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Functional equivalence of topological spaces and
topological modules
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Abstract

Let R be a topological ring and E, F' be unitary topological R-modules.
Denote by Cp(X, E) the class of all continuous mappings of X into E
in the topology of pointwise convergence. The spaces X and Y are
called [,(E, F)-equivalent if the topological R-modules C}(X, E) and
C,(Y, F) are topological isomorphic. Some conditions under which the
topological property P is preserved by the I, (FE, F')-equivalence (Theo-
rems 6.3, 6.4, 7.3 and 8.1) are given.
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1. Preliminaries

Throughout this paper, by a space we will mean a Tychonoff space [9].

A topological semiring is a topological space R equipped with two continuous
binary operations {+, -}, called addition and multiplication, such that (see [10, 11,
15]):

1. (R,+) is a topological commutative monoid with identity element 0 and
proprieties: (a+b)+c=a+(b+¢),0+a=a+0=a,a+b=>b+a for all
a,b,c € R.

2. (R,-) is a topological monoid with identity element 1 # 0 and proprieties:
(@a-b)-c=a-(c),lra=a-1=a,a-b=b-a,a-(b+c¢c)=(a-b)+(a-¢),0-a=
0 for all a,b,c € R.
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Let G be a topological Abelian group under addition operation and R be a
topological semiring. We call G a topological R-module if on it is defined the
continuous operation of multiplication - : R x G — G between an element of R
and an element of G, say ra € G, where r € R and a € G, with the following
properties: 1-a =a,0-a =0, r(a+b) = ra+rd, (r+s)a = ra+sa, r(sa) = (rs)a,
for any r,s € R and a,b € G.

Let R be a topological semiring and E, F' be topological R-modules. The
mapping ¢ : E — F is a linear mapping if it satisfies the conditions: p(z +y) =
w(x) + ¢(y) and p(azx) = ap(z) for any z,y € E and a € R.

Fix a space X, a topological semiring R, and topological R-modules E and F'.

By C(X, E) we will denote the family of all E-valued continuous functions with
the domain X and by C,(X, E) we will denote the space C(X, E) endowed with
the topology of pointwise convergence. Recall that the family of sets of the form
W (z1,22, . Tn, Ur, Us, ... Up) = {f : C(X, E) : f(z;) € U; for any i < n}, where
r1,To,....,x, € X, Uy,Us,...,U, are open sets of £ and n € N, is a base of the
space Cp(X, E).

By H,(E,F) we denote the space of all linear mappings of E into F as a
subspace of the space C,(E, F).

The spaces X and Y are called I,(E, F')-equivalent if the spaces C,(X, E) and

C,(Y, F) are linearly homeomorphic and we denote X Wy,

A space X is zero-dimensional if indX = 0 (small inductive dimension is zero),
i.e., X has a base of clopen (open and closed) subsets.

The following two assertions are evidently.

1.1. Proposition. Fix a topological R-module E. Then C,(X, E) is a topological
R-module and E is embedded in a natural way in C,,(X, E) as a closed submodule
of Cp(X, E).

1.2. Proposition. If E is a zero-dimensional topological R-module, then C,,(X, E)
is a zero-dimensional topological R-module too.

2. The evaluation mapping

Let X be a space, R be a topological semiring and E be a non-trivial topological
R-module. Fix € X. Then the mapping &, : C,,(X, E) — E defined by &,(f) =
f(z) is called the evaluation mapping at = (see, by instance, [1]).

We now define the canonical evaluation mapping ex : X — C,(C,(X, E), E),
where ex(x) = ¢, for any = € X.

The proofs of the following two assertions are standard (see [8]).

2.1. Proposition. The evaluation mapping &, : Cp(X, E) — E is continuous and
linear for every point =z € X.

2.2. Proposition. The canonical evaluation mapping ex : X — C,(C,(X, E), E)
is continuous. Moreover, the set ex(X) is closed in the space C,(Cp(X, E), E).

Let X and Y be spaces, ® be a family of functions f : X — Y. We say that ¢
separates points of X (or simply is separating [1]) if for any =,y € X, = # y, there
exists f € ® such that f(x) # f(y). We also say that ® separates points from
closed sets (or is regular [1]) if for any non-empty closed subset B of X, any point
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2z € X \ B and any two points a,b € Y there exists f € ® such that f(z) = a and
7(B) =b.

2.3. Proposition. If C,(X, F) is a regular family, then the canonical evaluation
mapping ex : X — Cp(Cp(X, E), E) is a homeomorphism from X to the closed
subspace ex (X) of C,(Cy(X, E), E).

A space X is called R-Tychonoff if for any closed subset B of X, any point
a € X \ F there exists g € C(X, R) such that g(a) =1 and B C g~ *(0).

The product of R-Tychonoff spaces is an R-Tychonoff space. The subspace of
an R-Tychonoff is an R-Tychonoff space.

