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ÖZET  

Bu çalışma, gözlem sayısının değişken sayısına göre son derece küçük olduğu (n ≪ p) 

durumlarda kovaryans matrisinin kararsızlığı nedeniyle ortaya çıkan tahmin sorunlarını 
ele alarak Hibrit Regresyon Modelinin (HRM) performansını incelemektedir. Çalışmanın 

yöntemi iki bileşen üzerine kuruludur: (i) Hibrit Kovaryans Tahmin Edicisi (HCE) ile 

spektral dengeleme yoluyla kovaryans matrisinin stabilize edilmesi ve (ii) farklı regresyon 
yapılarının (HRM1–HRM5) optimal ağırlıklarla birleştirildiği hibritleştim yaklaşımı. 

HCE, maksimum entropi tabanlı kovaryans tahminini çeşitli düzenlileştirilmiş yapılarla 

bütünleştirerek kötü koşullanmış matrislerin sayısal güvenilirliğini artırmaktadır. Farklı 
örneklem büyüklükleri ve boyutsal senaryolar altında yürütülen simülasyonlar, 

stabilizasyon ve hibritleştirmeyi birlikte kullanan HRM4 modelinin AIC, CAIC ve 

ICOMP kriterlerine göre tutarlı biçimde en düşük değerlere ulaşarak en iyi performansı 
gösterdiğini ortaya koymaktadır. Sonuçlar, kovaryansın bilgi karmaşıklığının model 

seçimi sürecinde belirleyici olduğunu ve HCE tabanlı hibrit yaklaşımın küçük örneklem 

probleminde yanlılık–varyans dengesini etkili biçimde optimize ettiğini göstermektedir. 
Çalışma, yöntemin yüksek boyutlu veri ortamlarına genellenebilir olduğunu ve gelecekte 

diğer düzenlileştirilmiş kovaryans tahmin edicileriyle karşılaştırmalı analizlerin 

yapılabileceğini vurgulamaktadır. 

Anahtar Kelimeler: Maksimum Entropi, Hibrit kovaryans tahmincisi (HCE), Hibrit 

regresyon modeli, Küçük örneklem problemi 
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ABSTRACT  

This study investigates the performance of the Hybrid Regression Model (HRM) in 

settings where the number of observations is extremely small compared to the number 

of variables (n ≪ p), causing severe instability in covariance estimation. The 

methodological framework combines two complementary components: (i) spectral 

stabilization of the covariance matrix through the Hybrid Covariance Estimator (HCE), 

which integrates maximum-entropy–based estimation with several regularized 
covariance structures, and (ii) model hybridization, where multiple regression 

formulations (HRM1–HRM5) are combined using optimal weights to achieve an 

improved bias–variance trade-off. Simulation experiments conducted across a wide 
range of sample sizes and dimensional settings demonstrate that the HRM4 model, which 

jointly employs covariance stabilization and hybridization, consistently achieves the 

lowest AIC, CAIC, and ICOMP scores. This confirms its superior numerical stability, 
robustness, and predictive accuracy in undersized sample scenarios. The findings 

highlight the crucial role of covariance information complexity in model selection and 

show that HCE-based hybrid regression provides an effective strategy for controlling 
instability in high-dimensional regression. The study concludes by suggesting extensions 

of the approach to other regularized covariance estimators and applications to real high-

dimensional datasets. 
 
Keywords: Maximum Entropy, Hybrid Covariance Estimator (HCE), Hybrid Regression Model, 

Small Sample Problem 
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1 | GİRİŞ  

Geleneksel istatistiksel analiz yöntemleri, genellikle gözlem sayısının değişken 

sayısından fazla olduğu varsayımına dayanmaktadır. Ancak modern veri analizinde, özellikle 

genetik, metin madenciliği ve finans gibi alanlarda, örneklem büyüklüğünün (n) değişken 

sayısına (p) göre çok küçük olduğu durumlar (n <<p) sıkça karşılaşılmaktadır. Bu durum, örnek 

kovaryans matrisinin tekil veya kötü şartlandırılmış olmasına neden olarak klasik çok 

değişkenli analizlerin doğruluğunu ve geçerliliğini tehlikeye atmaktadır (Donoho, 2000; Stein, 

1975). Bu tür durumlarda, incelenebilecek örnekler genellikle birkaç düzine veya yüzlerce 

kişiyle sınırlı olsa da tek bir gözlem, özellikle daha önce bahsettiğimiz alanlarda binlerce hatta 

milyonlarca değişkeni içerebilir. Ancak, klasik yöntemler bu tür verileri verimli bir şekilde 

işlemek üzere tasarlanmamıştır (Donoho, 2000). Ayrıca Stein’in (1956, 1975) uzun zaman önce 

ortaya koyduğu gibi, kovaryans yapısı Σ olan ve ortalaması sıfır kabul edilen normal dağılmış 

bir popülasyondan alınan n-boyutlu bir örneklemin varyans-kovaryans matrisinin en çok 

olabilirlik tahmini, p/n oranı yüksek olduğunda güvenilir bir tahmin edici değildir. Bununla 

birlikte, söz konusu tahmin edici yanlı olmamakta ve pozitif tanımlı kalmaktadır (Stein, 1975). 

Bu durumda, kovaryans matrisinin yapısı bozulmakta ve büyük özdeğerler yukarı, küçük 

özdeğerler ise aşağı yönlü önyargılı olmaktadır (Yilun Chen vd., 2011). Buna karşılık, p < n 

olduğunda özdeğerler daha hızlı azalır ve genel olarak daha düşük kalır; bu ise kovaryans 

matrisinin daha istikrarlı bir tahminini yansıtır. Bu önyargı, p/n oranının artmasıyla birlikte 

artmakta; yani değişken sayısının gözlem sayısına oranı ne kadar yüksekse, tahmin edilen 

kovaryans matrisi o kadar kararsız olmaktadır. Bu durum, kovaryans matrisi tahmin kalitesinde 

bozulmaya işaret eder ve aynı zamanda temel bileşen analizi gibi çok değişkenli analizlerin 

doğruluğunu olumsuz etkileyebilir. Bu bağlamda, literatürde çeşitli düzgünleştirilmiş 

(smoothed) veya büzülmüş (shrinkage) kovaryans tahmin yöntemleri önerilmiştir. Bir dizi 

çalışmanın ardından, yüksek boyutlu veri kümelerinde kovaryans problemine çözüm getirmek 

amacıyla çeşitli yaklaşımlar önerilmiştir. İstatistikçiler bu durumu sıklıkla “büyük p, küçük n” 

ifadesiyle tanımlar; bu, sınırlı sayıda gözleme kıyasla çok fazla değişken bulunduğunu ifade 

eder. Bu bağlamda, Hibrit Kovaryans Tahmin Edicisi (Hybrid Covariance Estimator, HCE) 

literatüre ilk kez Pamukcu ve ark. (2015) tarafından kazandırılmıştır (Pamukçu vd., 2015). Bu 

tahmin edici, maksimum entropi kovaryans tahmin edicisinin, belirli yumuşatılmış kovaryans 

yapıları ile birleştirilmesine dayanmaktadır (Fiebig, 1984). HCE sayesinde kovaryans 

yapısındaki bozulma azaltılabilmekte, bu da özellikle n << p durumuyla karakterize edilen 

yüksek boyutlu veri kümelerinde çok değişkenli istatistiksel yöntemlerin daha etkin 



