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A study of the quasi covering dimension for finite
spaces through the matrix theory

D. N. Georgiou*, A. C. Megaritis* and F. Sereti®

Abstract

We use matrices to study the dimension function dimg, calling quasi
covering dimension, for finite topological spaces, which is always greater
than or equal to the classical covering dimension dim. In particular,
we present algorithms in order to compute the dim,(X) of an arbitrary
finite topological space X.
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1. Preliminaries and notations

In this section we recall the notion of the topological covering dimension. We
refer to [3,6] for more details.

A cover of a topological space X is a non-empty set of subsets of X, whose
union is X. A cover ¢ of X is said to be open (closed) if all elements of ¢ are open
(closed). A family r of subsets of X is said to be a refinement of a family ¢ of
subsets of X if each element of r is contained in an element of c.

In what follows, we consider two symbols, “—1" and “co0", for which we suppose
that:

(1) =1 <k < oo for every k € {0,1,...}.
(2) co+k=k+oo=00,-14+k=k+(-1) = kforevery k € {0,1,...} U{-1,00}.
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We define the order of a family r of subsets of a space X as follows:

(a) ord(r) = —1 if and only if r consists the empty set only.

(b) ord(r) = k, where k € {0,1,...}, if and only if the intersection of any k + 2
distinct elements of r is empty and there exist k£ + 1 distinct elements of r,
whose intersection is not empty.

(c) ord(r) = oo, if and only if for every k € {1,2,...} there exist k distinct
elements of r, whose intersection is not empty.

We denote by dim the function, calling covering dimension, with domain the
class of all topological spaces and range the set {0, 1,...} U{—1, 00}, satisfying the
following conditions:

(1) dim(X) < k if and only if for every finite open cover c of the space X there
exists a finite open cover r of X, refinement of ¢, such that ord(r) < k.

(2) dim(X) =k, if dim(X) < k and dim(X) £ k — 1.

(3) dim(X) = oo, if dim(X) < k does not hold for every k = —1,0,1,2,...

In study [5], we insert a topological dimension, calling quasi covering dimension
and we prove that it is always greater than or equal to the classical covering
dimension.

1.1. Definition. [5] A quasi cover of X is a non-empty set of subsets of X, whose
union is dense in X. A quasi cover ¢ of X is said to be open if all elements of ¢ are
open in the space X. Moreover, two quasi covers c¢; and co are said to be similar
(in short ¢; ~ ¢2) if their unions are the same dense subset of X.

For every topological space X the relation ~ is an equivalence relation on the

set of all quasi covers of X. The collection of all equivalence classes under ~ will
be denoted by QC(X, ~).

1.2. Definition. [5] We denote by dim, the function, calling quasi covering
dimension, with domain the class of all topological spaces and range the set
{0,1,...} U{—1, 00}, satistying the following conditions:
(1) dimy(X) < k if for every finite open quasi cover ¢ of X there exists a finite
open quasi cover 7 of X such that r ~ ¢, r is a refinement of ¢, and ord(r) < k.
(2) dimy(X) =k if dim,(X) < k and dim,(X) £ k — 1.
(3) dimy(X) = oo if dim,(X) < k does not hold for every k = —1,0,1,2,...
In this paper we shall consider only finite topological spaces. Let
X ={z1,29,..., 2}
be a finite topological space and let U; be the smallest open subset of X which
contains the point z;, for i = 1,2,...,n. We give some notations which will be

used in the rest of our study (see [1,2]).
The n x n matrix Tx = (t;;), where

P 1, ifx; € Uj
v 0, otherwise
is called the incidence matriz of the space X. We denote by ¢1,c¢s,...,¢c, the n

columns of the matrix Tx and by 1 the n x 1 matrix which has all the elements
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equal to one, that is

1
1
1= .
1
Let i1,i2,...,%m be distinct elements of the set {1,...,n}. By a;i,...;,, and
biyiy-.i,, We denote respectively the n x 1 matrices
1 1
‘%2112&” bémzm
1122 tm 1122 tm
Qiyigerig, = . and  biiy..i,, = ) ;
n n
ai1i2“'i7n i1i2"'7;7n
where
@ . 1, ifie{ihig,...,im}
treartm 0, otherwise
and
i o 0, lftulzt“Q::t“m:O
frearim 1, otherwise.
Let
C14 C1j
C24 C2j
ci = . and ¢; = .
Cni Cnj

be two n x 1 matrices. Then, by max(c;) we denote the maximum of the set

{c1i, €215 .., Ccni} and by ¢; + ¢; the n x 1 matrix
C1; + C15
C2i + C2j
¢ +c¢; = .
Cni + Cnj
Also, we write ¢; < ¢; if only if ¢y < ¢y, for each s =1,...,n.