Remark. Let X be an R-Tychonoff space and F be a non-trivial topological R-
module. Then X is a Tychonoff space, and for each closed set B of X, any point
a € X \ B and any points b,c € E there exists f € C(X, E) such that f(a) =b
and f(B) =c.

The proofs of the following two assertion is elementary.
2.4. Proposition. If indX = 0, then the space X is R-Tychonoff.

Let R be a topological semiring. A topological R-module E is called:

(i) simple if it does not contain a non-trivial submodule over R.

(ii) locally simple if E is not trivial and there exists an open subset U of E such
that 0 € U and U do not contains non-trivial R-submodules of E.

2.5. Example. If R is a field, then R is a simple topological R-module. Let R
be the field of real numbers and K be the field of complex numbers. Then K is
locally simple and not simple R-module.

We mention the following obvious fact.

2.1. Lemma. Let R be a topological semiring and E be an R-module. Then Ra
is an R-submodule for any a € E.

Fix a space X and two topological R-modules E and F'. We define M, (X, E, F)
= H,(Cp(X, E), F) the subspace of all linear mappings from C, (X, E) into F. Let
M,(X,E) = M,(X,E,E). Now we define L,(X, E) C C,(Cp(X, E), E) as follows
L,(X,E) = {onr1 + agzo+ ... + apy : o € Ry € ex(X), 1 <n e N}

By construction, we have L,(X, E) C M,(X, E). Asarule L,(X,E) # M,(X,E)
(see [8]).

2.6. Proposition. Let R be a topological semiring, F be a topological R-module
and X be a space. Then for any g € C(X, E) there exists a unique linear mapping
g € Hy(Ly(X,E),E) such that ¢ = goex, where ex : X = L,(X,E) is the
evaluation mapping.

Proof. Let Ef = E for any f € Cp(X, E). By definition, ex(X) C L,(X,FE) C
ECXE) — T{E; : f € C(X,E)}. We have ex(z) = &, for any z € X and
L,(X, E) is the submodule of E°(X:®) generated by the set ex(X). We consider
the projection 7y : ECF) — By = B. Let f = 7¢|Ly(X,E) : Ly(X,E) — E
is the desired linear mapping. |
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2.7. Theorem. Let R be a semiring, E be a topological R-module and X be
a space. Consider the space ex(X), where ex : X — L,(X, E) is the evalu-
ation mapping. Then the topological R-modules C,(X, E), Cp(ex(X), E) and
H,(L,(X,E), E) are linearly homeomorphic.

Proof. Let E; for any f € C,(X,E). By definition, ex(X) C L,(X,E) C
EC(XE) — TI{E; : f € O(X,E)}. We consider the projection m; : EC(X:F)
E;=E. Let f = 7¢|L,(X,E) : L,(X,E) — E. Then f and 7 are continuous
linear mappings.

If g : ex(X) — E is a continuous mapping, then g o ex = f for a unique
f € C(X,E). Therefore, g = m¢lex(X) and the correspondence f — mylex(X) is
a linear homeomorphism of Cp(X, E) onto Cp(ex(X), E).

Hence, without loss of generality, we can assume that X = ex(X) C L, (X, E).

By virtue of Proposition 2.6, the correspondence
Y Cp(X,E) — Hy(Ly(X, E), E), where ¢(f) = f, is a one-to-one linear map-
ping of C'(X, E) onto H,(L,(X, E), E).

For each y € L,(X, E) there exist the minimal n = n(y) € N, the unique
points 21 (y), ...,z (y) € X and the unique points a;(y), ..., (y) € R such that
y=a1(y)z1(y) + ... + an(y)x, (y). Hence, the correspondence 1 is continuous and
linear. Since ¥(f)|X = f, the mapping ¥~! is continuous. O

2.8. Corollary. Let X, Y be spaces and R be a locally simple R-module. The
spaces Cp(X, R) and C,(Y, R) are linearly homeomorphic if and only if the spaces
L,(X,R) and L,(Y, R) are linearly homeomorphic.

2.2. Lemma. Let X be an R-Tychonoff space, Z be a closed subspace of X, E be
a topological R-module and g : X — E be a continuous mapping. For any finite
subset B of X\ Z and any function f : B — FE there exists a continuous function
v : X — E such that f = ¢|B and ¢|Z = g|Z.

Proof. Fix a family {U, : ¢ € B} of open subsets of X such that x € U, C X\ Z
for each x € B and U, N U, = @ for each distinct points z,y € B. For each
x € B fix a continuous function f, : X — F such that f,(z) = f(z) — g(z) and
fo(X\Uz) =0. Let fe(y) => {f+(y) : « € B}. By construction, the function fp
is continuous, fp(Z) = 0 and fp(xz) = f(x) — g(x) for each x € B. Obviously, ¢
= fB + g is the desired function. O

For any subspace Y of a space X we put C,,(Y|X,E) = {f|Y : f € C(X,E)}.
A subspace Y of X is E-fullif C(Y|X,E) = C(Y, E).

A space X is called compactly E-full if C(Y|X, E) = C(Y, E) for any compact
subspace Y of X.