Mamadou; Aşır, 2025 
   

JESA    

22 

 

uygulanmasına olanak sağlamaktadır. Bu çalışmanın amacı, hem istikrar kazandırma hem de 

düzenlileştirme tekniklerini birleştirerek ve ayrıca bilgi kriterlerini kullanarak, n ≪ p koşulu ile 

karakterize edilen yüksek boyutlu veri kümelerinin analizinde Hibrit Kovaryans Tahmin 

Edicisi’ne (HCE) dayalı regresyon analizini tanıtmaktır.  

Daha spesifik olarak, bu çalışma şu şekilde yapılandırılmıştır: Bölüm 2.1’de Ridge 

Regresyonu ve düzleştirilmiş (smoothed) kovaryans tahmin edicileri sunulmaktadır; Bölüm 

2.2’de Maksimum Entropi ve Hibrit Kovaryans Tahmini (HCE) tanımlanmaktadır ve Bölüm 

2.3’te ICOMP ve HCE'ye Dayalı Model Seçim Kriterleri ve Hibrit Regresyon Modeli (HRM) 

ele alınmaktadır. Bölüm 3’te, Simülasyon protokolüne genel bir bakış açısıyla farklı p ve n 

değerleriyle tanımlanan çeşitli senaryolara ve γ simülasyon sayıla HRM modelinin uygulandığı 

bir simülasyon çalışmasını sunmaktadır. Son olarak, Bölüm 4, elde edilen sonuçların 

tartışılmasını, analizini ve Bölüm 5 ise gelecekteki perspektifleri sunmaktadır. 

2 | Materyal Ve Metot 

2.1 | Ridge Regresyonu ve Düzleştirilmiş (Smoothed) Kovaryans Tahmin Edicileri 

Klasik doğrusal modellerde, En Küçük Kareler (Ordinary Least Squares – OLS) 

yöntemiyle yapılan tahmin, 𝑋′𝑋 matrisinin tersinin alınabilir olması varsayımına 

dayanmaktadır. Ancak, açıklayıcı değişkenler arasında güçlü bir korelasyon bulunduğunda 

(çoklu doğrusal bağlantı -multicollinearity) ya da değişken sayısı 𝑝, gözlem sayısını 𝑛’den fazla 

olduğunda (yani 𝑛 ≪ 𝑝 durumunda), veri matrisi kötü koşullu (ill-conditioned) hâle gelir veya 

tekil olmaktadır. Bu koşullar altında klasik yöntemler (OLS tahmin edicileri) çok yüksek 

varyansa, sayısal kararsızlığa ve zayıf tahmin performansına yol açmaktadır. Bu sınırlamaları 

gidermek için, kovaryans matrisini değiştirmeyi veya kararlı hâle getirmeyi amaçlayan çeşitli 

düzenlileştirme teknikleri geliştirilmiştir; aşağıda bunlardan her birine kısaca değinilecektir. 

Hoerl ve Kennard, ilk olarak ridge regresyon tahmin edicisini önermişlerdir (A. E. Hoerl 

& Kennard, 1970). Bu yöntem, doğrusal regresyon modellerinde çoklu doğrusal bağlantı 

(multicollinearity) sorununu çözmek için geliştirilen en etkili yaklaşımlardan biridir. Ridge 

yöntemi, OLS (En Küçük Kareler) maliyet fonksiyonuna eklenen bir ikinci dereceden 

(kuadratik) cezalandırma terimi aracılığıyla katsayıların büyüklüğünü sınırlandırır ve tahminin 

kararlılığını artırmaktadır. İlgili optimizasyon problemi şu şekilde ifade edilmektedir: 

   𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔 min {‖𝑦 − 𝑋𝛽‖² + ‖𝛼𝛽‖²}                                                                            (1) 

Ridge regresyon tahmin edicisi, (1) ifadesinin β’ya göre minimize ederek elde edilmektedir. 

Buna göre Ridge kovaryans matrisi, 

                    𝛴̂𝑅 = 𝛴̂𝑀𝐿𝐸 + 𝛼𝐼𝑝                                                                                                  (2) 
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şeklinde hesaplanmaktadır. 

Burada 𝛼𝐼𝑝 terimi, 𝑋𝑋′ matrisinin özdeğer spektrumunu değiştirerek sayısal hataların 

büyümesini önler. Uygulamada, küçük bir α değeri çözümü klasik yöntemlere (OLS) 

yaklaştırırken, büyük bir α değeri katsayıları sıfıra doğru sınırlar. Sapma ile varyans arasındaki 

bu denge, modelin kararlılığını ve genellenebilirlik kapasitesini artırmaktadır (R. W. Hoerl, 

2020). Bu fikirden yola çıkarak farklı düzenlileştirme biçimleri geliştirilmiştir. Tibshirani 

(1996), “en küçük mutlak değer daraltma ve seçim işleci” anlamına gelen yeni bir teknik, yani 

lasso yöntemini önermiştir (Tibshirani, 1996). Bu yaklaşım, 𝐿2 normu yerine 𝐿1 cezası kullanır; 

böylece bazı katsayıların tam olarak sıfır olmasına yol açar ve değişkenlerin otomatik olarak 

seçilmesini sağlar. Sürekli bir daraltma yöntemi olarak ridge regresyon, ön yargı–varyans 

dengesi sayesinde en iyi tahmin performansına ulaşmaktadır (Tibshirani, 1996). Ancak ridge 

regresyon, tüm yordayıcıları (değişkenleri) modelde tuttuğundan dolayı sade (parsimonious) 

bir model üretememektedir. Buna karşılık, p > n durumunda lasso yöntemi, dışbükey 

optimizasyon probleminin yapısı gereği en fazla n değişken seçebilmekte; bu sınır aşıldığında 

ise değişken seçiminde doyuma ulaşmaktadır. Zou ve Hastie, 2005’te, iki cezalandırmayı 

(Lasso ve Ridge) birleştirerek Ridge’in sayısal kararlılığını Lasso’nun sadeliğiyle uzlaştırır, 

özellikle yüksek korelasyonlu değişkenler durumunda etkili bir çözüm sunmaktadır (Zou & 

Hastie, 2005). 

