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ABSTRACT

The primary objective of this study is to examine the financial interaction between artificial intelligence (Al)
indices and the carbon market and to reveal how shock transmission between the two markets varies according

Keywords: to market conditions. In this regard, the study analyzes the dynamics between two carbon indices, ICE EUA
Artificial Intelligence, Carbon Futures Excess Return Index (ICEEUA) and S&P Global Carbon Credit Index (GLCARB), and two Al
indices, Nasdaq CTA Atrtificial Intelligence & Robotics Index (NQROBO) and ROBO Global Artificial

Carbon Market, Intelligence Index (THNQ), using daily data covering the period from February 18, 2022 to June 27, 2025.
Quantile-on-Quantile Findings from the Quantile-on-Quantile Connectedness analysis reveal that the carbon market serves as a net
Connectedness shock transmitter across most quantile combinations; however, this role exhibits significant asymmetry, with
transmission intensifying during extreme market conditions. Put differently, in certain periods characterized

Jel Codes: by heightened technological momentum, the Al indices also generate a meaningful feedback effect toward the

carbon market. These interactions intensify in extreme quantile regimes, indicating stronger market integration

033, Q55 during periods of stress. The results demonstrate that the financial structure of carbon pricing and the Al sector
is becoming increasingly intertwined, and that sustainability policies need to be reconsidered in a manner that
appropriately accounts for developments in technology markets.

OZET

Bu ¢alismanmin temel amaci, yapay zeka (YZ) endeksleri ile karbon piyasasi arasindaki finansal etkilegimi
incelemek ve iki piyasa arasindaki sok gegiskenliginin piyasa kosullarina gore nasil degistigini ortaya

Anahtar Kelimeler: koymaktir. Bu dogrultuda ¢alisma, 18 Subat 2022 - 27 Haziran 2025 donemini kapsayan giinliik veriler
kullamlarak iki karbon endeksi, ICE EUA Carbon Futures Excess Return Endeksi (ICEEUA) ve S&P Global

Yapay Zeka, Carbon Credit Endeksi (GLCARB), ile iki YZ endeksi, Nasdag CTA Artificial Intelligence & Robotics Endeksi
Karbon Piyasast, (NQ]_?OBO) ve ROBO Global Artificial Intelligence Endeksi (THNQ), arasindaki dinamikleri analiz etmektedir.
Kantil-Kantil Baglantililik yontemiyle elde edilen bulgular, karbon piyasaswn biiyiik lgiide YZ endekslerine

Kantil-Kantil Baglantililik dogru birincil sok yayici (shock transmitter) olarak hareket ettigini géstermektedir. Bununla birlikte, teknolojik
ivmenin arttigi belirli donemlerde YZ endekslerinin de karbon piyasasina anlaml diizeyde geri besleme etkisi

Jel Kodlari: olusturdugu gézlemlenmektedir. Bu etkilesimlerin ozellikle ug¢ ¢eyrek (extreme quantile) rejimlerde

033, Q55 belirginlesmesi, iki piyasa arasindaki entegrasyonun stres donemlerinde daha da gii¢lendigini ortaya

koymaktadwr. Sonuglar, karbon fiyatlamasi ile YZ sektoriiniin finansal yapiarimin giderek daha fazla i¢ ice
gectigini ve siirdiiriilebilirlik politikalarinin, teknoloji piyasalarindaki gelismeleri dikkate alacak sekilde
yeniden degerlendirilmesi gerektigini gostermektedir.
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1. INTRODUCTION

The growing centrality of artificial intelligence (Al) within the financial system makes it increasingly important
to understand its relationship with carbon markets from a theoretical perspective. Carbon markets are data
intensive, regulation driven, and highly sensitive to expectations, which means that the digital transformation
driven by Al can have significant implications for their functioning. The integration of Al and blockchain systems
into carbon credit trading (Adigun et al., 2024; Baklaga, 2024) illustrates that price formation in carbon markets
is increasingly dependent on the quality and processing speed of information. As digital trading infrastructures
expand, carbon pricing mechanisms may become more responsive to Al generated information flows, making the
valuation of Al intensive firms and carbon assets more interlinked.

Beyond infrastructure effects, the interaction between Al and carbon markets also has a financial dimension.
Evidence that market conditions create time varying linkages between Al activity and carbon price dynamics (Xu
et al., 2024) suggests that Al is not merely a supportive technology but a factor that shapes how market signals
are transmitted. The asymmetric influence of Al on carbon prices across different market regimes (Jiang et al.,
2025) further implies that Al innovations can alter expectations and risk perceptions, particularly during periods
of heightened uncertainty. Another theoretical channel strengthening this relationship is AI’s role in carbon
reduction technologies. The use of Al in carbon capture, energy efficiency, and process optimization (Priya et al.,
2023; Gaur et al., 2023) can reshape long term supply demand expectations in carbon markets. As Al accelerates
decarbonization in carbon intensive industries, projections of future carbon costs may shift accordingly. Studies
showing that Al contributes to reduced emissions and improved emission efficiency (Ding et al., 2023; Wu et al.,
2025) indicate that carbon markets increasingly internalize technological progress when pricing future carbon
liabilities.

