428 954 1046 1006.0 9.90 1207 952 1052 9967 9.21 1275 956 1066 1009 9.54 

rat_195_3 
T = 430 T=410 T = 390 

2221 1854 1954 19048 61.05 2339 1872 2004 19192 55.09 2403 1891 2018 1938.0 60.68 

gr_202_1 
T= 320 T = 300 T = 290 

33590 23098 24407 23796.0 51.80 37991 23284 25467 24356.0 51.01 32859 23884 28452 25277.0 57.54 

gr_202_2 
T = 210 T = 200 T = 185 

26918 15680 17974 16742.0 17.46 21326 15347 17251 16411.0 16.88 24237 15347 17251 16411 16.88 

gr_202_3 
T = 455 T = 440 T = 430 

46780 35308 36925 35942.0 77.22 45567 35697 37382 36349 81.38 43790 35971 38115 36786.0 58.72 

pr_264_1 
T = 405 T  = 390 T = 380 

66310 34828 36075 35377.0 88.45 56168 35157 36478 35575.0 77.96 48864 35345 38122 36488.0 85.19 

pr_264_2 
T = 270 T = 250 T = 240 

44553 28949 30173 29498.0 31.10 44099 28839 30077 29329.0 30.05 47772 29138 30071 297357 29.6 

pr_264_3 
T = 635 T= 620 T = 610 

79124 41658 43911 42789.0 188.85 75154 41656 46944 436394 187.87 68808 41553 45454 43353.0 185.64 

6 Conclusion and future work 

In this paper, we focus on FTSP, a new type of TSP, which is a 
well-known problem proposed to be adapted in real-life 
applications. Unlike the other works in the literature that deal 
with the TSP, in this study, a more real-life-like proposal is 
presented by defining times for the visited nodes and adding 
the constraint that the available time should not be exceeded 

while creating the route. A mathematical model of the problem 
is defined and a metaheuristic method is developed to 
approach efficient solutions in a shorter time. The proposed 
metaheuristic is a Variable Neighbour Descent algorithm with 
four different neighbourhood procedures. Two of the 
neighbourhood structures provide diversification and 
intensification by allowing small-scale changes while the other 
two provide diversification and intensification by allowing 

Table 2. Results for  first instance set. 

 Gurobi Metaheuristic Gurobi Metaheuristic Gurobi Metaheuristic 

Instance  Min Max Avr Time  Min Max Avr Time  Min Max Avr Tine 

burma_14_1 

T = 8 T = 9 T = 10 

21.32580 21.32580 21.32580 21.32580 0.16 15.73500 15.73500 15.73500 15.73500 0.16 13.9323 13.9323 13.9323 13.9323 0.15 

burma_14_2 

T = 30 T = 27 T = 25 

25.6562 25.6562 25.6562 25.6562 0.28 25.8494 25.8494 25.8494 25.8494 0.29 25.8494 25.8494 25.8494 25.8494 0.29 

burma_14_3 

T = 5 T = 6 T = 7 

19.9526 19.9526 19.9526 19.9526 0.32 14.3618 14.3618 14.3618 14.3618 0.44 11.8860 11.8860 11.8860 11.8860 0.50 

bayg_29_1 

T= 42 T= 37 T = 34 

5345.86 5345.86 5345.86 5345.86 0.56 5366.08 5366.08 5366.08 5366.08 1.28 5394.01 5394.01 5394.01 5394.01 1.32 

bayg_29_2 

T= 42 T = 40 T = 38 

5791.01 5791.01 5791.01 5791.01 1.21 5813.39 5813.39 5813.39 5813.39 1.81 5863.23 5863.23 5863.23 5863.23 1.75 

bayg_29_3 

T= 44 T = 41 T = 36 

5544.33 5544.33 5544.33 5544.33 2.77 5775.91 5775.91 5775.91 5775.91 1.41 6171.53 6171.53 6171.53 6171.53 1.02 