Buna paralel olarak, kovaryans matrisinin düzenlileştirilmesi meselesi, yüksek boyutlu 

çok değişkenli analizlerde merkezî bir araştırma konusu hâline gelmiştir. Klasik ampirik tahmin 

edici: 

  𝛴̂𝑀𝐿𝐸 =
1

𝑛−1
(𝑋 − 𝑋̄)(𝑋 − 𝑋̄)′                                                                                                 (3) 

 

n, p'ye kıyasla küçük olduğunda tekil (kararsız) hâle gelmektedir. Bu sorunu aşmak için Ledoit 

ve Wolf (2004), deneysel matris 𝛴̂𝑀𝐿𝐸 ile iyi koşullandırılmış hedef matris T arasında ağırlıklı 

bir kombinasyon olarak tanımlanan bir büzülme tahmincisi önermiştir (Ledoit & Wolf, 2004). 

 

   Σ̂𝐿𝑊 = (1 − 𝛿)𝛴̂𝑀𝐿𝐸 + 𝛿𝑇                                                                                   (4.a) 

 

Burada δ, düzenleme parametresidir (büzülme katsayısı) ve 0 ile 1 arasında bir değer 

alır. Bu değer, gözlemlerin bir fonksiyonu da olabilir. T matrisi, büzülme hedefi olarak 

adlandırılmaktadır. T'nin basit hali şöyledir: 
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  𝑇̂ = 
𝑡𝑟(𝛴̂𝑀𝐿𝐸)

𝑝
 𝐼𝑝 = (  

1

𝑝
  ∑ 𝜆𝑗

𝑝

𝑗=1
  )   𝐼𝑝  = 𝜆̅𝐼𝑝                                                                         (4.b) 

Burada tr, 𝛴̂𝑀𝐿𝐸 'nin köşegeninin değerlerinin toplamıdır, 𝜆𝑗 j=1,….,p tahmini örnek 

kovaryans matrisinin özdeğerleridir, ve  𝜆̅ özdeğerlerin aritmetik ortalamasıdır. Bu tür tahmin 

(4.a), kontrollü bir ön yargı pahasına varyansı azaltmaya olanak tanır ve böylece sonlu 

örneklemde daha iyi bir performans sağlamaktadır. 

Hibrit Kovaryans Tahmincisi (HCE) gibi daha yeni yaklaşımlar, n≪p'nin olduğu aşırı 

durumlarda bile kovaryans matrisinin sağlam bir tahminini elde etmek için stabilizasyon ve 

düzenleme prensiplerini birleştirmektedir. Bu çalışmada, bu sorunu çözmek için çeşitli 

düzenlenmiş veya düzeltilmiş kovaryans tahmincileri kullanılmıştır. Aşağıda listelenen bu 

tahminciler, analizimizin metodolojik temelini oluşturmaktadır. 

 Bozdoğan’ın Convex Sum tahmin edicisi (Bozdogan, 2009). 

 𝛴̂𝐵𝐶𝑆𝐸  = 𝑝̂𝛴̂  + (1 − 𝑝̂)𝐷̂                                                                                                    (5.a) 

      𝑝̂ = 
1

𝛼
                                                                                                                                (5.b) 

 𝛼 = (  
1

𝑛−1
  ∑ 𝑉𝑎𝑟(𝑥𝑗)

𝑝

𝑗=1
                                                                                                    (5.c) 

Empirical Bayes tahmin edicisi (Haff, 1980). 

 𝛴̂𝐸𝐵 = 𝛴̂ + 
(𝑝−1)

𝑛.𝑡𝑟(𝛴̂)̂
 𝐼𝑝                                                                                                                  (6) 

Convex Sum tahmin edicisi (Press, 1975). 

 𝛴̂𝐶𝑆𝐸 = + 
𝑛

𝑚+𝑛
 𝛴̂ + (1- 

𝑛

𝑚+𝑛
 ) [ 

𝑡𝑟(𝛴̂)

𝑝
 ] 𝐼𝑝                                                                                   (7.a) 

0 ⟨ m ⟨  
2[𝑝(1+𝛽)−2]

𝑝−𝛽
                                                                                                                  (7.b) 

    β = 
𝑡𝑟(𝛴̂)²

𝑡𝑟(𝛴²̂)
                                                                                                                              (7.c)                                                              

Stipulated Ridge tahmin edicisi (Shurygin, 1983). 

 𝛴̂𝑆𝑅𝐸 = 𝛴̂ + p(p-1)[2𝑛. 𝑡𝑟(𝛴̂ ]
−1

 𝐼𝑝                                                                                           (8) 

Stipulated Diagonal tahmin edicisi (Shurygin, 1983). 

𝛴̂𝑆𝐷𝐸 = (1 − 𝜋)𝛴̂ + πdiag(𝛴̂)                                                                                                   (9.a) 

 𝜋 = p(p-1)[2𝑛. 𝑡𝑟(𝛴̂−1) − p ]
−1

                                                                                            (9.b) 

2.2 | Maksimum Entropi ve Hibrit Kovaryans Tahmini (HCE) 

Birçok istatistiksel uygulamada, özellikle çok değişkenli analiz bağlamında, kovaryans 

matrislerinin doğru şekilde tahmin edilmesi verinin temel yapısını anlamada kritik bir öneme 

sahiptir. Ancak klasik maksimum olabilirlik (MLE) temelli kovaryans tahmin edicileri, 
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değişken sayısının örneklem büyüklüğünü aştığı durumlarda kararsız hatta tekil hâle gelmekte 

ve bu durum söz konusu yöntemlerin kullanılabilirliğini ciddi biçimde kısıtlamaktadır. 

“Boyutsallık laneti” olarak adlandırılan bu problem, hem sağlam hem de sayısal açıdan kararlı 

kovaryans tahmin yöntemlerinin geliştirilmesini zorunlu kılmaktadır (Pamukçu vd., 2015). 

Alternatif yaklaşımlar arasında, Maksimum Entropi’ye (Maximum Entropy Covariance 

Estimator - MCE) dayalı yöntemler, maksimum belirsizlik ilkesine dayanarak kovaryansın 

daha düzgün bir tahminini elde etmeye olanak tanır; bu, özdeğerler üzerine belirli kısıtlamalar 

getirerek gerçekleştirilmiştir (Jaynes, 1957). Özellikle özdeğerlerin çoğunun negatif veya sıfır 

olduğu durumlar için uygun bir çözüm, verilerin temel yapısını korurken tahmini kararlı hâle 

getiren maksimum entropili kovaryans matrisinin kullanılmasıdır. 

