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OZET

Bu calisma, gozlem sayisinin degisken sayisina gore son derece kiiciik oldugu (n « p)
durumlarda kovaryans matrisinin kararsizligi nedeniyle ortaya ¢ikan tahmin sorunlarmi
ele alarak Hibrit Regresyon Modelinin (HRM) performansini incelemektedir. Caligmanin
yontemi iki bilesen lizerine kuruludur: (i) Hibrit Kovaryans Tahmin Edicisi (HCE) ile
spektral dengeleme yoluyla kovaryans matrisinin stabilize edilmesi ve (ii) farkli regresyon
yapilarimin (HRM1-HRMS) optimal agirliklarla birlestirildigi hibritlestim yaklagimu.
HCE, maksimum entropi tabanli kovaryans tahminini ¢esitli diizenlilestirilmis yapilarla
biitiinlestirerek kot kosullanmis matrislerin sayisal giivenilirligini artirmaktadir. Farkli
orneklem buyiikliikleri ve boyutsal senaryolar altinda yiiriitilen simiilasyonlar,
stabilizasyon ve hibritlestirmeyi birlikte kullanan HRM4 modelinin AIC, CAIC ve
ICOMP kriterlerine gore tutarli bicimde en diisiik degerlere ulagarak en iyi performansi
gosterdigini ortaya koymaktadir. Sonuglar, kovaryansin bilgi karmagikliginin model
sec¢imi siirecinde belirleyici oldugunu ve HCE tabanli hibrit yaklagimin kiigiik 6rneklem
probleminde yanlilik—varyans dengesini etkili bigimde optimize ettigini gostermektedir.
Caligma, yontemin yiiksek boyutlu veri ortamlarina genellenebilir oldugunu ve gelecekte
diger diizenlilestirilmis kovaryans tahmin edicileriyle kargilastirmali analizlerin
yapilabilecegini vurgulamaktadir.

Anahtar Kelimeler: Maksimum Entropi, Hibrit kovaryans tahmincisi (HCE), Hibrit
regresyon modeli, Kiigiik 6rneklem problemi

ABSTRACT

This study investigates the performance of the Hybrid Regression Model (HRM) in
settings where the number of observations is extremely small compared to the number
of variables (n <« p), causing severe instability in covariance estimation. The
methodological framework combines two complementary components: (i) spectral
stabilization of the covariance matrix through the Hybrid Covariance Estimator (HCE),
which integrates maximum-entropy—based estimation with several regularized
covariance structures, and (ii) model hybridization, where multiple regression
formulations (HRM1-HRMS5) are combined using optimal weights to achieve an
improved bias—variance trade-off. Simulation experiments conducted across a wide
range of sample sizes and dimensional settings demonstrate that the HRM4 model, which
jointly employs covariance stabilization and hybridization, consistently achieves the
lowest AIC, CAIC, and ICOMP scores. This confirms its superior numerical stability,
robustness, and predictive accuracy in undersized sample scenarios. The findings
highlight the crucial role of covariance information complexity in model selection and
show that HCE-based hybrid regression provides an effective strategy for controlling
instability in high-dimensional regression. The study concludes by suggesting extensions
of the approach to other regularized covariance estimators and applications to real high-
dimensional datasets.

Keywords: Maximum Entropy, Hybrid Covariance Estimator (HCE), Hybrid Regression Model,
Small Sample Problem
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1| GIRIS

Geleneksel istatistiksel analiz yontemleri, genellikle gozlem sayisinin degisken
sayisindan fazla oldugu varsayimina dayanmaktadir. Ancak modern veri analizinde, 6zellikle
genetik, metin madenciligi ve finans gibi alanlarda, 6rneklem biyiikliigiiniin (n) degisken
sayisina (p) gore ¢ok kiiciik oldugu durumlar (n <<p) sikca karsilagilmaktadir. Bu durum, 6rnek
kovaryans matrisinin tekil veya kotli sartlandirilmis olmasina neden olarak klasik cok
degiskenli analizlerin dogrulugunu ve gecerliligini tehlikeye atmaktadir (Donoho, 2000; Stein,
1975). Bu tiir durumlarda, incelenebilecek drnekler genellikle birkag diizine veya yiizlerce
kisiyle sinirli olsa da tek bir gozlem, 6zellikle daha 6nce bahsettigimiz alanlarda binlerce hatta
milyonlarca degiskeni igerebilir. Ancak, klasik yontemler bu tiir verileri verimli bir sekilde
islemek iizere tasarlanmamistir (Donoho, 2000). Ayrica Stein’in (1956, 1975) uzun zaman 6nce
ortaya koydugu gibi, kovaryans yapisi Z olan ve ortalamasi sifir kabul edilen normal dagilmis
bir popiilasyondan almman n-boyutlu bir 6rneklemin varyans-kovaryans matrisinin en ¢ok
olabilirlik tahmini, p/n oran1 yiiksek oldugunda giivenilir bir tahmin edici degildir. Bununla
birlikte, s6z konusu tahmin edici yanl olmamakta ve pozitif tanimli kalmaktadir (Stein, 1975).
Bu durumda, kovaryans matrisinin yapist bozulmakta ve biiylik 6zdegerler yukari, kiigiik
O0zdegerler ise asag1 yonlii onyargili olmaktadir (Yilun Chen vd., 2011). Buna karsilik, p <n
oldugunda 6zdegerler daha hizli azalir ve genel olarak daha diisiik kalir; bu ise kovaryans
matrisinin daha istikrarli bir tahminini yansitir. Bu 0nyargi, p/n oraninin artmastyla birlikte
artmakta; yani degisken sayisinin gézlem sayisina orani ne kadar yiiksekse, tahmin edilen
kovaryans matrisi o kadar kararsiz olmaktadir. Bu durum, kovaryans matrisi tahmin kalitesinde
bozulmaya isaret eder ve ayn1 zamanda temel bilesen analizi gibi ¢cok degiskenli analizlerin
dogrulugunu olumsuz etkileyebilir. Bu baglamda, literatiirde g¢esitli diizgiinlestirilmis
(smoothed) veya biiziilmiis (shrinkage) kovaryans tahmin yontemleri Onerilmistir. Bir dizi
calismanin ardindan, yiiksek boyutlu veri kiimelerinde kovaryans problemine ¢6ziim getirmek
amaciyla gesitli yaklasimlar dnerilmistir. Istatistikgiler bu durumu siklikla “biiyiik p, kiiciik n”
ifadesiyle tanimlar; bu, sinirli sayida gozleme kiyasla ¢ok fazla degisken bulundugunu ifade
eder. Bu baglamda, Hibrit Kovaryans Tahmin Edicisi (Hybrid Covariance Estimator, HCE)
literatiire ilk kez Pamukcu ve ark. (2015) tarafindan kazandirilmistir (Pamukeu vd., 2015). Bu
tahmin edici, maksimum entropi kovaryans tahmin edicisinin, belirli yumusatilmis kovaryans
yapilart ile birlestirilmesine dayanmaktadir (Fiebig, 1984). HCE sayesinde kovaryans
yapisindaki bozulma azaltilabilmekte, bu da 6zellikle n << p durumuyla karakterize edilen