The rest of the paper is organized as follows. In section 2 we give an algorithm
to compute the dimension dim, of a space X through a characterization of open
and dense subsets of X. In section 3 we present a new algorithm to compute the
dimension dim, using the notion of quasi covers. Finally, in section 4 we present
remarks concerning to this dimension.

2. An algorithm to compute the dimension dim,(X) through a
characterization of open and dense subsets of X

In this section we are going to characterize the open and dense subsets of a
fixed finite topological space X = {z1,xa,...,2,} using matrices.
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2.1. Proposition. Let iy, ..., i, be distinct elements of the set {1,...,n}. Then,
{Ziy, ..z, } =U;, U...U Uy, for some ji,...,5 € {i1,...,im} if and only if
Ajiin iy, — bj1j2"'jz .

Proof. Let {xz;,,...,z;,} = Uj;, U...UUj,, for some ji,...,5 € {i1,...,im}.
We prove that ai,4y...i,, = bj,j,...j,- For every i € {1,...,n} in the i-row of these
matrices we have the following cases:

(1) alyq, =1eic{in,....in} & a € {2iy,..., 2, }
& there exists r € {1,...,1} such that z; € Uj,
Sty =1 b;'le"'jl =1
(2) a}yq, =0 i ¢ {in, .. im} &z ¢ {2y, 20, }
< x; ¢ Uj,, foreach r € {1,...,1}
& t;, =0, foreach r € {1,...,l} & b;-ljz,,,jl =0.
We conclude that a;,4,...5,, = bj1js-. ;-
Conversely, assume that a;,4,...i,, = 0j, jp--j,, for some ji,..., 5 € {i1,...,im}.
We prove that {z;,,...,2;,} = Uj U...UU;,. Let i € {i1,...,im}. Then,
trig-i,, = 1. By assumption, b} . . = 1. Therefore, there exists r € {1,...,1}

such that t;;, = 1 or equivalently z; € U, . Hence, {z;,,...,2;,} C U; U...UUj,.
Let z; € Uj; U...UUj;,. Then, there exists r € {1,...,l} such that z; € Uj,

or equivalently ¢;;, = 1. Thus, b§1j2~~~jz = 1. By assumption, aélizmim =1 and,
therefore, z; € {z;,,...,;,}. Hence, U;, U...UUjy, C {x;,...,z;,}. Thus,
{xiw'":xim}:UjlU"-UUjl' ([l

2.2. Corollary. Let i1,...,imy be distinct elements of the set {1,...,n}. Then,
{Ziy,... @i, } = U, , for somer € {1,...,m} if and only if a; ip....,, = ¢

g

Proof. Follows from Proposition 2.1 and by the fact that b;, = ¢; , for every
re{l,...,m}. O

2.3. Proposition. Let ji,...,J; be distinct elements of the set {1,...,n}. The
set Uj, U...UUj, is dense in X if and only if max(bj, j,...;, + ¢;) = 2, for each
je{l,....,n}\ {1, 41}

Proof. Suppose that U;, U...UUj, isdensein X andlet j € {1,...,n}\{j1,..., 4}
We set k& = max(bj, ,...;, + ¢;) and prove that k& = 2. Clearly, £ > 0 and by
the definitions of the matrices Tx and b;, j,..;, we have that either £ = 1 or
k = 2. Since U;, U...UUj, is dense in X, there exists ¢ € {1,...,1} such that
U;, NU; # 0. Therefore, t;,;, = t;,; = 1, for some ig € {1,...,n}, which means
that b0, o +ti; =1+1=2. Thus, k=2.

Conversely, let max(b;, j,...;, +¢;) = 2, for each j € {1,...,n}\ {j1,..., 5}
We shall prove that the set Uj;, U...UUj, is dense in X. Assume that the set
U;, U...UUj, is not dense in X. Then, there exists an open set U in X such that

(2.1) Un(U;,uU...uU;,) = 0.

