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Abstract 

The KRAS G12D mutation poses a major therapeutic challenge, particularly in pancreatic and colorectal cancers where 
current treatments are limited. While covalent inhibitors for KRAS G12C have reached clinical success, developing 
effective G12D-targeted agents remains difficult due to its unique structural and biochemical features. This study 
introduces a computational framework for structure-based optimization of adagrasib analogues targeting KRAS G12D. 
Using an Advanced Molecular Design Platform, fifty derivatives were designed by modifying positions 17–25 of the 
tetracyclic scaffold with medicinal chemistry-guided R-group substitutions. Molecular docking against KRAS G12D (PDB: 
7RPZ) identified several high-affinity candidates (−6.9 to −9.6 kcal/mol) outperforming adagrasib (−7.7 kcal/mol). 
Structure–activity analysis revealed isopropyl substitution at position 17 as optimal, with Deriv-34 achieving the 
strongest binding (−9.6 kcal/mol) via key interactions with ARG-68, GLU-62, and TYR-96. Principal component analysis 
highlighted hydroxylated derivatives with superior drug-likeness (QED = 0.384) and synthetic feasibility. Comprehensive 
ADME profiling guided lead prioritization, defining a rational pipeline for KRAS G12D inhibitor design. This integrated 
computational approach provides a promising foundation for experimental validation and advances targeted therapy 
development against KRAS-driven cancers. 
Keywords: KRAS G12D Mutation, Adagrasib analogues, Molecular docking, Drug-likeness, Targeted cancer therapy 

ADAGRASIB (MRTX849) ANALOGLARININ YAPI TEMELLI OPTİMİZASYONU: 
KRAS G12D İNHİBİTÖR TASARIMI İÇİN GELİŞMİŞ HESAPLAMALI ÇERÇEVE 

Özet 

KRAS G12D mutasyonu, özellikle mevcut tedavi seçeneklerinin sınırlı olduğu pankreas ve kolorektal kanserlerde önemli 
bir terapötik zorluk oluşturmaktadır. KRAS G12C mutasyonu için kovalent inhibitörler klinik başarıya ulaşmış olsa da, 
G12D’yi hedefleyen etkili ajanların geliştirilmesi yapısal ve biyokimyasal farklılıklar nedeniyle güçtür. Bu çalışma, KRAS 
G12D’yi hedefleyen adagrasib analoglarının yapı temelli optimizasyonu için bir hesaplamalı çerçeve sunmaktadır. 
Gelişmiş Moleküler Tasarım Platformu kullanılarak, 17–25 pozisyonlarındaki R-gruplarının ilaç kimyası odaklı 
değiştirilmesiyle elli türev tasarlanmıştır. KRAS G12D (PDB: 7RPZ) üzerinde yapılan moleküler kenetlenme analizleri, 
adagrasib’e (−7.7 kcal/mol) kıyasla daha güçlü bağlanan adaylar (−6.9 ila −9.6 kcal/mol) belirlemiştir. Yapı-aktivite 
analizinde 17. pozisyondaki izopropil grubunun en uygun olduğu ve Deriv-34’ün ARG-68, GLU-62 ve TYR-96 ile 
etkileşimler üzerinden en yüksek bağlanma gücünü (−9.6 kcal/mol) gösterdiği saptanmıştır. Temel bileşen analizi, 
hidroksillenmiş türevlerin daha yüksek ilaç benzerliği (QED = 0.384) ve sentez kolaylığına sahip olduğunu ortaya 
koymuştur. Kapsamlı ADME değerlendirmesiyle adayların önceliklendirilmesi, KRAS G12D inhibitör tasarımı için rasyonel 
bir yol haritası sunmaktadır. 
Anahtar Kelimeler: KRAS G12D mutasyonu, Adagrasib analogları, Moleküler kenetlenme, İlaç-benzerliği, Hedefe yönelik 
kanser tedavisi 
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1.  Introduction 