The following assertion is well-known (see [8]).

2.3. Lemma. Let X be a zero-dimensional space and E be a metrizable space.
Then X is a compactly E-full space. Moreover, for any compact subsetY of X and
any f € C(Y, E) there exists g € C(X, E) such that g(X) C f(Y) and f = g|vy.
3. The support mapping

Fix a topological semiring R and non-trivial topological R-modules E and F.
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Consider a space X and a functional u € M,(X, E, F). Weput 8(p) ={B C X :
if B C f71(0), then u(f)=0}. Obviously, X € 8(u). Thus the set §(u1) is non-
empty.

The set suppx (i) is the family of all points € X such that for each neigh-
bourhood U of z in X there exists f € C,(X, E) such that f(X \ U) = 0 and
w(f) #0 (see [2,12], for E = R =R, [3, 14] for R = R, [8] when R is a topological
ring).

If f € Cpo(X,FE) and U is an open neighbourhood of 0 in E, then we put
A(f,L,U) = {g € Cpo(X,E) : f(z) —g(x) € Uforany x € L}. The family
{A(f,L,U) : f € Cp(X,E), L is finite subset of X,U is open neighbourhood of 0
in E} is an open base of the space C,(X, E).

3.1. Theorem. Let X be a R-Tychonoff space, £ and F' be non-trivial topological
R-modules, p € My(X,E,F) and p # 0. If F is a locally simple topological R-
module, then:

1. There exists a finite set K € 8(u) such that suppx () C K.

2. suppx (p) € 8(u) and suppx () is a finite non-empty subset of X.

3. suppx (1) — NS(j).

Proof. Fix an open subset Uy of C,(X, E) such that 0 € Uy and an open subset
Wy of F such that 0 € Wy, Wy do not contains non-trivial R-submodules of F' and
u(Uo) € Wo.

There exist a finite subset K of X and an open subset V{, of E such that 0 € V|
and 0 € A(0, K,Vy) C Uy. Hence u(f) € Wy for each f € A0, K, V).

Let f € Cp(X,E) and f(K) = 0. Then af € A(0,K,V,) for each o € R.
Hence p(af) € Wy for each a € R. Thus R - u(f) C Vo and R - p(f) is the trivial
R-submodule. Thus p(f) =0 and K € 8(u). In this case suppx () € K. Hence
suppx (u) is a finite set and K is a finite set from S(u).

Let L € 8(u) be a finite set and zg € L\ suppx (1). Then L; = L\ {zo} € S(u).
Really, since g ¢ suppx (i), there exists an open subset H of X such that xy € H
and p(f) = 0 provided f(X \ H) = 0. We can assume that H N L = {z¢}. Let
[ €Cy(X,E) and f(L1) = 0. There exists h € C(X, E) such that h(z¢) = f(zo)
and h(X\ H) = 0. We put g(x) = f(z) — h(x) for any = € X. Since h(X \ H) =0,
we have u(h) = 0. By construction, g(L) = 0 and p(g) = 0. Hence f = g+ h
and u(f) = u(g+h) = p(g) + pu(h) = 0. Hence L; € S(u). Since K € 8(u) and
K\ suppx(p) is a finite set, we have suppx(p) € $(u). In particular, we have
suppx (1) = NS(). O

The following assertions are obviously:

3.2. Proposition. Let n > 1, x1, xo, ..., x, are distinct points of X, a1, aa, ...,y €
R and p(f) = E{a,f(x;) : i < n} for each for each f € C,(X, E), then:

1. p€ L,(X,E) and suppx (p) C {1, 22, ..., Tp }.

2. If for each i < n the set a;F is a non-trivial R-submodule of FE, then
SUpr(,LL) - {$1,.’E2, 7xn}

4. Topological properties of the mapping suppx

Fix a topological semiring R. Let X be a space, £ and F' be two non-trivial
topological R-modules.
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Recall that a set-valued mapping f : X — 2Y is lower semicontinuous (l.s.c) if
for every open subset U of Y the inverse image of U, f~1(U) = {z € X : f(z)NU #
@} is open in X.

The correspondence suppx is a set-valued mapping of the space M, (X, E, F)
into X. For H C M,(X, E, F) we put suppx(H) = U{suppx(p) : pn € H}.

4.1. Proposition. If F is a locale simple R-module, then the set-valued mapping
suppx : M,(X,E,F) — X is Ls.c.

Proof. We follow very closely the proof of [3, Property 4.2] and [12, Lemma 6.8.2
(1))

Let U be an open subset of X, and put V = supp}l(U), ie, V= {p €
My(X,E,F) : suppx(p) NU # @}. Let p € V, and take xo € suppx () NU.
Fix an open subset W of X such that zg € W C clxW C U. Then there exists
f € C(X,E)such that f(X\W) = {0} and p(f) #0. Let H = {n € M,(X,E,F):
n(f) # 0}. Since the set {0} is closed in F', H is the basic open set W (f, F\ {0})
- {77 € Mp(XanF) : ﬂ(f) € F\{O}} and 1A W(va\{O})

We affirm that H C V. By contradiction, suppose that n € H\V,i.e. n(f) #0
and suppx(n) NU = @. Then X \ clxW is an open neighbourhood of suppx (1)
and, since f(X \ clxW) = {0}, applying Theorem 3.1, we get that n(f) = 0. A
contradiction, hence V' is open in M, (X, E, F). O

A subset L of a space X is bounded if any continuous real-valued function
f:X — Ris bounded on L.