Therefore, there exists € {1,...,n} such that U, CU and z, ¢ U;, U...UUj,.
Hence, p ¢ {j1,...,Ji}. Since max(bj, j,...;, + ¢u) = 2, there exists ig € {1,...,n}
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such that b§2j2~~jl = tiou = 1. Thus, z;, € U; NU,, for some ¢ € {1,...,1}, which
contradicts the relation (2.1). O
Since for every open subset U = {z;,,...,x;, } of X there exist elements

Jis--»01 € {t1,...,im} such that U = Uj;, U...U Uy, from Propositions 2.1
and 2.3 we have the following corollary.

2.4. Corollary. Let i1,...,iy be distinct elements of the set {1,...,n}. Then,
the set {x;,,...,x;,} is open and dense in X if and only if the following conditions
hold:

(1) There exist ji,...,j51 € {41,...,im} such that a;,iy..i,, = bj iy ji-

(2) max(bj, j,...;, +¢;) =2, for each j € {1,...,n}\ {j1,...,ji}-

2.5. Example. Let X = {x;,x5,23,24,25}. We consider on X the topology
which has as a basis the family {{z1}, {z1, 22}, {z1, 23}, {z1, 24}, {21, 23, 24, 25} }.
The incidence matrix Tx of X is the 5 x 5 matrix

11111
01000
Tx=]00 10 1|,
0001 1
0000 1

where Uy = {21}, Uy = {z1,22}, Uz = {21,235}, Uy = {x1,24} and Uz =
{@1, 23,24, 25}
For the subset {z1} of X we have

a; = :blzcl.

OO O O

Hence, this set is open in X and by Corollary 2.2 we have that {z;} = Uj.
Moreover,

by +c2 = , bite3= y bites= , bites=

O OO N
OO = O N

_— o O N
—_ == O N

o

Therefore, max (b + ¢;) = 2, for j = 2,3,4,5. By the Corollary 2.4 we have that
the set {x} is open and dense in X.
For the subset {z2,23} of X we have

a23 =

SO == O
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1 1 1
1 0 1
Since as3 75 b2 = 0 , 423 75 b3 = 1 , a23 7é b23 = 1 s by Proposition
0 0 0
0 0 0
2.1 the set {xq, x5} is not open in X.
For the subset {x1, 23,24} of X we have
1
0
aiza=| 1 | =ba.
1
0

Hence, this set is open in X and by Proposition 2.1 we have that {z1, 23,24} =
U3 U Uy,. Moreover,

b3y +c1 = , bag + o= , bag +c5 =

O = = O N
O R R =N
= NN O N

Therefore, max(bsa + ¢;) = 2, for j = 1,2,5. By the Corollary 2.4 we have that
the set {x1,x3, x4} is open and dense in X.

2.6. Proposition. [5] For the space X we have
dimy(X) = max{dim(D) : D is an open and dense subset of X}.
From Corollary 2.4 we get the following proposition.
2.7. Proposition. The quasi covering dimension dimy(X) is equal to the maxi-
mum of all dim({x;,,...,x;, }) with the properties:
(1) There exist ji,...,5 € {i1,...,im} such that a;,iy...i,, = bj jp-jy-
(2) max(bj, j,...;, +¢;) =2, for each j € {1,...,n}\ {j1,..., 5}
In the study [2] it was presented an algorithm of polynomial order for comput-

ing the covering dimension of the space X = {z1,...,2,}. More precisely, the
algorithm consists of the following n — 1 steps:

2.8. Algorithm.

Step 1: Read the n columns cyq,...,c, of the incidence matrix Tx of X. If some
column is equal to 1, then print dim(X) = 0. Otherwise, go to Step 2.

Step 2: Find the sums c;,, +c¢jp, +...+¢j, for each

—11
{j117j213 s aj(n—l)l} c {17 cee 7n}'
If there exists {59,79;,. .. 7j?n71)1} C{1,...,n} such that
o, Tyt 2L
then go to Step 3. Otherwise, print

dim(X) =max(c; +ca+...+¢p) — 1.
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Step 3: Find the sums ¢, +¢j,, +... + ¢, for each

—2)29
{j12: 22+ - - -+ Gn-2)2} € {501, 390 - - - 7j?n—1)1}'
If there exists {39,759, . . 7j?n—2)2} C {59,499, ... 7j?n—1)1} such that