KRAS mutations are among the most prevalent 
oncogenic drivers in human malignancies, occurring in 

approximately 30% of all cancers with particularly high 
frequencies in pancreatic (90%), colorectal (45%), and 
lung adenocarcinomas (35%) [1, 2]. Among these, the 
G12D mutation represents a significant clinical 
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challenge, accounting for 41% of KRAS-mutant 
pancreatic ductal adenocarcinomas and 28% of KRAS-
mutant colorectal cancers [3, 4]. This point mutation 
substitutes aspartic acid for glycine at position 12, 
resulting in constitutive activation of KRAS and 
persistent downstream signaling through MAPK and 
PI3K pathways, thereby promoting uncontrolled cellular 
proliferation, survival, and metabolic reprogramming 
[5, 6]. For decades, KRAS was considered "undruggable" 
due to its high binding affinity for GTP/GDP, lack of 
deep hydrophobic pockets, and smooth protein surface 
that offers limited opportunities for small molecule 
binding [7, 8]. However, groundbreaking research over 
the past decade has transformed this paradigm, 
culminating in the recent clinical approval of sotorasib 
(AMG 510) and adagrasib (MRTX849) for mutant KRAS 
non-small cell lung cancer [9-11]. These irreversible 
inhibitors form a covalent bond with the mutant 
cysteine residue and lock KRAS in its inactive GDP-
bound state, providing proof-of-concept for direct KRAS 
targeting [12, 13].  Despite these advances, developing 
effective inhibitors against other KRAS mutations, 
particularly G12D, presents distinct challenges. Unlike 
G12C, the aspartic acid substitution lacks a nucleophilic 
thiol group required for covalent bond formation, 
necessitating alternative targeting strategies [14]. 
Recent crystallographic studies have revealed that 
adagrasib derivatives can be modified to interact with 
the G12D mutant through specific non-covalent 
interactions, exploiting subtle conformational 
differences in Switch-II pocket geometry [15, 16]. 
Notably, MRTX1133, a KRAS G12D-selective inhibitor 
derived from the adagrasib scaffold, has shown 
promising preclinical activity by leveraging increased 
polarity and specific hydrogen bonding networks [17-
19]. Computational approaches have become 
increasingly valuable in guiding KRAS inhibitor 
optimization by identifying favorable substitution 
patterns and predicting binding modes [20-22]. 
Structure-based drug design, molecular docking, and 
multiparameter optimization techniques have facilitated 
rapid exploration of chemical space while balancing 
potency with drug-like properties [23-25].  Moreover, 
recent advances in machine learning approaches have 
enhanced our ability to predict protein-ligand 
interactions and guide lead optimization strategies for 
challenging oncogenic targets [26-28].  

Building upon these foundations, we report herein a 
systematic computational framework for structure-
based optimization of adagrasib analogues targeting the 
KRAS G12D mutant. Our approach integrates molecular 
docking, physicochemical property analysis, and 
structure-activity relationship studies to identify 
promising chemical modifications that enhance binding 
affinity while maintaining favorable drug-like 
characteristics. By strategically exploring substitution 
patterns at positions 17-25 of the tetracyclic scaffold, 
we have identified several derivatives with significantly 
improved predicted binding affinities and refined 

molecular interactions with key residues in the Switch-
II pocket. These findings provide valuable insights for 
the rational design of potent and selective KRAS G12D 
inhibitors and establish a comprehensive computational 
workflow applicable to other challenging oncogenic 
targets. 

2.  Materials and Methods 

2.1. Computational Environment and Software 
Framework 

All computational analyses were conducted using a 
custom-developed Advanced Molecular Design Platform 
implemented in Python 3.8. The cheminformatics 
foundation relied on RDKit (2023.09.5) [29], an open-
source toolkit for computational chemistry and drug 
discovery, supplemented by NumPy (1.24.0), pandas 
(2.0.3), and scikit-learn (1.3.0) for data processing and 
statistical analyses. Visualization capabilities were 
provided by Matplotlib (3.7.2), Seaborn (0.12.2), and 
py3Dmol for interactive 3D molecular representation. 
This integrated computational environment facilitated 
seamless molecular manipulation, property calculation, 
and statistical analysis throughout the investigation. 