Al’s role in the ongoing energy transition further enhances this theoretical linkage. Its applications in renewable
energy production, demand forecasting, and smart grid management (Necula, 2023; Zhao et al., 2024) can create
stronger synchronization between energy and carbon markets. Changes in expectations regarding the pace of
energy transition may thus simultaneously influence the valuation of Al firms and the pricing of carbon credits.
The presence of strong connectedness between Al and energy markets even in tail conditions (Tiwari et al., 2024;
Raggad & Bouri, 2025) reinforces the view that these interactions intensify under market stress, suggesting a
shared financial exposure to major technological and policy shocks.

Taken together, these mechanisms show that the relationship between Al indices and carbon markets cannot be
explained by a single economic factor. Digital market infrastructures, enhanced information processing, carbon
reducing technological innovations, and the financial effects of energy transition collectively shape a multi layered
and dynamic interaction between the two markets. As such, the linkage is theoretically expected to be nonlinear,
sensitive to market conditions, and prone to varying intensities across different periods. This conceptual
understanding provides a strong justification for examining the connectedness between Al stock indices and
carbon price indices using quantile based and asymmetry sensitive methodologies, which can capture the regime
dependent nature of these interactions.

This theoretical framework necessitates the empirical examination of the multidimensional, asymmetric, and
regime dependent interactions that may arise between Al indices and the carbon market. In this regard, the main
objective of the study is to reveal the shock transmission mechanisms between the carbon market and the Al stock
market under varying market conditions. The analysis employs two carbon price indices, ICE EUA Carbon
Futures Excess Return Index (ICEEUA) and S&P Global Carbon Credit Index (GLCARB), and two Al stock
market indices, Nasdagq CTA Artificial Intelligence & Robotics Index (NQROBO) and ROBO Global Artificial
Intelligence Index (THNQ). These indices are selected because they reflect latest and comprehensive financial
dynamics of both the global carbon market and the Al sector. The dataset consists of daily observations obtained
from Refinitiv covering the period 18 February 2022 to 27 June 2025. The time span is determined by the
continuity of trading activity and the availability of data across both markets. To examine how market interactions
vary across different parts of the distribution, the study applies the Quantile-on-Quantile Connectedness (QQC)
approach. Developed by Gabauer & Stenfors (2024), this method provides a suitable empirical framework for
analyzing Al and carbon market interactions, as it captures the direction and magnitude of shocks with high
sensitivity in tail regions, where volatility regimes tend to be most influential.

The relationship between artificial intelligence related financial indices and carbon markets has become
increasingly pivotal as technological transformation exerts a growing influence on global financial systems.
Despite this heightened relevance, empirical studies that directly examine the interaction between artificial
intelligence driven financial markets and carbon markets within a unified financial connectedness framework

287



International Journal of Business & Economic Studies, Year: 2025, Vol: 7, No: 4, pp.286-300

remain notably scarce. The existing literature predominantly concentrates on the impact of artificial intelligence
on carbon emissions, energy transition processes, or the institutional design and efficiency of carbon markets.
However, the bidirectional shock transmission and dynamic comovement between artificial intelligence oriented
financial indices and global carbon price dynamics have yet to be systematically investigated. This gap is
particularly critical in an era characterized by the rapid convergence of technology driven and sustainability
oriented markets. In response, the present study addresses this shortcoming by examining the interaction between
artificial intelligence indices and carbon markets within a nonlinear, regime dependent, and distribution sensitive
framework. Conventional empirical approaches, which rely largely on average effects, are insufficient to capture
the underlying complexity of such relationships, especially in markets where volatility regimes play a central role
in shaping price dynamics. By employing the Quantile-on-Quantile Connectedness methodology, this study
enables a detailed assessment of how shock transmission mechanisms between artificial intelligence and carbon
markets evolve across low, medium, and high volatility conditions. This approach provides a substantive
methodological advancement by uncovering tail dependencies, asymmetric spillover effects, and state dependent
inter market linkages that remain obscured under mean based analyses. Consequently, the study contributes to the
literature by offering a more nuanced and comprehensive understanding of the financial interaction between
artificial intelligence driven markets and global carbon pricing dynamics, particularly during periods of
heightened market stress.

This study offers important strategic implications for a wide range of stakeholders operating at the intersection of
artificial intelligence, carbon markets, and sustainable finance. From an investment perspective, identifying
regime dependent shock transmission mechanisms between Al markets and carbon markets enables a more
informed design of portfolio diversification and hedging strategies under varying market conditions. Incorporating
these dynamics into risk management frameworks may enhance portfolio resilience, particularly during periods
of heightened volatility. From a policy standpoint, the findings provide valuable insights into how developments
originating in artificial intelligence driven financial markets may influence the stability and pricing dynamics of
carbon markets. Such insights can assist policymakers and regulatory authorities in designing regulatory
frameworks that more effectively account for the interconnected nature of technological advancement and
sustainability oriented market structures. Recognizing these interactions is particularly relevant for ensuring the
robustness of carbon pricing mechanisms in the context of rapid digital transformation. At the firm and industry
levels, the results enable industrial firms and participants in carbon trading systems to better assess the indirect
financial and cost related implications of artificial intelligence technologies on carbon management and
compliance strategies. This improved understanding supports more effective long term strategic planning and
investment decisions. Furthermore, institutions operating within the energy sector may utilize the observed
comovement between Al and carbon markets to more accurately interpret risks and opportunities associated with
energy transition processes. Overall, the study extends beyond its academic contribution by providing an
integrated analytical framework that can support more informed decision making across technology, energy, and
sustainable finance domains, particularly in environments characterized by increasing market interconnectedness
and structural transformation.

