
Hacettepe Journal of Mathematics and Statistics
Volume 46 (1) (2017), 103 � 110

Weakly discontinuous and resolvable functions
between topological spaces
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Abstract

We prove that a function f : X → Y from a �rst-countable (more
generally, Preiss-Simon) space X to a regular space Y is weakly dis-
continuous (which means that every subspace A ⊂ X contains an open
dense subset U ⊂ A such that f |U is continuous) if and only if f is
open-resolvable (in the sense that for every open subset U ⊂ Y the
preimage f−1(U) is a resolvable subset of X) if and only if f is resolv-
able (in the sense that for every resolvable subset R ⊂ Y the preimage
f−1(R) is a resolvable subset of X). For functions on metrizable spaces
this characterization was announced (without proof) by Vinokurov in
1985.
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1. Introduction and Main Result

In this paper we present a proof of a characterization of weakly discontinuous
functions announced (without proof) by Vinokurov in [14].

A function f : X → Y between topological spaces is called weakly discontinu-

ous if every subspace A ⊂ X contains a dense open subset U ⊂ A such that the
restriction f |U is continuous. It is well-known that for weakly discontinuous maps
f : X → Y and g : Y → Z the composition g ◦ f : X → Z is weakly discontin-
uous. Weakly discontinuous functions were introduced by Vinokurov [14]. Many
properties of functions, equivalent to the weak discontinuity were discovered in
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[1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14]. By [14, Theorem 8], a function f : X → Y from a
metrizable space X to a regular space Y is weakly discontinuous if and only if for
every open set U ⊂ Y the preimage f−1(U) is a resolvable subset of X. We recall
[10, I.12] that a subset A of a topological space X is resolvable if for every closed

subset F ⊂ X the set F ∩A∩F \A is nowhere dense in F . Observe that a subset
A ⊂ X is resolvable if and only if its characteristic function χA : X → {0, 1} is
weakly discontinuous. It is known [10, I.12] that the family resolvable subsets of
a topological space X is closed under intersections, unions, and complements.

A function f : X → Y between topological spaces is called (open-)resolvable
if for every (open) resolvable subset R ⊂ Y the preimage f−1(R) is a resolvable
subset of X. It is clear that each resolvable function is open-resolvable.

1.1. Proposition. If a function f : X → Y between topological spaces is weakly

discontinuous, then f is resolvable.

Proof. If a subset A ⊂ Y is resolvable, then its characteristic function χA : Y →
{0, 1} is weakly discontinuous. Since the weak discontinuity is preserved by com-
positions (see, e.g., [2, 4.1]), the composition g = χA ◦ f : X → {0, 1} is weakly
discontinuous, which implies that the set g−1(1) = f−1(A) is resolvable in X. �

By [14, Theorem 8], for functions between metrizable spaces, Proposition 1.1
can be reversed. However the paper [14] contains no proof of this important fact.
In this paper we present a proof of this Vinokurov's characterization in a more
general case of functions de�ned on Preiss-Simon spaces.

We de�ne a topological space X to be Preiss-Simon at a point x ∈ X if for any
subset A ⊂ X with x ∈ A there is a sequence (Un)n∈ω of non-empty open subsets
of A that converges to x in the sense that each neighborhood of x contains all but
�nitely many sets Un. By PS(X) we denote the set of points x ∈ X at which X is
Preiss-Simon. A topological space X is called a Preiss-Simon space if PS(X) = X
(that is X is Preiss-Simon at each point x ∈ X).

It is clear that each �rst-countable space is Preiss-Simon and each Preiss-Simon
space is Fréchet-Urysohn. A less trivial fact due to Preiss and Simon [12] asserts
that each Eberlein compact space is Preiss-Simon.

A base B of the topology of a space X will be called countably additive if the
union ∪C of any countable subfamily C ⊂ B belongs to B.

A function f : X → Y between topological spaces will be called base-resolvable

if there exists a countably additive base B of the topology of Y such that for every
set B ⊂ Y the preimage f−1(B) is a resolvable subset of X.

It is clear that for any function f : X → Y we have the implications:

weakly discontinuous ⇒ resolvable ⇒ open-resolvable ⇒ base-resolvable.

For functions on Preiss-Simon spaces these implications can be reversed, which
is proved in the following characterization. For functions on metrizable spaces it
was announced (without written proof) by Vinokurov in [14, Theorem 8].

1.2. Theorem. For a functions f : X → Y from a Preiss-Simon space X to a

regular space Y the following conditions are equivalent:

(1) f is weakly discontinuous;

(2) f is resolvable;
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(3) f is open-resolvable;

(4) f is base-resolvable.