2.2.1 | Veri matrisi formülasyonu ve düzenleme yoluyla stabilizasyon 

Basitleştirilmiş durumda, iki değişken x ve y'nin olduğu çok değişkenli gözlemlerden 

oluşan bir [Z] matrisi 

 Z  =   [
𝑥1 𝑦1
⋮ ⋮

𝑥𝑛 𝑦𝑛

]                                                                                                (10) 

dir. [Z]'den tahmin edilen kovaryans matrisi, örneklemdeki bitişik gözlemler arasındaki 

farklardan ceza terimlerini hesaplayarak kovaryansı sabitlemeye yarayan bir köşegen matrisi 

[D] eklenerek düzenlenebilmektedir. Bu matris şu şekilde tanımlanmaktadır: 

D=[ 

1

12𝑛
 ∑(𝜉𝑗 − 𝜉𝑗−1)

2
+ 

1

6𝑛
 ∑{ ( 𝜉1 + 𝜉0)² ( 𝜉𝑛 + 𝜉𝑛−1)²} 0

0
1

12𝑛
 ∑(𝜂𝑗 − 𝜂𝑗−1)

2
+ 

1

6𝑛
 ∑{ ( 𝜂1 − 𝜂0)² ( 𝜂𝑛 − 𝜂𝑛−1)²}

]               (11)                                                                                                                                                                                        

                                                                                                                                                                                       

                                                                                                                                                                                                                                                                                                                                                                                                                                     

burada 𝜉𝑗 ve 𝜂𝑗 birincil ortalama noktalardır: 

𝜉𝑗 = 
1

2
 (𝑥𝑗+ 𝑥𝑗+1 )     j=0,1,……,n                                                                                       (12.a)   

 𝜂𝑗 = 
1

2
 (𝑦𝑗+ 𝑦𝑗+1 )               j=0,1,……,n                                                                            (12.b) 

ve  𝑥0 ≡    𝑥1 <   𝑥2 < ⋯  𝑥𝑛 ≡   𝑥𝑛+1                                                                              (13.a)   

𝑦0 ≡    𝑦1 <   𝑦2 < ⋯  𝑦𝑛 ≡   𝑦𝑛+1                                                                                    (13.b)  

Sıra istatistikleridir, düzenlenilmenin dayandığı karakteristik noktaları ifade etmektedir. 

Bu düzenlileştirme, sayısal kararlılığı artırır ve yüksek boyutlu matrislerde aşırı uyum 

(overfitting) etkilerini sınırlamaya olanak tanımaktadır. (12.a) ve (12.b) numaralı denklemde 

kullanılan ikincil ortalama noktaları ise şu şekilde hesaplanmaktadır: 

 𝑥̅𝑗   =  
1

2
 ( 𝜉𝑗−1 + 𝜉𝑗)          j=0,1,……,n                                                                               (14a)                
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 𝑦̅𝑗  =  
1

2
 ( 𝜂𝑗−1 + 𝜂𝑗)                                                                                                            (14.b) 

Daha sonra C matrisi, bu değiştirilmiş değerlerin ampirik kovaryans matrisi,  

C = [

1

𝑛
 ∑(𝑥̅𝑘 − 𝑥 ̅)²

1

𝑛
 ∑(𝑦̅𝑘 − 𝑦 ̅)(𝑥̅𝑘 − 𝑥 ̅)

1

𝑛
 ∑(𝑦̅𝑘 − 𝑦 ̅)(𝑥̅𝑘 − 𝑥 ̅)

1

𝑛
 ∑(𝑦̅𝑘 − 𝑦 ̅)²

            ]                                          (15) 

 

olarak hesaplanmaktadır. Burada 𝑥 ̅ ve 𝑦 ̅, 𝑥̅𝑘 ve 𝑦̅𝑘 'nin ilgili ortalamalarıdır. Bu yapı, komşu 

noktalar arasındaki korelasyonları hesaba katarak kovaryans matrisinin tahmininin sağlamlığını 

artırır ve böylece aykırı değerlerin veya aşırı güçlü örnekleme dalgalanmalarının etkisini 

sınırlamayı mümkün kılmaktadır. Böylece, son maksimum entropi kovaryans matrisi,  

 𝛴̂𝑀𝐸 = C+D                                                                                                                      (16) 

 Şekildedir. 

Bu yapı, matris C tarafından değiştirilen verilerin istatistiksel yapısını korurken, 

düzenleme D tarafından stabilize edilmiş iyi koşullandırılmış bir kovaryans matrisine sahip 

olmayı sağlamaktadır. 

 2.2.2 | Hibrit Kovaryans Tahmin (HCE) Yöntemi 

Pamukçu ve çalışma arkadaşları (2015) tarafından geliştirilen Hibrit Kovaryans Tahmin 

Edicisi (Hybrid Covariance Estimator - HCE), maksimum entropinin avantajlarını, klasik 

stabilizasyon tekniklerini (Thomaz yöntemi dahil) ve verilerin yapısına uygun spesifik 

düzenlemeleri birleştirmektedir. Hesaplama süreci şu adımlardan oluşmaktadır. 

a) İlk tahmin: Maksimum olabilirlik veya maksimum entropi yöntemi ile hesaplanır. 

b) Thomaz stabilizasyonu: Kovaryans yapısını daha kararlı hâle getirmek için uygulanan 

işlemdir. Bu yapı aşağıdaki hesaplama adımlarından oluşturmaktadır. Burada, 𝜆𝑖  örneklem 

kovaryans matrisinin i’inci özdeğeri, 𝜆̅  özdeğerlerin ortalaması ve V ise özdeğerlere karşılık 

gelen özvektörlerdir. 

 Λ* =  [
max (𝜆1,𝜆̅) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ max (𝜆𝑝,𝜆̅)

]                                                                       (17.a)  

 𝛴̂𝑀𝐸_𝑆𝑇𝐴  = V Λ* V                                                                                                   (17.b) 

maksimum entropinin sabitlenmesidir. 

c) Diğer kovaryans yapılarının dikkate alınması: Stabilize edilmiş matris, tahmin ediciyi rafine 

etmek için başlangıç noktası olarak kullanılır. Hibrit Kovaryans Tahmin Edicisi (HCE), 

önerilen kovaryans yapılarında (2.1) 𝛴̂ yerine maksimum entropi yöntemi ile stabilize edilmiş 

şeklin (17.b) konulmasıyla elde edilmektedir.  
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Örneğin, kovaryans yapılarında (4.a), ... , (9.a) bu hibrit kovaryans tahmin edici 

biçimleri aşağıdaki Tablo 1’de özetlenmiştir. Burada, 𝛴̂𝑀𝐸_𝑆𝑇𝐴 modifiye edilmiş özdeğerler 

yöntemiyle stabilize edilmiş kovaryans matrisidir. 

Kovaryans tahmin edicilerinin stabilizasyonu ve hibridizasyonunun kombinasyonu, 

özellikle küçük örneklem büyüklüğü veya yüksek boyut bağlamlarında daha güvenilir ve daha 

iyi koşullandırılmış kovaryans matrisleri elde etmeyi amaçlamaktadır. Birincisi, stabilizasyon, 

tahmin varyansını azaltmak, tekilliği önlemek ve daha iyi sayısal kararlılık sağlamak amacıyla 

ampirik kovaryans matrisinin spektrumunun özdeğerlerini ayarlayarak değiştirilmesinden 

oluşturmaktadır. İkinci adımda, hibridizasyon bu stabilize matrisi kullanarak deneysel bilgi ve 

teorik yapıyı birleştiren analitik olarak yapılandırılmış tahmin ediciler (küresel, diyagonal, 

dışbükey, vb.) oluşturmaktadır. Bu ortak yaklaşım, ön yargı-varyans dengesinin kontrol 

edilmesine, kovaryans matrisinin tersine çevrilebilirliğinin sağlanmasına ve hibrit regresyon 

modelindeki (HRM) tahminlerin sağlamlığının ve performansının iyileştirilmesine olanak 

tanımaktadır. 

