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Generalizations of metrics and partial metrics

Over half a century ago, Dr. L. M. Brown made an important discovery that did

not become a theorem in any paper: You can work and live happily and productively

with people of di�erent cultures, and the result will be good for all. Dr. Brown

passed on this message through the example that participants saw in the topology

conferences he organized. The two authors met at one of these in summer 2001

and talked about future collaboration. We o�cially began working in October 2002

along with Steve Matthews in England for a year. Since then we have worked on

developing and studying generalized metrics, among other topics. So our special

thanks go to Dr. Brown for organizing these Hacetteppe conferences. Due to him

our lives and research are much more enjoyable and productive than they would be

otherwise.

Ralph Kopperman ∗ and Homeira Pajoohesh †

Abstract

In [14] k-metric spaces were de�ned for certain `-group applications,
by weakening the metric triangle inequality. In this article we show
that much of the theory of metric spaces, including the Banach �xed
point theorem extends to these spaces.
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1. Introduction

Metrics have been generalized in many ways. Steve Matthews in [12] intro-
duced partial metrics. His goal was to study the reality of �nding closer and closer
approximations to a given number (using, say, n-place decimal approximations),
and showing that contractive algorithms would serve to �nd these approximations.
Speci�cally, he identi�ed the approximations as partially known points. For ex-
ample an n-place decimal approximation to a number tells us in which interval of
the form [d, d+ 10−n) the number lies; this interval has width 10−n; this tells the
remaining uncertainty of the exact value of the point, and is usefully seen as its
self-distance of this interval.

He then showed that the usual proof of the contraction �xed-point theorem
worked in his more general spaces and the theorem in these spaces meant that
contractive algorithms would converge to a fully known point � that is, a point
whose distance to itself is 0. His de�nition is:

1.1. De�nition. A partial metric is a function p : X ×X → [0,∞) satisfying the
following conditions for every x, y, z ∈ X:
p(x, y) ≥ p(x, x),
p(x, y) = p(y, x),
p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),
x = y if p(x, y) = p(x, x) = p(y, y).

One can easily verify that a partial metric p on the set X is a metric if and only
if p(x, x) = 0 for every x ∈ X.

An example of a partial metric is ∨ : [0,∞)×[0,∞)→ [0,∞) such that ∨(x, y) =
max{x, y}.

In [11] partial metrics were generalized by allowing p : X × X → V , where
V is a value quantale or a value lattice. In [10] completions of partial metric
spaces were considered and it was shown that a new form of completion called
the spherical completion is the same as the �Round ideal completion" which is
important in computer science.

In [2], a relationship between partial metrics and metrics with a base point
was discussed. In [6] partial metrics on `-groups (lattice ordered groups) were
discussed. There it was shown that if pn∨(x, y) = n(x ∨ y) is a partial metric on
an `-group G then na+ nb = nb+ na for all a, b ∈ G (this property is sometimes
called the commutativity of the nth power). So if En is the variety of `-groups
so that pn∨ is a partial metric and Ln is the variety of `-groups such that the
nth power commutes then En ⊆ Ln. There it was shown that if n is prime then
En = Ln.

Later in [4] it was shown that En = Ln if and only if n is prime. In [4] it was
shown that Ln ∩A2 ⊆ En for every n, where A2 is the set of `-groups G such that
G has an abelian convex normal `-subgroup H such that G

H is abelian. Further,

if n is prime then Ln ∩ A2 = En but whether this equality holds for all n was
unanswered for some time. Then in [3] it was shown that this equality holds if
n = pq where p and q are two positive prime numbers. Later, in [13] it was shown
that the equality holds for every n. These papers built another bridge between
computer science and order theory.
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Metrics have also been generalized by allowing them to be valued in struc-
tures other than IR, such as abelian `-groups. When this is done and a notion
of �positive" is given, many basic topology-like notions can be characterized with
these structures - for example each Tychono� topology ( [8]), each proximity, and
each uniformity ( [7]) arises from a metric into such a structure with a subset of
positives, and if symmetry is dropped then one obtains a quasimetric, and each
topology ( [8]), each quasiproximity and each quasiuniformity ( [7]) as well as each
neighborhood space, closure space and pretopology arises from a quasimetric into
such a structure with a subset of positives (the last three are discussed in [9]).
Similarly it was shown in [11] that each T0 topology arises from a partial metric
into such a space with a subset of positives.

When it comes to `-groups, a major tool that allows this generalization is that
absolute value for abelian `-groups, like absolute value on the real line, yields a
metric. More precisely the absolute value of the zero is zero, the absolute values
of an element and that of its inverse are the same, and the triangle law holds.
The triangle law fails for non-abelian `-groups; in fact in [5] it was shown that an
`-group is abelian if and only if the triangle law for the absolute value holds. For
a general `-group we only have that for each x, y, |x+ y| ≤ 2(|x|+ |y|). This led
to de�ning k-metrics, see [14].