Cigy T g+ H gy, 2 L

then go to Step 4. Otherwise, print

dim(X) = max(cjo +cjo +...+ Cj?nfm) -

Step n — 2: Find the sums ¢;,,_, + ¢j, + Ciyn_sys for each

n—3)
{jl(n—S)ajQ(n—3)7j3(n—3)} C {j?(nféi)?jg(n74)’jg(n74)7jg(nf4)}‘

If there exists {j}(,,_3): Ja(n_3):J3n-3)} S {5 (n-1)>J2(n—1) J3(n—1) Jd(n—1)} SUch
that

Cj?(n—S) + cjg(n—3) + ng(n—B) 2 1’
then go to Step n — 1. Otherwise, print
dim(X) = max(c

-0
J1(n—a)

+c

0
J2(n—1)

+c

-0
J3(n—3)

+c

0
Ja(n—a)

) —
Step n — 1: Find the sums ¢;, ,_, +¢j,,_,, for each

{J1tn—2):J2n-2)} € {83y Jo(n—3) I5(n—3) }-
If there exists {j?(nf2)7jg(n72)} C {j?(nf?))’jg(nf?))’jg(nf?))} such that

) ) >
CJ?(TL*Z) + C‘]g(n72) =1,

then print

)— L.

2.9. Remark. It was proved that an upper bound on the number of iterations of
the Algorithm 2.8 is %n2 + %n - 3.

dim(X) = max(c;o +c

0
J1(n—2) J2(n—2)

Now, we are going to give an algorithm for computing the quasi covering di-
mension of the space X = {x1,...,z,}.

2.10. Algorithm.
Step 0: Read the n columns cy, ..., ¢, of the incidence matrix Ty of X.
Step 1: Find k; = dim(X) (Algorithm 2.8).
Step 2: Find the set P; of all subsets {411,...,i(,—1)1} of {1,...,n} with the
properties:
(1) There exist j11, AN ajll S {iu, ce 7i(n71)1} such that
= bji1jor-n-
(2) max(bjujm.“jll + Cj) = 2, for each ] S {1, .. ,TL} \ {jlla L. ajll}-

Aiir-i(n—1)1
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If P; = 0, then put k2 = 0 and go to the step 3. Otherwise, use Algorithm 2.8 to
find

ko = max({dim({ws,,, -, Tig,_1y, }) i1, Gm-1)1} € P1})

and go to the Step 3.
Step 3: Find the set Py of all subsets {i12,...,i(n—2)2} of {1,...,n} with the
properties:

(1) There exist ji,...,J12 € {i12,...,%(n—2)2} such that

Qiying ign_2y2 = O

(2) max(bj,pjpn-jiz +¢5) =2, for each j € {1,...,n}\ {j12,..., 512}
If o = 0, then put k3 = 0 and go to the step 4. Otherwise, use Algorithm 2.8 to
find

Jj12j22° Jiz*

ks = max({dim({xilza s axi(nfz)z}) : {i127 cey Z‘('11—2)2} € ?2})
and go to the Step 4.

Step m: Find the set P,,_; of all subsets {i1(,—1)} of {1,...,n} with the property
Qiynry = Disgusy = Cirguoyy: I Pno1 = 0, then put &, = 0 and go to the step
n + 1. Otherwise, use Algorithm 2.8 to find

kp = max(dim({zi,,_,,}) : {i1n-1)} € Pn1)
and go to the Step n + 1.
Step n + 1: Print dim,(X) = max{k1, k2,...,kn}.
2.11. Example. Let X be the space of Example 2.5. We use Algorithm 2.10 to
compute dimg(X).

Step 0. The 5 columns of the incidence matrix T’y are

1 1 1 1 1
0 1 0 0 0
C1 = 0 , Co = 0 , C3 = 1 , C4 = 0 , C5 = 1
0 0 0 1 1
0 0 0 0 1

Step 1. Using Algorithm 2.8 we find k; = dim(X) = 1.

Step 2. We have Py = {{1,2,3,4},{1,3,4,5}}. Using Algorithm 2.8 we find
dim({z1,x2,z3,24}) = 2 and dim({z1, x3, x4, 25}) = 0. Therefore, ky = 2.

