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topological modules
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Abstract

Let R be a topological ring and E, F be unitary topological R-modules.
Denote by Cp(X,E) the class of all continuous mappings of X into E
in the topology of pointwise convergence. The spaces X and Y are
called lp(E,F )-equivalent if the topological R-modules Cp(X,E) and
Cp(Y, F ) are topological isomorphic. Some conditions under which the
topological property P is preserved by the lp(E,F )-equivalence (Theo-
rems 6.3, 6.4, 7.3 and 8.1) are given.
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1. Preliminaries

Throughout this paper, by a space we will mean a Tychono� space [9].
A topological semiring is a topological space R equipped with two continuous

binary operations {+, ·}, called addition and multiplication, such that (see [10, 11,
15]):

1. (R,+) is a topological commutative monoid with identity element 0 and
proprieties: (a + b) + c = a + (b + c), 0 + a = a + 0 = a, a + b = b + a for all
a, b, c ∈ R.

2. (R, ·) is a topological monoid with identity element 1 6= 0 and proprieties:
(a · b) · c = a · (·c), 1 · a = a · 1 = a, a · b = b · a, a · (b+ c) = (a · b) + (a · c), 0 · a =
0 for all a, b, c ∈ R.
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Let G be a topological Abelian group under addition operation and R be a
topological semiring. We call G a topological R-module if on it is de�ned the
continuous operation of multiplication · : R × G −→ G between an element of R
and an element of G, say ra ∈ G, where r ∈ R and a ∈ G, with the following
properties: 1 ·a = a, 0 ·a = 0, r(a+ b) = ra+rb, (r+s)a = ra+sa, r(sa) = (rs)a,
for any r, s ∈ R and a, b ∈ G.

Let R be a topological semiring and E, F be topological R-modules. The
mapping ϕ : E → F is a linear mapping if it satis�es the conditions: ϕ(x + y) =
ϕ(x) + ϕ(y) and ϕ(αx) = αϕ(x) for any x, y ∈ E and α ∈ R.

Fix a space X, a topological semiring R, and topological R-modules E and F .
By C(X,E) we will denote the family of all E-valued continuous functions with

the domain X and by Cp(X,E) we will denote the space C(X,E) endowed with
the topology of pointwise convergence. Recall that the family of sets of the form
W (x1, x2, ..., xn, U1, U2, ..., Un) = {f : C(X,E) : f(xi) ∈ Ui for any i ≤ n}, where
x1, x2, ..., xn ∈ X, U1, U2, ..., Un are open sets of E and n ∈ N, is a base of the
space Cp(X,E).

By Hp(E,F ) we denote the space of all linear mappings of E into F as a
subspace of the space Cp(E,F ).

The spaces X and Y are called lp(E,F )-equivalent if the spaces Cp(X,E) and

Cp(Y, F ) are linearly homeomorphic and we denote X
E,F∼ Y .

A space X is zero-dimensional if indX = 0 (small inductive dimension is zero),
i.e., X has a base of clopen (open and closed) subsets.

The following two assertions are evidently.

1.1. Proposition. Fix a topological R-module E. Then Cp(X,E) is a topological
R-module and E is embedded in a natural way in Cp(X,E) as a closed submodule
of Cp(X,E).

1.2. Proposition. If E is a zero-dimensional topologicalR-module, then Cp(X,E)
is a zero-dimensional topological R-module too.

2. The evaluation mapping

Let X be a space, R be a topological semiring and E be a non-trivial topological
R-module. Fix x ∈ X. Then the mapping ξx : Cp(X,E)→ E de�ned by ξx(f) =
f(x) is called the evaluation mapping at x (see, by instance, [1]).

We now de�ne the canonical evaluation mapping eX : X → Cp(Cp(X,E), E),
where eX(x) = ξx for any x ∈ X.

The proofs of the following two assertions are standard (see [8]).

2.1. Proposition. The evaluation mapping ξx : Cp(X,E)→ E is continuous and
linear for every point x ∈ X.

2.2. Proposition. The canonical evaluation mapping eX : X → Cp(Cp(X,E), E)
is continuous. Moreover, the set eX(X) is closed in the space Cp(Cp(X,E), E).

Let X and Y be spaces, Φ be a family of functions f : X → Y . We say that Φ
separates points of X (or simply is separating [1]) if for any x, y ∈ X, x 6= y, there
exists f ∈ Φ such that f(x) 6= f(y). We also say that Φ separates points from

closed sets (or is regular [1]) if for any non-empty closed subset B of X, any point
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x ∈ X \B and any two points a, b ∈ Y there exists f ∈ Φ such that f(x) = a and
f(B) = b.

2.3. Proposition. If Cp(X,E) is a regular family, then the canonical evaluation
mapping eX : X → Cp(Cp(X,E), E) is a homeomorphism from X to the closed
subspace eX(X) of Cp(Cp(X,E), E).

A space X is called R-Tychono� if for any closed subset B of X, any point
a ∈ X \ F there exists g ∈ C(X,R) such that g(a) = 1 and B ⊆ g−1(0).

The product of R-Tychono� spaces is an R-Tychono� space. The subspace of
an R-Tychono� is an R-Tychono� space.

Remark. Let X be an R-Tychono� space and E be a non-trivial topological R-
module. Then X is a Tychono� space, and for each closed set B of X, any point
a ∈ X \ B and any points b, c ∈ E there exists f ∈ C(X,E) such that f(a) = b
and f(B) = c.