2.2. Molecular Standardization Protocol 

Input molecules underwent a rigorous standardization 
protocol to ensure consistent chemical representation. 
The molecular preprocessing workflow began with 
SMILES parsing using explicit hydrogen preservation, 
followed by application of the MolVS Standardizer for 
tautomer handling, charge neutralization, and 
stereochemistry validation. Three-dimensional 
conformer generation employed the ETKDG v3 
algorithm [30] with a fixed random seed (42) to ensure 
reproducibility. For molecules where initial 3D 
embedding proved challenging, the system 
automatically implemented alternative embedding 
strategies with increased sampling attempts. 
Conformers were subsequently optimized using the 
Merck Molecular Force Field (MMFF94) with a 
maximum of 500 iterations, followed by hydrogen 
removal, stereochemistry refinement, and molecular 
sanitization to ensure chemically valid structures 
throughout the analysis pipeline. 

2.3. R-Group Library Design and Selection Strategy 

A comprehensive library of 31 R-groups representing 
medicinally relevant chemical moieties was established 
for molecular diversification. The library encompassed 
four primary chemical classes: (1) halogens and small 
functional groups (F, Cl, CF₃) assigned high probability 
weights (0.7-0.9); (2) alkyl substituents (methyl, ethyl, 
cycloalkyl) with medium weights (0.5-0.7); (3) polar 
functional groups (hydroxyl, amino, carboxyl) with 
variable weights (0.3-0.6); and (4) aromatic and 
heterocyclic systems with lower weights (0.2-0.4). The 
R-group selection algorithm employed probability-
weighted random sampling, systematically favoring 
synthetically tractable modifications while maintaining 
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structural diversity. This approach effectively mimicked 
medicinal chemistry decision-making processes in lead 
optimization campaigns, balancing synthetic 
accessibility with chemical space exploration. 

2.4. Modification Site Identification and Selection 
Criteria 

Modification sites on parent molecules were 
algorithmically identified using structure-based 
reactivity criteria. The site identification algorithm 
evaluated each non-hydrogen atom against predefined 
reactivity rules that prioritized: (1) aromatic carbon 
atoms conducive to electrophilic aromatic substitution, 
and (2) heteroatoms (N, O, S) with available hydrogen 
atoms suitable for nucleophilic substitution reactions. 
These criteria were established to align with 
conventional synthetic chemistry approaches, focusing 
on positions with demonstrated reactivity in medicinal 
chemistry transformations. The modification site 
selection for individual derivatives employed random 
sampling from the qualified pool of sites, ensuring 
diverse exploration of substitution patterns across the 
parent scaffold while maintaining synthetic plausibility. 

2.5. Derivative Generation and Molecular Editing 
Methodology 

The derivative generation process implemented a 
systematic transformation of parent molecules into 
structurally diverse analogs through well-defined 
molecular editing operations. For each derivative, the 
workflow executed the following sequence: (1) random 
selection of a modification site from pre-identified 
candidates; (2) probabilistically weighted selection of 
an R-group from the library; (3) conversion of the 
parent molecule to an editable representation with 
explicit hydrogens; (4) identification and removal of a 
hydrogen atom at the selected position; (5) combination 
of the edited parent molecule with the selected R-group; 
(6) formation of a new covalent bond between the 
modification site and R-group; and (7) structure 
processing including sanitization, hydrogen removal, 
and canonical SMILES generation. A duplicate detection 
system based on canonical SMILES representations 
prevented redundancy, focusing computational 
resources on unique chemical entities. Generation 
continued until either the target number of derivatives 
was produced or the maximum attempt threshold was 
reached, with comprehensive error handling 
implemented throughout the process. 