This study consists of five sections. The first section presents the background and objectives of the research. The
second section reviews existing studies on the relationship between Al indices and carbon markets, highlighting
the gaps in the literature. The third section explains the data set, the selected indices, and the QQC method used
in the analysis. The fourth section presents the empirical findings and discusses how market interactions vary
across different regimes. The final section provides the main conclusions of the study, implications for
policymakers and market participants, and suggestions for future research.

2. LITERATURE REVIEW
2.1. Interaction between Artificial Intelligence and Carbon Markets

Recent studies highlight that Al, blockchain, and fintech driven innovations have transformed the functioning of
carbon markets. Adigun et al. (2024) emphasize that Al and blockchain applications enhance price discovery,
transparency, and transaction efficiency in carbon markets through financial technologies, thereby strengthening
market depth. Similarly, Baklaga (2024) demonstrates that the integration of Al and blockchain enables "smart
carbon credit trading” based on smart contracts operating on distributed ledger technology, which reduces
transaction costs and accelerates market integration.

Examining the relationship between carbon markets and Al directly through a time frequency spillover
framework, Xu et al. (2024) identify both short and long term time varying connectedness among Al, the carbon
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market, and the energy sector. Their findings indicate that bidirectional shock transmission between Al and carbon
prices intensifies particularly during crisis episodes and periods of high volatility. Jiang et al. (2025) analyze the
linkage between Al indicators and carbon prices in China through the Quantile-on-Quantile Regression approach,
revealing that the effect of Al activities on carbon prices is nonlinear and asymmetric across quantiles. Islam
(2025) argues that Al supported carbon market intelligence and blockchain based governance mechanisms can
enhance transparency in climate resilient infrastructure investments in the Global South. Overall, these findings
suggest that Al is not only a tool that enhances operational efficiency in carbon markets, but also functions as a
financial technology shock capable of reshaping price dynamics, volatility structures, and overall market
connectedness.

2.2. Artificial Intelligence, Carbon Emissions, and Carbon Efficiency

The impact of Al technologies on carbon emissions is discussed in the literature through both mitigating and
rebound mechanisms. Priya et al. (2023) show that Al supported carbon capture systems significantly increase
capture efficiency through process optimization, forecasting, and real time control. Gaur et al. (2023) highlight
that, Al can optimize carbon emissions in multiple subsystems, including energy, transportation, industry, and
buildings, supporting a holistic carbon mitigation strategy.

Ding et al. (2023) find that Al development is associated with a significant reduction in carbon emissions in China,
while Wang et al. (2024) show that Al can curb emissions by promoting the energy transition (from fossil fuels
to renewables) and interacting with trade openness. Chen & Jin (2023) report that Al applications in
manufacturing are insufficient alone, but yield stronger carbon reduction outcomes when combined with green
innovation. Wu et al. (2025) further demonstrate that Al adoption increases carbon emission efficiency by
enabling firms to produce the same output with lower carbon intensity.

This body of research suggests that Al has substantial potential to reduce carbon emissions through energy and
resource efficiency, process optimization, and smart management systems. However, Al can also generate
additional carbon and energy burdens through large data centers, high computational power requirements, and
hardware demand, indicating that its net effect depends on the specific sectoral, technological, and policy context.

2.3. Artificial Intelligence and Corporate ESG Performance

ATl’s impact on corporate environmental, social, and governance (ESG) performance and enviromental
sustainability has become an increasingly prominent area of empirical focus (Balci et al., 2025). Zhang & Yang
(2024) find that Al applications enhance ESG performance by reducing environmental footprints, improving data
processing capacity, and strengthening reporting transparency. Lim (2024) systematically examines the
relationship between Al and ESG in finance, concluding that Al plays a critical role in risk management,
measurement of climate and sustainability risks, ESG integration in portfolios, and the design of sustainable
finance products.

Under the Industry 5.0 framework, Wang et al. (2025) position Al at the center of future production and
management systems to strengthen corporate sustainability and ESG performance. Li & Bian (2025) and Xie &
Wu (2025) show that Al adoption significantly and positively affects ESG scores among Chinese firms. Liu et al.
(2025) highlight that Al applications generate particularly notable improvements in the environmental and
governance dimensions, such as emission monitoring, corruption risk detection, and supply chain transparency.
Tian et al. (2025) report that Al adoption has a positive and significant impact on ESG performance, which is
closely linked to corporate strategy and managerial structures. Hamdouni (2025) finds similar results in Saudi
Arabia, showing enhanced ESG outcomes through Al practices. Song et al. (2025) demonstrate that digital
technological innovations create a “catching-up effect” in ESG performance, enabling laggard firms to rapidly
approach higher ESG standards. Collectively, these studies indicate that Al functions as a general purpose
technology that supports corporate sustainability, strengthens ESG reporting, and enhances transparency in
identifying environmental and governance risks, implying that Al intensive sectors may exhibit relatively higher
ESG performance.