1.2. De�nition. Let k be a positive integer. A k-metric on a set X is a function
d : X ×X → IR such that for all x, y, z ∈ X:

(pos) d(x, y) ≥ 0
(id) d(x, y) = 0⇔ x = y
(sym) d(x, y) = d(y, x)
(ktri) d(x, y) ≤ k(d(x, z) + d(z, y)).

A k −metric space is a set X 6= ∅ with a k-metric on it.

If we allow k-metrics to be valued in a lattice ordered group G rather than
the reals, the absolute value of their di�erence, d(x, y) = |x − y| will always be a
2-metric on G. (See [1] p. 296.)

Clearly if d is a k-metric then it is t-metric for each integer t ≥ k. Certainly
every metric space is a 1-metric space and so it is a k-metric space whenever
1 ≤ k ∈ IN. But, the converse is not true; there are k-metric spaces which are not
metric:

1.3. Example. Consider d : IR× IR→ IR de�ned by d(x, y) = (x− y)2. Then d is
a 2-metric on IR because for every two real numbers a and b, we have (a + b)2 ≤
2(a2 + b2). But d(x, y) = (x − y)2 is not a metric: for example d(−1, 1) = 4 6≤
d(−1, 0)+d(0, 1) = 1+1 = 2. In general for every even integer n, d(x, y) = |x−y|n
is a 2n-metric because for every a, b ∈ IR we have |a+ b|n ≤ (|a|+ |b|)n ≤ (2(|a| ∨
|b|))n = 2n(|a| ∨ |b|)n ≤ 2n(|a|n + |b|n). The last inequality holds since for every
a, b ∈ IR, a ∨ b = a or a ∨ b = b.

So k-metrics allow us to talk about distance between points and thus about
sequences, series and convergence in a wider context. They relax triangularity and
still the induced topology is metrizable, see [14]. Sometimes proving triangularity
of metrics is challenging but proving triangularity for k-metrics can be much easier.
As we see in this article many properties of metrics hold for k-metrics.
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The central point of this paper is to show that the basic theories of topology
and uniformity are essentially the same for k-metrics as for metrics.

We recall that for X 6= ∅, a uniformity on X is a set U of subsets of X ×X
such that:

(Id) 1X =
⋂
U where 1X = {(x, x) : x ∈ X}, the identity map of X,

(Sym) if U ∈ U then U−1 ∈ U (where U−1 = {(y, x) : (x, y) ∈ U})
(Int) if U, V ∈ U then U ∩ V ∈ U, and
(Com) if U ∈ U then V ◦ V ⊆ U for some V ⊆ X × X, where ◦ denotes

composition of relations.
Every uniformity U induces a topology, τU, whose open sets are those T for

which x ∈ T ⇒ (∃U ∈ U)(U [{x}] ⊆ T ), where U [{x}] = {y ∈ X : (x, y) ∈ U}.
For a k-metric d : X×X → R, if x ∈ X and r > 0, Nr(x) = {y : d(x, y) ≤ r} and

τd = {T ⊆ X : (∀x ∈ T )(∃r > 0)(Nr(x) ⊆ T )} is called the topology induced by the
k −metric. Also, if r > 0, Nr = {(x, y) : x, y ∈ X & d(x, y) ≤ r} and Ud = {U ⊆
X ×X : (∃r > 0)(Nr ⊆ U)} is the uniformity induced by the k −metric.

1.4. Lemma. For any k-metric space (X, d), τd is a topology, called the k −
metric topology on X and Ud is a uniformity, called the k −metric uniformity
on X. Further, τd is the topology induced by Ud.

Proof: That τd is a topology was shown in [14] (further, the reader can check it).
Now we prove that Ud is a uniformity.

To show (Id) note that if U ∈ Ud then for some r > 0, Nr ⊆ U ; since for
each x ∈ X, d(x, x) = 0 ≤ r, each (x, x) ∈ Nr, so 1X ⊆ Nr; thus 1X ⊆ U ,
and thus 1X ⊆

⋂
Ud; but if (x, y) 6∈ 1X then x 6= y so d(x, y) 6= 0 so for some

r > 0, d(x, y) 6≤ r, so (x, y) 6∈ Nr, thus (x, y) 6∈
⋂
Ud, showing

⋂
Ud ⊆ 1X .

For (Sym), if U ∈ U then for some r > 0, Nr ⊆ U , so Nr = N−1r ⊆ U−1 thus
U−1 ∈ U.