Step 3. We have P, = {{1,2,3},{1,2,4},{1, 3,4}}. Using Algorithm 2.8 we find
dim({z1, 22, z3}) = dim({z1, 22, 24}) = dim({z1, 23, 24}) = 1. Therefore, ks = 1.
Step 4. We have P35 = {{1,2},{1,3},{1,4}}. Using Algorithm 2.8 we find
dim({z1,22}) = dim({z1, z3}) = dim({z1,24}) = 0. Therefore, ky = 2.

Step 5. We have P4 = {{1}}. Using Algorithm 2.8 we find dim({z1}) = 0.
Therefore, k5 = 0.

Step 6. Print dim,(X) = max{k1, k2, k3, ka, ks } = 2.
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3. An algorithm to compute the dimension dim,(X) using the no-
tion of quasi cover

In what follows, we consider a fixed finite topological space X = {z1,za,...,2Tn}-
For every ¢ € QC(X,~) we denote by c(X) the set of all subsets {x;,,...,2;,, }
of X such that the family {U,,,..., U, } € c. Also by <. we define a relation on
the set c(X) as follows:

{Tiys ooy miy, 3 Re {mig, @i, )
if and only if
{U;,,...,U
This relation is a preorder on the set c(X).

3.1. Definition. Let ¢ € QC(X,~). Every minimum element of (c(X), =) is
called a c-minimal family.

}C{Uy,..., Uy, V.

tmy mo

3.2. Remark. (1) For the finite topological space X and for every ¢ € QC(X, ~)
there exist c-minimal families on the set c(X) (see Proposition 3.4).

(2) If {@;,,...,@i,, } and {@y,... 2y } are two c-minimal families, for some
Ccc QC(X,N) then {Ui17~ .. 7Uim1} = {Ul/l’ - 7Ui;n2}.

(3) It is known that a finite space X is Ty if and only if U; = U; implies z; = z;
for every i,j. We note that, if the finite space X is T, then the relation =<, is an
order. Also, in this case there exists exactly one minimal family on the set c(X).
3.3. Proposition. Let ¢ € QC(X,~). If the family {z;,,...,z;,} € c(X) is

not a c-minimal family, then there exist i,...,i,,_1 € {i1,...,im} such that
{wig, e} € e(X).

Proof. Suppose that the family {x;,,...,2;,} € ¢(X) is not c-minimal. Then,
there exists {z;,,...,z,,} € ¢(X) such that {z;,,...,2z;,} Zec {Zr,..., 2} OF
equivalently {U;,,...,U; } € {U,,,..., U, }. Let a € {1,...,m} such that
U,, ¢{U,,,...,U,, }. Since {U,,..., U, } € c, there exists 3 € {1,..., u} such
that z;, € U,,. By the fact that U;_ is the smallest open set of X containing
the point z;, we have that U;, C U,,. Also, since U;, ¢ {U,,,..., U, }, we
have U;, # U,,. Therefore, U;, C U,,. Since {U;,,...,U; } € c, there exists
v € {1,...,m} such that z,, € U; . By the fact that U, is the smallest open set
of X containing the point x,, we have that U,, C U; . Hence, U;, C U;, and,
therefore, the family {U;,,...,U; }\{U;_ } € c has m — 1 elements. |

3.4. Proposition. Let c € QC(X, ~),
v =min{m € {1,2,...} : there exist ji,...,jm such that {z;,...,z; } € c(X)},

and {x;,,...,x;,} € c(X). Then, {z;,,...,xz;,} is a c-minimal family.

Proof. Suppose that the family {x;,,...,z;, } is not c-minimal. By Proposition
3.3, there exists an element of ¢(X) with v — 1 elements, which is a contradiction
by the choice of v. O

3.5. Proposition. Let ¢ € QC(X,~) and {x;,,..., 2, } be a c-minimal family.
If ord({Uy,,..., Uy, }) = k > 0, then for every {z,,,...,z,,} € c(X) we have
ord{U,,,..., U, }) > k.
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Proof. Let {z,,...,7,,} € c(X). Then, {z;,...,2;,} =c {7,,...,2,,} and,
therefore, {U;,,...,U;, } € {U,,,..., U, }. Since ord({U;,,...,U; }) =k, we
have ord({U,,,..., U, } > k. O O

3.6. Proposition. Let k € {0,1,...}. Then, dimy(X) < k if and only if for every
c € QC(X, ~) there exists {U;,,...,U; } € ¢ such that ord({U,,,...,U; }) < k.