The proofs of the following two assertion is elementary.

2.4. Proposition. If indX = 0, then the space X is R-Tychono�.

Let R be a topological semiring. A topological R-module E is called:
(i) simple if it does not contain a non-trivial submodule over R.
(ii) locally simple if E is not trivial and there exists an open subset U of E such

that 0 ∈ U and U do not contains non-trivial R-submodules of E.

2.5. Example. If R is a �eld, then R is a simple topological R-module. Let R
be the �eld of real numbers and K be the �eld of complex numbers. Then K is
locally simple and not simple R-module.

We mention the following obvious fact.

2.1. Lemma. Let R be a topological semiring and E be an R-module. Then Ra
is an R-submodule for any a ∈ E.

Fix a space X and two topological R-modules E and F . We de�neMp(X,E, F )
= Hp(Cp(X,E), F ) the subspace of all linear mappings from Cp(X,E) into F . Let
Mp(X,E) = Mp(X,E,E). Now we de�ne Lp(X,E) ⊆ Cp(Cp(X,E), E) as follows
Lp(X,E) = {α1x1 + α2x2 + ...+ αnxn : αi ∈ R, xi ∈ eX(X), i ≤ n ∈ N}.

By construction, we have Lp(X,E) ⊆Mp(X,E). As a rule Lp(X,E) 6= Mp(X,E)
(see [8]).

2.6. Proposition. Let R be a topological semiring, E be a topological R-module
and X be a space. Then for any g ∈ C(X,E) there exists a unique linear mapping
g ∈ Hp(Lp(X,E), E) such that g = g ◦ eX , where eX : X → Lp(X,E) is the
evaluation mapping.

Proof. Let Ef = E for any f ∈ Cp(X,E). By de�nition, eX(X) ⊆ Lp(X,E) ⊆
EC(X,E) = Π{Ef : f ∈ C(X,E)}. We have eX(x) = ξx for any x ∈ X and
Lp(X,E) is the submodule of EC(X,E) generated by the set eX(X). We consider
the projection πf : EC(X,E) −→ Ef = E. Let f = πf |Lp(X,E) : Lp(X,E) −→ E
is the desired linear mapping. �
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2.7. Theorem. Let R be a semiring, E be a topological R-module and X be
a space. Consider the space eX(X), where eX : X → Lp(X,E) is the evalu-
ation mapping. Then the topological R-modules Cp(X,E), Cp(eX(X), E) and
Hp(Lp(X,E), E) are linearly homeomorphic.

Proof. Let Ef for any f ∈ Cp(X,E). By de�nition, eX(X) ⊆ Lp(X,E) ⊆
ECp(X,E) = Π{Ef : f ∈ C(X,E)}. We consider the projection πf : EC(X,E) −→
Ef = E. Let f = πf |Lp(X,E) : Lp(X,E) −→ E. Then f and πf are continuous
linear mappings.

If g : eX(X) → E is a continuous mapping, then g ◦ eX = f for a unique
f ∈ C(X,E). Therefore, g = πf |eX(X) and the correspondence f → πf |eX(X) is
a linear homeomorphism of Cp(X,E) onto Cp(eX(X), E).

Hence, without loss of generality, we can assume that X = eX(X) ⊆ Lp(X,E).
By virtue of Proposition 2.6, the correspondence

ψ : Cp(X,E) −→ Hp(Lp(X,E), E), where ψ(f) = f , is a one-to-one linear map-
ping of C(X,E) onto Hp(Lp(X,E), E).

For each y ∈ Lp(X,E) there exist the minimal n = n(y) ∈ N, the unique
points x1(y), ..., xn(y) ∈ X and the unique points α1(y), ..., αn(y) ∈ R such that
y = α1(y)x1(y) + ...+αn(y)xn(y). Hence, the correspondence ψ is continuous and
linear. Since ψ(f)|X = f , the mapping ψ−1 is continuous. �

2.8. Corollary. Let X, Y be spaces and R be a locally simple R-module. The
spaces Cp(X,R) and Cp(Y,R) are linearly homeomorphic if and only if the spaces
Lp(X,R) and Lp(Y,R) are linearly homeomorphic.

2.2. Lemma. Let X be an R-Tychono� space, Z be a closed subspace of X, E be

a topological R-module and g : X −→ E be a continuous mapping. For any �nite

subset B of X \Z and any function f : B −→ E there exists a continuous function

ϕ : X −→ E such that f = ϕ|B and ϕ|Z = g|Z.

Proof. Fix a family {Ux : x ∈ B} of open subsets of X such that x ∈ Ux ⊆ X \ Z
for each x ∈ B and Ux ∩ Uy = ∅ for each distinct points x, y ∈ B. For each
x ∈ B �x a continuous function fx : X −→ E such that fx(x) = f(x)− g(x) and
fx(X \Ux) = 0. Let fB(y) =

∑
{fx(y) : x ∈ B}. By construction, the function fB

is continuous, fB(Z) = 0 and fB(x) = f(x) − g(x) for each x ∈ B. Obviously, ϕ
= fB + g is the desired function. �

For any subspace Y of a space X we put Cp(Y |X,E) = {f |Y : f ∈ C(X,E)}.
A subspace Y of X is E-full if C(Y |X,E) = C(Y,E).

A space X is called compactly E-full if C(Y |X,E) = C(Y,E) for any compact
subspace Y of X.

The following assertion is well-known (see [8]).