yiiksek boyutlu veri kiimelerinde ¢ok degiskenli istatistiksel yontemlerin daha etkin
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uygulanmasina olanak saglamaktadir. Bu ¢aligmanin amaci, hem istikrar kazandirma hem de
diizenlilestirme tekniklerini birlestirerek ve ayrica bilgi kriterlerini kullanarak, n < p kosulu ile
karakterize edilen yiliksek boyutlu veri kiimelerinin analizinde Hibrit Kovaryans Tahmin
Edicisi’ne (HCE) dayal1 regresyon analizini tanitmaktir.

Daha spesifik olarak, bu ¢alisma su sekilde yapilandirilmistir: Boliim 2.1°de Ridge
Regresyonu ve diizlestirilmis (smoothed) kovaryans tahmin edicileri sunulmaktadir; Bolim
2.2’de Maksimum Entropi ve Hibrit Kovaryans Tahmini (HCE) tanimlanmaktadir ve Bolim
2.3’te ICOMP ve HCE'ye Dayali Model Se¢im Kriterleri ve Hibrit Regresyon Modeli (HRM)
ele alinmaktadir. Boliim 3’te, Simiilasyon protokoliine genel bir bakis acistyla farkli p ve n
degerleriyle tanimlanan ¢esitli senaryolara ve y simiilasyon saylla HRM modelinin uygulandig:
bir simiilasyon c¢alismasini sunmaktadir. Son olarak, Boliim 4, elde edilen sonuglarin
tartisilmasini, analizini ve Boliim 5 ise gelecekteki perspektifleri sunmaktadir.

2 | Materyal Ve Metot
2.1 | Ridge Regresyonu ve Diizlestirilmis (Smoothed) Kovaryans Tahmin Edicileri

Klasik dogrusal modellerde, En Kiigiik Kareler (Ordinary Least Squares — OLS)
yontemiyle yapilan tahmin, X'X matrisinin tersinin alinabilir olmasi varsayimina
dayanmaktadir. Ancak, agiklayict degiskenler arasinda giiclii bir korelasyon bulundugunda
(¢oklu dogrusal baglant1 -multicollinearity) ya da degisken sayis1 p, gdzlem sayisini n’den fazla
oldugunda (yani n < p durumunda), veri matrisi kotii kosullu (ill-conditioned) hale gelir veya
tekil olmaktadir. Bu kosullar altinda klasik yontemler (OLS tahmin edicileri) ¢ok yiiksek
varyansa, sayisal kararsizliga ve zayif tahmin performansina yol agmaktadir. Bu sinirlamalari
gidermek i¢in, kovaryans matrisini degistirmeyi veya kararli hile getirmeyi amaglayan ¢esitli
diizenlilestirme teknikleri gelistirilmistir; asagida bunlardan her birine kisaca deginilecektir.

Hoerl ve Kennard, ilk olarak ridge regresyon tahmin edicisini 6nermislerdir (A. E. Hoerl
& Kennard, 1970). Bu yontem, dogrusal regresyon modellerinde ¢oklu dogrusal baglanti
(multicollinearity) sorununu ¢ézmek i¢in gelistirilen en etkili yaklasimlardan biridir. Ridge
yontemi, OLS (En Kiiciik Kareler) maliyet fonksiyonuna eklenen bir ikinci dereceden
(kuadratik) cezalandirma terimi aracilifiyla katsayilarin biiytikliigiinii sinirlandirir ve tahminin
kararliligini artirmaktadir. {lgili optimizasyon problemi su sekilde ifade edilmektedir:

Briage = arg min {ly — XBII> + lafII} (1)
Ridge regresyon tahmin edicisi, (1) ifadesinin ’ya gore minimize ederek elde edilmektedir.
Buna gore Ridge kovaryans matrisi,

Sr = Sy +al, Q)
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seklinde hesaplanmaktadir.

