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Abstract  Öz 

Our study aimed to investigate the wind potential of Bartın, one of 
Türkiye's northernmost provinces. To determine this potential, we 
analyzed the region's wind power density and wind speed parameters. 
3561 hourly wind speed data obtained from the stations of the General 
Directorate of Meteorology between the years 2015-2024 were used in 
the analyses.  The obtained data were evaluated to examine the annual, 
seasonal, and monthly distributions of wind speed. In the actual data 
collected, the highest wind speed was measured as 1.5645 m/s and the 
lowest as 0.3345 m/s. Based on the Weibull analysis, the highest average 
wind speed was determined to be 1.2712 m/s in 2024, and the highest 
power density corresponding to this average wind speed was 1.6453 
W/m². The obtained data were evaluated in order to examine the 
annual, seasonal and monthly distributions of wind speed. Weibull 
distribution function, which is frequently preferred in the literature and 
known to provide reliable results, was used for statistical modeling of 
wind speeds. The shape (k) and scale (c) parameters of the Weibull 
distribution were determined by the least squares method; the 
suitability of the model was statistically verified by the coefficient of 
determination (R²), root mean square error (RMSE) and chi-square (χ²) 
tests. The analyses show that the wind data of Bartın province can be 
successfully represented by the Weibull distribution. The findings shed 
light on the feasibility of wind energy-based investments in Bartın and 
provide a solid data basis for new studies in this field. It is also 
anticipated that they may contribute to the planning of sustainable 
energy policies at the regional level. 

 Bu çalışmada, Türkiye’nin en kuzeyinde yer alan Karadeniz Bölgesi’nin 
Bartın ilindeki rüzgâr enerjisi potansiyelinin belirlenmesine yönelik 
olarak, rüzgâr hızı ve güç yoğunluğu parametrelerinin istatistiksel 
analizi gerçekleştirilmiştir. Analizlerde 2015-2024 yılları arasında 
Meteoroloji Genel Müdürlüğü istasyonlarının saatlik olarak aldığı 3561 
adet rüzgâr hızı verileri kullanılmıştır. Elde edilen veriler, rüzgâr 
hızının yıllık, mevsimlik ve aylık dağılımlarını incelemek amacıyla 
değerlendirilmiştir. Toplanan gerçek verilerde  rüzgar hızı en yüksek 
1.5645 m/s, en düşük 0.3345 m/s olarak ölçülmüştür. Weibull analizi 
sonucunda en yüksek ortalama rüzgar hızı 2024 yılında 1,2712 m/s, bu 
ortalama rüzgar hızına karşılık gelen en yüksek güç yoğunluğu ise 
1,6453 W/m² olarak tespit edilmiştir. Rüzgâr hızlarının istatistiksel 
modellemesi için literatürde sıklıkla tercih edilen ve güvenilir sonuçlar 
sunduğu bilinen Weibull dağılım fonksiyonu kullanılmıştır. Weibull 
dağılımının şekil (k) ve ölçek (c) parametreleri, en küçük kareler 
yöntemiyle belirlenmiş; modelin uygunluğu ise belirleme katsayısı (R²), 
kök ortalama kare hata (RMSE) ve ki-kare (χ²) testleri ile istatistiksel 
olarak doğrulanmıştır. Yapılan analizler, Bartın ilinin rüzgâr 
verilerinin Weibull dağılımı ile başarılı biçimde temsil edilebildiğini 
göstermektedir. Elde edilen bulgular, Bartın’da rüzgâr enerjisi temelli 
yatırımların fizibilitesine ışık tutmakta olup, bu alanda yapılacak yeni 
çalışmalar için sağlam bir veri temeli sunmaktadır. Ayrıca, 
sürdürülebilir enerji politikalarının bölgesel düzeyde planlanmasında 
da katkı sağlayabileceği öngörülmektedir. 

Keywords: Wind energy, statistical wind analysis, Weibull 
distribution, Bartın 
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1 Introduction 

To effectively utilize wind energy potential, accurate and 
detailed analysis of regional wind potential is crucial. Local 
wind speed measurements and statistical assessments, in 
particular, play a critical role in planning energy investments 
and determining turbine placement strategies. In this regard, 
wind potential analyses conducted in various regions of Turkey 
contribute to the development of the country's renewable 
energy map. Data obtained from wind data measurement 
stations in various regions and city centers have been used to 
classify wind speeds in these regions according to their 
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probabilistic properties and to be used in scientific studies [1]. 
Low-frequency strong wind speeds (LOSWS) have attracted 
significant attention in the statistical modeling of wind speed 
and power density parameters in determining wind energy 
potential [2]. Thanks to the advancement of experimental 
equipment and theoretical calculation methods for wind energy 
analysis, areas with high wind potential can be identified and 
interpreted using highly accurate time-series data. [3],[5]. In 
one study, a hot-wire anemometer was also used to determine 
the vertical wind profile near the ground in adjacent buildings. 
[6]. Takemi et al. used LES to investigate the wind potential in 
what they consider to be a large-scale district in Kyoto [7]. 
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Although it is now easier to obtain higher quality and more 
comprehensive data than before, effective statistical tools are 
still important for PLWE studies. Using a specific distribution 
function to evaluate the probabilistic properties of wind speed 
can simplify the analysis. He developed a statistical model 
based on beta distribution to estimate probability distribution 
functions (PDFs) in wind speed studies and validated its 
performance in various cases [8],[9]. He analyzed the wind 
environment around an isolated building using a Gaussian 
distribution and found that this distribution was more suitable 
for velocity components than wind speed. While the Gaussian 
distribution is applicable in many cases, the symmetric bell-
shaped distribution is not ideal for modeling oblique PDFs. 