2.4. Artificial Intelligence, Clean Energy, and Energy Markets

The literature on the interaction between Al and clean energy highlights AI’s strategic role in renewable energy
development and the broader energy transition. Necula (2023) argues that Al is a critical complementary
technology in the development of clean energy technologies in Europe, particularly through improvements in
energy efficiency, smart grids, and demand management. Qin et al. (2024) find that the benefits of Al in renewable
energy, including prediction accuracy, maintenance optimization, and system integration, outweigh potential
drawbacks such as energy consumption and digital infrastructure costs, resulting in a net positive effect.
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Zhao et al. (2024) claim that Al can accelerate the transition to renewable energy, especially by enhancing
investment decisions, production and price forecasting, and risk management. Zhang et al. (2024) emphasize the
rising role of Al in China’s renewable energy development, showing that technology intensive investments
accelerate the energy transition. Tian et al. (2024) demonstrate that the effect of Al on renewable energy is
asymmetric under climate policy uncertainty, with investment responses varying depending on the level of
uncertainty.

From the financial markets perspective, Tiwari et al. (2024) examine the connectedness between Al, clean energy,
and conventional energy markets using CQ and WLMC techniques, finding significant shock transmission
mechanisms between Al and both clean and conventional energy markets. Yang et al. (2024) argue that Al and
blockchain technologies serve as key enablers that can unlock the potential of clean energy. Raggad & Bouri
(2025) analyze tail based pairwise connectedness between Al and clean/dirty energy markets, providing important
implications for portfolio diversification and risk management, particularly under extreme market conditions.
These findings collectively indicate that Al influences not only corporate and production processes but also the
spillover structure, volatility dynamics, and financial integration degree of energy and clean energy markets.

2.5. Research Gap

Although the existing literature extensively examines the effects of artificial intelligence technologies on carbon
markets, carbon emissions, ESG performance, and the clean energy transition, the majority of these studies focus
on macro level causality, linear relationships, firm level ESG outcomes, or renewable energy linkages. However,
the direct financial interaction between Al stock market indices (such as NQROBO and THNQ) and global carbon
price indices (ICEEUA and GLCARB), particularly the asymmetric shock transmission that emerges during
periods of market stress, has been largely overlooked. Moreover, most existing studies rely on traditional
approaches that capture only average effects, making them insufficient to reflect how extreme volatility, market
stress, or tail events influence cross market dynamics. This gap is particularly significant because Al represents a
technology intensive and volatility sensitive sector, whereas carbon markets are policy driven and highly
responsive to external shocks, implying that their interaction may vary substantially across different quantile
levels. Consequently, studies that reveal how the relationship between Al and carbon markets changes across
distributional regimes, namely lower, median, and upper tails, are extremely limited. Therefore, the literature
lacks a comprehensive empirical investigation that examines the structure, direction, and magnitude of the
connectedness between the two markets using the Quantile-on-Quantile Connectedness (QQC) methodology,
analyzes how shocks propagate in the tails, and interprets the findings within the broader context of sustainable
finance, carbon pricing, and Al driven technological investments. The main contribution of this study is to fill this
gap by uncovering the shock transmission mechanisms between Al and carbon markets through an asymmetric,
distribution sensitive, and regime dependent analytical framework.

3. DATA AMD METHODOLOGY
3.1. Data

To evaluate the interaction between the carbon market and the Al stock market, the analysis investigates how
shocks are transmitted between the two sectors. In this context, the study applies quantile connectedness
methodology between two carbon price stock market indices and two artificial intelligence stock (Al) market
indices, namely the ICE EUA Carbon Futures Excess Return Index (ICEEUA), S&P Global Carbon Credit Index
(GLCARB), Nasdag CTA Artificial Intelligence & Robotics Index (NQROBO), and ROBO Global Artificial
Intelligence Index (THNQ). Daily data retrieved from Refinitiv for the period February 18, 2022, to June 27,
2025 form the basis of the analysis, with the analysis horizon constrained by data accessibility. To conform with
the stationarity requirement of the empirical model, index values are converted into returns calculated as

(Ppt — ) Figure 1 displays the return series, while Table 1 provides the corresponding descriptive statistics.
t—1

Figure 1 illustrates that from 2024 to 2025, the carbon market indices display generally stable return behaviour,
but a significant market shock occurs between 2022 and 2023. Similar movements occur in artificial intelligence
indices (Al) between 2023 and 2025, but there are also significant shocks in 2025.
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Figure 1. Return Series of Carbon and Al Indices

Table 1 illustares all mean values of indices positive and approximately zero. The ROBO Global Atrtificial
Intelligence Index (THNQ) has the highest mean value (0.0007) and the second highest volatility (sd = 0.0193),
which shows the index’s growth potential and uncertainty risk. The Nasdag CTA Artificial Intelligence &
Robotics Index (NQROBO) has the second highest mean value (0.0001) and the lowest volatility (sd = 0.0154).
Negative skewness in each index reflects heightened exposure to downside risks and external disturbances, and
the leptokurtic nature (kurtosis > 3) indicates a greater probability of extreme market movements. The Jarque-
Bera (1980) test results indicate that normality is rejected for each index, underscoring non-normal behaviour,
whereas unit root tests affirm their stationarity. The correlation matrix additionally points to uniformly positive
correlations. Additionally, the ERS test (Elliott et al., 1996) results indicate that the indices reject the unit root
hypothesis at the 1% level, demonstrating stationarity.