Burada al,, terimi, XX’ matrisinin 6zdeger spektrumunu degistirerek sayisal hatalarin
bliylimesini Onler. Uygulamada, kiiciik bir o degeri ¢oziimii klasik yontemlere (OLS)
yaklagtirirken, biiyiik bir o degeri katsayilari sifira dogru sinirlar. Sapma ile varyans arasindaki
bu denge, modelin kararliligini ve genellenebilirlik kapasitesini artirmaktadir (R. W. Hoerl,
2020). Bu fikirden yola ¢ikarak farkli diizenlilestirme bigimleri gelistirilmistir. Tibshirani
(1996), “en kiiclik mutlak deger daraltma ve secim isleci” anlamina gelen yeni bir teknik, yani
lasso yontemini 6nermistir (Tibshirani, 1996). Bu yaklagim, L, normu yerine L; cezasi kullanir;
boylece bazi katsayilarin tam olarak sifir olmasina yol acar ve degiskenlerin otomatik olarak
secilmesini saglar. Siirekli bir daraltma yontemi olarak ridge regresyon, on yargi—varyans
dengesi sayesinde en iyi tahmin performansina ulagmaktadir (Tibshirani, 1996). Ancak ridge
regresyon, tim yordayicilar (degiskenleri) modelde tuttugundan dolay1 sade (parsimonious)
bir model iiretememektedir. Buna karsilik, p > n durumunda lasso yontemi, disbiikey
optimizasyon probleminin yapisi geregi en fazla n degisken se¢ebilmekte; bu sinir asildiginda
ise degisken se¢ciminde doyuma ulasmaktadir. Zou ve Hastie, 2005°te, iki cezalandirmay1
(Lasso ve Ridge) birlestirerek Ridge’in sayisal kararliligin1 Lasso’nun sadeligiyle uzlastirir,
ozellikle yiiksek korelasyonlu degiskenler durumunda etkili bir ¢6ziim sunmaktadir (Zou &
Hastie, 2005).

Buna paralel olarak, kovaryans matrisinin diizenlilestirilmesi meselesi, yliksek boyutlu
cok degiskenli analizlerde merkezi bir arastirma konusu haline gelmistir. Klasik ampirik tahmin
edici:

S = =X = D)X =X (3)

n, p'ye kiyasla kiigiik oldugunda tekil (kararsiz) hale gelmektedir. Bu sorunu asmak i¢in Ledoit
ve Wolf (2004), deneysel matris £, ile iyi kosullandirilmis hedef matris T arasinda agirlikl

bir kombinasyon olarak tanimlanan bir biiziilme tahmincisi 6nermistir (Ledoit & Wolf, 2004).
Sw=0—=8)Eys+6T (4.2)
Burada 9, diizenleme parametresidir (biiziilme katsayisi) ve 0 ile 1 arasinda bir deger

alir. Bu deger, gozlemlerin bir fonksiyonu da olabilir. T matrisi, biiziilme hedefi olarak

adlandirilmaktadir. T'nin basit hali soyledir:
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~ trCme) , _, 1 NP =

Burada tr, 5 mie Nin kosegeninin degerlerinin toplamuidir, A; j=1,....,p tahmini 6rnek
kovaryans matrisinin 6zdegerleridir, ve A dzdegerlerin aritmetik ortalamasidir. Bu tiir tahmin
(4.a), kontrollii bir 6n yargi pahasma varyansi azaltmaya olanak tanir ve bdylece sonlu
orneklemde daha iyi bir performans saglamaktadir.

Hibrit Kovaryans Tahmincisi (HCE) gibi daha yeni yaklagimlar, n<<p'nin oldugu asir1
durumlarda bile kovaryans matrisinin saglam bir tahminini elde etmek i¢in stabilizasyon ve
diizenleme prensiplerini birlestirmektedir. Bu c¢alismada, bu sorunu ¢ozmek icin ¢esitli
diizenlenmis veya diizeltilmis kovaryans tahmincileri kullanilmigtir. Asagida listelenen bu
tahminciler, analizimizin metodolojik temelini olusturmaktadir.

Bozdogan’in Convex Sum tahmin edicisi (Bozdogan, 2009).

Spese =PE + (1 —-p)D (5.a)
5=1
p=- (5.b)
) P
a=( Zj=1Var(xj) (5.0)
Empirical Bayes tahmin edicisi (Haff, 1980).
§ _¢, (@D
ZEB = n.tr(f) Ip (6)

Convex Sum tahmin edicisi (Press, 1975).

LN JPL LI S )
Sesp =+ = £+ (1- 1) [ 2], (7.)
2[p(1+p)-2]
0(m{——2 (7.b)
_tr(®)?
p= tr(z?) (7.¢)
Stipulated Ridge tahmin edicisi (Shurygin, 1983).
o o o1-1
Lsre =2 +pp-D[2n.tr(E] " I, (8)
Stipulated Diagonal tahmin edicisi (Shurygin, 1983).
Sope = (1 — m)2 + ndiag(X) (9.a)
o -1
m=p(p-1)[2n.tr(£71) —p] (9.b)

2.2 | Maksimum Entropi ve Hibrit Kovaryans Tahmini (HCE)
Bircok istatistiksel uygulamada, 6zellikle ¢ok degiskenli analiz baglaminda, kovaryans
matrislerinin dogru sekilde tahmin edilmesi verinin temel yapisini anlamada kritik bir dneme

sahiptir. Ancak klasik maksimum olabilirlik (MLE) temelli kovaryans tahmin edicileri,
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degisken sayisinin 6rneklem biiyiikliigiini astig1 durumlarda kararsiz hatta tekil hale gelmekte
ve bu durum s6z konusu yontemlerin kullanilabilirligini ciddi bi¢imde kisitlamaktadir.
“Boyutsallik laneti” olarak adlandirilan bu problem, hem saglam hem de sayisal agidan kararl
kovaryans tahmin yontemlerinin gelistirilmesini zorunlu kilmaktadir (Pamukgu vd., 2015).
Alternatif yaklasimlar arasinda, Maksimum Entropi’ye (Maximum Entropy Covariance
Estimator - MCE) dayali yontemler, maksimum belirsizlik ilkesine dayanarak kovaryansin
daha diizgiin bir tahminini elde etmeye olanak tanir; bu, 6zdegerler iizerine belirli kisitlamalar
getirerek gerceklestirilmistir (Jaynes, 1957). Ozellikle 6zdegerlerin cogunun negatif veya sifir
oldugu durumlar i¢in uygun bir ¢oziim, verilerin temel yapisini korurken tahmini kararli hale
getiren maksimum entropili kovaryans matrisinin kullanilmasidir.
2.2.1 | Veri matrisi formiilasyonu ve diizenleme yoluyla stabilizasyon