A study conducted using a Gaussian distribution to analyze 
wind potential at a building located in an isolated site 
unaffected by external environmental conditions found that 
velocity components were more suitable than wind speed. 
While the Gaussian distribution is applicable in most studies, 
the symmetric bell-shaped distribution is not considered 
suitable for modeling oblique PDFs. [10]. 

In the study conducted by Demirkol et al., where the LSTM 
method was used and a strong estimation performance was 
shown, reliable inferences were made for wind energy 
estimation [11]. In the study where the 2W2W defined mixed 
Weibull distribution was evaluated to provide more accurate 
results for unimodal and bimodal PDFs, it was stated that the 
2W2W method gave better results in estimating strong wind 
speeds (LOSWS) lower than 2W at most points. [12]. 

Considering the important role of the location parameter in the 
three-parameter (3-P) Weibull model and its rare application 
in wind turbines, this study performed the reliability analysis 
of wind turbine subassemblies based on field data fitted to the 
3-P Weibull distribution model by means of maximum 
likelihood estimation (MLE) [13]. Maximum Likelihood 
Estimation (MLE), Graphical Method (GM) and Method of 
Moments (MM) methods were used with the weibull analysis of 
wind data obtained from 318 cities by Huo et al. As a result, it 
was stated that wind input information can be used as basic 
information in the evaluation of weibull distribution patterns 
and climate potential [14]. Among similar methods, there are 
studies in which the standard deviation method gives better 
results than others [15]. As a result of the two-parameter 
weibull modeling of wind turbines located in Okorobo town, 
Nigeria, it was determined that the annual cumulative 145.13 
W/m2 was in high agreement with the actual measured data at 
10 m height [16]. Similarly, in the study conducted in Taza 
province of Morocco where the wind energy potential was 
determined with the Weibull distribution, it was stated that the 
104/3.4 wind turbine model was the most suitable for all areas 
[17]. In the study where the Metropolis-Hastings algorithm was 
used and the standard deviations were less than 0.0193 and 
0.0244 m/s, respectively, the discrepancies between the 
estimated and actual wind speeds were found to be less than 
0.089 m/s [18]. In the study conducted by Rüstemli et al., wind 
direction, wind speed, temperature, relative humidity and air 
pressure data were taken at 5-second intervals for a year and 
the wind energy potential was analyzed with the Weibull 
distribution, and it was investigated whether the region was 
suitable for wind energy [19]. 

Among renewable energy sources, wind energy has reached a 
remarkable position thanks to both the technical advantages 
provided by technological advances and the decrease in 
investment costs over time. Wind occurs as a result of air 

currents resulting from temperature and pressure differences 
in the atmosphere, and these currents contain a significant 
amount of kinetic energy. Various studies in the literature 
reveal that the total kinetic wind energy available in the 
atmosphere is approximately 190 x 10⁹ kW, and approximately 
3 x 10⁹ kW of this can be technically evaluated for energy 
production purposes [20]. In addition, approximately 2% of the 
total solar energy reaching the earth is converted into wind 
energy. This rate is far above the amount of energy needed 
worldwide and clearly demonstrates how important a source 
wind energy is in terms of sustainability. However, in order to 
effectively benefit from wind energy, regional wind regimes 
must be analyzed and estimated correctly. The fact that wind 
speed varies over time necessitates its modeling with statistical 
methods. In this regard, probability distributions such as 
Weibull, Rayleigh, Gamma and Log-Normal are used in 
modeling wind speed distributions [21]. Particularly, the two-
parameter Weibull distribution is one of the most widely used 
methods in wind energy modeling due to the flexibility of its 
parametric structure, its high level of compliance with wind 
data and its ability to reflect the energy potential in detail [22]. 
Thanks to the shape (k) and scale (c) parameters of the Weibull 
distribution, the statistical properties of the wind speed can be 
determined precisely. The accuracy of these parameters is 
evaluated with various statistical tests (e.g. Kolmogorov-
Smirnov, Anderson-Darling, χ²). In addition, goodness-of-fit 
measures such as coefficient of determination (R²) and root 
mean square error (RMSE) are also used to test the reliability 
of the model [23]. Thanks to these analyzes, the regional wind 
energy potential is reliably revealed and the basis for energy 
production planning is formed. In recent years, studies on the 
evaluation of wind energy potential have gained momentum in 
Turkey. Measurements made especially in high altitude areas 
on the coastline and inland regions show that the country has a 
significant wind energy potential [24]. In the analyses carried 
out to evaluate this potential, Weibull and Rayleigh 
distributions are generally preferred, and energy production 
capacity, turbine location and cost feasibility are evaluated 
based on the measured data [25 ,26].  