Tablo 1: Hibrit Kovaryans Tahmin Edicileri (Stabilize Formlar)  

Tahminci Temel Formül Hibrit Form (𝜮̂ , 𝜮̂𝑴𝑬_𝑺𝑻𝑨  ile değiştirildi) 

Empirical 

Bayes (EB) 

𝛴̂𝐸𝐵 = 𝛴̂ + 
(𝑝−1)

𝑛.𝑡𝑟(𝛴̂)̂
 𝐼𝑝                                                                                           𝛴̂𝐸𝐵 = 𝛴̂𝑀𝐸_𝑆𝑇𝐴   + 

(𝑝−1)

𝑛.𝑡𝑟(𝛴̂)̂
 𝐼𝑝 

Stipulated 

Ridge 

(SRE) 

𝛴̂𝑆𝑅𝐸 = 𝛴̂ + p(p-1)[2𝑛. 𝑡𝑟(𝛴̂ ]
−1

 𝐼𝑝 𝛴̂𝑆𝑅𝐸 = 𝛴̂𝑀𝐸_𝑆𝑇𝐴   + p(p-1)[2𝑛. 𝑡𝑟(𝛴̂ ]
−1

 𝐼𝑝 

Stipulated 

Diagonal 

(SDE) 

𝛴̂𝑆𝐷𝐸 = (1 − 𝜋)𝛴̂ + πdiag(𝛴̂) 

𝜋 = p(p-1)[2𝑛. 𝑡𝑟(𝛴̂−1) − p ]
−1

 

𝛴̂𝑆𝐷𝐸 = (1 − 𝜋) 𝛴̂𝑀𝐸_𝑆𝑇𝐴+ πdiag(𝛴̂) 

𝜋 = p(p-1)[2𝑛. 𝑡𝑟 (𝛴̂𝑀𝐸_𝑆𝑇𝐴
−1

) − p ]
−1

 

Convex 

Sum (CSE) 

𝛴̂𝐶𝑆𝐸  = + 
𝑛

𝑚+𝑛
 𝛴̂ + (1- 

𝑛

𝑚+𝑛
 ) [ 

𝑡𝑟(𝛴̂)

𝑝
 ] 𝐼𝑝 

    β = 
𝑡𝑟(𝛴̂)²

𝑡𝑟(𝛴²̂)
 

𝛴̂𝐶𝑆𝐸  = + 
𝑛

𝑚+𝑛
 𝛴̂𝑀𝐸_𝑆𝑇𝐴 + (1- 

𝑛

𝑚+𝑛
 ) [ 

𝑡𝑟(𝛴̂𝑀𝐸_𝑆𝑇𝐴)

𝑝
]𝐼𝑝 

β = tr(𝛴̂𝑀𝐸_𝑆𝑇𝐴)² / tr((𝛴̂𝑀𝐸_𝑆𝑇𝐴)²) 

Bozdogan 

Convex 

Sum 

(BCSE) 

𝛴̂𝐵𝐶𝑆𝐸= 𝑝̂𝛴̂ + (1 − 𝑝̂)𝐷̂ 

p̂=1/α, 

𝛼 = (  
1

𝑛−1
  ∑ 𝑉𝑎𝑟(𝑥𝑗)

𝑝

𝑗=1
 

 

𝜮̂𝑩𝑪𝑺𝑬= 𝒑̂𝜮̂𝑴𝑬_𝑺𝑻𝑨 + (𝟏 − 𝒑̂)𝑫̂, 

p̂=1/α_H, 

α = (1/(n - 1)) Σ 𝑉𝑎𝑟(𝑥𝑗) 

 

2.3. ICOMP ve HCE’ye Dayalı Model Seçim Kriterleri ve Hibrit Regresyon Modeli 

(HRM) 
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2.3.1. Genel Giriş ve Bilgi Kriterleri 

1970'lerden bu yana, en uygun modeli seçme sorunu istatistik ve modellemede merkezî 

bir yer tutmaktadır. Klasik seçim yaklaşımları esas olarak hipotez testlerine dayanırken, modern 

yöntemler uyum iyiliği ile modelin karmaşıklığı arasındaki dengeyi ölçmeyi amaçlayan bilgi 

kriterlerine dayanmaktadır. Bu kriterlerin temel ilkesi, yanıt değişkenlerinin gerçek dağılımı ile 

model tarafından tahmin edilen dağılım arasındaki Kullback–Leibler sapmasının (divergence) 

en aza indirilmesine dayanmaktadır. Akaike Bilgi Kriteri (AIC) model seçimi için ilk genel 

kriter olarak kabul edilen AIC, modelin maksimum olasılığı üzerinden uyum iyiliğini 

değerlendirirken, tahmin edilen parametre sayısını azaltmaktadır (Akaike, 1974). Formül 

aşağıdaki gibidir: 

AIC = -2 log L (𝜃) + 2k                                                                                                         (18)    

“Burada 𝐿(𝜃)maksimum olabilirliği, 𝑘 ise bağımsız parametre sayısını temsil 

etmektedir. Bu nedenle AIC, modelin verilere uyumu ile yapısal basitliği arasında bir denge 

kurmayı amaçlamaktadır. Aynı bağlamda, bu kriterin diğer varyantları da önerilmiştir; özellikle 

Schwartz 1978  tarafından geliştirilen Schwartz Bayesci Bilgi Kriteri ( Schwart’s Bayesian 

Information Criterion-SBC) (Schwarz, 1978), ve Bozdogan, 1987 tarafından geliştirilen Tutarlı 

yada Düzeltilmiş Akaike Bilgi Kriteri (CAIC) (Bozdogan, 1987). Sırasıyla aşağıdaki gibi 

formüle edilmiştir: 

 

𝑆𝐵𝐶 = −2log 𝐿(𝜃) + 𝑘log (𝑛)          (19) 

𝐶𝐴𝐼𝐶 = −2log 𝐿(𝜃) + 𝑘[log (𝑛) + 1]        (20) 

 

Bu kriterler, karmaşık modellerin cezalarını güçlendirerek, özellikle örneklem 

büyüklüğü sınırlı olduğunda, tutumlu modellerin seçilmesini teşvik etmektedir. Ancak, etkili 

olmalarına rağmen, yukarıda belirtilen kriterlerin, açıklayıcı değişkenlerin yüksek korelasyonlu 

olduğu veya model yapısının doğrusal olmadığı durumlarda bazı sınırlamaları vardır. Bu gibi 

durumlarda, tahmin edicilerin kovaryans matrisi kararsız hâle gelebilir ve bu da Akaike veya 

Bayes kriterlerini modelin genel kalitesini değerlendirmek için yetersiz hâle getirebilmektedir. 