Proof. Let dimy(X) < k and ¢ € QC(X, ~). We set
v =min{m € {1,2,...} : there exist i1,...,%, such that {U,,,...,U; } € c}

and ¢ = {U;,,...,U;, } € c. Since dim,(X) < k, there exists an open quasi cover
r={Vi,...,V,} of X such that r ~ ¢, r is a refinement of ¢, and ord(r) < k. For
the proof of the proposition it suffices to prove that ¢ C r. We suppose that there
exists a € {1,...,v} such that U;_ ¢ r. Since r ~ ¢, there exists 8 € {1,...,u}
such that z; € V. By the fact that U,_ is the smallest open set of X containing
the point z; we have that U; C V. Also, since U, ¢ r, we have U, # V3.
Therefore, U;, C V. Since r is a refinement of ¢, there exists v € {1,...,v} such
that Vs C U, . Hence,
Uia C in'

We observe that the family ¢\{U;_} € c has v—1 elements, which is a contradiction
by the choice of v. Thus, ¢ C r.

Conversely, suppose that for every ¢ € QC(X, ~) there exists {U,,,...,U; } €
c such that ord{U,,,...,U;, }) < k. We prove that dim,(X) < k. Let ¢ be an
arbitrary finite open quasi cover of the space X. Then, there exists ¢ € QC(X, ~)
such that ¢ € ¢. Let r = {U;,,...,U;_} € ¢ such that ord({Uy,,...,U;, }) < k.

Then, r ~ ¢. Tt suffices to prove that the open quasi cover {U;,,...,U; } of X is
a refinement of c¢. Indeed, since r ~ ¢, for each ¢ € {1,...,m} there exists V; € ¢
such that z;, € V. Hence, U;, CV,, for every ¢ € {1,...,m}. O

3.7. Proposition. Let k € {0,1,...}. Then, dimy(X) < k if and only if for
every ¢ € QC(X,~) there exists a c-minimal family {x;,,...,z; } such that
ord({Uj,,..., Uj, }) < k.

Proof. Let dim,(X) < k and ¢ € QC(X,~). By Proposition 3.6 there exists
{Ii“. .. ,Iim} S C(X) with OI‘d({Uil, ce 7Uim}) < k. Let {,Ijl, v ,Iju} € C(X)
be a c-minimal family (see Proposition 3.4). If ord({Uj,,,..., U, }) > k, then by
Proposition 3.5, ord({U;,,...,U; }) > k, which is a contradiction. Therefore,
ord{Uj,,...,U;, }) < k.

Conversely, suppose that for every ¢ € QC(X, ~) there is a c-minimal family
{zj,...,x; } such that ord({Uj,,...,U,,}) < k. Then, {U;,,..., U, } € c and
by Proposition 3.6 we have dim,(X) < k. O

3.8. Proposition. [1] Let ¢;,,...,c;,, be m columns of the incidence matriz Tx
and k = max(c;, +...+¢;,,). Then, ord({U;,,...,U; })=k— 1.

3.9. Proposition. For every c € QC(X,~) let {zs,...,25c } € ¢(X) be a c-
minimal family. Then,

dimy(X) = max{max(cie 4 ...+ ¢cic ) —1:c € QC(X,~)}.
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Proof. Let ke = max(cse + ...+ ¢ ), for every ¢ € QC(X, ~) and

k=max{kc —1:ce€ QC(X,~)}.
By Proposition 3.8 we have
(3.1) ord({Uge, ..., Uic }) = ke — 1, c € QC(X, ~).
Therefore, by Proposition 3.7, dim,(X) < k. We prove that dim,(X) = k. Sup-
pose that dim,(X) < k. Let ¢ € QC(X, ~) such that k = k¢, —1. By Proposition
3.6 there exists {U,,,...,U,,} € ¢ such that ord({U,,,...,U,,}) < k. By rela-
tion (3.1) we have ord({Ujeo, ..., Useo }) = ke, — 1 = k. Therefore, by Proposition
3.5, ord({U,,,..., U, }) > k which is a contradiction. Thus, dim,(X)=4k. O

The proof of the following proposition is a straightforward verification from the
definitions.
3.10. Proposition. The quasi covers {U;,,...,U;, } and {Uj,,...,U;, } of X
are similar if and only if by iy.ip, = bj jjy, -

Using the notion of the quasi cover, Proposition 2.3 can be written as follows.