The primary objective of this study is to statistically assess the 
wind energy potential in mountainous regions at an altitude of 
approximately 20 m in the Amasra district of Bartın province. 
Located in the Black Sea Region of Türkiye, Bartın, with its 
geographical structure, coastline, and valleys, is a potential 
region with diverse wind regimes. Therefore, determining the 
region's wind energy capacity will significantly contribute to 
both meeting local energy needs and achieving sustainable 
development goals. The data used in the study were obtained 
from hourly average wind speeds measured at meteorological 
stations established in Bartın province by the Turkish State 
Meteorological Service between 2015 and 2024. Using the 
provided data, the required data for the analyses, such as the 
Weibull method functions, cumulative distribution function, 
mean wind speeds in the region, standard deviation, maximum 
wind speed in the region, and wind power density, were 
calculated. The success level of the model was evaluated with 
fit criteria such as R², RMSE and χ². In addition to these studies, 
the least squares method was used to detect data in the Weibull 
distribution in estimating the specified model parameters [27]. 
This study presents an up-to-date, detailed and long-term 
analysis that evaluates the wind energy potential specific to the 
Bartın province in the Black Sea Region of Turkey. While many 
studies on wind energy in the literature are conducted at a 
national or more general regional scale, this research 
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contributes to the determination of the energy potential at the 
local level by focusing only on the Bartın province. In addition, 
the originality of the study is further increased by the 
comprehensive statistical analyses performed based on hourly 
measurement data in a wide time period covering the years 
2015-2024. In this context, the study not only presents the 
annual, seasonal and monthly distributions of wind speed data, 
but also reinforces the reliability of the data by verifying a 
statistically reliable model such as the Weibull distribution 
with different performance criteria. This approach allows for 
more accurate planning of region-specific energy projects, 
while also providing a new perspective for the evaluation of 
sustainable energy resources in the Bartın province and makes 
a significant contribution to local wind energy studies in the 
literature.  

2 Materials and Methods 

In this study, wind speed data obtained from automatic 
meteorological observation stations operating under the 
General Directorate of Meteorology (MGM) of the Republic of 
Turkey were used in order to statistically evaluate the wind 
energy potential of Bartın province. The analyses were based 
on the average wind speed data recorded hourly from a height 
of 10 meters in Bartın province for the period between 2015 
and 2024 [28]. Missing, erroneous or inconsistent 
measurements in the raw data set were subjected to data 
cleaning and pre-processing processes before the analysis; only 
reliable and consistent data were evaluated within the scope of 
the analysis. 

In order to model the frequency distribution of wind speeds, 
the two-parameter Weibull distribution function was 
preferred. This distribution function is frequently used in wind 
energy analyses due to its ability to flexibly represent the 
statistical changes in wind speeds [29]. The shape (k) and scale 
(c) parameters of the Weibull distribution were calculated 
according to the formulas specified in the relevant literature; 
the accuracy and reliability of the model were tested with both 
visual and numerical methods. Weibull probability graph was 
used within the scope of visual evaluation; Kolmogorov-
Smirnov test was applied as a numerical suitability test. The 
least squares method was adopted in estimating the Weibull 
distribution parameters, and the technical details regarding the 
application of this method were explained using the relevant 
literature sources. As a result of the analyses, it was revealed to 
what extent the Weibull distribution represented the wind 
speed data of Bartın province, and the annual wind energy 
production potential of the region was calculated. 

The general expression of the two-parameter Weibull 
probability function used in determining wind speed is given in 
Eq. 1. 

                       𝑓𝑤(𝑉) = (
𝑘

𝑐
) ∗ (

𝑉

𝑐
)
𝑘−1

∗ exp⁡(−(
𝑉

𝑐
)
𝑘
)                           (1) 

The expression c used as the scale parameter in the Weibull 
analysis also has a reference value in wind data. The Weibull 
cumulative distribution function is determined by Eq.2. 

                                𝐹𝑤(𝑉) = 1 − exp⁡(− (
𝑉

𝑐
)
𝑘
)                               (2) 

The Weibull cumulative distribution function gives the 
probability of the wind speed being less than or equal to a 
certain value ν. The k (shape parameter), c (scale parameter) 
formulas used in trying to find the Weibull probability density 
and Weibull cumulative distribution functions are given in Eq. 
3 and Eq. 4. 

                                                 𝑘 = (
𝜎

𝑉𝑚
)
−1,086

                                      (3) 

                                                 𝑐 = (
𝑉𝑚

𝛤(1+
1

𝑘
)
)                                           (4) 

The average wind speed of the studied region and the standard 
deviation of this value are calculated using Eq. 5 and Eq. 6, 
respectively. 

                                            𝑉𝑚 = 𝑐 ∗ 𝛤 (1 +
1

𝑘
)                                  (5) 

 

                            ⁡𝜎 = ⁡√(𝑐2 ∗ [𝛤 (1 +
2

𝑘
) − 𝛤2 (1 +

1

𝑘
)]                   (6) 

Based on the Weibull distribution, the wind speed with the 
largest frequency is calculated from Eq. 7. 

       ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉𝑚𝑜𝑑 = 𝑐 ∗ (1 −
1

𝑘
)

1

𝑘
                             (7) 

Eq. 8 given below is used when calculating maximum wind 
speed. 

                                             𝑉𝑚𝑎𝑥, 𝑒 = 𝑐 ∗ (
𝑘+2

𝑘
)

1

𝑘
                                       (8) 

Eq. 9 is used to determine the average wind power density for 
a region. 