A subset L of a topological R-module FE is called:

(i) precompact or totally a-bounded if for any neighbourhood U of 0 in E there
exists a finite subset A of F such that L C A+ U =U + A;

(ii) a-bounded if for any neighbourhood U of the 0 in E there exists n € N such
that L C nU.

Any bounded set is precompact. In a topological vector space over field of reals
any precompact set is a-bounded.

A topological R-module F is called locally bounded if there exists an a-bounded
neighbourhood U of 0 in E such that F = U{nU : n € N} and for any a € E,
a # 0, and any n € N there exists ¢t € R such that ta ¢ nU. In this case the set U
does not contain R-submodules of F and F is a locally simple R-module.

4.2. Example. Let E be a normed vector space over reals R. Then F is a locally
bounded R-module.

4.3. Example. Let E be a topological vector space over reals R and there exists

a number ¢ > 0 and a functional ||.|| : E — R such that:
1L 0<qg<l.
2. ||z|| >0 for any = € E.
3. If ||z|| = 0, then z = 0.
£ llo+yll < llall + llyll for all 2,y € .
5. [|Az|| < |Al9]|z|| for all x € E and A € R.

[=2]

I 2 # 0 then limy_s o] | A2|| = +00.
he functional ||.|| is called a g-norm, if the family {V(0,r) = {z : ||z|| < r} :
r > 0} is a base of E at 0. Any g-normed space is locally bounded.

=
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4.4. Theorem. Let F' be a locally bounded topological R-module, B be a sub-
module of F' and X be an R-Tychonoff space with the following properties:

(b) : for any non-bounded subset L of X there exists f € C(X, B) such that the
set f(L) is not a-bounded in F;

(r) : B is topological isomorphic to some R-submodule of E.

Then:

(i) The set suppx (H) is bounded in X for any a-bounded subset H of M, (X, E, F).

(ii) The set suppx (H) is bounded in X for any totally a-bounded subset H of
M,(X,E,F).

(iii) The set suppx (H) is bounded in X for any bounded subset H of M,(X, E, F).

Proof. We can assume that B C E too. Since B is a non a-bounded subset of F'
there exists an open subset Wy of F such that 0 € Wy and B\ nW, # & for each
n € N. Moreover, If H C B is a non a-bounded of F' then H is a non a-bounded
of B too.

Since F' is locally bounded we can fix an open neighbourhood W3 of 0 in E such
that the set W; is a-bounded, F = [J{nW; : n € N} and for any a € F, a # 0,
and for any n € N there exists ¢ € R such that ta ¢ nW;.

Now fix two open neighbourhoods W5 and W3 of 0 in F' such that Wy = —W5 C
3Wy = Wo +Wo + Wy C W3 = —W3 C W7 N W,.

By construction, W7 C kW5 for some k € N.

Hence the sets W5 and W3 have the following properties:

- W5 and W3 are a-bounded subsets of F;

-F=U{nWs:n e N} =J{nWs:neN};

- if L is a bounded or a precompact subset of F', then L C nW, for some n € N;

-ifa € F, a # 0, then for any n € N there exists ¢ € R such that ta ¢ nWs.

Since B is a non a-bounded subset of F' and W3 is an a-bounded of F', we have
B\ nW3 # @& for each n € N.

If p € Mp(X,E,F) and p # 0, then suppx(u) is a finite non-empty subset of
X.

We can assume that C(X,B) C C(X,E) and C(X,B) C C(X, F).

Suppose that the set H is a-bounded or precompact in M,(X, E, F') and the set
suppx (H) is not bounded in X. Fix f € C(X, B) such that the set f(suppx (H))
is not a-bounded in F'.

By induction, we shell construct a sequence {p, : n € N} C H, a sequence
{U : k € N} of open subsets of X, a sequence {z,, € suppx(ptn) : n € N} and a
sequence {h; € C(X, B) : n € N} with properties:

1. 2; € U, hi(X\U;) =0 for any i € N;

2. {U, : n € N} is a discrete family of subsets of X;

3. pin(hn) & nW;

4. suppx{p, 2, s i} NclxUpi1 = @;

5. f(Un) C f(xn) + Wy and f(zn41) € U{f(z;) + W : i < n} for each n € N;

Fix uy € H and z1 € suppx(p1). There exists an open subset U; of X and
g1 € C(X, B) such that f(U1) € Wo + f(z1), g1(X \ U1) = 0 and p1(g1) # 0.
There exists a; € R such that a;jui(g) € Ws. We put hy = a19;.