Bu eksikliklerin üstesinden gelmek için Bozdoğan, parametre kovaryansının karmaşıklığını 

açıkça içeren alternatif bir kriter olan Bilgi Karmaşıklığı Kriteri'ni (ICOMP) önermiştir 

(Bozdogan, 1990). Bu kriter, ters Fisher bilgi matrisine (IFIM) dayanır ve yalnızca modelin 

uyum iyiliğini değil, aynı zamanda parametreler arasındaki bağımlılığın iç yapısını da 

değerlendirmeyi amaçlamaktadır. Genel biçimi şu şekildedir: 

 

𝐼𝐶𝑂𝑀𝑃 = −2log 𝐿(𝜃) + 2𝐶1(Σ)                                                                                           (21) 
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Burada Σ, tahmin edicilerin kovaryans matrisini gösterir ve 𝐶1(Σ), bu matrisin bilgi 

karmaşıklığını ölçmektedir. Bu karmaşıklık şu şekilde tanımlanmaktadır: 

𝐶1(Σ) =
𝑝

2
log (

𝜆̄𝑎

𝜆̄𝑔
)                                                                                            (22) 

 

𝜆̄𝑎 ve 𝜆̄𝑔, sırasıyla Σ'nin özdeğerlerinin aritmetik ortalamasını ve geometrik ortalamasını temsil 

etmektedir. Bu iki ortalama önemli ölçüde farklı olduğunda, bu, özdeğerlerin yüksek bir 

dağılımına ve dolayısıyla modelin daha karmaşık olduğuna işaret etmektedir. Dolayısıyla, 

ICOMP hem uyum iyiliğini (olasılık yoluyla) hem de modelin iç yapısını (parametrelerin 

kovaryansı yoluyla) hesaba katarak AIC, BIC veya CAIC kriterlerinden daha eksiksiz bir 

görünüm sunmaktadır. 

2.3.2 | Genişletme: HCE ve ICOMP'a dayalı hibrit regresyon modeli (HRM) 

  Pamukçu (2003), hibrit kovaryans tahmincilerine (HCE) dayalı hibrit regresyon 

modelini (HRM) geliştirerek bu yaklaşımları küçük örneklem büyüklüklerine (n < p) sahip 

durumlara genişletmiştir. Bu model, açıklayıcı değişkenlerin boyutunun gözlem sayısını aştığı 

regresyon modellerindeki tekillik ve sayısal istikrarsızlık sorunlarının üstesinden gelmektedir. 

HRM Prosedür Adımları: 

1. Tablo 1'de daha önce elde edilenler gibi farklı yapılara göre hibrit kovaryans matrisleri  

𝛴̂𝐻𝐶𝐸 'nin tahmini. 

2. Normal denklemler X' X'in çözümünde elde edilen matrislerin regresyon katsayılarını tahmin 

etmek için kullanılması. 

3. Modellerin ICOMP kriter değerleri kullanılarak karşılaştırılması: Seçilen model, ICOMP'yi 

en aza indiren modeldir. 

HRM modeli için klasik ve ICOMP kriterleri aşağıdaki formları almaktadır: 

  

 

𝐴𝐼𝐶(𝐻𝑅𝑀) = 𝑛log (2𝜋) + 𝑛log (𝜎̂2) + 𝑛 + 2𝑘                                                                 (23) 

𝐶𝐴𝐼𝐶(𝐻𝑅𝑀) = 𝑛log (2𝜋) + 𝑛log (𝜎̂2) + 𝑛 + 𝑘[log (𝑛) + 1]                                           (24) 

𝐼𝐶𝑂𝑀P(𝐻𝑅𝑀) = 𝑛log (2𝜋) + 𝑛log (𝜎̂2) + 𝑛 + 2𝐶1(𝐶𝑜𝑣(𝛽̂𝐻𝑅𝑀)                                     (25) 

 

Burada  ϭ̂²  artıkların varyansını ve 𝐶𝑜𝑣(𝛽̂𝐻𝑅𝑀) potansiyel olarak yanlış belirlenmiş modelin 

katsayılarının tahmini kovaryans matrisini ifade etmektedir. 

 ϭ̂² = 
1

𝑛
 ∑ (𝑦𝑖 −𝑛

𝑖=1 𝑦𝑖̂)²     ‘dır.  

𝑆𝑘 Çarpıklık katsayısı =  
( 

1

𝑛
 ∑ 𝜀̂𝑖

3)𝑛
𝑖=1

 ϭ̂3       ve 
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𝐾𝑡 Basıklık katsayısı  =  
( 

1

𝑛
 ∑ 𝜀̂𝑖

4)𝑛
𝑖=1

 ϭ̂4      olmak üzere  

 

 

 𝐶𝑜𝑣(𝛽̂𝐻𝑅𝑀) = [

ϭ̂²

𝑛
 0

0
2ϭ̂4

𝑛
 
 ] [

𝑛

ϭ̂²
 

𝑛 𝑆𝑘

2 ϭ̂3

𝑛 𝑆𝑘

2 ϭ̂3

𝑛(𝐾𝑡−1)

2ϭ̂4  
 ]  [

ϭ̂²

𝑛
 0

0
2ϭ̂4

𝑛
 
 ]                                                 (26) 

şeklinde tanımlanmaktadır. 

3 | Simülasyon protokolü 

Simülasyon protokolünün amacı, farklı kovaryans yapıları ve örneklem büyüklüklerine 

bağlı olarak hibrit regresyon modellerinin (HRM1–HRM5) karşılaştırmalı performanslarını 

değerlendirmektir. Bu değerlendirme, daha önce elde edilen ve Tablo 1’de sunulan hibrit 

modellere dayanmaktadır. Söz konusu beş model, sırasıyla HRM1’den HRM5’e karşılık 

gelmektedir. İki deneysel senaryo ele alınmıştır: 

– Birinci senaryo, ( P1 = 15 ) bilgi verici (birbiriyle ilişkili) değişken ve ( P2 = 25 ) bilgi verici 

olmayan (bağımsız) değişken içermektedir; toplamda ( P = P1 + P2 = 40 ) açıklayıcı değişken 

vardır. 