2.3. Lemma. Let X be a zero-dimensional space and E be a metrizable space.

Then X is a compactly E-full space. Moreover, for any compact subset Y of X and

any f ∈ C(Y,E) there exists g ∈ C(X,E) such that g(X) ⊆ f(Y ) and f = g|Y .

3. The support mapping

Fix a topological semiring R and non-trivial topological R-modules E and F .
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Consider a spaceX and a functional µ ∈Mp(X,E, F ). We put S(µ) = {B ⊆ X :
if B ⊆ f−1(0), then µ(f) = 0}. Obviously, X ∈ S(µ). Thus the set S(µ) is non-
empty.

The set suppX(µ) is the family of all points x ∈ X such that for each neigh-
bourhood U of x in X there exists f ∈ Cp(X,E) such that f(X \ U) = 0 and
µ(f) 6= 0 (see [2, 12], for E = R = R, [3, 14] for R = R, [8] when R is a topological
ring).

If f ∈ Cp(X,E) and U is an open neighbourhood of 0 in E, then we put
A(f, L, U) = {g ∈ Cp(X,E) : f(x) − g(x) ∈ U for any x ∈ L}. The family
{A(f, L, U) : f ∈ Cp(X,E), L is �nite subset of X,U is open neighbourhood of 0
in E} is an open base of the space Cp(X,E).

3.1. Theorem. Let X be a R-Tychono� space, E and F be non-trivial topological
R-modules, µ ∈ Mp(X,E, F ) and µ 6= 0. If F is a locally simple topological R-
module, then:

1. There exists a �nite set K ∈ S(µ) such that suppX(µ) ⊆ K.
2. suppX(µ) ∈ S(µ) and suppX(µ) is a �nite non-empty subset of X.
3. suppX(µ) = ∩S(µ).

Proof. Fix an open subset U0 of Cp(X,E) such that 0 ∈ U0 and an open subset
W0 of F such that 0 ∈W0, W0 do not contains non-trivial R-submodules of F and
µ(U0) ⊆W0.

There exist a �nite subset K of X and an open subset V0 of E such that 0 ∈ V0
and 0 ∈ A(0,K, V0) ⊆ U0. Hence µ(f) ∈W0 for each f ∈ A(0,K, V0).

Let f ∈ Cp(X,E) and f(K) = 0. Then αf ∈ A(0,K, V0) for each α ∈ R.
Hence µ(αf) ∈W0 for each α ∈ R. Thus R · µ(f) ⊆ V0 and R · µ(f) is the trivial
R-submodule. Thus µ(f) = 0 and K ∈ S(µ). In this case suppX(µ) ⊆ K. Hence
suppX(µ) is a �nite set and K is a �nite set from S(µ).

Let L ∈ S(µ) be a �nite set and x0 ∈ L\suppX(µ). Then L1 = L\{x0} ∈ S(µ).
Really, since x0 /∈ suppX(µ), there exists an open subset H of X such that x0 ∈ H
and µ(f) = 0 provided f(X \ H) = 0. We can assume that H ∩ L = {x0}. Let
f ∈ Cp(X,E) and f(L1) = 0. There exists h ∈ C(X,E) such that h(x0) = f(x0)
and h(X \H) = 0. We put g(x) = f(x)−h(x) for any x ∈ X. Since h(X \H) = 0,
we have µ(h) = 0. By construction, g(L) = 0 and µ(g) = 0. Hence f = g + h
and µ(f) = µ(g + h) = µ(g) + µ(h) = 0. Hence L1 ∈ S(µ). Since K ∈ S(µ) and
K \ suppX(µ) is a �nite set, we have suppX(µ) ∈ S(µ). In particular, we have
suppX(µ) = ∩S(µ). �

The following assertions are obviously:

3.2. Proposition. Let n ≥ 1, x1, x2, ..., xn are distinct points ofX, α1, α2, ..., αn ∈
R and µ(f) = Σ{αif(xi) : i ≤ n} for each for each f ∈ Cp(X,E), then:

1. µ ∈ Lp(X,E) and suppX(µ) ⊆ {x1, x2, ..., xn}.
2. If for each i ≤ n the set αiE is a non-trivial R-submodule of E, then

suppX(µ) = {x1, x2, ..., xn}.

4. Topological properties of the mapping suppX

Fix a topological semiring R. Let X be a space, E and F be two non-trivial
topological R-modules.
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Recall that a set-valued mapping f : X → 2Y is lower semicontinuous (l.s.c) if
for every open subset U of Y the inverse image of U , f−1(U) = {x ∈ X : f(x)∩U 6=
∅} is open in X.

The correspondence suppX is a set-valued mapping of the space Mp(X,E, F )
into X. For H ⊆Mp(X,E, F ) we put suppX(H) = ∪{suppX(µ) : µ ∈ H}.

4.1. Proposition. If F is a locale simple R-module, then the set-valued mapping
suppX : Mp(X,E, F )→ X is l.s.c.

Proof. We follow very closely the proof of [3, Property 4.2] and [12, Lemma 6.8.2
(4)].

Let U be an open subset of X, and put V = supp−1X (U), i.e., V = {µ ∈
Mp(X,E, F ) : suppX(µ) ∩ U 6= ∅}. Let µ ∈ V , and take x0 ∈ suppX(µ) ∩ U .
Fix an open subset W of X such that x0 ∈ W ⊆ clXW ⊆ U . Then there exists
f ∈ C(X,E) such that f(X\W ) = {0} and µ(f) 6= 0. LetH = {η ∈Mp(X,E, F ) :
η(f) 6= 0}. Since the set {0} is closed in F , H is the basic open set W (f, F \ {0})
= {η ∈Mp(X,E, F ) : η(f) ∈ F \ {0}} and µ ∈W (f, F \ {0}).