3.11. Proposition. Let iy,...,i,, be distinct elements of the set {1,...,n}. The
set {U;,,..., U, } is a quasi cover of X if and only if max(bi,i,....,, +¢;) = 2, for
each j € {1,...,n}\ {i1,...,im}.

3.12. Proposition. Let i1,..., iy, be distinct elements of the set {1,...,n} such
that max(b;,iy...i,, +¢;) = 2, for each j € {1,...,n} \ {i1,....im}. If for every
set {1, yip, 1} C {i1,... im} we have by ..ir  F biyiy.,,, then the family
{zi,,...,z;, } is a c-minimal family, where {U;,,...,U; } € c.

Proof. By Proposition 3.11 the set {U;,,...,U; } is a quasi cover of X. Let c
be the element of QC(X,~) for which {U;,,...,U; } € c. Suppose that the

family {z;,,...,2; } is not a c-minimal family. By Proposition 3.3, there exist
i1y 1 € {i1,..+,im} such that {z;,...,zy } € ¢(X). By Proposition
3.10, byris..ir . = biyiy...i,, Which is a contradiction. (]

The proof of the following proposition is straightforward verification of the
Propositions 3.9 and 3.12.

3.13. Proposition. The quasi covering dimension dim,(X) is equal to the max-
imum of all max(¢c;, + ...+ ¢;,, ) — 1 with the properties:

(1) max(bsiy...i,, +¢;5) =2, for each j € {1,...,n}\ {i1,...,im}.

(2) For every {i,...,ip,_1} C{i1,...,im} we have by .0 F# bijiyeiy, -
3.14. Algorithm.
Let X = {x1,...,2,} be a finite space. Our intended algorithm contains the

following n + 1 steps:
Step 0. Read the n columns cy,...,c, of the matrix Tx.

Step 1. Find the set Sy of all {i11} C {1,...,n} satisfying the property:
max(b;,, +¢;) =2, for each j € {1,...,n}\ {in1 }.
If S; = 0, then put k; = 0 and go to the Step 2. Otherwise, put

k1 = max{max(c;;,) — 1: {i11} € S1}
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and go to the Step 2.

Step 2. Find the set Sy of all {i12,i22} C {1,...,n} satisfying the properties:
(1) max(binim + Cj) = 2, for each j S {1, ‘e ,n} \ {ilg, i22}.
(2) For every {i{o} C {i12,4922} we have by, # bi;yiy,-
If Sy = 0, then put k3 = 0 and go to the Step 3. Otherwise, put
kg = max{max(ciu + Ci22) —1: {ill,ilg} S SQ}

and go to the Step 3.

Step n — 2. Find the set S, 5 of all {i1(—2),..,i(n-2)n—2)} € {1,...,n}
satisfying the properties:

(1) I.Ilax(bil(n72)i2(n72).'"i(n72)(n72) Jr cj) = 2, for each
VS {1, S ,’I’L} \ {21(n72)7 ce ,Z(nfg)(nfg)}.
(2) For every {ill(n—2)7 - 7i/(n—3)(n—2)} - {il(n—2)a e ,i(n,g)(n,g)} we have
ill(n—Q)i/Q(n—Z).”i/(n—S)(n—2) 1 (n-2)t2(n—2)"""t(n—2)(n-2)"

If S,,_2 =0, then put k,_» = 0 and go to the Step n — 1. Otherwise, put

kn—Q = max{max(cil(nﬂ)—k. . '+Ci(n—2)(n—2))_1 : {Z'l(nfg), v ai(n72)(n72)} S Sn_Q}
and go to the Step n — 1.

Step n — 1. Find the set S,y of all {i1(h—1),- -, i(m—1)m-1)} € {1,...,n}
satisfying the properties:
(1) max(bil(n—1)iQ(n—l).'”i(n—l)(n—l) ‘+ ¢j) = 2, for each
F AL {irn e e
(2) For every {i’l(n_l)7 . ’il(n—Q)(n—l)} C {i1(n—1)»-- > i(n—1)(n—1)} We have

i;l(nfl)ié(n—l)”.i2n72)(n—1) 1 (n—1)t2(n—1)""t(n—1)(n-1)"

If S,_1 =0, then put k,_; = 0 and go to the Step n. Otherwise, put
k-1 = max{max(ci,,_, + - +Ci,_1y01y) 1 {i1(n=1)s s in—1)(n-1)} € Sn-1}
and go to the Step n.