– İkinci senaryo ise ( P1 = 70 ) bilgi verici ve ( P2 = 30 ) bilgi verici olmayan değişken 

içermektedir; dolayısıyla toplam ( P = 100 )’dür. Her bir senaryo için örneklem büyüklüğü (n), 

ilk durumda 5’ten 25’e, ikinci durumda ise 10’dan 50’ye kadar değişmektedir. Her parametre 

kombinasyonu, sonuçların istatistiksel kararlılığını sağlamak amacıyla γ kez tekrarlanmıştır. İlk 

aşamada γ = 100 yineleme yapılmış, ikinci aşamada ise γ = 500’e çıkarılmıştır. Böylece 

yineleme sayısındaki artışın, tahminlerin doğruluğu ve yakınsama üzerindeki etkisi 

incelenmiştir. 

İlişkili değişkenler 𝑋1 ∈ ℝ𝑛×𝑝1, çok değişkenli normal dağılım MVN(0,Σ)'ye göre 

oluşturulmuştur; burada kovaryans matrisi Σ, bileşenler arasında r=0,5'te sabitlenmiş bir 

korelasyon sağlayacak şekilde oluşturulmuştur. Bağımsız değişkenler 𝑋2 ∈ ℝ𝑛×𝑝2, düzgün bir 

dağılım olan U(0,1)'i takip etmektedir. Hata vektörü ε, bir normal dağılımdan gelir ve hata 

varyansı 𝜎2 = 0.25'te sabitlenmiştir. Simüle edilen model aşağıdaki gibi yazılmıştır: 

 

𝑦 = 𝑋𝛽 + 𝜀𝜎 

 

Burada X=[𝑋1, 𝑋2] açıklayıcı değişkenlerin tam matrisini ve β katsayı vektörünü ifade 

etmektedir. Simüle edilmiş verilerden, ampirik kovaryans matrisleri (Σ̂𝑀𝐿𝐸) ve büzülme tipi 
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tahmin ediciler (Σ̂𝑀𝐸) hesaplanmaktadır. İkincisi, örnek matrisinden ve diyagonal hedef 

matrisinden gelen bilgileri, büzülme yoğunluğu λ adı verilen optimal bir ağırlıklandırma 

faktörü ile birleştiren Ledoit ve Wolf (2004) prosedürünü kullanmaktadır. Simülasyonlar 

sırasında, korelasyon matrisi ve varyans vektörü için tahmin edilen optimal yoğunluk değerleri 

sırasıyla λ ≈ 0.82–0.87 ve λ.var ≈ 0.05–0.09 aralığında bulunmuştur. Bu değerler, orta düzeyde 

korelasyona sahip kovaryans yapılarıyla uyumlu, ölçülü bir düzenlileştirme derecesine işaret 

etmekte olup, sayısal kararlılığı ve tahmin edicilerin pozitif tanımlılığını sağlamak amacıyla 

tahmin sürecinin her yinelemesinde otomatik olarak belirlenmektedir. Böylece söz konusu 

parametreler, ampirik kovaryans matrisi ile düzenlileştirme aşamasında kullanılan hedef matris 

arasındaki uyum derecesini yansıtan bir rol üstlenmektedir. 

Önceden tanımlanan kovaryans yapıları, beş hibrit modelin (HRM1–HRM5) her birine 

entegre edilmiştir. Bu modellerin her biri için, regresyon katsayıları, artık varyansı ve bilgi 

ölçütleri (AIC, CAIC ve ICOMP) hesaplanmış, ardından daha kararlı tahminler elde etmek 

amacıyla tüm yinelemeler (tekrarlamalar) üzerinden ortalaması alınmıştır. Her bir örneklem 

büyüklüğü (n) ve senaryo kombinasyonuna karşılık gelen toplu sonuçlar, aşağıdaki tablolarda 

sunulmaktadır. 

Tablo 2: Senaryo 1 : P1 = 15, P2 = 25 

n HRM AIC CAIC ICOMP 

5 HRM1 115.97454 140.3521 4997.27094 

5 HRM2 112.48808 136.8656 1234.02990 

5 HRM3 129.97501 154.3525 72894.23547 

5 HRM4 93.86045 118.2380 55.85124 

5 HRM5 115.97454 140.3521 4997.27094 

15 HRM1 197.0522 265.3742 2053.51294 

15 HRM2 176.8792 245.2012 421.62661 

15 HRM3 222.7950 291.1170 9340.02402 

15 HRM4 100.7961 169.1181 23.42648 

15 HRM5 197.0522 265.3742 2053.51294 

20 HRM1 230.3147 310.1440 1251.0353 

20 HRM2 202.0838 281.9131 303.2693 

20 HRM3 262.3725 342.2018 5077.3317 

20 HRM4 103.2302 183.0595 24.7965 

20 HRM5 230.3147 310.1440 1251.0353 

25 HRM1 268.5342 357.2892 996.01737 

25 HRM2 232.5034 321.2585 289.39324 

25 HRM3 309.9892 398.7443 3923.32863 

25 HRM4 107.9551 196.7102 29.15669 
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25 HRM5 268.5342 357.2892 996.01737 

 

 

Tablo 3: Senaryo 2 : P1 = 70, P2 = 30 

n HRM AIC CAIC ICOMP 

10 HRM1 304.4015 434.6600 60883.1536 

10 HRM2 290.8433 421.1018 9465.4170 

10 HRM3 326.0947 456.3532 509344.2939 

10 HRM4 243.4567 373.7152 194.2874 

10 HRM5 304.4133 434.6718 61032.9608 

20 HRM1 403.2596 602.8329 20936.8864 

20 HRM2 375.4133 574.9865 3649.0802 

20 HRM3 434.1411 633.7143 96713.6529 

20 HRM4 282.3817 481.9549 134.6366 

20 HRM5 403.2754 602.8486 20959.1510 

25 HRM1 447.1053 668.9929 12368.2053 

25 HRM2 414.7786 636.6662 2530.8759 

25 HRM3 484.8601 706.7476 54276.1158 

25 HRM4 300.1439 522.0315 134.0887 

25 HRM5 447.1109 668.9985 12372.1280 

50 HRM1 655.9047 947.1070 3115.4169 

50 HRM2 607.8384 899.0407 1181.7136 

50 HRM3 738.7845 1029.9868 14051.2592 

50 HRM4 385.8166 677.0189 197.3385 

50 HRM5 655.9047 947.1070 3115.4169 

 

Tablo 4: Senaryo 2'nin Sonuçları: γ =500 olduğunda P1 = 70, P2 = 30 

n=10 

HRM AIC CAIC ICOMP 

HRM1 304.3076 434.5661 59470.0667 

HRM2 290.5602 420.8187 9232.3386 

HRM3 325.4797 455.7382 493307.8548 

HRM4 242.1647 372.4232 177.6246 

HRM5 304.3289 434.5874 59591.6895 

 

n=20 

HRM AIC CAIC ICOMP 

HRM1 403.4696 603.0428 20681.9701 
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HRM2 376.1507 575.724 3704.0345 