This theorem will be proved in Section 3 after some preliminary work made in
Section 2.

By Theorem 1.2, any open-resolvable map f : X → Y from a Preiss-Simon
space X to a regular space Y is resolvable. We do not know if this implication still
holds for any function between regular spaces. The authors are grateful to Sergey
Medvedev for turning their attention to this intriguing question.

1.3. Problem (Medvedev). Is each open-resolvable function f : X → Y between
regular spaces resolvable?

The following example indicates that Problem 1.3 can be di�cult and shows
that the countable additivity of the base B cannot be removed from the de�nition
of a base-resolvable function.

1.4. Example. Let RQ be the real line endowed with the metrizable topology
generated by the countable base B =

{
(a, b) : a < b, a, b ∈ Q

}
∪
{
{q} : q ∈ Q

}
.

The identity map id : R → RQ is not (open-)resolvable as the preimage Q =

id−1(Q) of the open set Q ⊂ RQ is not resolvable in R. Yet, for every basic set

B ∈ B the preimage id−1(B) is a resolvable set in R.

2. Five Lemmas

In this section we shall prove some auxiliary results, which will be used in the

proof of Theorem 1.2. For a subset A of a topological space by Ā, A◦, and A
◦

we denote the closure, the interior, and the interior of the closure of A in X,
respectively. A family B of non-empty open subsets of a topological space X is
called a π-base if each non-empty open set U ⊂ X contains some set B ∈ B.

Following [2], we de�ne a function f : X → Y between topological spaces to
be scatteredly continuous if for every non-empty subset A ⊂ X the restriction f |A
has a continuity point. It is easy to see that each weakly discontinuous function
is scatteredly continuous. For maps into regular spaces the converse implication
is also true (see [1], [4] or [2, 4.4]):

2.1. Lemma. A function f : X → Y from a topological space X to a regular space

Y is weakly discontinuous if and only if f is scatteredly continuous.

We recall that for a topological spaceX its tightness t(X) is the smallest cardinal
κ such that for every subset A ⊂ X and point a ∈ Ā there exists a subset B ⊂ A
of cardinality |B| ≤ κ such that a ∈ B̄. The following lemma was proved in [2,
2.3].

2.2. Lemma. A function f : X → Y between topological spaces is scatteredly

continuous if and only if for any non-empty subset A ⊂ X of cardinality |A| ≤ t(X)
the restriction f |A has a continuity point.

2.3. Lemma. If A,B are disjoint resolvable subsets of a topological space X, then

Ā ∩ B̄ is nowhere dense in X.
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Proof. To derive a contradiction, assume that the set F = Ā∩ B̄ has a non-empty
interior U in X. Then U ∩A and U ∩B are two dense disjoint sets in U . By the
resolvability of A, the dense subset A ∩ Ū of Ū has nowhere dense boundary in
Ū . Consequently, the interior UA of the set A ∩ Ū is dense in Ū . By the same
reason, the interior UB of the set B ∩ Ū is dense in Ū . Then the non-empty space
Ū contains two disjoint dense open sets UA and UB , which is not possible. �

A function f : X → Y between topological spaces is de�ned to be almost

continuous (weakly continuous) at a point x ∈ X if for any neighborhoodOy ⊂ Y of
the point y = f(x) the (interior of the) set f−1(Oy) is dense in some neighborhood
of the point x in X. By AC(f) (resp. WC(f) ) we shall denote the set of point
of almost (resp. weak-) continuity of f .

2.4. Lemma. Let f : X → Y be a base-resolvable map from a topological space

X to a Hausdor� space Y . Then

(1) AC(f) = WC(f).
(2) If D is dense in X, Y is regular, and f |D has no continuity point, then

D \AC(f) also is dense in X.

(3) If X has a countable π-base, then for any countable dense set D ⊂ X there

is a point y ∈ f(D) such that for every neighborhood Oy of y the preimage

f−1(Oy) has non-empty interior in X.

(4) The family {f−1(y)
◦

: y ∈ Y } is disjoint.

Proof. Since f is basic-resolvable, there exists a countably additive base B of the
topology of Y such that for every U ∈ B the preimage f−1(U) is resolvable in X.

1. The inclusion WC(f) ⊂ AC(f) is trivial. To prove that AC(f) ⊂ WC(f),
take any point x ∈ AC(f). To show that x ∈WC(f), take any neighborhood Oy ∈
B of the point y = f(x) and consider the preimage f−1(Oy). Since x ∈ AC(f), the

closure F = f−1(Oy) is a neighborhood of x. Since the set f−1(Oy) is resolvable,

the boundary F ∩ f−1(Oy) ∩ F \ f−1(Oy) is nowhere dense in F . Consequently,
the interior of the set F ∩ f−1(Oy) in F is dense in F and x ∈WC(f).