                                    𝑃𝑚 = ⁡∫ 𝑃(𝑉) ∗ 𝑓(𝑉)𝑑𝑣
∞

0
                              (9) 

The average power density for the Weibull distribution is 
obtained from Eq. 10 as follows. 

                             𝑃𝑤 = (
1

2
) ∗ 𝜌 ∗ 𝑐3 ∗ 𝛤 (1 +

3

𝑘
)                            (10) 

Statistical analysis criteria frequently used in interpretations 
are determined as Eq. 11, Eq. 12 and Eq. 13 and their 
calculations are given below. 

 

   𝑅2 = [∑ (𝑦𝑖 − 𝑧𝑖)2 −⁡∑ (𝑥𝑖 − 𝑦𝑖)2]/ ∑ (𝑦𝑖 − 𝑧𝑖)2𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1   (11)  

                                                                                           

                             χ² = [∑ (𝑦𝑖 − 𝑥𝑖)2⁡]⁡/(𝑁 − 𝑛)⁡⁡⁡𝑁
𝑖=1                      (12) 

 

                            𝑅𝑀𝑆𝐸 = ⁡√[(
1

𝑁
) ∗ ∑ (𝑦𝑖 − 𝑥𝑖)2]𝑁

İ=1                     (13) 

Here, yi is the real data, xi is the data estimated by the Weibull 
distribution analysis, zi is the mean value of yi’s, N is the 
number of observations, n is the number of parameters in the 
Weibull distribution. Of these criteria, all except R2 determine 
the best distribution according to their smallest values. R2 can 
range from 0 to 1 as an expression of the model's predictive 
power. As this value approaches 1, it indicates increased 
predictive power for the given study. Weibull least squares 
method (LSM) was preferred for parameter estimation because 
of its ease of calculation compared to other methods (especially 
MLE), its ability to make stable predictions in suitable data 
situations, and its ease of visualization [30, 31, 32]. 

 

3 Findings and Discussion 

The frequency distributions of hourly wind speed data between 
2015 and 2024 are presented in detail in Table 1. In this 
context, the observational frequency distributions created 
using the wind speed data measured for each year and the 
theoretical frequency values calculated using the two-
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parameter Weibull distribution function were comparatively 
evaluated. Wind speed data were categorized into specific 
speed classes, and wind frequencies corresponding to each 
speed range were determined. According to the measurement 
results, 1489 data points were recorded in the 0–1 m/s range, 
while no measurements were made in the 13–14 m/s range. 
Measurements were made by recording data for approximately 
one hour per day. A total of 3561 hours of wind speed data were 
analyzed. According to the obtained data, it was determined 
that the highest probability density occurred in the 1–2 m/s 
range. 

The performance criteria used in the analyses include statistical 
validation criteria including the observational values (yᵢ), the 
theoretical values estimated by the Weibull distribution (xᵢ), 
the mean of the observational values (zᵢ), the number of 

observations (N) and the number of parameters of the 
distribution function (n). These criteria include the coefficient 
of determination (R²), root mean square error (RMSE) and chi-
square (χ²) tests, and for all criteria except R², lower values 
indicate that the model fits the real data better. The R² value is 
a criterion reflecting the explanatory power of the model, and 
varies between 0 and 1, and the value approaching 1 indicates 
the high predictive power of the model. As a result of the 
comparisons made, it was seen that the Weibull distribution 
successfully represented the wind speed data of Bartın 
province. 

 

 

 

 

 

Table 1. Wind speed frequency distributions. 

 

No 

Vi 

Wind Speed 
Range 

Vm,j 

Wind Speed 
Range 

fi 

Number of 
Wind Speeds 
Measured 

fA(vi) 

Probability 
frequency 

Fa(vi) 

Cumulative 
frequency 

fw(vi) 

Weibull 
Probability 

1 0 ─ 1 0.5 1489 0.204379562 0.412807663 0.5202 

2 1 ─ 2 1.5 1955 0.748175182 0.966777929 0.4927 

3 2 ─ 3 2.5 104 0.04379562 0.996350343 0.0115 

4 3 ─ 4 3.5 11 0.003649635 0.999451302 5.56388E-06 

5 4 ─ 5 4.5 1 0 0.999726027 3.38589E-11 

6 5 ─ 6 5.5 1 0 1 1.60644E-18 

7 6 ─ 7 6.5 0 0 1 3.80572E-28 

8 7 ─ 8 7.5 0 0 1 2.9811E-40 

9 8 ─ 9 8.5 0 0 1 5.26144E-55 

10 9 ─ 10 9.5 0 0 1 1.46071E-72 

11 10 ─ 11 10.5 0 0 1 4.54613E-93 

12 11 ─ 12 11.5 0 0 1 1.1506E-116 

13 12 ─ 13 12.5 0 0 1 1.7444E-143 

14 13 ─ 14 13.5 0 0 1 1.183E-173 

The data presented in Table 1 show the statistical distribution 
of wind speed measurements belonging to the examined region 
in detail. In this direction, the Vi parameter represents the wind 
speed ranges created to provide the classification of wind 
speeds measured in a certain time period. The Vm,j value 
calculated for each range is obtained by taking the arithmetic 
average of the lower and upper limits of the relevant speed 
range and shows the average wind speed corresponding to that 
range. fi indicates the number of data observed in each wind 
speed range, i.e. how many measurements were made in that 
range. 