att_48_1 
T= 100 T=90 T = 86 

23686.02 23686.02 23686.02 23686.02 13.27 25584.55 25584.55 25584.55 25584.55 13.39 27639.26 27639.26 27639.26 27639.26 7.8 

att_48_2 

T= 74 T = 70 T = 65 

20826.23* 20609.08 20826.23 20646.75 12.18 21232.54* 20653 20991 20754 12.2 20950.43* 20812.61 21246.49 20930.29 12.19 

att_48_3 

T= 47 T = 40 T = 35 

9335.07* 9024.58 9100.79 9044.49 11.11 9292.32 9292.32 9353.1 9347.02 20.9 10482.19* 10420.58 10482.19 10463.7 23.2 

bier_127_1 

T= 173 T = 165 T = 160 

44911.4* 37946.62 39256.71 38573.10 98.30 47072.4822* 38129.81 39935.12 39147.11 95.87 48465.92* 38423.47 50985.20 42297.82 98.4 

bier_127_2 

T= 245 T= 230 T = 210 

105539.66* 90005.35 92751.26 91876.98 135.60 106276.36* 92668.14 94753 93910 144.0 113974.212* 97586.75 100619.82 99157.8 149.8 

bier_127_3 

T = 182 T= 170 T=160 

53835.46* 47827.02 48557.07 48312.03 80.02 59381.88* 48698.96 49767.74 48900.25 80.29 56256.19* 49993.43 51468.62 50525.75 79.9 

a_280_1 

T= 520 T = 500 T = 480 

3229.11** 1902.99 2376.16 1979.85 142.88 3323.622** 1814.82 1952.65 1891.82 202.19 3100.35** 1903.86 2040.91 1957.22 190.2 

a_280_2 

T=443 T=430 T= 410 

3110.5** 1679.10 1775.66 1726.52 153.19 2998.08** 1699.32 1850.44 1748.49 151.2 2960.45** 1741.57 1832.20 1776.39 127.7 

a_280_3 

T = 403 T= 390 T = 370 

2620.97** 1504.73 1631.23 1583.91 106.04 2826.9** 1500.3 1668.48 1598.15 102 2779.29** 1571.26 1709.8 1637.56 107.6 
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large-scale changes. The tabu mechanism, on the other hand, 
prevents returning to the same solutions in the near future and 
contributes to diversification by taking the actions in the first 
neighbourhood to the tabu list. By applying the 2-opt 
algorithm on the existing solutions, the improvement rate is 
increased in each iteration. If no improvement is observed as 
the iterations progress, the perturbation operator makes 
significant changes to the current solution, allowing different 
regions to be searched. The proposed algorithm is tested using 
test instances from the literature. In this study, time 
information for each visit node was added to the existing 
information in the test instances. Since the mathematical 
model solutions require a long time, a threshold value was set 
for the solution time and the performance was measured 
according to the results found within this solution time. Each 
of the test cases was solved using different T values. As a result, 
VND achieved the best solutions in small size problems and as 
the problem size increased, it achieved better solutions in 
much shorter times compared to the mathematical model 
solver. 
In future work, a new VND algorithm with different 
neighbourhood structures and more complex algorithmic 
improvements can be designed. Hybrid approaches can be 
developed to improve the performance of this algorithm. For 
example, simulated annealing can be used to improve initial 
solutions, and genetic algorithm operators can be used to 
provide diversity and avoid local optima. In addition, machine 
learning algorithms can be integrated to harmonise the 
algorithm with the learning processes and make it adaptive. 
This hybrid VND algorithm can produce more flexible and 
efficient solutions by adapting itself according to different 
problem characteristics. 
For performance evaluation, making use of all datasets defined 
on FTSP in the existing literature allows for more 
comprehensive comparative analyses. In this context, the 
strengths and weaknesses of the algorithm can be identified by 
performing detailed analyses on the data sets. In addition, 
simulating different scenarios by creating new instances and 
studying the generalisability of the algorithm can increase the 
adaptability of the model to practical implementations. 
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