2.6. Molecular Property Calculation and ADMET 
Prediction 

Comprehensive molecular characterization was 
achieved through calculation of physicochemical and 
drug-likeness properties for each generated compound. 
Standard descriptors included molecular weight, 
calculated octanol-water partition coefficient (LogP), 
hydrogen bond donors/acceptors (HBD/HBA), 
topological polar surface area (TPSA), rotatable bond 
count, and aromatic ring count, all computed via RDKit's 

descriptor module. Advanced metrics included 
quantitative estimate of drug-likeness (QED) [31], a 
custom synthetic accessibility score incorporating ring 
count and structural complexity factors, and a natural 
product likeness score based on heteroatom 
distribution patterns. ADMET properties were 
estimated using rule-based models that incorporated 
molecular descriptors to predict blood-brain barrier 
permeability and cytochrome P450 2D6 inhibition 
potential. These predictive models applied established 
medicinal chemistry heuristics including Lipinski's Rule 
of Five parameters, providing preliminary insights into 
pharmacokinetic behavior. 

2.7. Chemical Space Analysis and Statistical Methods 

Chemical space exploration was visualized using 
Principal Component Analysis (PCA) of the calculated 
molecular properties. The analytical procedure first 
standardized property data using z-score normalization 
(mean=0, standard deviation=1) via scikit-learn's 
StandardScaler, followed by dimensionality reduction 
using PCA to identify orthogonal vectors capturing 
maximal variance in the dataset. The first two principal 
components were extracted and used to generate two-
dimensional projections of the chemical space, 
facilitating visualization of relationships between 
derivatives and parent compounds in terms of their 
physicochemical profiles. This approach enabled 
quantitative assessment of structural diversity and 
property distributions across the generated molecular 
library, identifying clusters and outliers within the 
multidimensional property space. 

2.8. Drug-likeness Assessment and Lead 
Prioritization 

Generated compounds were systematically evaluated 
for drug-likeness using Lipinski's Rule of Five [32], with 
violations tallied based on established criteria: 
molecular weight >500 Da, calculated LogP >5, 
hydrogen bond donors >5, and hydrogen bond 
acceptors >10. The assessment was implemented as a 
series of conditional statements evaluating each 
property against its corresponding threshold. 
Compounds were subsequently categorized based on 
violation counts, facilitating the prioritization of 
molecules with favorable drug-like characteristics. This 
systematic evaluation of pharmaceutical relevance 
complemented the structural diversity and synthetic 
accessibility assessments, providing a comprehensive 
framework for lead candidate identification and 
optimization. 

2.9. Molecular Docking Studies 

The X-ray crystallographic structure of the KRAS G12D 
mutant in complex with the inhibitor MRTX-1133 (PDB 
ID: 7RPZ) was retrieved from the RCSB Protein Data 
Bank. Prior to docking, the protein structure was refined 
by removing water molecules and co-crystallized 
ligands not involved in the binding interface, followed 
by the addition of polar hydrogen atoms and charges 
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using AutoDock Tools v1.5.6 [33]. Ligands of interest 
were energy-minimized and similarly prepared for 
docking. The docking grid was centered around the 
MRTX-1133 binding site, with dimensions set to 25 × 25 
× 25 Å to accommodate ligand flexibility and fully 
enclose the active pocket. Docking simulations were 
carried out using AutoDock Vina, which employs a 
scoring function optimized through stochastic global 
optimization algorithms, including Genetic Algorithm 
with Local Search (GA-LS) [34, 35]. For each ligand, 
twenty binding conformations were generated, and the 
top-ranked poses based on binding affinity were 
selected for further analysis. The molecular interactions 
between the KRAS G12D protein and ligands were 
visualized using PyMOL and BIOVIA Discovery Studio 
Visualizer [36]. 