The fA(Vi) value calculated based on the relevant frequency 
information is the probability density function (PDF) showing 

the probability of occurrence of each wind speed range. In 
contrast, FA(Vi) is defined as the cumulative distribution  

function (CDF) expressing the cumulative sum of all 
probabilities up to a certain wind speed value. fw(Vi) 
represents the Weibull probability density function values 
calculated for each wind speed range. The Weibull distribution 
is a widely used parametric method in the assessment of wind 
energy potential and provides high accuracy results in the 
statistical modeling of wind speeds. 

With the help of these parameters, the distribution 
characteristics of the wind speed data belonging to the region 
were analyzed in detail and the obtained results were used in 
the evaluations for determining the potential wind energy. The 
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graphical representations of the fA(Vi), FA(Vi) and fw(Vi) 
functions calculated based on the relevant wind speed ranges 
and fi values are presented in Figure 1. 

 

 

Figure 1. Variation of probability density function with wind speed 

Figure 1 presents the probability density functions of wind 
speeds measured in Bartın province between 2015 and 2024. It 
is observed that wind speeds are concentrated around 2 m/s 
for all years, indicating that the dominant wind speed in the 
region is at low levels. The year 2021 draws attention by 
exhibiting a significantly higher probability density in the 2 m/s 
range compared to other years; this situation shows that the 
wind blew more frequently and steadily at this speed that year.  

 

The probability densities for speeds of 3 m/s and above are 
quite low, indicating that high-speed wind events in the region 
occur rarely. On the other hand, the absence of major 
differences between years reveals that the long-term wind 
regime of Bartın province has a stable structure. These findings 
show that the wind energy potential of the region, although 
limited, can be evaluated with turbine technologies that are 
sensitive to low speeds. 

 

Figure 2. Variation of cumulative density function with wind speed 

 

Figure 2 presents the cumulative probability distribution (CDF) 
for wind speeds measured in Bartın province between 2015 

and 2024, and compares the probabilities of wind occurrence 
up to certain speed values. According to the results obtained, 
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the cumulative density rate of wind speeds up to 2 m/s exceeds 
90% for most years, which reveals that wind blows largely at 
low speeds in the region. In particular, the years 2015 and 2024 
draw attention by deviating from other years in the range of 1–
2 m/s, and it is understood that wind speeds are observed at 
lower frequencies during these periods. The details shown in 
the expanded areas reveal that there are small but significant 
differences between the years in low speeds (0–2 m/s) and 
transition to medium speeds (3–4 m/s). When the general 
trend is examined, it is understood that wind speeds in Bartın 
province are largely concentrated below 3 m/s, and therefore 
the region can be evaluated in the low-speed wind class. This 
finding points to the need for optimising wind power plants to 
be built in the region with turbines that can operate at low 
starting speeds. 

 

 

Figure 3. Variation of PDF and CDF probability density 
functions with wind speed 

The graph compares the average probability density estimated 
by the observational mean of wind speed data for Bartın 
province with the average probability density estimated by the 
Weibull distribution applied to these data. The Weibull 
probability distribution, shown in blue, gives the highest value 
in the range of 1–2 m/s and exhibits a distinct peak in the range 
of 0–1 m/s. In contrast, the observational probability density 
function, shown in orange, gives the peak in the range of 2–3 
m/s. This situation reveals that the Weibull distribution 
predicts higher probability compared to the observational data, 
especially at low speeds, but that the real data occurs with 
higher probabilities at speeds above 2 m/s. This difference 
shows that the Weibull model is sufficient to represent a region 
where low-speed winds are dominant, but it does not fully  

overlap with the observational data in some speed ranges. 
Although the Weibull distribution is generally successful in 
capturing the general trend of wind speeds, it can be said that 
the model may need certain corrections when microclimatic 
factors specific to the region are taken into account. 

 

 

 

Table 2. The shape parameter (k) and scale parameter (c) values according to the Weibull distribution 