Table 1. Descriptive Statistics

ICEEUA GLCARB NQROBO THNQ
Mean 0.0000 0.0000 0.0001 0.0007
Median -0.0008 -0.0001 0.0003 0.0013
Maximum 0.1802 0.1020 0.0826 0.1181
Minimum -0.1695 -0.1301 -0.1105 -0.1260
Std. Dev. 0.0270 0.0185 0.0154 0.0193
Skewness 0.0206 -0.4427 -0.2043 -0.0418
Kurtosis 8.9852 9.7334 7.4430 7.5486
Jarque-Bera 1207.58™" 1554.69™" 671.023™ 697.654™
ERS -2.094™ -2.086™" -3.415™ -2.076™"
Q 21.34 26.54 39.72 31.27™
Q? 150.39™" 174.74™ 88.071™" 142.68V

Correlation Matrix

ICEEUA 1.0000
GLCARB 0.9645 1.0000
NQROBO 0.1468 0.1661 1.0000
THNQ 0.0973 0.1036 0.9329 1.0000

Note: *** represents p < 0.001

3.2. Methodology

To assess how the carbon market interacts with the artificial intelligence (Al) stock market, the study utilizes the
QQ methodology proposed by Gabauer & Stenfors (2024). This method enhances the quantile connectedness
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structures of Chatziantoniou et al. (2021) and Ando et al. (2022) by explicitly modelling variable interactions
across different quantiles. The first stage of the methodology involves estimating the quantile level
interdependencies through the Quantile Vector Autoregressive model of order p, as formulated in Equation 1.

14
xe = 1@ + ) B % + u(D) &
j=1

In Equation 1, x; and x,_; denote K-dimensional vectors of endogenous variables, where 7 refers to the quantile
level within the [0,1] interval and p indicates the lag order in the QVAR model. According to the QVAR model,
u(t) reflects the K x 1 conditional mean component, B;(t) corresponds to the K x K matrix coefficients.
Furthermore, u,(7) represents the K x 1 innovation vector whose variability is characterized by a K X K
covariance matrix. Subsequently, the QVAR specification is reexpressed in a QVMA form using the GFEVD
methodology introduced by Koop et al. (1996) and further advanced by Gabauer & Stenfors (2024). In line with
Wold’s Decomposition Theorem, the QVAR process can be expressed as a moving average representation driven
by past innovations.

p 0
xe = KO+ ) B + w@® = u@)+ ) 4@ u @ @
j=1 i=0

As shown in Equation 2, shocks originating from j propagate to the behaviour of i over an F-step time span.
Accordingly, u(t) is specified as a K x 1 indicator vector, equal to one in the I-th coordinate and zero for all
remaining coordinates. The influence of a shock in series j on the behavior of series i is captured by the F-step
ahead GFEVD, as presented in Equation (3).

SE(ei A (DHDe;)” o .(F)
9. (F)= it} J ,gSOTi ;2 (F) = =t~ 3
P = DT @A A ) ) T S @ ©
gen

Following the normalization procedure of Diebold & Yilmaz (2012), the measure ¢; (), is scaled by the sum
of its row to generate gSOT; ; - (F), which forms the core of the directional TO/FROM connectedness framework.

As outlined in Equations (4) and (5), the FROM measure represents the connectedness directed toward series i,
whereas the TO measure captures the influence that series i exerts on the remaining variables.

K
,t
Sl:g—ir,lro = Z gSOTkei,r (4)
k=1,i%]
K
SIS = ) gSOTicks ©)
k=1,i%]

Equation (6) defines net aggregate connectedness as the TO measure minus the FROM measure for a given series.

SigTen,net — Sgen,to _ S:gen,from (6)

i—e,T ieeo,T

A positive ST reflects net shock transmission from series i, whereas a negative value denotes that the series

is predominantly a shock recipient. The last step involves calculating the adjusted TCI, bounded within [0,1] and
proposed by Chatziantoniou et al. (2021), as specified in Equation (7).

K K
K t
TCL(F) = 7= Z sgerfrom = Z sgemto )
k=1 =1
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4. EMPIRICAL RESULTS

The study utilizes 60-month rolling window QVAR models with a six step forecast horizon for both the carbon
and artificial intelligence (Al) indices to investigate their interconnected dynamics. Figure 2 presents the average
dynamic connectedness between the carbon and artificial intelligence indices. Quantile levels for the average
dynamic connectedness span from 0.05 to 0.95, increasing in increments of 0.225. The left panel visualizes the
findings pertaining to the ICE EUA Carbon Futures Excess Return Index (ICEEUA) and artificial intelligence
(A indices pair, while the right panel visualizes findings pertaining to the S&P Global Carbon Credit Index
(GLCARB) and artificial intelligence (Al) indices pair.

The average dynamic connectiveness findings for the ICE EUA Carbon Futures Excess Return Index (ICEEUA)
and Nasdaq CTA Atrtificial Intelligence & Robotics Index (NQROBO) are demonstrated in Figure 2, in the left
panel. The findings indicate that one of the highest levels of average total connectedness (74%) between the ICE
EUA Carbon Futures Excess Return Index (ICEEUA) and the Nasdag CTA Artificial Intelligence & Robotics
Index (NQROBO) is observed at the lower tail quantile combination, t; = 0.05, 7, = 0.05. Likewise, for the other
guantile intervals, the total connectedness estimates also display a peak at the same quantile point. For instance,
the average total connectedness is 71.6% for the ICE EUA Carbon Futures Excess Return Index (ICEEUA) and
Nasdag CTA Artificial Intelligence & Robotics Index (NQROBO) at the 95th quartiles. Higher levels of total
connectedness are observed at the directly related extreme quantiles t; = 0.95, 7, = 0.95) and (7; = 0.05, 7, =
0.05), situated in the northeast and southwest corners, and also at reversely related extremes (7, = 0.95, 7, = 0.05)
and (r; = 0.05, T, = 0.95) in the northwest and southeast corners.