Step n. If for every {i’ln,...,i’(nil)n} C {1,...,n} we have billnién‘”il(n—l)n #1,
then put

kn, =max(c1 +...+¢cy) — 1
and go to the Step n + 1. Otherwise, put &k, = 0 and go to the Step n + 1.
Step n + 1. Print dim,(X) = max{k1, k2, ..., kn}-

3.15. Example. Let X be the space of Example 2.5. We use Algorithm 3.14 to
compute dim,(X).
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Step 0. The 5 columns of the incidence matrix Tx are

1 1 1 1 1
0 1 0 0 0
C1 = 0 , Co = 0 , C3 = 1 , C4 = 0 , C5 = 1
0 0 0 1 1
0 0 0 0 1

Step 1. We have S = {{1}, {2}, {3}, {4}, {5}} and
k1 = max{max(¢;) —1:4=1,...,5} =0.

Step 2. We have S = {{2,3},{2,4},{2,5},{3,4}} and

max(cs + c3) — 1 = max(cy + ¢4) — 1 = max(ce + ¢5) — 1 = max(cs +c4) — 1= 1.
Hence, ky = 1.

Step 3. We have S3 = {{2,3,4}} and k3 = max(co +c3 +¢4) — 1 = 2.

Step 4. We have S, = 0 and k4 = 0.

Step 5. We have bo3ys = 1 and k5 = 0.

Step 6. Print dim,(X) = max{k1, k2, k3, ka, ks } = 2.

4. Remarks on the quasi covering dimension

In this section we present some remarks with respect to quasi covering dimension
and the algorithms of sections 2 and 3.

4.1. Remark. Let A = (¢;;) be a n xn matrix and B = (8;;) be a m x m matrix.
The Kronecker product of A and B (see, for instance, [4]) is the mn x mn matrix

OlllB e alnB
A®B= :

amB ... amnB

Let X = {x1,29,...,2,} and Y = {y1,92,...,Ym} be two finite spaces with
incidence matrices Tx and Ty, respectively. It is known that the incidence matrix
of the space X x Y is the kronecker product Tx ® Ty of Tx and Ty (see, [7]).

Here, we give an example from which we may conclude that the inequality
dim, (X x Y) < dimy(X) + dim,(Y)
does not hold for every finite topological spaces X and Y.
4.2. Example. Let X = {x1, 29,23} and Y = {y1,y2,ys, ya} with the topologies
mx = {0, {z2} {21, 22}, {w2, 23}, X}
and

Ty = {Q)? {yl}a {y17y2}7 {ylay?)}a {yla y4}? {ylvaa y3}a {y17y27y4}a {y17 y37y4}7Y}'
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The incidence matrices of X and Y are

TX = 1 1 1 and TY =
00 1 0 01 0
0 0 0 1

Therefore, the incidence matrix Tx xy of the product space X x Y is

11110000000 0
010000000000
001000000000
000100000000
111111111111
0100010007100

Tov=Tx®Ty =10 01 000100010
00010001000 1
000000O0O0T1T111
000000O0O0O0TILO0O0
000000O0O0GO0GO0T10
0000000O0GO0GO0O0 1

In study [1], we have compute that dim(X x Y) = 5. Thus, by Proposition 2.6 we
have that dim,(X x Y) > 5. Also, for the topological spaces X and Y, following
one of the Algorithms 2.10 and 3.14, we have that dimg(X) = 1 and dimg(Y") = 2.
From the above we may conclude that dimg(X x Y) £ dimy(X) + dimy(Y").

4.3. Remark. Let X = {x1,29,...,2,} be a finite space.

(a) Algorithm 2.10: From the Step 1 up to Step n we appoint all the open and
dense subsets {z;,, Zi,,...,2;, } of X and we compute their covering dimen-
sions (based on the Algorithm 2.8). So, we have to apply the Algorithm 2.10

ANANSGRIRE

(b) Algorithm 3.14: We do not need to use Algorithm 2.8. From the Step 1 up
to Step n we find all the numbers max(c;, + ... + ¢;,,) — 1 of the subsets
{i1,..-,im} of {1,...,n} which satisfy the conditions of Proposition 3.13.
Therefore, the number of iterations the algorithm performs in Steps 1,2,...,n
is 2" — 1.
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