We a�rm that H ⊆ V . By contradiction, suppose that η ∈ H \V , i.e. η(f) 6= 0
and suppX(η) ∩ U = ∅. Then X \ clXW is an open neighbourhood of suppX(η)
and, since f(X \ clXW ) = {0}, applying Theorem 3.1, we get that η(f) = 0. A
contradiction, hence V is open in Mp(X,E, F ). �

A subset L of a space X is bounded if any continuous real-valued function
f : X −→ R is bounded on L.

A subset L of a topological R-module E is called:
(i) precompact or totally a-bounded if for any neighbourhood U of 0 in E there

exists a �nite subset A of E such that L ⊆ A+ U = U +A;
(ii) a-bounded if for any neighbourhood U of the 0 in E there exists n ∈ N such

that L ⊆ nU .
Any bounded set is precompact. In a topological vector space over �eld of reals

any precompact set is a-bounded.
A topological R-module E is called locally bounded if there exists an a-bounded

neighbourhood U of 0 in E such that E = ∪{nU : n ∈ N} and for any a ∈ E,
a 6= 0, and any n ∈ N there exists t ∈ R such that ta /∈ nU . In this case the set U
does not contain R-submodules of E and E is a locally simple R-module.

4.2. Example. Let E be a normed vector space over reals R. Then E is a locally
bounded R-module.

4.3. Example. Let E be a topological vector space over reals R and there exists
a number q > 0 and a functional ||.|| : E −→ R such that:

1. 0 < q ≤ 1.
2. ||x|| ≥ 0 for any x ∈ E.
3. If ||x|| = 0, then x = 0.
4. ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ E.
5. ||λx|| ≤ |λ|q||x|| for all x ∈ E and λ ∈ R.
6. If x 6= 0 then limλ→+∞||λx|| = +∞.
The functional ||.|| is called a q-norm, if the family {V (0, r) = {x : ||x|| < r} :

r > 0} is a base of E at 0. Any q-normed space is locally bounded.
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4.4. Theorem. Let F be a locally bounded topological R-module, B be a sub-
module of F and X be an R-Tychono� space with the following properties:

(b) : for any non-bounded subset L of X there exists f ∈ C(X,B) such that the
set f(L) is not a-bounded in F ;

(r) : B is topological isomorphic to some R-submodule of E.
Then:
(i) The set suppX(H) is bounded inX for any a-bounded subsetH ofMp(X,E, F ).
(ii) The set suppX(H) is bounded in X for any totally a-bounded subset H of

Mp(X,E, F ).
(iii) The set suppX(H) is bounded inX for any bounded subsetH ofMp(X,E, F ).

Proof. We can assume that B ⊆ E too. Since B is a non a-bounded subset of F
there exists an open subset W0 of F such that 0 ∈W0 and B \ nW0 6= ∅ for each
n ∈ N. Moreover, If H ⊆ B is a non a-bounded of F then H is a non a-bounded
of B too.

Since F is locally bounded we can �x an open neighbourhoodW1 of 0 in E such
that the set W1 is a-bounded, F =

⋃
{nW1 : n ∈ N} and for any a ∈ F , a 6= 0,

and for any n ∈ N there exists t ∈ R such that ta /∈ nW1.
Now �x two open neighbourhoodsW2 andW3 of 0 in F such thatW2 = −W2 ⊂

3W2 = W2 +W2 +W2 ⊆W3 = −W3 ⊆W1 ∩W0.
By construction, W1 ⊆ kW2 for some k ∈ N.
Hence the sets W2 and W3 have the following properties:
- W2 and W3 are a-bounded subsets of E;
- F =

⋃
{nW2 : n ∈ N} =

⋃
{nW3 : n ∈ N};

- if L is a bounded or a precompact subset of F , then L ⊆ nW2 for some n ∈ N;
- if a ∈ F , a 6= 0, then for any n ∈ N there exists t ∈ R such that ta /∈ nW3.
Since B is a non a-bounded subset of F and W3 is an a-bounded of F , we have

B \ nW3 6= ∅ for each n ∈ N.
If µ ∈ Mp(X,E, F ) and µ 6= 0, then suppX(µ) is a �nite non-empty subset of

X.
We can assume that C(X,B) ⊆ C(X,E) and C(X,B) ⊆ C(X,F ).
Suppose that the set H is a-bounded or precompact inMp(X,E, F ) and the set

suppX(H) is not bounded in X. Fix f ∈ C(X,B) such that the set f(suppX(H))
is not a-bounded in F .

By induction, we shell construct a sequence {µn : n ∈ N} ⊆ H, a sequence
{Uk : k ∈ N} of open subsets of X, a sequence {xn ∈ suppX(µn) : n ∈ N} and a
sequence {hk ∈ C(X,B) : n ∈ N} with properties:

1. xi ∈ Ui, hi(X \ Ui) = 0 for any i ∈ N;
2. {Un : n ∈ N} is a discrete family of subsets of X;
3. µn(hn) /∈ nW ;
4. suppX{µ1, µ2, ..., µn} ∩ clXUn+1 = ∅;
5. f(Un) ⊆ f(xn) +W0 and f(xn+1) /∈

⋃
{f(xi) +W : i ≤ n} for each n ∈ N;

Fix µ1 ∈ H and x1 ∈ suppX(µ1). There exists an open subset U1 of X and
g1 ∈ C(X,B) such that f(U1) ⊆ W0 + f(x1), g1(X \ U1) = 0 and µ1(g1) 6= 0.
There exists α1 ∈ R such that α1µ1(g) /∈W3. We put h1 = α1g1.