Basitlestirilmis durumda, iki degisken x ve y'nin oldugu ¢ok degiskenli gozlemlerden
olusan bir [Z] matrisi
x1 yl

Z = (10)

xn y n
dir. [Z]'den tahmin edilen kovaryans matrisi, orneklemdeki bitisik gozlemler arasindaki
farklardan ceza terimlerini hesaplayarak kovaryansi sabitlemeye yarayan bir kdsegen matrisi

[D] eklenerek diizenlenebilmektedir. Bu matris su sekilde tanimlanmaktadir:

D= 226 8) o DG+ 60) (6t 80-)D ) . 0 (11)
0 o 2 —m20)" + o DO = 10)? (M = M-}
burada ¢; ve ; birincil ortalama noktalardir:
§=7@+xi*) j=0,1,.....n (12.2)
Ny =2ty i=0,1,.......n (12.b)
ve x0= xl< x2 < xP= x"H1 (13.a)
y'= yr< yE<e yt =yt (13.b)

Sira istatistikleridir, diizenlenilmenin dayandigi karakteristik noktalar1 ifade etmektedir.
Bu diizenlilestirme, sayisal kararliligi artirir ve yiiksek boyutlu matrislerde asir1 uyum
(overfitting) etkilerini sinirlamaya olanak tanimaktadir. (12.a) ve (12.b) numarali denklemde

kullanilan ikincil ortalama noktalari ise su sekilde hesaplanmaktadir:

_i 1 .
X = E(fj_l + E]) JZO,I, ...... ,n (143)
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¥ = Z(nj+1p) (14.b)
Daha sonra C matrisi, bu degistirilmis degerlerin ampirik kovaryans matrisi,
| aZ@-1 Bk Y@ - T) 5
SSG—E—F) = IG—7)?
olarak hesaplanmaktadir. Burada X ve y, X} ve Y, 'nin ilgili ortalamalaridir. Bu yap1, komsu
noktalar arasindaki korelasyonlar1 hesaba katarak kovaryans matrisinin tahmininin saglamligini
artirir ve boylece aykirt degerlerin veya asir1 giiclii 6rnekleme dalgalanmalarmin etkisini
siirlamay1 miimkiin kilmaktadir. Béylece, son maksimum entropi kovaryans matrisi,
Syg =C+D (16)
Sekildedir.

Bu yapi, matris C tarafindan degistirilen verilerin istatistiksel yapisin1 korurken,
diizenleme D tarafindan stabilize edilmis iyi kosullandirilmis bir kovaryans matrisine sahip
olmay1 saglamaktadir.

2.2.2 | Hibrit Kovaryans Tahmin (HCE) Yontemi

Pamukcu ve ¢alisma arkadaslar1 (2015) tarafindan gelistirilen Hibrit Kovaryans Tahmin
Edicisi (Hybrid Covariance Estimator - HCE), maksimum entropinin avantajlarini, klasik
stabilizasyon tekniklerini (Thomaz yontemi dahil) ve verilerin yapisina uygun spesifik
diizenlemeleri birlestirmektedir. Hesaplama siireci su adimlardan olugsmaktadir.

a) Ik tahmin: Maksimum olabilirlik veya maksimum entropi yéntemi ile hesaplanir.

b) Thomaz stabilizasyonu: Kovaryans yapisint daha kararli hale getirmek i¢in uygulanan
islemdir. Bu yap1 asagidaki hesaplama adimlarindan olusturmaktadir. Burada, A; orneklem
kovaryans matrisinin i’inci 6zdegeri, A Ozdegerlerin ortalamasi ve V ise dzdegerlere karsilik

gelen 6zvektorlerdir.

max (A, 4) - 0
A¥ = : _ (17.2)
0 - max (4, 4)
SME_STA :VA* V (17b)

maksimum entropinin sabitlenmesidir.

¢) Diger kovaryans yapilarinin dikkate alinmasi: Stabilize edilmis matris, tahmin ediciyi rafine
etmek i¢in baslangic noktasi olarak kullanilir. Hibrit Kovaryans Tahmin Edicisi (HCE),
onerilen kovaryans yapilarinda (2.1) £ yerine maksimum entropi yontemi ile stabilize edilmis

seklin (17.b) konulmasiyla elde edilmektedir.

26



JESA Mamadou; Asir, 2025

Omegin, kovaryans yapilarinda (4.a), ... , (9.a) bu hibrit kovaryans tahmin edici
bigimleri asagidaki Tablo 1’de 6zetlenmistir. Burada, £ wE sta modifiye edilmis 6zdegerler
yontemiyle stabilize edilmis kovaryans matrisidir.

Kovaryans tahmin edicilerinin stabilizasyonu ve hibridizasyonunun kombinasyonu,
ozellikle kiiglik 6rneklem biiyiikliigii veya yiiksek boyut baglamlarinda daha gilivenilir ve daha
iyi kosullandirilmig kovaryans matrisleri elde etmeyi amaglamaktadir. Birincisi, stabilizasyon,
tahmin varyansini azaltmak, tekilligi 6nlemek ve daha iyi sayisal kararlilik saglamak amaciyla
ampirik kovaryans matrisinin spektrumunun Ozdegerlerini ayarlayarak degistirilmesinden
olusturmaktadir. ikinci adimda, hibridizasyon bu stabilize matrisi kullanarak deneysel bilgi ve
teorik yapiy1 birlestiren analitik olarak yapilandirilmis tahmin ediciler (kiiresel, diyagonal,
disbiikey, vb.) olusturmaktadir. Bu ortak yaklasim, 6n yargi-varyans dengesinin kontrol
edilmesine, kovaryans matrisinin tersine ¢evrilebilirliginin saglanmasina ve hibrit regresyon
modelindeki (HRM) tahminlerin saglamliginin ve performansinin iyilestirilmesine olanak
tanimaktadir.