Months Parameters 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

January 
 

k 2.0381 1.9772 2.5621 1.6431 2.7774 1.6239 1.8901 1.6344 1.7872 1.9490 

c 0.9248 0.7278 1.0646 1.1756 0.9712 0.6125 0.8541 0.9516 0.6019 1.2078 

February 
 

k 1.2532 1.8636 2.3406 3.1595 2.3918 0.7868 3.3003 3.0180 1.9671 2.7789 

c 1.2853 0.8699 1.1326 1.2090 1.2651 0.2917 1.0869 0.9076 0.9709 1.1350 

March 
 

k 4.3012 2.1970 4.9327 3.6338 3.0507 1.2627 3.3626 2.9191 2.5890 4.0502 

c 1.2227 1.3805 1.2834 1.2702 1.4186 0.9373 1.3401 1.3020 1.0788 1.2590 

April 
 

k 2.7452 4.2201 6.1792 4.8850 7.1462 2.9206 3.7460 3.5591 4.4005 5.0363 

c 1.4348 1.2685 1.3344 1.3960 1.2245 1.5659 1.2291 1.3584 1.3788 1.3572 

May 
 

k 3.3233 4.7976 4.4880 4.0458 5.7996 4.1617 4.8841 7.1292 7.2389 3.8445 

c 1.3299 1.2643 1.4707 1.4191 1.0765 1.1469 1.2982 1.3333 1.2186 1.4731 

June 
 

k 3.6601 5.1070 7.5596 6.2737 4.8290 5.4211 8.2524 5.1801 8.3861 4.4230 

c 1.1974 1.4323 1.3204 1.5807 1.2041 1.2503 1.2547 1.3550 1.2219 1.6783 

July 
 

k 4.8621 7.0917 5.5174 6.2564 6.6865 6.6451 6.8901 7.4047 6.0414 6.7096 

c 1.4111 1.5921 1.6385 1.3934 1.4069 1.3762 1.2804 1.3513 1.2200 1.5449 

August 
 

k 4.9554 6.4497 5.9876 5.1788 7.4148 6.2559 4.1701 5.9910 6.2232 4.6940 

c 1.4693 1.4823 1.4884 1.7005 1.3994 1.3703 1.2853 1.2310 1.1764 1.6256 

September 
 

k 4.5753 4.8926 3.3263 4.4655 3.0975 3.9339 1.4639 2.9553 4,1775 7.3888 

c 1.1787 1.2795 1.1961 1.3411 1.1182 1.2074 1.4025 1.0608 1.2619 1.2437 

October 
 

k 2.3081 2.8175 2.3515 2.6926 4.3782 2.1738 3.8565 3.4848 3.6894 * 

c 1.0231 1.1771 1.0629 0.8090 0.7258 0.7540 0.8916 0.8356 0.7043 * 

k 2.6482 1.7783 2.1390 1.9124 1.5881 3.0942 1.6597 2.6872 1.0999 * 
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November 
 

c 0.7652 0.9890 0.8582 1.1234 0.4050 0.8275 0.8913 0.6711 0.9534 * 

December k 1.7052 1.7805 2.4532 2.4750 1.5109 5.8811 1.7505 1.5926 1.3277 * 

c 0.7268 0.9752 0.6874 0.9710 0.6366 0.7275 0.9091 0.6761 0.7575 * 

                 * Data are taken until September 2024 

 

According to the assessments made between 2015 and 2024, 
wind energy potential shows seasonal and annual fluctuations. 
The fact that the k (shape) and c (scale) parameters are 
generally high in the summer months (especially June–August) 
indicates that wind speeds are more stable and strong, and 
therefore the most efficient periods for energy production are 
the summer months. On the other hand, in the winter months 
(January, February, December), more variable and lower wind 
speeds are noted with values of k < 2 and c < 1.2. While the years 

 2017–2019 generally carry high potential, decreases were 
observed in some months after 2020. These data reveal the 
importance of seasonal and annual analyzes in wind energy 
investments. 

 

 

 

 

Table 3. Monthly mean wind speed and standard deviation values according to Weibull distribution 

Months Parameters 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

January 
 

Vm 0.8194 0.6452 0.9452 1.0516 0.8645 0.5484 0.7581 0.8516 0.5355 1.0710 

σ 0.4253 0.3444 0.3974 0.6657 0.3375 0.3509 0.4218 0.5417 0.3137 0.5793 

February 
 

Vm 1.1964 0.7724 1.0036 1.0821 1.1214 0.3345 0.9750 0.8107 0.8607 1.0103 

σ 0.9719 0.4354 0.4586 0.3752 0.5024 0.4171 0.3247 0.2932 0.4616 0.3942 

March 
 

Vm 1.1129 1.2226 1.1774 1.1452 1.2677 0.8710 1.2032 1.1613 0.9581 1.1419 

σ 0.2904 0.5923 0.2709 0.3490 0.4539 0.7026 0.3939 0.4331 0.3990 0.3150 

April 
 

Vm 1.2767 1.1533 1.2400 1.2800 1.1467 1.3967 1.1100 1.2233 1.2567 1.2467 

σ 0.5038 0.3063 0.2318 0.2971 0.1875 0.5206 0.3290 0.3801 0.3211 0.2813 

May 
 

Vm 1.1933 1.1581 1.3419 1.2871 0.9968 1.0419 1.1903 1.2484 1.1419 1.3323 

σ 0.3949 0.2733 0.3368 0.3554 0.1975 0.2803 0.2763 0.2046 0.1845 0.3855 

June 
 

Vm 1.0800 1.3167 1.2400 1.4700 1.1033 1.1533 1.1833 1.2467 1.1533 1.5300 

σ 0.3270 0.2934 0.1925 0.2710 0.2588 0.2432 0.1695 0.2741 0.1628 0.3891 

July 
 

Vm 1.2935 1.4903 1.5129 1.3290 1.3129 1.2839 1.1968 1.2677 1.1323 1.4419 

σ 0.3015 0.2454 0.3139 0.1507 0.2282 0.2245 0.2024 0.2006 0.2161 0.2499 

August 
 

Vm 1.3484 1.3806 1.3806 1.5645 1.3129 1.2742 1.1677 1.1419 1.0935 1.4871 

σ 0.3089 0.2481 0.2657 0.3441 0.2075 0.2355 0.3136 0.2196 0.2031 0.3581 

September 
 

Vm 1.0767 1.1733 1.0733 1.2233 1.0000 1.0933 1.2700 0.9467 1.1467 1.1667 

σ 0.2654 0.2719 0.3549 0.3084 0.3531 0.3098 0.8941 0.3490 0.3074 0.1850 

October 
 

Vm 0.9065 1.0484 0.9419 0.7194 0.6613 0.6677 0.8065 0.7516 0.6355 * 

σ 0.4196 0.4039 0.4286 0.2890 0.1698 0.3267 0.2327 0.2381 0.1910 * 

November 
 

Vm 0.6800 0.8800 0.7600 0.9967 0.3633 0.7400 0.7967 0.5967 0.9200 * 

σ 0.2774 0.5179 0.3774 0.5486 0.2373 0.2615 0.4997 0.2401 0.8428 * 

December Vm 0.6484 0.8677 0.6097 0.8613 0.5742 0.6742 0.8097 0.6065 0.6968 * 

σ 0.3967 0.5101 0.2668 0.3739 0.3926 0.1319 0.4835 0.3951 0.5367 * 

                  * Data are taken until September 2024. 