Assume that n ≥ 1 and the objects {hi, xi, Ui, µi : i ≤ n} are constructed.
We put Mn =

⋃
{suppX(µi) : i ≤ n}. The set Mn is �nite. Hence the set
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f(suppX(H))\f(Mn) is not a-bounded in F . For some mn ∈ N we have f(Mn) ⊆
mnW0.

Fix µn+1 ∈ H and xn+1 ∈ suppX(H) such that f(xn+1) ∈ B \mnW . There
exists an open subset Un+1 of X and gn+1 ∈ C(X,B) such that xn+1 ∈ Un+1,
f(Un+1) ⊆ f(xn+1)+W0, gn+1(X\Un+1) = 0, clXUn+1∩Mn = ∅ andMn+1(gn+1) 6=
0. There exists αn+1 ∈ R such that αn+1µn+1(gn+1) /∈ (n + 1)W . We put
hn+1 = αn+1gn+1. That completes the inductive construction. The objects
{xm, µn, hn, Un} are constructed for all n ∈ N. Let h = Σ{hn : n ∈ N}. Since
{Un : n ∈ N} is a discrete family and hn(X \ Un) = 0 for any n ∈ N, we
have h ∈ C(X,B). By construction, µn(h) = µn(hn) /∈ nW0 for any n. Then
{µn(h) : n ∈ N} is a not a-bounded subset of E. Since the set H is a-bounded, the
set {µ(h) : µ ∈ H} is a-bounded too, a contradiction. The proof is complete. �

Remark. Any normed space is a locally bounded R-module. If E is a non-trivial
normed space, then for any non-bounded subset L of the space X there exists
f ∈ C(X,E) such that the set f(L) is not bounded in E. For a normed space E
Theorem 4.4 was proved by V. Valov in [14]. For a ring R and E = F Theorem
4.4 was proved in [8].

A space X is µ-complete if any closed bounded subset of X is compact.
A space X is Dieudonné complete if the maximal uniformity on X is complete.

Any Dieudonné complete space is µ-complete.
Denote by PX the space X with the Gδ-topology generated by the Gδ-subsets

of X. The set δ − clXH = clPXH is called the Gδ-closure of the set H in X. If
δ − clXH = H, then we say the set H is Gδ-closed.

If the space X is µ-complete, then any Gδ-closed subspace of X is µ-complete.
A tightness of a space X is the minimal cardinal number τ for which for any

subset L ⊆ X and any point x ∈ clXL there exists a subset L1 ⊆ L such that
|L1| ≤ τ and x ∈ clXL1.

We denote by t(X) and l(X) the tightness and the Lindelöf numbers respectively
of a space X.

The following four propositions were proved in [8] (see [1] for E = R).

4.5. Proposition. Assume that E is a metrizable and l(Xn) ≤ τ for any n ∈ N.
Then t(Cp(X,E)) ≤ τ .

4.6. Proposition. Let X and E be spaces and t(X) ≤ ℵ0. Then Cp(X,E) is a
Gδ-closed subspace of the space EX . Moreover, if E is µ-complete then the space
Cp(X,E) is µ-complete too.

4.7. Proposition. Let F and E be topological R-modules and Hp(F,E) be the
space of all linear continuous mappings of F into E. Then Hp(F,E) is a closed
subspace of the space Cp(F,E).

4.8. Corollary. Let E and F be topological R-modules and t(F ) ≤ ℵ0. Then
Hp(F,E) is a Gδ-closed subset of EF . In particular, if E is µ-complete, then space
Hp(F,E) is µ-complete too.

4.9. Proposition. Let Y be a subspace of the space X, E be a non-trivial
topological R-module, X be an R-Tychono� space and pY (f) = f |Y for each
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f ∈ Cp(X,E). Then the mapping pY : Cp(X,E) −→ Cp(Y |X,E) has the follow-
ing properties:

(i) pY is a continuous mapping.
(ii) If the set Y is closed in X, then the mapping pY is open.
(iii) If Y is dense in X, then pY is a one-to-one correspondence.
(iv) The subspace Cp(Y |X,E) is dense in the Cp(Y,E).

4.10. Theorem. Let E be a metrizable R-module, F be a locally bounded metriz-
able R-module, B be a closed submodule of F and X be an R-Tychono� space
with the following properties:

(b) : for any non-bounded subset L of X there exists f ∈ C(X,B) such that the
set f(L) is not a-bounded in F ;

(r) : B is topological isomorphic to some R-submodule of E;
(c) : X be an R-Tychono� compactly E-full space.
Then the space X is µ-complete if and only if the space Mp(X,E, F ) is µ-

complete.

Proof. By virtue of Proposition 2.3, we can assume that X = eX(X) is a subspace
of the space Mp(X,E,B). From Proposition 2.2 it follows that the subspace X is
closed in Mp(X,E,B). Obviously, Mp(X,E,B) is a closed subspace of the space
Mp(X,E, F ).