3. Results and Discussion 

3.1. Design and Generation of Novel Derivatives 

The study employed a rational design approach to 
develop a library of fifty derivatives based on a 
tetracyclic parent scaffold (MW = 604.13 Da, cLogP = 
4.73). Modifications were strategically introduced at 
positions 17–25 to explore structure-activity 
relationships while maintaining core scaffold integrity 
(Figure 1). Halogen substitutions (F, Cl, Br, I) were 
incorporated to investigate hydrophobic interactions 
and electronic effects, while alkyl chains of varying 
lengths (methyl to butyl) probed steric tolerance limits. 
The design further incorporated electronic modulators, 
including strong electron-withdrawing groups (CF₃, CN, 
NO₂) and electron-donating moieties (OH, NH₂, OMe), to 
systematically alter electronic properties. Heterocyclic 
substitutions (morpholine, piperidine, furan) were 
introduced to assess the impact of polarity and 
conformational constraints on molecular properties. 
This comprehensive diversification strategy yielded 
ligands with significant variations in physicochemical 
properties, as detailed in Table 1, which presents 
representative examples spanning the full range of 
molecular diversity. The hydrogen bond acceptor count 
remained within Lipinski's recommended range (8–10) 
across all derivatives, while only three compounds 
(Deriv-10, -24, -46) were designed with hydrogen bond 
donors to strategically balance permeability and 
polarity. 

3.2. Physicochemical Property Analysis 

Detailed analysis of the derivative library revealed 
distinct trends in physicochemical properties critical for 
drug development. All compounds exhibited molecular 
weights exceeding 500 Da, reflecting the inherent 
complexity of the tetracyclic scaffold. Calculated LogP 
values ranged from 4.32 to 6.40, indicating moderate to 
high lipophilicity across the series. Polar surface area 
measurements showed considerable variation (88.83–
131.97 Å²), with electron-donating substituents such as 
amino and hydroxyl groups significantly enhancing 
molecular polarity. For instance, Deriv-10 (NH₂-

substituted) achieved a TPSA of 114.85 Å², representing 
a 29% increase over the parent compound. Halogenated 
derivatives followed predictable lipophilicity trends, 
with fluorine substitutions yielding the lowest cLogP 
values (4.87) and bromine substitutions the highest 
(5.50). Interestingly, the iodinated Deriv-7 (MW = 
730.03 Da) exhibited a slightly lower cLogP (5.34) than 
its brominated counterpart, suggesting that steric bulk 
may partially offset the lipophilicity contribution of the 
heavy halogen. These systematic variations in molecular 
properties provided a robust foundation for establishing 
structure-property relationships. 

3.3. Drug-Likeness and Lead Prioritization 

Comprehensive assessment of the molecular property 
distribution profiles (Figure 2) provided critical insights 
into the structure-property relationships governing our 
derivative library. Multivariate analysis of 
physicochemical parameters revealed that the majority 
of compounds (54%) violated two of Lipinski's Rule of 
Five criteria, predominantly due to elevated molecular 
weight (MW >500 Da) and lipophilicity (cLogP >5.0). 
This group included derivatives with bulky aromatic 
substitutions, such as the phenyl-substituted Deriv-37 
(cLogP = 6.40). A significant subset (46%) violated only 
the molecular weight criterion, encompassing various 
polar analogs including the cyano-substituted Deriv-4 
(MW = 629.14 Da, cLogP = 4.60). Notably, hydroxylated 
derivatives (Deriv-24 and -46) emerged as exceptional 
cases, fully complying with all Lipinski parameters 
while achieving the highest Quantitative Estimate of 
Drug-likeness (QED) scores (0.384) in the series. 
Synthetic accessibility scores remained favorable 
throughout the library (0.55–0.75), with the top-
performing hydroxylated derivatives maintaining 
excellent synthetic tractability (SA = 0.60). This 
comprehensive assessment enabled clear prioritization 
of lead compounds based on balanced drug-like 
properties and synthetic feasibility. 