2. Assume that D ⊂ X is dense, Y is regular, and f |D has no continuity point.
Given a point x ∈ D, and a neighborhood Ox ⊂ X of x we should �nd a point
x′ ∈ Ox ∩D \AC(f). If x /∈ AC(f), then we can take x′ = x. So we assume that
x ∈ AC(f) and hence x ∈WC(f) by the preceding item. Since x is a discontinuity
point of f |D, there is a neighborhood Of(x) of f(x) such that f(D ∩ Ux) 6⊂ Of(x)

for every neighborhood Ux of x. Using the regularity of Y choose a neighborhood
Uf(x) ⊂ Y of f(x) with Uf(x) ⊂ Of(x). Since f is weakly continuous at x, the

closure of the interior of the preimage f−1(Uf(x)) contains some open neighborhood
Wx of x. By the choice of Of(x), we can �nd a point x′ ∈ D ∩ Ox ∩ Wx with

f(x′) /∈ Of(x). Consider the neighborhood Of(x′) = Y \Uf(x) of f(x′) and observe

that Wx ∩ f−1(Of(x′)) is a nowhere dense subset of Ox (because it misses the

interior of f−1(Uf(x)) which is dense in Wx). This witnesses that x
′ /∈ AC(f).

3. Assume that X has countable π-base {Wn}n∈ω. We lose no generality
assuming that the subfamilies {W2n}n∈ω and {W2n+1}n∈ω are countable π-bases
in X. Given a countable dense subset D ⊂ X, we should �nd a point y ∈ f(D)
such that for every neighborhood Oy ⊂ Y the preimage f−1(Oy) has non-empty
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interior in X. Assume conversely that each point y ∈ f(D) has a neighborhood
Oy ∈ B such that the preimage f−1(Oy) has empty interior in X. The resolvability
of f−1(Oy) implies that this set is nowhere dense in X. We shall inductively
construct a sequence (xn)n∈ω of points of D and a sequence (Un)n∈ω of open sets
in Y such that

(a) f(xn) ∈ Un ∈ B and the set f−1(Un) is nowhere dense in X;
(b) xn ∈ D ∩Wn \

⋃
k<n f

−1(Un);
(c) Un ∩ {f(xk)}k<n = ∅.

Taking into account that {W2n}n∈ω and {W2n+1}n∈ω are π-bases in X, we
conclude that the disjoint sets {x2n}n∈ω and {x2n+1}n∈ω are dense in X. The
countable additivity of the base B guarantees that the open sets Ue =

⋃
n∈ω U2n

and Uo =
⋃

n∈ω U2n+1 belong to B. Then their preimages f−1(Ue) ⊃ {x2n}n∈ω
and f−1(Ue) ⊃ {x2n+1}n∈ω are disjoint dense resolvable sets in X. But this
contradicts Lemma 2.3.

4. Assuming that the family {f−1(y)
◦

: y ∈ Y } is not disjoint, �nd two distinct
points y, z ∈ Y such that the intersection

W = f−1(y)
◦
∩ f−1(z)

◦

is not empty. Observe that the sets W ∩ f−1(y) and W ∩ f−1(z) both are dense
in W .

By the Hausdor� property of Y the points y, z have disjoint open neighborhoods
Oy,Oz ∈ B. The choice of B guarantees that the sets f−1(Oy) and f−1(Oz) are

resolvable. By Lemma 2.3, the intersection f−1(Oy) ∩ f−1(Oz) is nowhere dense
in X, which is not possible as this intersection contains the non-empty open set
W . �

2.5. Lemma. Let f : X → Y be a base-resolvable map from a topological space

X to a regular space Y and D be a countable dense subset of X such that f |D has

no continuity point.

(1) For any �nite subset F ⊂ Y there is a dense subset Q ⊂ D \ f−1(F ) in X
such that f |Q has no continuity point.

(2) If X has a countable π-base, then for any sequence (Un)∞n=1 of non-empty

open subsets of X there are an in�nite subset I ⊂ N and sequences (Vn)n∈I
and (Wn)n∈I of pairwise disjoint non-empty open sets in X and Y , respec-
tively, such that Vn ⊂ Un ∩ f−1(Wn) for all n ∈ I.

(3) If D ⊂ PS(X), then there is a countable �rst countable subspace Q ⊂ D
such that Q contains no �nite non-empty open subsets and the restriction

f |Q is a bijective map whose image f(Q) is a discrete subspace of Y .