Let Mp(X,E, F ) be a µ-complete space. Since X is a closed subspaces of
Mp(X,E,B) and Mp(X,E, F ), the space X is µ-complete too.

Assume that X is a µ-complete space. Let Φ be a closed bounded subset of
Mp(X,E, F ). Then the closure Y of the set ∪{suppX(µ) : µ ∈ Φ} is a compact
subset of X.

The restriction mapping pY : Cp(X,E) −→ Cp(Y,E) is an open continuous
linear mapping of the R-module Cp(X,E) onto the R-module Cp(Y,E).
Claim 1. The dual mapping ϕ : FC(Y,E) −→ FC(X,E) is a linear embedding

and the set ϕ(FC(Y,E)) is closed in FC(X,E).
The proof of this fact is similar with the prof of Proposition 0.4.6 from [1].
By construction, we have Φ ⊆ ϕ(Mp(Y,E, F )) ⊆Mp(X,E, F ).
Claim 2. ϕ(Mp(Y,E, F )) is a closed subset of the subspaces Mp(X,E, F ) and

Cp(Cp(X,E), E) of the space EC(X,E).
Follows from Claim 1 and Proposition 4.7.
Claim 3. ϕ(Cp(Cp(Y,E), F )) ⊆ Cp(Cp(X,E), F ).
Follows from the continuity of the mapping pY .
Claim 4. The sets ϕ(Mp(X,E, F )) and ϕ(Cp(Cp(Y,E), F )) are Gδ-closed in

FC(X,E).
Since Y is compact, from Proposition 4.5 it follows that t(Cp(Y,E)) = ℵ0.

Then, from Proposition 4.6 it follows that Cp(Cp(Y,E), F ) is a Gδ-closed subset
of the space FC(Y,E). From Claim 1 it follows that ϕ(Cp(Cp(Y,E), F )) is Gδ-closed
in FC(X,E). Corollary 4.8 completes the proof of the claim.

Let G be the Gδ-closure of the set Cp(Cp(X,E), E)) in EC(X,E). We have
Mp(X,E, F ) ⊆ G. Hence Φ is a bounded subset of the space G.
Claim 5. The sets ϕ(Mp(X,E, F )) and ϕ(Cp(Cp(Y,E), F )) are closed in G.
Follows from Claim 4.
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Since F is a metrizable space, F is a µ-complete space. Thus Φ is a closed
bounded subset of the µ-complete space G. Therefore the set Φ is compact. The
proof is complete. �

5. Relations between linear equivalent spaces

Let R be a topological semiring and E, F be non-trivial locally bounded topo-
logical R-modules. The R-module E × F is locally bounded. We identify E with
the R-submodule E×{0} of E×F and F with the R-submodule {0}×F of E×F .

Fix two non-empty R-Tychono� spaces X and Y with the properties:
- for any non-bounded subset L of X there exists f ∈ C(X,E) such that the

set f(L) is not a-bounded in E;
- for any non-bounded subset L of Y there exists f ∈ C(Y, F ) such that the set

f(L) is not a-bounded in F .
Fix now a continuous linear homeomorphism u : Cp(X,E) −→ Cp(Y, F ). Then

the mapping v : Mp(Y, F,E × F ) −→ Mp(X,E,E × F ), where v(η) = η ◦ u for
each η ∈Mp(Y, F,E × F ), is a linear homeomorphism.

For each x ∈ X and each f ∈ Cp(X,E) we put εx(f) = (ξx(f), 0) = (f(x), 0) ∈
E ⊆ E × F . For each y ∈ Y and each g ∈ Cp(Y, F ) we put δy(g) = (0, ξy(g))
= (0, g(y)) ∈ F ⊆ E × F . Realy, we can assume that εx = ξx and δy = ξy.
Obviously, v−1(εx) = εx ◦ u−1 ∈ Mp(Y, F,E × F ) \ {0} and v(δy) = δy ◦ u ∈
Mp(X,E,E × F ) \ {0}. Hence, for each x ∈ X and each y ∈ Y ) we can put
ϕ(x) = suppY (v−1(εx)) and ψ(y) = suppX(v(δy)).
Property 7.1. ϕ : X → Y and ψ : Y → X are l.s.c. set-valued mappings and

ϕ(x), ψ(y) are �nite non-empty sets for all points x ∈ X and y ∈ Y .

Proof. Follows from Proposition 4.1 and Theorem 5.1. �

Property 7.2. Let y0 ∈ Y , f ∈ C(X,E) and f(ψ(y0)) = 0. Then u(f)(y0) = 0.

Proof. For any η ∈ Mp(Y, F,E × F ) and g ∈ C(X,E) we have v(η)(g) = η(u(g))
(η ◦ u)(g). Since f(suppX(v(δy0))) = f(ψ(y0)) = 0, we have (δy0 ◦ u)(f) = 0 and
u(f)(y0) = δy0(u(f)) = (δy0 ◦ u)(f) = 0. The proof is complete. �

5.1. Corollary. If f, g ∈ C(X,E) and f |ψ(y) = g|ψ(y), then u(f)(y) = u(g)(y).

Property 7.3. x ∈ ψ(ϕ(x)) for every point x ∈ X and y ∈ ϕ(ψ(y)) for every

point y ∈ Y .