Tablo 1: Hibrit Kovaryans Tahmin Edicileri (Stabilize Formlar)

Tahminci Temel Formiil Hibrit Form (2, Zyg s7a ile degistirildi)
Empirical § _p, 0D §F ¢ -1
P 2gp=2+ ner) P 2gp = 2ME sTA ner ) P
Bayes (EB)
Stipulated SSRE =5+ p(p—l)[Zn. tr(f ]_1 [p fSRE = fME_STA + p(p—l)[Zn. tr(f ]_1 Ip
Ridge
(SRE)
Stipulated ~ Sgpp = (1 — m)5 + ndiag(2) Sspp = (1 — ) Eyg srat ndiag(d)
Di 1 _ G- -1 R _ -1
tagonal 7 = p(p-1)[2n.tr(£71) - p]| 7= pp-D[2n. tr (Swp.sra”') — b
(SDE)
o o tr@) a a tr(s )
Convex ZCSE_"_ﬁZ_F(I'ﬁ)[ rp 11 ZCSE:+$ZME_STA+(I'$) [W%]Ip
Sum (CSE) . N ~
B= tr) B=tr(XyE_sta)?/ tt((XyE_sT4)?)
tr(Z%)
Bozdogan Lpese=PE + (1—-p)D Zpcse=PEmesta + (1—P)D,
Convex p=1/a, p=1/o0_H,
1 p _
Sum a=( — ijl Var(x;) o= (l/(n-1)) X Var(x;)
(BCSE)

2.3. ICOMP ve HCE’ye Dayalh Model Secim Kriterleri ve Hibrit Regresyon Modeli

(HRM)
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2.3.1. Genel Girig ve Bilgi Kriterleri

1970'lerden bu yana, en uygun modeli segme sorunu istatistik ve modellemede merkezi
bir yer tutmaktadir. Klasik se¢cim yaklasimlari esas olarak hipotez testlerine dayanirken, modern
yontemler uyum iyiligi ile modelin karmasiklig1 arasindaki dengeyi 6l¢meyi amaglayan bilgi
kriterlerine dayanmaktadir. Bu kriterlerin temel ilkesi, yanit degiskenlerinin gercek dagilimi ile
model tarafindan tahmin edilen dagilim arasindaki Kullback—Leibler sapmasinin (divergence)
en aza indirilmesine dayanmaktadir. Akaike Bilgi Kriteri (AIC) model se¢imi i¢in ilk genel
kriter olarak kabul edilen AIC, modelin maksimum olasilig1 iizerinden uyum iyiligini
degerlendirirken, tahmin edilen parametre sayisin1 azaltmaktadir (Akaike, 1974). Formiil
asagidaki gibidir:
AIC=-21logL (9) + 2k (18)

“Burada L(6)maksimum olabilirligi, kise bagimsiz parametre sayisin1 temsil
etmektedir. Bu nedenle AIC, modelin verilere uyumu ile yapisal basitligi arasinda bir denge
kurmay1 amaglamaktadir. Ayni baglamda, bu kriterin diger varyantlari1 da 6nerilmistir; 6zellikle
Schwartz 1978 tarafindan gelistirilen Schwartz Bayesci Bilgi Kriteri ( Schwart’s Bayesian
Information Criterion-SBC) (Schwarz, 1978), ve Bozdogan, 1987 tarafindan gelistirilen Tutarl
yada Diizeltilmis Akaike Bilgi Kriteri (CAIC) (Bozdogan, 1987). Sirasiyla asagidaki gibi

formiile edilmistir:

SBC = —2log L@ + klog (n) (19)
CAIC = —2log L(0) + k[log (n) + 1] (20)
Bu kriterler, karmasik modellerin cezalarim1 giiclendirerek, 6zellikle orneklem
blytikliigi sinirli oldugunda, tutumlu modellerin se¢ilmesini tesvik etmektedir. Ancak, etkili
olmalarina ragmen, yukarida belirtilen kriterlerin, agiklayic1 degiskenlerin yiiksek korelasyonlu
oldugu veya model yapisinin dogrusal olmadig1 durumlarda baz1 sinirlamalart vardir. Bu gibi
durumlarda, tahmin edicilerin kovaryans matrisi kararsiz hale gelebilir ve bu da Akaike veya
Bayes kriterlerini modelin genel kalitesini degerlendirmek i¢in yetersiz hale getirebilmektedir.
Bu eksikliklerin iistesinden gelmek icin Bozdogan, parametre kovaryansinin karmasikliginm
acikca igeren alternatif bir kriter olan Bilgi Karmagikligi Kriterini (ICOMP) Onermistir
(Bozdogan, 1990). Bu kriter, ters Fisher bilgi matrisine (IFIM) dayanir ve yalnizca modelin
uyum iyiligini degil, aym1 zamanda parametreler arasindaki bagimliligin i¢c yapisim1 da

degerlendirmeyi amacglamaktadir. Genel bi¢imi su sekildedir:

ICOMP = —2log L(0) + 2C,(%) (21)
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Burada X, tahmin edicilerin kovaryans matrisini gosterir ve C;(¥), bu matrisin bilgi

karmagikligin1 6lgmektedir. Bu karmagiklik su sekilde tanimlanmaktadir:

C1(®) = 210g 39 22)

g ve /’_lg, sirastyla X'nin 6zdegerlerinin aritmetik ortalamasini ve geometrik ortalamasini temsil
etmektedir. Bu iki ortalama 6nemli 6l¢iide farkli oldugunda, bu, 6zdegerlerin yiiksek bir
dagilimina ve dolayisiyla modelin daha karmasik olduguna isaret etmektedir. Dolayisiyla,
ICOMP hem uyum 1iyiligini (olasilik yoluyla) hem de modelin i¢ yapisini (parametrelerin
kovaryansi yoluyla) hesaba katarak AIC, BIC veya CAIC kriterlerinden daha eksiksiz bir
goriinlim sunmaktadir.