 

According to the monthly wind speed analysis between 2015 
and 2024, a significant seasonality is observed in the annual 
cycle of wind speeds. The average wind speed (Vm) values 
increase in the summer months (especially June–August), 
indicating periods when the potential for wind energy 
production is high. The relatively low standard deviation (σ)  

values in the same period indicate that the fluctuations in wind 
speed are limited and the wind is stable. On the other hand, Vm 
values are generally lower in winter and early spring, and σ 
values tend to increase in some years. This situation reveals the 
need for seasonal optimization in wind energy production. 
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Figure 4. Change graph of calculated Weibull probability distribution functions according to wind speed 

 

Figure 4 shows the modeling of wind speed data between 2015 
and 2024 with the Weibull probability distribution function. In 
all years, the highest probability value is concentrated in the 
range of 1–2 m/s. Especially in 2023 and 2024, a decrease is 
observed in probability values around 2 m/s compared to other 
years. This shows that low wind speeds have been relatively 
decreasing in recent years. 

 

 

Figure 5. Variation of annual probability distribution functions 
with wind speed 

 

The annual wind speed probability distribution is shown in 
Figure 5 in comparison with the real data and the Weibull 
distribution. The real data (triangle marked, dashed line) and 
the Weibull distribution (square marked, solid line) are 
generally similar in the range of 0–3 m/s. Especially at 1 m/s 
wind speed, the Weibull distribution estimates the probability 
as approximately 0.85, at which point a high agreement is 
observed with the real data. However, at 2 m/s speed, the 
Weibull distribution estimates a lower probability compared to 
the real data. At speeds of 3 m/s and above, both distributions  

 

show low probabilities. In general, the Weibull distribution 
satisfactorily represents the real data at low speeds. 

 

Table 4. R2, RMSE and 2 values according to Weibull 
distribution 

Years R2 RMSE χ2 

2015 0.9964 0.0062 3.95989E-05 

2016 0.9957 0.0036 1.33526E-05 

2017 0.9932 0.0018 3.29215E-06 

2018 0.9976 0.0039 1.56591E-05 

2019 0.9904 0.0094 9.13512E-05 

2020 0.9931 0.0136 0.000192041 

2021 0.9942 0.0083 7.08272E-05 

2022 0.9885 0.0078 6.26993E-05 

2023 0.9918 0.0100 0.00010367 

2024 0.9994 0.0055 3.22224E-05 

 

The high R2 values obtained in the Weibull-based wind speed 
model (0.9885–0.9994 between 2015 and 2024) demonstrate 
a strong model fit. However, extremely high R2 values observed 
in some years (e.g., 0.9994 in 2024) should be interpreted with 
caution, as they may indicate the possibility of overfitting in the 
literatüre [33, 34].  However, this risk is significantly reduced 
by the low results of other error measures such as RMSE and χ2 
(e.g., RMSE = 0.0018, χ2 = 3.29×10−6 in 2017). However, 
applying methods such as cross-validation or test-data splitting 
to assess the generalizability of the model is recommended for 
further studies to support the robustness of the fit. 

The fit of the Weibull distribution to the annual wind speed data 
was evaluated with R², RMSE and χ² statistics. The R² values for 
all years ranged between 0.9885 and 0.9994, indicating that the 
distribution represents the data with high accuracy. Especially 
the R² value for 2024 (0.9994) reveals that the modeling was 
quite successful. The RMSE and χ² values were generally low, 
reaching minimum values in 2017 (RMSE: 0.0018; χ²: 
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3.29×10⁻⁶), indicating that the model provided the highest 
precision for that year. In general, the Weibull distribution 
successfully modeled the wind speed data statistically in all 
years. 

 

 

Figure 6. Monthly R2 variation of Weibull probability 
distribution function 

 

Figure 6 evaluates the fit of the Weibull distribution to monthly 
wind speed data using the R² statistic. The fit of the model is 
quite high in January, with the R² value approaching 
approximately 1; this shows that the Weibull distribution 
represents the data almost perfectly for this month. In other 
months, the R² values are relatively lower, but generally in the 
range of 0.6–0.7. This shows that the fit of the model is 
moderate for the rest of the year, and the explanatory power of 
the Weibull distribution decreases, especially in the summer 
months. Similar levels of R² values are seen in all months except 
January, suggesting that seasonal effects may create differences 
in model performance. 