Proof. For every x ∈ X the sets ϕ(x) and ψ(ϕ(x)) are �nite and closed. Assume
that x0 ∈ X and x0 /∈ ψ(ϕ(x0)) = H. Fix f ∈ C(X,E) such that f(x0) = b 6= 0
and f(H) = f(ψ(ϕ(x0))) = 0. Since ψ(y) ⊆ H and f(H) = 0 for any y ∈ ϕ(x0) by
virtue of Property 7.2, we have u(f)(y) = 0 for each y ∈ ϕ(x0). Since u(f)(y) = 0
for each y ∈ ϕ(x0), by virtue of Property 7.2, we have f(x0) = u−1(u(f))(x0) = 0.
By construction, we have f(x0) 6= 0, a contradiction. �

Property 7.4. If H is dense subset of Y , then ψ(H) is a dense subset of X
provided u is an injection.



87

Proof. Assume that x0 /∈ clXψ(H). Then there exists f ∈ C(X,E) such that
f(x0) 6= 0 and f(ψ(H)) = 0. Since f(ψ(H)) = 0 for any y ∈ Y , by virtue of
Property 7.2, we have u(f)(y) = 0 for any y ∈ Y . Thus u(f) = 0. Hence f = 0, a
contradiction. �

From the above properties follows

5.2. Corollary. The space X is separable if and only if the space Y is separable.
In general, d(X) = d(Y ).

Property 7.5. ϕ(H) is a bounded set of Y for each bounded set H of X.

Proof. LetH be a bounded subset ofX. ThenH is a bounded subset ofMp(X,E,E×
F ) and respectively v−1(H) is a bounded subset of Mp(Y, F,E × F ). By Theo-
rem 4.4 the set suppY (v−1(H)) is a bounded subset of Y . The proof is com-
plete. �

Property 7.6. Let E and F be metrizable spaces, X be a compactly E-full space

and Y be a compactly F -full space. Then the space X is µ-complete if and only if

the space Y is µ-complete.

Proof. Let X be a µ-complete space. ThenMp(X,E,E×F ) andMp(Y, F,E×F ),
by virtue of Theorem 4.10, are µ-complete spaces. By Theorem 4.10 the space Y
is µ-complete too. The proof is complete. �

As in [3] we say that the pair of set-valued mappings θ : X −→ Y and π : Y −→
X is called lower-re�ective if it has the following conditions:

1l. θ and π are l.s.c.
2l. θ(x) and π(x) are �nite sets for all points x ∈ X and y ∈ Y .
3l. x ∈ π(θ(x)) and y ∈ θ(π(y)) for all points x ∈ X and y ∈ Y .
Also, as in [3] we say that the pair of set-valued mappings θ : X −→ Y and

π : Y −→ X is called upper-re�ective if it has the following conditions:
1u. θ(F ) is a bounded subset of Y for each bounded subset F of X.
2u. π(Φ) is a bounded subset of X for each bounded subset Φ of Y .
3u. x ∈ clXπ(θ(x)) and y ∈ clY θ(π(y)) for all points x ∈ X and y ∈ Y .
General conclusion: The set valued mappings ϕ : X −→ Y and ψ : Y −→ X

forms an equivalence of X and Y in sense of article [3]. Thus the general theorems
from [3] can be extended for the mappings in topological R-modules. In the
following sections we formulate the general theorems for the R-modules, where R
is a topological semiring.

6. Application to perfect properties

We say that the property P is a perfect property if for any continuous perfect
mapping f : X −→ Y of X onto Y we have X ∈ P if and only if Y ∈ P. We say
that the property P is a strongly perfect property if it is perfect and any space
with property P is µ-complete.

6.1. Example. From the Example 6.2 [3] the following properties are perfect: to
be a compact space; to be a paracompact p-space; to be a paracompact space; to
be a metacompact space; to be a k-scattered space; to be a monotonically p-space;



88

to be a monotonically �ech complete space; to be a �ech complete space; to be a
Lindelöf space; to be a Lindelöf Σ-space; to be a subparacompact space; to be a
locally compact space.

6.2. Example. The following properties are strongly perfect: to be a compact
space; to be a paracompact p-space; to be a paracompact space; to be a µ-complete
metacompact space; to be a k-scattered µ-complete space; to be a µ-complete
monotonically p-space; to be a µ-complete monotonically �ech complete space; to
be a µ-complete �ech complete space; to be a Lindelöf space; to be a Lindelöf
Σ-space; to be a µ-complete subparacompact space; to be a µ-complete locally
compact space.

A space X is called a wq-space if for any point x ∈ X there exists a sequence
{Un : n ∈ N} of open subsets of X such that x ∈ ∩{Un : n ∈ N} and each set
{xn ∈ Un : n ∈ N} is bounded in X.

A space X is pseudocompact if the set X is bounded in the space X. Any
pseudocompact space is a wq-space.

6.3. Theorem. Let R be a topological semiring and E and F be non-trivial locally
bounded topological R-modules. Fix two non-empty R-Tychono� spaces X and
Y with the properties:

- for any non-bounded subset L of X there exists f ∈ C(X,E) such that the
set f(L) is not a-bounded in E;

- for any non-bounded subset L of Y there exists f ∈ C(Y, F ) such that the set
f(L) is not a-bounded in F .

Assume that u : Cp(X,E) −→ Cp(Y, F ) is a linear homeomorphism. Then:
1. X is a pseudocompact space if and only if Y is a pseudocompact space.
2. If P is a perfect property and X, Y are µ-complete wq-spaces, then X ∈ P

if and only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X con-
structed in the Section 7.