2.3.2 | Genisletme: HCE ve ICOMP'a dayal hibrit regresyon modeli (HRM)

Pamukgu (2003), hibrit kovaryans tahmincilerine (HCE) dayali hibrit regresyon
modelini (HRM) gelistirerek bu yaklagimlar1 kii¢iikk 6rneklem biiyiikliiklerine (n < p) sahip
durumlara genigletmistir. Bu model, aciklayici degiskenlerin boyutunun gézlem sayisini astigi
regresyon modellerindeki tekillik ve sayisal istikrarsizlik sorunlarinin {istesinden gelmektedir.
HRM Prosediir Adimlari:

1. Tablo 1'de daha 6nce elde edilenler gibi farkli yapilara gore hibrit kovaryans matrisleri
Sycg 'nin tahmini.

2. Normal denklemler X' X'in ¢oziimiinde elde edilen matrislerin regresyon katsayilarini tahmin
etmek i¢in kullanilmas.

3. Modellerin ICOMP kriter degerleri kullanilarak karsilastirilmasi: Segilen model, ICOMP'yi
en aza indiren modeldir.

HRM modeli i¢in klasik ve ICOMP kriterleri asagidaki formlar1 almaktadir:

AIC(HRM) = nlog (2m) + nlog (6%) + n + 2k (23)
CAIC(HRM) = nlog (2m) + nlog (6%) + n + k[log (n) + 1] (24)
ICOMP(HRM) = nlog (2m) + nlog (62) + n + 2C,(Cov(Byrm) (25)

Burada &2 artiklarin varyansini ve Cov(fyry) potansiyel olarak yanlis belirlenmis modelin

katsayilarinin tahmini kovaryans matrisini ifade etmektedir.
a2 _ 1 - ‘
82 == YL —5)?* ‘d

lyn 23
Sy Carpiklik katsayisi = G2 ve

63
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(5 TE.8h

K, Basiklik katsayis1 = olmak tizere

64—
82 n n Sy 82
Cov(Burm) = R T w0 (26)
HRM 0 28% | [nSk n(K-1) 0 284
n 283 264 n

seklinde tanimlanmaktadir.
3 | Simiilasyon protokolii

Simiilasyon protokoliiniin amaci, farkli kovaryans yapilar1 ve drneklem biiyiikliiklerine
bagl olarak hibrit regresyon modellerinin (HRM1-HRMS) karsilagtirmali performanslarini
degerlendirmektir. Bu degerlendirme, daha 6nce elde edilen ve Tablo 1’de sunulan hibrit
modellere dayanmaktadir. S6z konusu bes model, sirasiyla HRM1’den HRMS5’e karsilik
gelmektedir. Tki deneysel senaryo ele almmustir:
— Birinci senaryo, ( P1 = 15 ) bilgi verici (birbiriyle iligkili) degisken ve ( P2 =25 ) bilgi verici
olmayan (bagimsiz) degisken icermektedir; toplamda ( P = P1 + P2 =40 ) agiklayici degisken
vardir.
— lIkinci senaryo ise ( P1 = 70 ) bilgi verici ve ( P2 = 30 ) bilgi verici olmayan degisken
icermektedir; dolayisiyla toplam ( P = 100 )’diir. Her bir senaryo i¢in 6rneklem biiyiikligi (n),
ilk durumda 5’ten 25’e, ikinci durumda ise 10’dan 50’ye kadar degismektedir. Her parametre
kombinasyonu, sonuglarin istatistiksel kararliligini saglamak amaciyla y kez tekrarlanmustir. Tlk
asamada y = 100 yineleme yapilmis, ikinci asamada ise y = 500’e ¢ikarilmistir. Boylece
yineleme sayisindaki artigin, tahminlerin dogrulugu ve yakinsama {izerindeki etkisi
incelenmistir.
Iliskili degiskenler X; € R™P1, ¢ok degiskenli normal dagilim MVN(0,Z)'ye gore
olusturulmustur; burada kovaryans matrisi X, bilesenler arasinda r=0,5'te sabitlenmis bir
korelasyon saglayacak sekilde olusturulmustur. Bagimsiz degiskenler X, € R™*P2, diizgiin bir
dagilim olan U(0,1)"i takip etmektedir. Hata vektorii €, bir normal dagilimdan gelir ve hata

varyans1 g = 0.25'te sabitlenmistir. Simiile edilen model asagidaki gibi yazilmistir:

y=Xp +¢eo

Burada X=[X;, X;] aciklayic1 degiskenlerin tam matrisini ve P katsay1 vektoriinii ifade

etmektedir. Simiile edilmis verilerden, ampirik kovaryans matrisleri (£,,,z) ve biiziilme tipi
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tahmin ediciler (2,z) hesaplanmaktadir. Ikincisi, 6rnek matrisinden ve diyagonal hedef
matrisinden gelen bilgileri, biiziilme yogunlugu A adi verilen optimal bir agirliklandirma
faktorii ile birlestiren Ledoit ve Wolf (2004) prosediiriinii kullanmaktadir. Simiilasyonlar
sirasinda, korelasyon matrisi ve varyans vektorii i¢in tahmin edilen optimal yogunluk degerleri
sirastyla A = 0.82—0.87 ve A.var = 0.05-0.09 araliginda bulunmustur. Bu degerler, orta diizeyde
korelasyona sahip kovaryans yapilariyla uyumlu, 6l¢iilii bir diizenlilestirme derecesine isaret
etmekte olup, sayisal kararlili§1 ve tahmin edicilerin pozitif tanimliligin1 saglamak amaciyla
tahmin silirecinin her yinelemesinde otomatik olarak belirlenmektedir. Béylece s6z konusu
parametreler, ampirik kovaryans matrisi ile diizenlilestirme asamasinda kullanilan hedef matris
arasindaki uyum derecesini yansitan bir rol iistlenmektedir.