Assume that n > 1 and the objects {h;,x;,U;,u; : i < n} are constructed.
We put M, = {suppx(u;) : © < n}. The set M, is finite. Hence the set
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f(suppx (H))\ f(M,) is not a-bounded in F. For some m,, € N we have f(M,,) C
mnWO.

Fix pn+1 € H and z,41 € suppx(H) such that f(z,+1) € B\ m,W. There
exists an open subset U,;1 of X and g,41 € C(X, B) such that 2,11 € Upy1,
J(Uns1) € f(@ng1)+Wo, gns1(X\Uns1) = 0, clx Uy 1NMy, = @ and My 1(gny1) #
0. There exists a,11 € R such that apiiptnii(gni1) € (n+ 1)W. We put
hn+1 = Qpyi1gnt+1. That completes the inductive construction. The objects
{Zm, tin, hn, Uy} are constructed for all n € N. Let h = ¥{h,, : n € N}. Since
{Un : n € N} is a discrete family and h,(X \ U,) = 0 for any n € N, we
have h € C(X, B). By construction, p,(h) = pun(hn) ¢ nWy for any n. Then
{pn(h) : n € N} is a not a-bounded subset of E. Since the set H is a-bounded, the
set {u(h) : p € H} is a-bounded too, a contradiction. The proof is complete. [

Remark. Any normed space is a locally bounded R-module. If E is a non-trivial
normed space, then for any non-bounded subset L of the space X there exists
f € C(X, E) such that the set f(L) is not bounded in E. For a normed space E
Theorem 4.4 was proved by V. Valov in [14]. For a ring R and E = F Theorem
4.4 was proved in [8].

A space X is p-complete if any closed bounded subset of X is compact.

A space X is Dieudonné complete if the maximal uniformity on X is complete.
Any Dieudonné complete space is p-complete.

Denote by PX the space X with the Gs-topology generated by the Gs-subsets
of X. The set 6 — clxH = clpx H is called the Gs-closure of the set H in X. If
0 —clx H = H, then we say the set H is Gs-closed.

If the space X is u-complete, then any Gs-closed subspace of X is p-complete.

A tightness of a space X is the minimal cardinal number 7 for which for any
subset L C X and any point x € clx L there exists a subset L; C L such that
|L1] <7 and z € clx L.

We denote by ¢(X) and (X)) the tightness and the Lindeldf numbers respectively
of a space X.

The following four propositions were proved in [8] (see [1] for E = R).

4.5. Proposition. Assume that F is a metrizable and I(X™) < 7 for any n € N.
Then t(Cp(X, E)) <.

4.6. Proposition. Let X and E be spaces and ¢(X) < 8. Then Cp(X,E) is a
G's-closed subspace of the space EX. Moreover, if E is p-complete then the space
Cp(X, E) is p-complete too.

4.7. Proposition. Let F' and E be topological R-modules and H,(F, E) be the
space of all linear continuous mappings of F' into E. Then H,(F, E) is a closed
subspace of the space C,(F, E).

4.8. Corollary. Let E and F be topological R-modules and ¢(F) < Ng. Then
H,(F, E) is a Gs-closed subset of E¥'. In particular, if E is u-complete, then space
H,(F,E) is p-complete too.

4.9. Proposition. Let Y be a subspace of the space X, E be a non-trivial
topological R-module, X be an R-Tychonoff space and py(f) = f|y for each
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f € Cp(X, E). Then the mapping py : Cp(X, E) — C,(Y|X, E) has the follow-
ing properties:

(i) py is a continuous mapping.

(ii) If the set Y is closed in X, then the mapping py is open.

(iii) If Y is dense in X, then py is a one-to-one correspondence.

(iv) The subspace C,(Y'|X, E) is dense in the C, (Y, E).

4.10. Theorem. Let F be a metrizable R-module, F' be a locally bounded metriz-
able R-module, B be a closed submodule of F' and X be an R-Tychonoff space
with the following properties:

(b) : for any non-bounded subset L of X there exists f € C(X, B) such that the
set f(L) is not a-bounded in F;

(r) : B is topological isomorphic to some R-submodule of FE;

(¢) : X be an R-Tychonoff compactly E-full space.

Then the space X is p-complete if and only if the space M,(X,E,F) is p-
complete.

Proof. By virtue of Proposition 2.3, we can assume that X = ex(X) is a subspace
of the space M, (X, E, B). From Proposition 2.2 it follows that the subspace X is
closed in M, (X, E, B). Obviously, M,(X, E, B) is a closed subspace of the space
My,(X,E,F).

Let M,(X,E,F) be a p-complete space. Since X is a closed subspaces of
M,(X,E, B) and M,(X, E, F), the space X is u-complete too.

Assume that X is a p-complete space. Let ® be a closed bounded subset of
M, (X, E,F). Then the closure Y of the set U{suppx(u) : p € ®} is a compact
subset of X.