The average dynamic connectiveness findings for the ICE EUA Carbon Futures Excess Return Index (ICEEUA)
and ROBO Global Atrtificial Intelligence Index (THNQ) are shown in the left panel of Figure 2. The findings
show that the peak average total connectedness (71.9%) for the ICE EUA Carbon Futures Excess Return Index
(ICEEUA) and ROBO Global Atrtificial Intelligence Index (THNQ), observed at a point in the distribution where
the relationship is directly extremely related to quantiles, t; = 0.05, 7, = 0.05. Furthermore, the average total
connectedness is 71.6% for the ICE EUA Carbon Futures Excess Return Index (ICEEUA) and the ROBO Global
Artificial Intelligence Index (THNQ) at the 95th quartiles, indicating that the total connectedness estimates also
display a peak at the same quantile. Total connectedness reaches relatively high values at both the directly related
extreme quantiles (t; = 0.95, T, =0.95) and (z; = 0.05, 7, = 0.05), and the reversely related extremes (z; = 0.95,
T, =0.05) and (t; = 0.05, 7, = 0.95) in the northwest and southeast corners, corresponding to the northeast and
southwest corners and northwest and southeast corners, respectively

The average dynamic connectiveness findings for the S&P Global Carbon Credit Index (GLCARB) and Nasdaq
CTA Artificial Intelligence & Robotics Index (NQROBO) are illustrated in Figure 2, in the right panel. The
findings show that the peak average total connectedness (74%) for S&P Global Carbon Credit Index (GLCARB)
and Nasdag CTA Artificial Intelligence & Robotics Index (NQROBO), observed at a point in the distribution
where the relationship is directly extremely related to quantiles, 7, = 0.05, t, = 0.05. Similarly, across the
remaining quantile intervals, the total connectedness measures also exhibit their highest values at the same
guantile level. For instance, the average total connectedness is 70.8% for the S&P Global Carbon Credit Index
(GLCARB) and Nasdag CTA Artificial Intelligence & Robotics Index (NQROBO) at the 95th quartiles. High
levels of total connectedness are evident at the same direction tail quantiles (northeast and southwest) as well as
at the opposite direction extremes (northwest and southeast), namely (7; = 0.95, 7, = 0.95), (r; = 0.05, T, = 0.05)
and (t; = 0.95, t, = 0.05), (t; = 0.05, 7, = 0.95).

The average dynamic connectiveness findings for the S&P Global Carbon Credit Index (GLCARB) and ROBO
Global Artificial Intelligence Index (THNQ) are displayed in the right panel, Figure 2. The findings show that
the peak average total connectedness (70.8%) for the ICE EUA Carbon Futures Excess Return Index (ICEEUA)
and the ROBO Global Atrtificial Intelligence Index (THNQ), observed at a point in the distribution where the
relationship is directly extremely related to quantiles, 7; = 0.05, 7, = 0.05. Consistently, for the additional quantile
intervals, the total connectedness estimates reach their maximum at the same quantile. Furthermore, the average
total connectedness is 72.5% for the S&P Global Carbon Credit Index (GLCARB) and the ROBO Global Artificial
Intelligence Index (THNQ) at the 95th quartiles, indicating that the total connectedness estimates also display a
peak at the same quantile. Elevated levels of total connectedness appear not only at the directly aligned extreme
quantiles (t; = 0.95, T, = 0.95) and (7; = 0.05, T, = 0.05), in the northeast and southwest corners, but also at the
cross extreme quantiles (z; = 0.95, T, = 0.05) and (zr; = 0.05, 7, = 0.95) located in the northwest and southeast
corners.
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Figure 2. Quantile Total Connectedness Indices between Carbon and Al Market Indices

As shown in Figure 3, the study charts the direct and inverse total connectedness indices and their differential
(ATCI) to examine temporal patterns of aligned and counter, aligned connectedness between the carbon and
artificial intelligence (Al) market indices. In Figure 3, the left panel displays results for the ICE EUA Carbon
Futures Excess Return Index (ICEEUA), while the right panel presents outcomes for the S&P Global Carbon
Credit Index (GLCARB). The evidence indicates that the direct TCI consistently exceeds the reverse TCl,
reflecting a robust positive interconnectedness between the series.

The persistently negative ATCI values across the entire sample suggest a strong one-way transmission of shocks
fromthe ICE EUA Carbon Futures Excess Return Index (ICEEUA) toward the Nasdag CTA Acrtificial Intelligence
& Robaotics Index (NQROBO). The stronger direct TCI values imply that carbon market dynamics play a key role
in shaping movements in the technology sector. This dynamic structure reveals the asymmetric and time varying
connection between the two markets. Although both indices influence one another, the ICE EUA Carbon Futures
Excess Return Index (ICEEUA) appears to serve as the more dominant transmitter of shocks, whereas the Nasdaq
CTA Artificial Intelligence & Robotics Index (NQROBO) exhibits a comparatively more reactive role at certain
times.