Onceden tanimlanan kovaryans yapilari, bes hibrit modelin (HRM1-HRMS) her birine
entegre edilmistir. Bu modellerin her biri i¢in, regresyon katsayilari, artik varyansi ve bilgi
Olciitleri (AIC, CAIC ve ICOMP) hesaplanmis, ardindan daha kararli tahminler elde etmek
amaciyla tiim yinelemeler (tekrarlamalar) iizerinden ortalamasi alinmigtir. Her bir 6rneklem

biiytikliigii (n) ve senaryo kombinasyonuna karsilik gelen toplu sonuglar, asagidaki tablolarda

sunulmaktadir.

Tablo 2: Senaryo 1 : P1 =15, P2 =25
n HRM AIC CAIC ICOMP
5 HRM1 115.97454 140.3521 4997.27094
5 HRM2 112.48808 136.8656 1234.02990
5 HRM3 129.97501 154.3525 72894.23547
5 HRM4 93.86045 118.2380 55.85124
5 HRMS 115.97454 140.3521 4997.27094
15 HRM1 197.0522 265.3742 2053.51294
15 HRM2 176.8792 245.2012 421.62661
15 HRM3 222.7950 291.1170 9340.02402
15 HRM4 100.7961 169.1181 23.42648
15 HRM5 197.0522 265.3742 2053.51294
20 HRM1 230.3147 310.1440 1251.0353
20 HRM2 202.0838 281.9131 303.2693
20 HRM3 262.3725 342.2018 5077.3317
20 HRM4 103.2302 183.0595 24.7965
20 HRMS 230.3147 310.1440 1251.0353
25 HRM1 268.5342 357.2892 996.01737
25 HRM2 232.5034 321.2585 289.39324
25 HRM3 309.9892 398.7443 3923.32863
25 HRM4 107.9551 196.7102 29.15669

31



JESA

25

HRM5

268.5342

Tablo 3: Senaryo 2 : P1 =70, P2 =30

n
10
10
10
10
10
20
20
20
20
20
25
25
25
25
25
50
50
50
50
50

HRM

HRM1
HRM2
HRM3
HRM4
HRM5
HRM1
HRM2
HRM3
HRM4
HRM5
HRM1
HRM2
HRM3
HRM4
HRMS5
HRM1
HRM2
HRM3
HRMA4
HRM5

AIC

304.4015
290.8433
326.0947
243.4567
304.4133
403.2596
375.4133
434.1411
282.3817
403.2754
447.1053
414.7786
484.8601
300.1439
447.1109
655.9047
607.8384
738.7845
385.8166
655.9047

357.2892

CAIC
434.6600
421.1018
456.3532
373.7152
434.6718
602.8329
574.9865
633.7143
481.9549
602.8486
668.9929
636.6662
706.7476
522.0315
668.9985
947.1070
899.0407
1029.9868
677.0189
947.1070

Mamadou; Asir, 2025

996.01737

ICOMP
60883.1536
9465.4170
509344.2939
194.2874
61032.9608
20936.8864
3649.0802
96713.6529
134.6366
20959.1510
12368.2053
2530.8759
54276.1158
134.0887
12372.1280
3115.4169
1181.7136
14051.2592
197.3385
3115.4169

Tablo 4: Senaryo 2'nin Sonuglar1: y =500 oldugunda P1 =70, P2 =30

n=10
HRM
HRM1
HRM?2
HRM3
HRM4
HRM5

n=20
HRM
HRM1

AIC

304.3076
290.5602
325.4797
242.1647
304.3289

AIC
403.4696

CAIC

434.5661
420.8187
455.7382
372.4232
434.5874

CAIC
603.0428

ICOMP
59470.0667
9232.3386
493307.8548
177.6246
59591.6895

ICOMP
20681.9701
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HRM2 376.1507 575.724 3704.0345
HRM3 434.8356 634.4089 97912.6927
HRM4 285.5137 485.0869 142.6733
HRMS5 403.4859 603.0591 20695.1161
n=25
HRM AIC CAIC ICOMP
HRM1 447.4935 669.3811 12605.958
HRM?2 414.9249 636.8125 2555.7025
HRM3 484.8661 706.7536 54901.0567
HRM4 301.0545 522.9421 136.6469
HRM5 447.5016 669.3892 12609.4036
n=50
HRM AIC CAIC ICOMP
HRM1 653.8291 945.0314 3026.9123
HRM2 606.2232 897.4255 1163.2513
HRM3 737.5585 1028.7608 13960.8596
HRMA4 384.0572 675.2595 195.2684
HRM5 653.8379 945.0402 3027.2993

4 | Sonuclarin Yorumlanmasi ve Tartisma

Iki simiilasyon senaryosundan — Senaryo 1 (P1 = 15, P> = 25) ve Senaryo 2 (P: = 70,
P> = 30) elde edilen sonuglar, farkli 6rneklem biiyiikliikleri (n) ve hibrit kovaryans yapilari
altinda bes farkli Hibrit Regresyon Modeli (HRM) varyantinin karsilastirmali davranisim
acikca ortaya koymaktadir. Senaryo 1°de, toplam agiklayict degisken sayisinin (P = 40) orta
diizeyde kaldig1 durumda, HRM4 ve HRM2 modelleri sistematik olarak AIC, CAIC ve ICOMP
kriterleri bakimindan en diisiik degerlere ulasmistir. Bu diislik degerler, modellerin veriye daha
iyl uyum sagladigini ve asir1 parametrelesme riskini sinirladigini géstermektedir.