The restriction mapping py : Cp(X,E) — C,(Y, E) is an open continuous
linear mapping of the R-module C,(X, E) onto the R-module C,(Y, E).

Claim 1. The dual mapping ¢ : FCV:E) — pCGE) i 3 linear embedding
and the set p(FCY:F)) is closed in FCXE),

The proof of this fact is similar with the prof of Proposition 0.4.6 from [1].

By construction, we have & C o(M,(Y, E, F)) C M,(X,E, F).

Claim 2. o(M,(Y,E,F)) is a closed subset of the subspaces M, (X, E, F') and
C,(C,(X, E), E) of the space EC(X:F).

Follows from Claim 1 and Proposition 4.7.

Claim 3. (C,(Cp(Y, E), F)) € Cp(Cp(X, E), F).

Follows from the continuity of the mapping py.

Claim 4. The sets (M, (X, E,F)) and ¢(C,(Cp(Y, E), F)) are Gs-closed in
FC’(X7E)'

Since Y is compact, from Proposition 4.5 it follows that t(C,(Y, E)) = No.
Then, from Proposition 4.6 it follows that C,(C,(Y, E), F) is a Gs-closed subset
of the space FCV>F). From Claim 1 it follows that »(C,(C,(Y, E), F)) is Gs-closed
in FCXE) - Corollary 4.8 completes the proof of the claim.

Let G be the Gs-closure of the set C,(Cy(X,E),E)) in ECF) We have
M,(X,E,F) C G. Hence ® is a bounded subset of the space G.

Claim 5. The sets o(M,(X, E, F)) and ¢(Cp(C,(Y, E), F)) are closed in G.

Follows from Claim 4.
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Since F' is a metrizable space, F' is a p-complete space. Thus ® is a closed
bounded subset of the pu-complete space G. Therefore the set ® is compact. The
proof is complete. |

5. Relations between linear equivalent spaces

Let R be a topological semiring and F, F' be non-trivial locally bounded topo-
logical R-modules. The R-module E x F' is locally bounded. We identify E with
the R-submodule £ x {0} of E'x F and F with the R-submodule {0} x F' of E'x F'.

Fix two non-empty R-Tychonoff spaces X and Y with the properties:

- for any non-bounded subset L of X there exists f € C(X, E) such that the
set f(L) is not a-bounded in FE;

- for any non-bounded subset L of Y there exists f € C(Y, F) such that the set
f(L) is not a-bounded in F.

Fix now a continuous linear homeomorphism v : Cp,(X, E) — Cp(Y, F'). Then
the mapping v : Mp(Y,F,E x F) — M,(X,E,E x F), where v(n) = nou for
each n € M,(Y, F,E x F), is a linear homeomorphism.

For each x € X and each f € C,(X, E) we put £,(f) = (&(f),0) = (f(x),0) €
E CExPF. For each y € Y and each g € C,(Y, F) we put §,(g9) = (0,&,(g))
= (0,9(y)) € FF C E x F. Realy, we can assume that ¢, = &, and §, = &,.
Obviously, v7!(e;) = ez ou™! € M,(Y,F,E x F) \ {0} and v(5,) = &, €

ou
M,(X,E,E x F)\ {0}. Hence, for each z € X and each y € Y) we can put
p(x) = suppy (v™(e5)) and 9 (y) = suppx (v(Jy)).

Property 7.1. ¢: X - Y and ¢ :Y — X are l.s.c. set-valued mappings and
o(x), ¥(y) are finite non-empty sets for all points x € X and y €Y.

Proof. Follows from Proposition 4.1 and Theorem 5.1. ]

Property 7.2. Letyo €Y, f € C(X,E) and f(¢(yo)) = 0. Then u(f)(yo) = 0.

Proof. For any n € M,(Y,F,E x F) and g € C(X, E) we have v(n)(g) = n(u(g))
(nou)(g). Since f(suppx(v(dy,))) = f(¥(yo)) = 0, we have (Jy, o u)(f) = 0 and
u(f)(yo) = 0y, (u(f)) = (6y, o w)(f) = 0. The proof is complete. O

5.1. Corollary. If f,g € C(X, E) and f4(y) = gl (y), then u(f)(y) = u(g)(y).

Property 7.3. 1z € ¢¥(p(x)) for every point x € X and y € p((y)) for every
pointy €Y.

Proof. For every x € X the sets ¢(x) and 1 (p(z)) are finite and closed. Assume
that zop € X and z¢ ¢ ¥(p(x0)) = H. Fix f € C(X, E) such that f(zg) = b # 0
and f(H) = f(¢(¢(z0))) = 0. Since ¢(y) € H and f(H) = 0 for any y € ¢(zo) by
virtue of Property 7.2, we have u(f)(y) = 0 for each y € p(x¢). Since u(f)(y) =0
for each y € ¢(x), by virtue of Property 7.2, we have f(zo) = ™~ (u(f))(zo) = 0.
By construction, we have f(zg) # 0, a contradiction. O

Property 7.4. If H is dense subset of Y, then ) (H) is a dense subset of X
provided u is an injection.
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Proof. Assume that z¢g ¢ clxt(H). Then there exists f € C(X,E) such that
f(zo) # 0 and f(¢(H)) = 0. Since f(¢(H)) = 0 for any y € Y, by virtue of
Property 7.2, we have u(f)(y) = 0 for any y € Y. Thus u(f) = 0. Hence f =0, a
contradiction. (]

From the above properties follows

5.2. Corollary. The space X is separable if and only if the space Y is separable.
In general, d(X) = d(Y).

Property 7.5. ¢(H) is a bounded set of Y for each bounded set H of X.