A mostly negative ATCI pattern signals that the ICE EUA Carbon Futures Excess Return Index (ICEEUA) serves
as the primary transmitter of shocks, exerting a one directional impact on the ROBO Global Artificial Intelligence
Index (THNQ). The leading position of the direct TCI demonstrates that shocks originating in the carbon sector
significantly drive the behaviour of the technology sector. The results indicate reciprocal interactions; however,
ICEEUA consistently emerges as the more influential source of shocks, whereas the ROBO Global Artificial
Intelligence Index (THNQ) tends to react rather than initiate at various intervals.

The negative ATCI values observed throughout the dataset provide evidence of a stable unidirectional
connectedness originating from the S&P Global Carbon Credit Index (GLCARB) and affecting the Nasdaq CTA
Artificial Intelligence & Robotics Index (NQROBO). The direct TCI’s dominance reveals that the sustainability
sector acts as a major transmitter of effects to the digital technology sector. Although the relationship is
bidirectional, the S&P Global Carbon Credit Index (GLCARB) demonstrates a stronger and more persistent
transmission capacity, whereas the Nasdagq CTA Artificial Intelligence & Robotics Index (NQROBO) exhibits a
more responsive behaviour at times.

The mostly negative ATCI values across the sample indicate a stable unidirectional spillover structure in which
the S&P Global Carbon Credit Index (GLCARB) systematically transmits shocks to the ROBO Global Artificial
Intelligence Index (THNQ). The dominance of the direct TCI further underscores the role of the sustainability
sector as a key source of influence over the digital technology sector. Although the interaction between the two
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indices are formally bidirectional, the S&P Global Carbon Credit Index GLCARB displays a stronger and more
persistent transmission capacity, whereas the ROBO Global Artificial Intelligence Index (THNQ) tends to exhibit
a comparatively reactive response at certain points in time.
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Figure 3. Direct and Reverse Total Connectedness Indices between Carbon and Al Market Indices

As a final component, quantile varying net directional connectedness is investigated, and Figure 4 visualizes the
net interactions between the carbon and Al stock market indices. A three colour mapping is adopted in Figure 4,
blue for strong negative outcomes, white for neutral or minimal values, and red for the most positive observations.
This heatmap reports NET connectedness for the carbon market index, computed as TO minus FROM; hence,
positive values indicate that the carbon market acts as a net shock transmitter, whereas negative values indicate
that the carbon market becomes a net receiver and the artificial intelligence index emerges as the net transmitter
in those regimes.

The quantile based net TCI heatmap highlights a nonuniform and asymmetric transmission of information
between the ICE EUA Carbon Futures Excess Return Index (ICEEUA) and the Nasdag CTA Artificial
Intelligence & Robotics Index (NQROBO). The quantile based NET heatmap reveals a nonuniform and
asymmetric transmission structure in which negative NET values indicate regimes where shocks are
predominantly transmitted from the artificial intelligence index to the carbon market, while positive values reflect
dominant shock transmission from the carbon market to the artificial intelligence index. The Nasdag CTA
Artificial Intelligence & Robotics Index (NQROBO) is identified as a net transmitter at extreme low the ICE EUA
Carbon Futures Excess Return Index (ICEEUA) and extreme high quantiles, but it turns into a net receiver once
the carbon sector moves into its middle performance ranges. The most pronounced impact is observed at the upper
the ICE EUA Carbon Futures Excess Return Index (ICEEUA) quantile ( = 0.95), indicating that carbon markets
are particularly vulnerable to disturbances originating in the technology sector.

Evidence from the quantile based net TCI heatmap points to an asymmetric information flow framework
connecting the ICE EUA Carbon Futures Excess Return Index (ICEEUA) with the ROBO Global Atrtificial
Intelligence Index (THNQ). The ROBO Global Artificial Intelligence Index (THNQ) exhibits net transmitting
behaviour under conditions of very weak ESG outcomes and very high carbon market performance; however, it
transitions into a net receiver when the carbon sector moves into middle tail. When the ICE EUA Carbon Futures
Excess Return Index (ICEEUA) reaches its upper quantile level (t = 0.95), the influence is greatest, revealing the
susceptibility of carbon market indices to technology sector shocks.

The heatmap of quantile specific net TCI values indicates an uneven structure of information flow linking the
S&P Global Carbon Credit Index (GLCARB) to the Nasdaq CTA Atrtificial Intelligence & Robotics Index
(NQROBO). During phases characterized by middle ESG values and mid range digital performance, the S&P

295



International Journal of Business & Economic Studies, Year: 2025, Vol: 7, No: 4, pp.286-300

Global Carbon Credit Index (GLCARB) serves as a net transmitter, whereas it becomes a net receiver when Al
technology sector performance lies at extreme low and high quantiles. The peak transmission occurs when the
S&P Global Carbon Credit Index (GLCARB) is positioned at its upper quantile (z = 0.95), highlighting the
fragility of carbon market indices in the face of shocks from the technology domain.