Ozellikle, MLE-stabilize-BCSE kombinasyonuna dayanan HRM4 modeli, tiim
senaryolar ve bilgi kriterleri i¢in en kararli ve en diisiik skorlar1 elde etmistir. Bu durum,
stabilize edilmis bir kovaryans matrisine uygulanan BCSE diizenlilestirmesinin
(regularizasyonunun), kii¢lik 6rneklem biiytikliigliyle karakterize edilen durumlarda yanlilik—
varyans dengesini (bias—variance trade-off) etkili bir bigimde optimize ettigini gostermektedir.
Senaryo 3’te, yliksek boyutlulukla (P = 100) ve diisiik ila orta diizeyde 6rneklem biiyiikliigiiyle

(n < 50) karakterize edilen durumda, yineleme say1si (y) artsa bile modellerin genel performans
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diizeninin degismeden kaldig1 gézlemlenmistir. Bununla birlikte, yineleme sayisindaki artis,
tim bilgi kriterleri i¢in daha diisiik degerlere karsilik gelen daha hassas tahminlerin elde
edilmesini saglamaktadir. HRM2 ve HRM4 modelleri, diger varyantlara kiyasla {istiin
performanslarin1  koruyarak yiiksek boyutlu ortamlara uyum saglama kapasitelerini
dogrulamaktadir. Buna karsilik, sirasiyla maksimum entropi kovaryansina (ME) ve onun
diizeltilmemis versiyonlarina dayanan HRM3 ve HRM1 modelleri, belirgin bigimde daha
ylksek ICOMP degerleri sergilemektedir. Bu durum, boyut arttik¢ca kovaryans parametrelerinin
tahmininde ortaya c¢ikan istikrarsizliktan kaynaklanan artmis bilgi karmasikligini
yansitmaktadir.

HRM4 modelinde dengeleme (stabilizasyon) ve hibritlestirme tekniklerinin birlikte
uygulanmasi, tahmin kalitesinin iyilestirilmesinde 6zellikle belirleyici bir rol oynamaktadir.
HCE (Hybrid Covariance Estimator) tiirii yontemlerle kovaryans matrisinin stabilize edilmesi,
kiigiik 6rneklem biiyiikliikleri veya kotii kosullanmis tasarim matrisleriyle iliskili kararsizlik
(instabilite) sorunlarini diizeltmeyi miimkiin kilmaktadir. Buna paralel olarak, regresyon
modelinin hibritlestirilmesi, alt modellerden (HRM1-HRM3) tiiretilen bilesenlerin katkisini
agirliklandirarak diizenleyici (regularizasyon) bir mekanizma gibi islev goriir; boylece tahmin
edicilerin agir1 varyansi sinirlandirilmaktadir. Bu birlesim, yanlilik—varyans (bias—variance)
arasinda optimal bir denge saglayarak parametre tahminlerinde daha yiiksek dayamiklilik
(robustluk) ve istikrar (stabilite) elde edilmesini miimkiin kilmaktadir. Ayrica, Pamukcu
2015’te tarafindan yiiriitiilen ¢aliyma sonucunda, en uygun kovaryans yapisinin p/n oranina siki
bicimde bagli oldugu ortaya konmustur. Daha ag¢ik bir ifadeyle, p/n < 5 durumunda
MLE/STA/CSE kombinasyonu en 1iyi performansi gosteritken, p/n > 5 oldugunda
MLE/STA/BCSE yapisinin daha basarili sonuglar verdigi belirlenmistir (Pamukcu, 2015). Elde
edilen sonuglar ayrica bilgi kriterlerinin, 6zellikle de ICOMP kriterinin, modellerin yapisal
stabilitesinin degerlendirilmesinde belirleyici bir rol oynadigini dogrulamaktadir. Kovaryans
matrisinin bilgi karmagikligin1 agik bigimde dikkate alan ICOMP, kétii kosullanmis modelleri
daha net bicimde ayirt etme olanagi sunarak model se¢im siirecinin giivenilirligini
artirmaktadir.

5 | Sonu¢ ve Gelecek Perspektifleri

Elde edilen sonuglar, spekral dengeleme (stabilizasyon) ve hibritlestirmeyi birlestiren
HRM4 modelinin, kovaryans matrisinin kararsiz veya kotii kosullanmis oldugu durumlarda
dogrusal regresyon tahmini icin saglam (robust) ve yiiksek performansli bir yaklagim
sundugunu dogrulamaktadir. Bu strateji, hem sayisal kararlilig1 (niimerik stabiliteyi) hem de

uyum kalitesini artirmakta, ayn1 zamanda bilgi karmasikligini azaltmaktadir.
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Gelecekteki ¢aligmalarin amaci, analizi ¢ok yiliksek boyutluluk (p >> n) baglamlarina
genisletmek, HRM modelini diger diizenlilestirilmis (regularize edilmis) tahmin edicilerle —
ornegin Ledoit—Wolf ve Graphical Lasso karsilastirmak ve modelin ceza (penalizasyon)
parametrelerine duyarlilifin1 incelemek olacaktir. Ayrica, gercek veri kiimeleri iizerinde
yapilacak dogrulama, simiilasyonlarda gozlemlenen saglamligi teyit etmeye ve modelin

genelleme kapasitesini degerlendirmeye olanak tantyacaktir.
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