Proof. Let H be a bounded subset of X. Then H is a bounded subset of M, (X, E, Ex
F) and respectively v™'(H) is a bounded subset of M, (Y, F,E x F). By Theo-
rem 4.4 the set suppy(v~1(H)) is a bounded subset of Y. The proof is com-
plete. [l

Property 7.6. Let E and F be metrizable spaces, X be a compactly E-full space
and Y be a compactly F-full space. Then the space X is p-complete if and only if
the space Y is p-complete.

Proof. Let X be a u-complete space. Then M,(X,E,Ex F) and M,(Y,F,ExF),
by virtue of Theorem 4.10, are u-complete spaces. By Theorem 4.10 the space Y
is pu-complete too. The proof is complete. ([

As in [3] we say that the pair of set-valued mappings 6 : X — Y and7:Y —
X is called lower-reflective if it has the following conditions:

1l. 6 and 7 are Ls.c.

2. O(x) and 7(x) are finite sets for all points v € X and y € Y.

3l. x € m(A(x)) and y € O(w(y)) for all points 2z € X and y € Y.

Also, as in [3] we say that the pair of set-valued mappings 6 : X — Y and
m:Y — X is called upper-reflective if it has the following conditions:

lu. O(F) is a bounded subset of Y for each bounded subset F' of X.

2u. w(®P) is a bounded subset of X for each bounded subset ® of Y.

3u. x € clxm(6(z)) and y € clyO(n(y)) for all points x € X and y € Y.

General conclusion: The set valued mappings ¢ : X — Y and ¢ : Y — X
forms an equivalence of X and Y in sense of article [3]. Thus the general theorems
from [3] can be extended for the mappings in topological R-modules. In the
following sections we formulate the general theorems for the R-modules, where R
is a topological semiring.

6. Application to perfect properties

We say that the property P is a perfect property if for any continuous perfect
mapping f: X — Y of X onto Y we have X € P if and only if Y € P. We say
that the property P is a strongly perfect property if it is perfect and any space
with property P is u-complete.

6.1. Example. From the Example 6.2 [3] the following properties are perfect: to
be a compact space; to be a paracompact p-space; to be a paracompact space; to
be a metacompact space; to be a k-scattered space; to be a monotonically p-space;
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to be a monotonically Cech complete space; to be a Cech complete space; to be a
Lindeldf space; to be a Lindeldf X-space; to be a subparacompact space; to be a
locally compact space.

6.2. Example. The following properties are strongly perfect: to be a compact
space; to be a paracompact p-space; to be a paracompact space; to be a p-complete
metacompact space; to be a k-scattered u-complete space; to be a p-complete
monotonically p-space; to be a u-complete monotonically Cech complete space; to
be a p-complete Cech complete space; to be a Lindel6f space; to be a Lindel6f
Y-space; to be a u-complete subparacompact space; to be a p-complete locally
compact space.

A space X is called a wg-space if for any point z € X there exists a sequence
{U,, : n € N} of open subsets of X such that x € N{U,, : n € N} and each set
{z, € U, : n € N} is bounded in X.

A space X is pseudocompact if the set X is bounded in the space X. Any
pseudocompact space is a wgq-space.

6.3. Theorem. Let R be a topological semiring and £ and F' be non-trivial locally
bounded topological R-modules. Fix two non-empty R-Tychonoff spaces X and
Y with the properties:

- for any non-bounded subset L of X there exists f € C(X, E) such that the
set f(L) is not a-bounded in F;

- for any non-bounded subset L of Y there exists f € C(Y, F) such that the set
f(L) is not a-bounded in F.

Assume that u : Cp(X,E) — C,(Y, F) is a linear homeomorphism. Then:

1. X is a pseudocompact space if and only if Y is a pseudocompact space.

2. If P is a perfect property and X, Y are pu-complete wg-spaces, then X € P
if and only if Y € P.

Proof. Consider the set-valued mappings ¢ : X — Y and ¢ : ¥ — X con-
structed in the Section 7.

Let X be a pseudocompact space. Then X is a bounded subset of the space
X. Hence Y = ¢(X) is a bounded subset of Y and Y is a pseudocompact space.
Assertion 1 is proved.