 

 

 

 

 

Table 5. Weibull distribution parameters of the calculated data 

Year k 
c 

(m/s) 

Vm 

(m/s) 

σ 

(m/s) 

Vmod 

(m/s) 

Vmax 

(m/s) 

Pw 

(W/m²) 

2015 2.2601 1.1870 1.0514 0.4962 0.9166 4.50 1.2151 

2016 2.5689 1.2318 1.0937 0.4588 1.0167 3.30 1.2398 

2017 2.8609 1.2380 1.1033 0.4191 1.0652 2.60 1.1871 

2018 2.8265 1.3105 1.1674 0.4484 1.1230 3.40 1.4166 

2019 2.4532 1.1013 0.9767 0.4275 0.8896 2.60 0.9128 

2020 2.0230 1.0435 0.9246 0.4833 0.7449 3.50 0.9142 

2021 2.4211 1.1717 1.0389 0.4602 0.9403 5.60 1.1095 

2022 2.5843 1.1137 0.9890 0.4126 0.9216 3.00 0.9130 

2023 2.2679 1.0838 0.9600 0.4517 0.8387 3.70 0.9223 

2024 3.4606 1.4136 1.2712 0.4053 1.2810 3.20 1.6453 

 

When the data between 2015 and 2024 are examined, the 
annual average wind speeds (c) and the power density (Pw), 
which represents the kinetic energy of the wind, show a 
fluctuating course over the years. In 2020, the average wind 
speed and Vm values regressed to the lowest level, and this 
situation was reflected in Pw as a decrease. On the other hand,  

a significant increase was observed in all parameters in 2024, 
and especially the power density reached the highest level 
periodically with 1.6453 W/m². This increase indicates that the 
wind-based energy potential was the highest in that year. In 
general, statistical parameters show that there is a slight 
increase in wind speed over the years. 

 

 

Figure 7. Display of wind power density and wind speed values calculated according to the Weibull distribution 
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In Figure 7, the annual changes in the parameters vm (average 
wind speed) and pw (wind power) for the period 2015–2024 
are presented comparatively. When the general trend is 
examined, it is seen that the pw values are mostly above the vm  

values. The difference between the two parameters became 
apparent especially in 2018 and 2024. While both parameters 
decreased in 2019 and 2020, both values reached their highest 

levels in the observed period as of 2024. This shows that there 
was a significant increase in the performance of the relevant 
system in 2024. 

 

 

 

 

Figure 8. Changes in monthly average wind speed values over the years 

 

According to annual data, it is observed that the highest average 
wind speeds in Bartın province generally occur in the summer 
months, especially in June, July and August. In this direction, the 
data dated August 2018 and June 2024 stand out with the high 
wind speeds recorded. This feature of the summer months 
shows that they offer high efficiency potential in terms of wind 
energy production for the region. 

On the other hand, it has been determined that the lowest wind 
speeds are mostly recorded in the winter months, especially in 
December, January and February. In fact, it is seen that the 
average wind speeds decreased to approximately 0.35–0.4 m/s 
in the data of November 2019 and February 2020; this indicates 
that wind energy production may be seriously limited in these 
periods. 

The year 2020 brings to the agenda the possibility of being an 
unusual year in terms of climate due to the observation of low 
wind speeds in many months. On the other hand, high wind 
speeds were recorded in many months throughout 2024, 
indicating that the wind energy potential of the year is quite 
high. In addition, it is observed that the average wind speeds 
recorded in the same month fluctuate significantly between 
years during the analyzed period. For example, while January 
had a relatively high average wind speed in 2016, this speed 
decreased to minimum levels in the same month in 2023. This 
situation reveals that the wind regime in Bartın exhibits 
significant volatility on an annual basis. 

 

4 Conclusions and Recommendations 

In our study, wind power density and wind speed distribution 
parameters for Bartın province were calculated using wind 
data measured between 2015 and 2024. These data were 
interpreted and analyzed statistically. Within the scope of this 
analysis, Weibull distribution was preferred in modeling wind 
speeds and the accuracy of the model was evaluated with R², 
RMSE and χ² statistics. According to the results obtained, the 
lowest wind speed on a monthly basis was measured as 0.3345 
m/s in February 2020, and the highest value was measured as 
1.5645 m/s in August 2018. In the annual analysis based on the 
Weibull distribution, the lowest average wind speed was 
calculated as 0.9246 m/s in 2020 and the lowest power density 
was calculated as 0.9128 W/m² in 2019. By interpreting the 
data obtained as a result of the study, the highest average wind 
speed was determined as 1.2712 m/s in 2024, and the highest 
power density corresponding to this average wind speed was 
determined as 1.6453 W/m². The modeling results of the 
Weibull distribution give high R², low RMSE and acceptable χ² 
values for all years, revealing that this distribution is a suitable 
model for the study region. Indeed, the literature study 
presented in the introduction indicates that the results 
obtained by using the Weibull distribution are more accurate 
than other methods. Furthermore, the wind speeds in the 
experimental data from the literature studies are very close to 
the wind speeds in our data. Consequently, the obtained data 
are consistent with the values in the literature study. 

According to the findings, the fact that the monthly and annual 
average wind power densities in Bartın province are below 100 
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W/m² indicates that this region is not sufficient to provide 
electrical energy directly to the grid with wind energy systems 
[35]. However, it can be said that it offers a suitable potential 
for rural applications with low power requirements or areas 
where there is no grid connection. On the other hand, the fact 
that the daily and monthly average wind speeds are largely 
below 2 m/s reveals that the region has limited efficiency in 
terms of wind energy production. 
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