Proof. Fix a countably additive base B of the topology of Y such that for every
U ∈ B the preimage f−1(U) is resolvable in X.

1. The �rst statement will be proved by induction on the cardinality |F | of
the set F . If |F | = 0, then we can put Q = D and �nish the proof. Assume
that for some n > 0 the �rst statement is proved for all sets F ⊂ Y of cardinality
|F | < n. Take any �nite subset F ⊂ Y of cardinality |F | = n. Choose any point
y ∈ F . By the inductive hypothesis, for the set F \ {y} there exists a dense subset
E ⊂ D \ f−1(F \ {y}) such that the function f |E has no continuity points. We
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claim that the set E\f−1(y) is dense in X. In the opposite case, there exists a non-
empty open set U ⊂ X such that E∩U ⊂ f−1(y). It follows that E∩U ⊂ AC(f).
By Lemma 2.4(2), the set E \ AC(f) ⊂ E \ U is dense in X, which is a desired
contradiction showing that the set E \ f−1(y) is dense in X and so is the set

Q := (E \ f−1(y)) \
(
E ∩ f−1(y) \ E ∩ f−1(y)

◦)
⊂ D \ f−1(F ).

It remains to check that the restriction f |Q has no continuity points. To derive
a contradiction, assume that some point x0 ∈ Q is a continuity point of the
restriction f |Q. If x0 /∈ E ∩ f−1(y), then the discontinuity of the map f |E at x0
implies the discontinuity of f |Q at x0. So, x0 belongs to the interior E ∩ f−1(y)

◦

of E ∩ f−1(y).
Let y0 = f(x0) and observe that y0 6= y (because x0 /∈ f−1(y)). By the

Hausdor� property of Y the points y0 and y have disjoint open neighborhoods
Oy0, Oy ∈ B. By the continuity of f |Q at x0, there is an open neighborhood

Ox0 ⊂ E ∩ f−1(y)
◦
of x0 such that f(Ox0 ∩ Q) ⊂ Oy0. It follows that the

preimages f−1(Oy0) and f−1(Oy) are disjoint resolvable subsets ofX. The density
of the set Q in X implies the density of the set Ox0 ∩ f−1(Oy0) ⊃ Ox0 ∩ Q
in Ox0. On the other hand, the intersection f−1(y) ∩ E ∩ f−1(y)

◦
is dense in

E ∩ f−1(y)
◦
and hence Ox0∩f−1(Oy) ⊃ f−1(y)∩Ox0 is dense in Ox0. Therefore,

f−1(Oy0) ∩ f−1(Oy) contains the non-empty open set Ox0. But this contradicts
Lemma 2.3.

2. Assume that the space X has a countable π-base and let (Un)∞n=1 be a
sequence of non-empty open subsets of X. Applying Lemma 2.4(3) to the map
f |U1 and the dense subset D ∩ U1, �nd a point y0 ∈ f(D ∩ U1) such that for
each neighborhood Oy0 the preimage U1 ∩ f−1(Oy0) has non-empty interior. By
induction, for every n ∈ N we shall �nd a point yn ∈ f(D) \ {yi : i < n} such that
for every neighborhood Oyn the set Un ∩ f−1(Oyn) has non-empty interior.

Assuming that for some n the points y0, . . . , yn−1 have being chosen, we shall
�nd a point yn. It follows that the intersection D∩Un is a countable dense subset
of Un such that f |D ∩ Un has no continuity point. Applying Lemma 2.5(1), we
can �nd a dense subset Q ⊂ D ∩ Un \ f−1({y0, . . . , yn−1}) in Un such that the
restriction f |Q has no continuity point. Applying Lemma 2.4(3) to the map f |Un

and the dense subset Q ∩ Un of Un, �nd a point yn ∈ f(Q) ⊂ f(D) \ {yi : i < n}
such that for each neighborhood Oyn the preimage Un ∩ f−1(Oyn) has non-empty
interior. This completes the inductive construction.

The space {yn : n ∈ N}, being in�nite and regular, contains an in�nite discrete
subspace {yn : n ∈ I}. By induction, we can select pairwise disjoint open neigh-
borhoods Wn ⊂ Y , n ∈ I, of the points yn. For every n ∈ I, the choice of the
point yn guarantees that the set Un∩ f−1(Wn) contains a non-empty open set Vn.
Then the set I ⊂ N and sequences (Vn)n∈I , (Wn)n∈I satisfy our requirements.

3. Assume that D ⊂ PS(X). Using the density of the countable set D and
the inclusion D ⊂ PS(X), we can show that the space X has a countable π-base.
Applying Lemma 2.4(2), we get that D \AC(f) is dense in X.