Assume that P is a perfect property and X, Y are py-complete wg-spaces. Sup-
pose that X € P. By virtue of Theorem 2.5 from [3], there exist a space Z and
two perfect single-valued mappings f: Z — X and g: Z — Y onto X and Y,
respectively. Hence, Y, Z € P. Assertion 2 is proved. The proof is complete. [

6.4. Theorem. Let R be a topological semiring and F and F be non-trivial
metrizable locally bounded topological R-modules. Fix two non-empty spaces X
and Y with the properties:

- X is an R-Tychonoff compactly E-full space and for any non-bounded subset
L of X there exists f € C(X, E) such that the set f(L) is not a-bounded in E;

- Y is an R-Tychonoff compactly E-full space and for any non-bounded subset
L of Y there exists f € C(Y, F) such that the set f(L) is not a-bounded in F.

Assume that u : Cp(X, E) — C,(Y, F) is a linear homeomorphism. Then:

1. The space X is p-complete if and only if the space Y is u-complete.
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2. X is a compact space if and only if Y is a compact space.
3. If P is a strongly perfect property and X, Y are wg-spaces, then X € P if
and only if Y € P.

Proof. Consider the set-valued mappings ¢ : X — Y and ¢ : ¥ — X con-
structed in the Section 7. Assertion 1 follows from Property 7.7.

Assume that P is a strongly perfect property and X, Y are wg-spaces. Suppose
that X € P. By definition of a strongly perfect property, X is a p-complete
space. From assertion 1 it follows that Y is a p-complete space too. By virtue of
Theorem 2.5 from [3], there exist a space Z and two perfect single-valued mappings
f:Z — Xand g: Z — Y onto X and Y, respectively. Hence, Y,Z € P.
Assertion 3 is proved.

Let X be a compact space. By virtue of Theorem 6.3, Y is a pseudocompact
space. Hence X and Y are wg-spaces. Assertion 3 completes proof of Assertion 2.
The proof is complete. O

7. Application to open properties

We say that the property P is an of-property (open finite property) if for any
continuous open finite-to-one mapping f : X — Y and any subspace Z of X we
have Z € P if and only if f(Z) € P (see [3]).

7.1. Example. From the results from [3] and [5] the following properties are of-
properties: to be hereditarily Lindel6f; to be o-space; to be hereditarily separable;
to be o-metrizable; to be o-scattered; to be o-discrete space.

7.2. Example. Let 7 be an infinite cardinal. Consider the properties: X € e(7)
if and only if e(X) < 7; X € d(7) if and only if d(X) < 7; X € hd(r) if and only
it hd(X) < 7; X € hl(7) if and only if hli(X) < 7.

Then e(7),d(7), hd(T), hl(T) are of-properties.

7.3. Theorem. Let R be a topological semiring and E, F' be non-trivial locally
bounded topological R-modules. Fix two non-empty R-Tychonoff spaces X and
Y with the properties:

- for any non-bounded subset L of X there exists f € C(X, E) such that the
set f(L) is not a-bounded in FE;

- for any non-bounded subset L of Y there exists f € C(Y, F') such that the set
f(L) is not a-bounded in F.

Assume that u : Cp(X, E) — C,(Y, F) is a linear homeomorphism. If P is an
of-property, then X € P if and only if Y € P.

Proof. Consider the set-valued mappings ¢ : X — Y and ¢ : ¥ — X con-
structed in the Section 7. As in [3] (see Theorem 2.1 from [3]) we put Z =
U{{z} x¢(z) : z € X} and S = U{eo(y) x {y} : y € Y} as subspaces of the spaces
X XY, f(z,y) = z and g(z,y) = y for any point (z,y) € X xY. Then f: Z — X
and g : S — Y are continuous open finite-to-one mappings. If D = Z N S, then
from Property 7.4 it follows that f(D) = X and g(D) =Y. Hence X € P if and
only if Y € P. The proof is complete. O
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8. [,(E, F)-equivalence and metrizability

8.1. Theorem. Let R be a topological semiring and E, F' be non-trivial metrizable
locally bounded topological R-modules. Fix two non-empty spaces X and Y with
the properties:

- X is an R-Tychonoff compactly E-full space and for any non-bounded subset
L of X there exists f € C(X, E) such that the set f(L) is not a-bounded in F;

- Y is an R-Tychonoff compactly E-full space and for any non-bounded subset
L of Y there exists f € C(Y, F) such that the set f(L) is not a-bounded in F.

Let X and Y be l,(E)-equivalent spaces. Then:

1. X is a compact metrizable space if and only if Y is a compact metrizable
space.

2. If X is a metrizable space, then the space Y is metrizable if and only if YV is
a wg-space.

Proof. Any metrizable space is a wg-space.

Let X be a metrizable space and Y be a wg-space. Since X is metrizable, by
virtue of Theorem 6.3, Y is a paracompact p-space. From Theorem 7.3 it follows
that Y is a o-space. If a paracompact space Y is a o-space and a p-space, then Y
is metrizable [13]. Assertion 2 is proved.

Assertion 1 follows from the Assertion 2 and Theorem 6.3. The proof is com-
plete. O
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