Quantile level net TCI results reveal an asymmetric spillover mechanism between the S&P Global Carbon Credit
Index (GLCARB) and the ROBO Global Artificial Intelligence Index (THNQ). the S&P Global Carbon Credit
Index (GLCARB) is identified as a net transmitter at medium range quantiles, but it turns into a net receiver once
the carbon sector moves into its extreme upper or lower performance ranges. The effect becomes most significant
at the higher extreme of the S&P Global Carbon Credit Index (GLCARB) (7 = 0.95), demonstrating that carbon
market equity indices are especially exposed to Al technology sector spillovers during high carbon states.
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Figure 4. Net Quantile Connectedness between Carbon and Al Market Indices

5. CONCLUDING REMARKS AND POLICY SUGGESTIONS

The Quantile-on-Quantile Connectedness analysis conducted on the relationship between Al indices and the
carbon market reveals a strong, time varying, and distinctly asymmetric interconnectedness between the two
markets. The findings indicate that the interaction between the markets intensifies particularly during high and
low market regimes, namely periods when market stress increases or when market conditions weaken. The
analysis demonstrates that the carbon market most often assumes a dominant shock transmitting role toward
artificial intelligence indices. This suggests that developments in carbon pricing exert a guiding influence on the
market valuations of technology companies. In other words, fluctuations arising in the carbon market have become
a significant external factor affecting the performance of Al firms.

On the other hand, the results show that artificial intelligence indices also play an effective shock transmitting
role toward the carbon market under certain market conditions. Especially in periods when technology accelerates
rapidly, innovation capacity increases, or digital transformation gains momentum, meaningful interactions emerge
from Al stock markets toward carbon markets. This structure indicates that the relationship between the two
markets is nonlinear and changes in a manner sensitive to market regimes and investor risk perception. The
findings reveal that the carbon and Al markets are evolving into an increasingly integrated and mutually dependent
financial structure. This integration has become an essential component of expectations concerning both
sustainability policies and the future of the technology sector. Moreover, the results indicate that market
interactions are not limited to movements in the same direction; reverse shock transmissions also occur at times.
This suggests that investor behavior is shaped by a complex combination of sustainability related risk perceptions
and expectations arising from innovations in the artificial intelligence sector. Therefore, Al and carbon markets
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exhibit a multilayered market relationship influenced simultaneously by economic, technological, and
environmental factors.

The findings indicate that carbon markets and the artificial intelligence sector have become so closely intertwined
that they can no longer be evaluated independently. Therefore, policy design must incorporate the mutual
interactions between technology and sustainability domains. The fact that fluctuations in carbon markets exert a
decisive influence on technology stocks shows that carbon pricing regulations should be formulated not only with
environmental objectives in mind, but also with consideration of their potential repercussions on the digital
economy and the innovation ecosystem. Such an approach may prevent carbon regulations from creating
unintended vulnerabilities in the technology sector and contribute to a more balanced transition policy.

The capacity of the artificial intelligence sector to function as a significant transmitter of shocks to carbon markets
under specific market conditions highlights the importance of strengthening policy coherence between
technological development and climate finance. In this context, investments in digitalization, data processing
capabilities, smart infrastructure, and energy efficiency enhancing technologies assume strategic relevance for the
long term stability and effectiveness of carbon markets. Accordingly, public support instruments, incentive
schemes, and regulatory initiatives targeting green technologies should be designed within an integrated policy
framework that jointly considers digital transformation dynamics and carbon mitigation objectives. Moreover, the
strong and regime dependent connectedness observed between artificial intelligence and carbon markets calls for
a reassessment of existing financial stability frameworks. The potential for price shocks originating in carbon
markets to generate spillover effects on technology oriented financial assets underscores the need for regulatory
authorities to adopt integrated stress testing approaches that simultaneously account for both market segments.
Enhancing early warning and monitoring mechanisms capable of capturing cross market vulnerabilities would
facilitate the timely identification of emerging risks and contribute to mitigating systemic financial instability.

For industrial firms and participants in carbon trading systems, the findings indicate that investments in artificial
intelligence technologies can play an important role in improving carbon cost management and mitigating
exposure to market risks. The adoption of advanced carbon monitoring systems, Al driven forecasting tools, and
digital sustainability platforms may enhance firms’ capacity to respond to volatility in carbon markets and to
manage compliance more effectively. In a similar vein, organizations operating within the energy sector can
reinforce their long term investment and transition strategies by explicitly considering the increasing comovement
between artificial intelligence related markets and carbon markets, thereby anchoring energy transition decisions
in a more comprehensive evaluation of risk and return dynamics. More broadly, the results suggest that
technological development, sustainability objectives, and financial policy frameworks are becoming increasingly
interconnected and can no longer be treated as independent domains. This interdependence underscores the
importance of coordinated strategic approaches among regulatory authorities, technology developers, investors,
and actors in the energy and industrial sectors. Operating within a shared and integrated policy framework has the
potential to enhance market stability, improve risk management, and support a more efficient transition toward
carbon neutral economic structures.

Although the findings of this study yield meaningful results, they also entail certain limitations. First, the analysis
is conducted using a limited number of indices representing the artificial intelligence and carbon markets, and the
inclusion of additional regional or sector specific indices could enhance the generalizability of the results. The
relatively short data period has also made it difficult to fully capture long term regime shifts and the effects of
structural transformations. Future research can move beyond these limitations and develop a more comprehensive
analytical framework. In particular, conducting a disaggregated connectedness analysis between different artificial
intelligence subsectors and the subcomponents of carbon markets would contribute to a more micro level
understanding of these relationships. Moreover, incorporating factors such as policy shocks targeting Al
technologies, carbon pricing reforms, green innovation investments, or macroeconomic risk indicators into the
model may allow the causal direction of the relationships to be identified more clearly. Finally, as the global
transition toward carbon neutral targets accelerates, exploring how artificial intelligence technologies integrate
into this process and how they influence climate policies through financial markets offers a promising avenue for
future research.
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