By induction on the tree ω<ω we shall construct sequences (xs)s∈ω<ω of points
of the set D \AC(f), and sequences (Vs)s∈ω<ω and (Us)s∈ω<ω , (Ws)s∈ω<ω of sets
so that the following conditions hold for every �nite number sequence s ∈ ω<ω:
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(a) Vs is an open neighborhood of the point xs in X;
(b) Ws ⊂ Us are open neighborhoods of f(xs) in Y ;
(c) f(Vs) ⊂ Us;
(d) Vsˆn ⊂ Vs and Usˆn ⊂ Us for all n ∈ ω;
(e) the sequence (Vsˆn)n∈N converges to xs;
(f) Ws ∩ Usˆn = ∅ = Usˆn ∩ Usˆm for all n 6= m in ω.

We start the induction letting V∅ = X, U∅ = Y and x∅ be any point of D \
AC(f).

Assume that for a �nite sequence s ∈ ω<ω the point xs ∈ D \AC(f) and open
sets Vs ⊂ X and Us ⊂ Y with xs ∈ Vs and f(Vs) ⊂ Us have been constructed.
Since f |Vs fails to be almost continuous at xs, there is a neighborhood Ws ⊂ Us of
f(xs) such that the closure of the preimage f−1(Ws) is not a neighborhood of xs
in X. This fact and the Preiss-Simon property of X at xs allows us to construct a
sequence (V ′k)k∈ω of open subsets of Vs \clX

(
f−1(Ws)

)
that converges to xs in the

sense that each neighborhood of x contains all but �nitely many sets V ′k. Applying
Lemma 2.5(2) to the map f |Vs : Vs → Us, we can �nd an in�nite subset N ⊂ ω
and a sequence (U ′k)k∈N of pairwise disjoint open sets of Us such that each set
f−1(U ′k) ∩ V ′k, k ∈ N , has non-empty interior in X. Let N = {kn : n ∈ ω} be the
increasing enumeration of the set N .

For every n ∈ ω let Usˆn = U ′kn
\ Ws, Vsˆn be a non-empty open subset in

f−1(Ukn
) ∩ V ′kn

and xsˆn ∈ Vsˆn ∩ D \ AC(f) be any point (such a point exists
because of the density of D \ AC(f) in X). One can check that the points xsˆn,
n ∈ ω and sets Ws, Vsˆn, Usˆn, n ∈ ω satisfy the requirements of the inductive
construction.

After completing the inductive construction, consider the set Q = {xs : s ∈
ω<ω} and note that it is �rst countable, contains no non-empty �nite open subsets,
f |Q is bijective and f(Q) is a discrete subspace of Y . �

3. Proof of Theorem 1.2

Given a function f : X → Y from a Preiss-Simon space X to a regular space Y
we need to prove the equivalence of the following conditions:

(1) f is weakly discontinuous;
(2) f is resolvable;
(3) f is open-resolvable.
(4) f is base-resolvable.

The implication (1)⇒ (2) follows from Proposition 1.1 and (2)⇒ (3)⇒ (4) are
trivial. To prove that (4)⇒ (1), assume that the function f is base-resolvable but
not weakly discontinuous. By Lemma 2.1, f is not scatteredly continuous. The
space X, being Preiss-Simon, has countable tightness. Then Lemma 2.2 yields a
non-empty countable set D ⊂ X such that the restriction f |D has no continuity
points. Applying Lemma 2.5(3) to the restriction f |D, we can �nd a countable
�rst-countable subset Q ⊂ D without �nite open sets such that f |Q is bijective
and f(Q) is a discrete subspace of Y . It is clear that f |Q has no continuity point.
The space X being second countable and without �nite open sets, can be written
as the union Q = Q1 ∪Q2 of two disjoint dense subsets of Q.
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Let B be a countably additive base for Y such that for every B ∈ B the
preimage f−1(B) is resolvable in X. Since the set f(Q) is countable and discrete,
for every x ∈ Q we can select a neighborhood Of(x) ∈ B of f(x) so small that the
family {Of(x) : x ∈ Q} is disjoint. The countable additivity of the base B implies
that for every i ∈ {1, 2} the set Wi =

⋃
x∈Qi

Of(x) belongs to B. Consequently,

the preimage f−1(Wi) is a resolvable subset of X and hence Q̄ ∩ f−1(Wi) ⊃ Qi

is a dense resolvable subset of Q̄. So, the space Q̄ contains two disjoint dense
resolvable subsets Q̄ ∩ f−1(W1) and Q̄ ∩ f−1(W2), which contradicts Lemma 2.3.
This contradiction completes the proof of the implication (4)⇒ (1).
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