Let X be a pseudocompact space. Then X is a bounded subset of the space
X. Hence Y = ϕ(X) is a bounded subset of Y and Y is a pseudocompact space.
Assertion 1 is proved.

Assume that P is a perfect property and X, Y are µ-complete wq-spaces. Sup-
pose that X ∈ P. By virtue of Theorem 2.5 from [3], there exist a space Z and
two perfect single-valued mappings f : Z −→ X and g : Z −→ Y onto X and Y ,
respectively. Hence, Y, Z ∈ P. Assertion 2 is proved. The proof is complete. �

6.4. Theorem. Let R be a topological semiring and E and F be non-trivial
metrizable locally bounded topological R-modules. Fix two non-empty spaces X
and Y with the properties:

- X is an R-Tychono� compactly E-full space and for any non-bounded subset
L of X there exists f ∈ C(X,E) such that the set f(L) is not a-bounded in E;

- Y is an R-Tychono� compactly E-full space and for any non-bounded subset
L of Y there exists f ∈ C(Y, F ) such that the set f(L) is not a-bounded in F .

Assume that u : Cp(X,E) −→ Cp(Y, F ) is a linear homeomorphism. Then:
1. The space X is µ-complete if and only if the space Y is µ-complete.
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2. X is a compact space if and only if Y is a compact space.
3. If P is a strongly perfect property and X, Y are wq-spaces, then X ∈ P if

and only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X con-
structed in the Section 7. Assertion 1 follows from Property 7.7.

Assume that P is a strongly perfect property and X, Y are wq-spaces. Suppose
that X ∈ P. By de�nition of a strongly perfect property, X is a µ-complete
space. From assertion 1 it follows that Y is a µ-complete space too. By virtue of
Theorem 2.5 from [3], there exist a space Z and two perfect single-valued mappings
f : Z −→ X and g : Z −→ Y onto X and Y , respectively. Hence, Y, Z ∈ P.
Assertion 3 is proved.

Let X be a compact space. By virtue of Theorem 6.3, Y is a pseudocompact
space. Hence X and Y are wq-spaces. Assertion 3 completes proof of Assertion 2.
The proof is complete. �

7. Application to open properties

We say that the property P is an of -property (open �nite property) if for any
continuous open �nite-to-one mapping f : X −→ Y and any subspace Z of X we
have Z ∈ P if and only if f(Z) ∈ P (see [3]).

7.1. Example. From the results from [3] and [5] the following properties are of -
properties: to be hereditarily Lindelöf; to be σ-space; to be hereditarily separable;
to be σ-metrizable; to be σ-scattered; to be σ-discrete space.

7.2. Example. Let τ be an in�nite cardinal. Consider the properties: X ∈ e(τ)
if and only if e(X) ≤ τ ; X ∈ d(τ) if and only if d(X) ≤ τ ; X ∈ hd(τ) if and only
if hd(X) ≤ τ ; X ∈ hl(τ) if and only if hl(X) ≤ τ .

Then e(τ), d(τ), hd(τ), hl(τ) are of -properties.

7.3. Theorem. Let R be a topological semiring and E, F be non-trivial locally
bounded topological R-modules. Fix two non-empty R-Tychono� spaces X and
Y with the properties:

- for any non-bounded subset L of X there exists f ∈ C(X,E) such that the
set f(L) is not a-bounded in E;

- for any non-bounded subset L of Y there exists f ∈ C(Y, F ) such that the set
f(L) is not a-bounded in F .

Assume that u : Cp(X,E) −→ Cp(Y, F ) is a linear homeomorphism. If P is an
of -property, then X ∈ P if and only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X con-
structed in the Section 7. As in [3] (see Theorem 2.1 from [3]) we put Z =
∪{{x}×ϕ(x) : x ∈ X} and S = ∪{ψ(y)×{y} : y ∈ Y } as subspaces of the spaces
X×Y , f(x, y) = x and g(x, y) = y for any point (x, y) ∈ X×Y . Then f : Z −→ X
and g : S −→ Y are continuous open �nite-to-one mappings. If D = Z ∩ S, then
from Property 7.4 it follows that f(D) = X and g(D) = Y . Hence X ∈ P if and
only if Y ∈ P. The proof is complete. �
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8. lp(E,F )-equivalence and metrizability

8.1. Theorem. LetR be a topological semiring and E, F be non-trivial metrizable
locally bounded topological R-modules. Fix two non-empty spaces X and Y with
the properties:

- X is an R-Tychono� compactly E-full space and for any non-bounded subset
L of X there exists f ∈ C(X,E) such that the set f(L) is not a-bounded in E;

- Y is an R-Tychono� compactly E-full space and for any non-bounded subset
L of Y there exists f ∈ C(Y, F ) such that the set f(L) is not a-bounded in F .

Let X and Y be lp(E)-equivalent spaces. Then:
1. X is a compact metrizable space if and only if Y is a compact metrizable

space.
2. If X is a metrizable space, then the space Y is metrizable if and only if Y is

a wq-space.

Proof. Any metrizable space is a wq-space.
Let X be a metrizable space and Y be a wq-space. Since X is metrizable, by

virtue of Theorem 6.3, Y is a paracompact p-space. From Theorem 7.3 it follows
that Y is a σ-space. If a paracompact space Y is a σ-space and a p-space, then Y
is metrizable [13]. Assertion 2 is proved.

Assertion 1 follows from the Assertion 2 and Theorem 6.3. The proof is com-
plete. �
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