For (Int), if U, V ∈ Ud then for some r, s > 0, Nr ⊆ U and Ns ⊆ V , thus
t = min{r, s} > 0; also Nt ⊆ Nr ∩Ns ⊆ U ∩ V , so U ∩ V ∈ Ud, and

For (Com) if U ∈ U then �nd r > 0 such that Nr ⊆ U , and note that there
is an s > 0 so that 2ks ≤ r. Let V = Ns ∈ Ud and if (x, y), (y, z) ∈ Ns then
d(x, z) ≤ k(d(x, y) + d(y, z)) ≤ 2ks ≤ r, so Ns ◦Ns ⊆ Nr ⊆ U . ut

Thus we can de�ne uniform continuity, Cauchy sequences, continuity and limits
for k-metrics exactly the way they are de�ned for metrics. Similarly we say a k-
metric is complete if every Cauchy sequence converges.

2. The contraction �xed-point theorem

2.1. De�nition. For a k-metric space (X, d), a function f : X → X is a Lipschitz
map with bound q if q is so that for each x, y ∈ X, d(f(x), f(y)) ≤ qd(x, y); f is a
contraction if it is a Lipschitz map with bound q < 1

k2 .

2.2. Lemma. If f : X → X is a Lipschitz map with bound q on a k-metric space

(X, d), then f is continuous.

Proof: To show continuity with respect to τd, we establish that for each r > 0
and x ∈ X, there is an s > 0 such that d(x, y) ≤ s implies d(f(x), f(y)) ≤ r. Let
s = r

q ; then if d(x, y) < s we have d(f(x), f(y)) < qd(x, y) < qs = q( r
q ) = r. ut
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Note that the above in fact showed uniform continuity (in other words x doesn't
matter).

2.3. Lemma. If f : X → X is a Lipschitz map with bound q on a k-metric space

(X, d), then for each x ∈ X, n ∈ IN∪ {0}, d(x, fn(x)) ≤ (Σn
i=1k

iqi−1)d(x, f(x)).

Proof: For n = 0 and all x ∈ X, this inequality says
d(x, f0(x)) ≤ (Σ0

i=1k
iqi−1)d(x, f(x)); that is, d(x, x) = 0 ≤ (Σ∅)d(x, f(x)), which

holds. Assume our inequality for n and all x ∈ X. Then by the k-metric tri-
angle inequality and the inductive hypothesis, d(x, fn+1(x)) ≤ k(d(x, f(x)) +
d(f(x), fn(f(x)))) ≤ kd(x, f(x)) + kd(f(x), fn(f(x))) ≤

kd(x, f(x)) + k(Σn
i=1k

iqi−1)d(f(x), f(f(x))) ≤ kd(x, f(x)) + k(Σn
i=1k

iqi−1)qd(x, f(x)) =
kd(x, f(x)) + (Σn

i=1k
i+1qi)d(x, f(x)) = kd(x, f(x)) + (Σn+1

i=2 k
iqi−1)d(x, f(x)) =

(Σn+1
i=1 k

iqi−1)d(x, f(x)).
So our inequality holds for n + 1 and arbitrary x, completing our inductive

proof. ut

2.4. Theorem. Fixed point Theorem Let (X, d) be a complete k-metric space.

If f : X → X is a contraction then f has a �xed point.

Proof: If k = 1 then we have a metric and the result is true. Thus let k > 1.
Let x0 ∈ X be any point and inductively de�ne xn = f(xn−1). Then for each
n, xn = fn(x0). Now we show that the sequence {xn} is Cauchy: Let ε > 0; there
is an N such that 1

k2N−2
1

k−1d(x0, x1) < ε. Now let m ≥ n ≥ N . Since f is a Lips-

chitz map with bound q < 1
k2 , by Lemma 2.3, d(xn, xm) = d(fn(x0), fm(x0)) ≤

qn(d(x0, f
m−n(x0))) ≤ qn(Σm−n

i=1 kiqi−1)d(x0, f(x0)) ≤ 1
k2n (Σm−n

i=1
1

ki−2 )d(x0, x1) ≤
1

k2n (Σ∞i=1
1

ki−2 )d(x0, x1)

= 1
k2n−2 (Σ∞i=1

1
ki )d(x0, x1) = 1

k2n−2
1

k−1d(x0, x1) ≤ 1
k2N−2

1
k−1d(x0, x1) < ε.

This proves that {xn} is a Cauchy sequence, and since (X, d) is a complete
k-metric space, it converges to a point, say a. Thus by the continuity of f (shown
in Lemma 2.2):
f(a) = f(limn→∞ xn) = limn→∞ f(xn) = limn→∞ xn+1 = a, so a is a �xed

point. ut

3. Future Work

The continuation of this research is considering k-partial metrics. We have
a de�nition for k-partial metrics and we must verify that it follows the idea of
partial metric and generalizes partial metrics in a way that keeps their properties
and their relationship with other distance functions.
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