HRM3 434.8356 634.4089 97912.6927 

HRM4 285.5137 485.0869 142.6733 

HRM5 403.4859 603.0591 20695.1161 

 

n=25 

HRM AIC CAIC ICOMP 

HRM1 447.4935 669.3811 12605.958 

HRM2 414.9249 636.8125 2555.7025 

HRM3 484.8661 706.7536 54901.0567 

HRM4 301.0545 522.9421 136.6469 

HRM5 447.5016 669.3892 12609.4036 

 

n=50 

HRM AIC CAIC ICOMP 

HRM1 653.8291 945.0314 3026.9123 

HRM2 606.2232 897.4255 1163.2513 

HRM3 737.5585 1028.7608 13960.8596 

HRM4 384.0572 675.2595 195.2684 

HRM5 653.8379 945.0402 3027.2993 

 

4 | Sonuçların Yorumlanması ve Tartışma 

İki simülasyon senaryosundan — Senaryo 1 (P₁ = 15, P₂ = 25) ve Senaryo 2 (P₁ = 70, 

P₂ = 30) elde edilen sonuçlar, farklı örneklem büyüklükleri (n) ve hibrit kovaryans yapıları 

altında beş farklı Hibrit Regresyon Modeli (HRM) varyantının karşılaştırmalı davranışını 

açıkça ortaya koymaktadır. Senaryo 1’de, toplam açıklayıcı değişken sayısının (P = 40) orta 

düzeyde kaldığı durumda, HRM4 ve HRM2 modelleri sistematik olarak AIC, CAIC ve ICOMP 

kriterleri bakımından en düşük değerlere ulaşmıştır. Bu düşük değerler, modellerin veriye daha 

iyi uyum sağladığını ve aşırı parametreleşme riskini sınırladığını göstermektedir. 

Özellikle, MLE–stabilize–BCSE kombinasyonuna dayanan HRM4 modeli, tüm 

senaryolar ve bilgi kriterleri için en kararlı ve en düşük skorları elde etmiştir. Bu durum, 

stabilize edilmiş bir kovaryans matrisine uygulanan BCSE düzenlileştirmesinin 

(regularizasyonunun), küçük örneklem büyüklüğüyle karakterize edilen durumlarda yanlılık–

varyans dengesini (bias–variance trade-off) etkili bir biçimde optimize ettiğini göstermektedir.  

Senaryo 3’te, yüksek boyutlulukla (P = 100) ve düşük ila orta düzeyde örneklem büyüklüğüyle 

(n ≤ 50) karakterize edilen durumda, yineleme sayısı (γ) artsa bile modellerin genel performans 
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düzeninin değişmeden kaldığı gözlemlenmiştir. Bununla birlikte, yineleme sayısındaki artış, 

tüm bilgi kriterleri için daha düşük değerlere karşılık gelen daha hassas tahminlerin elde 

edilmesini sağlamaktadır. HRM2 ve HRM4 modelleri, diğer varyantlara kıyasla üstün 

performanslarını koruyarak yüksek boyutlu ortamlara uyum sağlama kapasitelerini 

doğrulamaktadır. Buna karşılık, sırasıyla maksimum entropi kovaryansına (ME) ve onun 

düzeltilmemiş versiyonlarına dayanan HRM3 ve HRM1 modelleri, belirgin biçimde daha 

yüksek ICOMP değerleri sergilemektedir. Bu durum, boyut arttıkça kovaryans parametrelerinin 

tahmininde ortaya çıkan istikrarsızlıktan kaynaklanan artmış bilgi karmaşıklığını 

yansıtmaktadır. 

HRM4 modelinde dengeleme (stabilizasyon) ve hibritleştirme tekniklerinin birlikte 

uygulanması, tahmin kalitesinin iyileştirilmesinde özellikle belirleyici bir rol oynamaktadır. 

HCE (Hybrid Covariance Estimator) türü yöntemlerle kovaryans matrisinin stabilize edilmesi, 

küçük örneklem büyüklükleri veya kötü koşullanmış tasarım matrisleriyle ilişkili kararsızlık 

(instabilite) sorunlarını düzeltmeyi mümkün kılmaktadır. Buna paralel olarak, regresyon 

modelinin hibritleştirilmesi, alt modellerden (HRM1–HRM3) türetilen bileşenlerin katkısını 

ağırlıklandırarak düzenleyici (regularizasyon) bir mekanizma gibi işlev görür; böylece tahmin 

edicilerin aşırı varyansı sınırlandırılmaktadır. Bu birleşim, yanlılık–varyans (bias–variance) 

arasında optimal bir denge sağlayarak parametre tahminlerinde daha yüksek dayanıklılık 

(robustluk) ve istikrar (stabilite) elde edilmesini mümkün kılmaktadır. Ayrıca, Pamukçu 

2015’te tarafından yürütülen çalışma sonucunda, en uygun kovaryans yapısının p/n oranına sıkı 

biçimde bağlı olduğu ortaya konmuştur. Daha açık bir ifadeyle, p/n ≤ 5 durumunda 

MLE/STA/CSE kombinasyonu en iyi performansı gösterirken, p/n > 5 olduğunda 

MLE/STA/BCSE yapısının daha başarılı sonuçlar verdiği belirlenmiştir (Pamukçu, 2015). Elde 

edilen sonuçlar ayrıca bilgi kriterlerinin, özellikle de ICOMP kriterinin, modellerin yapısal 

stabilitesinin değerlendirilmesinde belirleyici bir rol oynadığını doğrulamaktadır. Kovaryans 

matrisinin bilgi karmaşıklığını açık biçimde dikkate alan ICOMP, kötü koşullanmış modelleri 

daha net biçimde ayırt etme olanağı sunarak model seçim sürecinin güvenilirliğini 

artırmaktadır. 

5 | Sonuç ve Gelecek Perspektifleri 

Elde edilen sonuçlar, spekral dengeleme (stabilizasyon) ve hibritleştirmeyi birleştiren 

HRM4 modelinin, kovaryans matrisinin kararsız veya kötü koşullanmış olduğu durumlarda 

doğrusal regresyon tahmini için sağlam (robust) ve yüksek performanslı bir yaklaşım 

sunduğunu doğrulamaktadır. Bu strateji, hem sayısal kararlılığı (nümerik stabiliteyi) hem de 

uyum kalitesini artırmakta, aynı zamanda bilgi karmaşıklığını azaltmaktadır. 
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Gelecekteki çalışmaların amacı, analizi çok yüksek boyutluluk (p >> n) bağlamlarına 

genişletmek, HRM modelini diğer düzenlileştirilmiş (regularize edilmiş) tahmin edicilerle — 

örneğin Ledoit–Wolf ve Graphical Lasso karşılaştırmak ve modelin ceza (penalizasyon) 

parametrelerine duyarlılığını incelemek olacaktır. Ayrıca, gerçek veri kümeleri üzerinde 

yapılacak doğrulama, simülasyonlarda gözlemlenen sağlamlığı teyit etmeye ve modelin 

genelleme kapasitesini değerlendirmeye olanak tanıyacaktır. 
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