3.4. Structure-Property Relationships and 
Pharmacokinetic Insights 

Principal component analysis (Figure 3) revealed 
distinctive clustering patterns, with PC1 and PC2 
accounting for 35.4% and 24.5% of variance, 
respectively. The parent compound (red star) occupies a 
unique position in chemical space. In-depth analysis of 
structure-property relationships revealed several key 
trends with implications for further optimization. Polar 
substituents, particularly hydroxyl and amino groups, 
demonstrated superior property modulation, increasing 
polar surface area by 20–30% while reducing cLogP by 
0.4–1.0 units compared to alkyl analogs. Positional 
effects were relatively modest, with identical 
substituents at different positions (e.g., 17 vs. 25) 
showing minimal property variations (ΔcLogP <0.3). 
Bulky substitutions, including OCF₃ and phenyl groups, 
consistently impaired drug-likeness by simultaneously 
increasing molecular weight and lipophilicity. 
Pharmacokinetic predictions indicated all derivatives 
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would likely be excluded from the CNS (BBB-
impermeable) while showing minimal CYP2D6 
inhibition potential, suggesting favorable safety profiles 
for peripheral targets. Carboxymethyl ester derivatives 
(Deriv-1, -19) presented an interesting case, increasing 

hydrogen bond acceptor count without substantial 
lipophilicity penalties (ΔcLogP <0.2 versus parent). 
Cyano-substituted analogs (Deriv-4, -6) demonstrated 
particular promise, combining moderate polarity (TPSA 
≈112 Å²) with potential metabolic stability advantages. 

 
Figure 1. Comprehensive structural library of designed derivatives. Parent scaffold (top left) and 50 derivatives 

showing systematic R-group variations at positions 17-25. 
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Table 1. Comprehensive characterization of representative derivatives 
 

Ligand R-
Group 

MW 
(Da) 

LogP HBD HBA TPSA 
(Å²) 

RotB QED SAScore Violations Notable 
Features 

Parent - 604.13 4.73 0 8 88.83 7 0.358 0.60 1 
Baseline 
scaffold 

Deriv-1 COOMe 662.17 4.52 0 10 115.13 8 0.252 0.70 1 High polarity 

Deriv-4 CN 629.14 4.60 0 9 112.62 7 0.346 0.60 1 
Balanced 
profile 

Deriv-7 I 730.03 5.34 0 8 88.83 7 0.238 0.60 2 Heavy halogen 
Deriv-
10 

NH₂ 619.15 4.32 1 9 114.85 7 0.305 0.60 0 
Optimal Ro5 
compliance 

Deriv-
18 

n-Bu 660.24 6.08 0 8 88.83 10 0.242 0.75 2 High flexibility 

Deriv-
24 

OH 620.13 4.44 1 9 109.06 7 0.384 0.60 0 Best QED 

Deriv-
28 

OMe 634.16 4.74 0 9 98.06 8 0.326 0.65 1 
Methoxy 
variant 

Deriv-
37 

Ph 680.23 6.40 0 8 88.83 8 0.198 0.55 2 Aromatic bulk 

Deriv-
46 

OH 620.13 4.44 1 9 109.06 7 0.384 0.60 0 
Positional 
isomer 

 

 
Figure 2. Distribution of physicochemical properties 

(MW, LogP, HBD, HBA, TPSA, QED, and SAScore) for a 
parent compound (red dashed line) and its derivatives 

(blue filled distribution).  

3.5. Molecular Docking Analysis 

Molecular docking studies against the KRAS G12D 
mutant (PDB ID: 7RPZ) demonstrated significant 
variations in binding affinity across the derivative 
series, with ΔG values ranging from -6.9 to -9.6 kcal/mol 
(Table 2). The parent compound exhibited moderate 
binding (-7.7 kcal/mol) through conventional hydrogen 
bonds, carbon hydrogen bonds, pi-anion, pi-alkyl, alkyl 
and halogen (fluorine) interactions (Figure 4 and Table 
3). Notably, several derivatives showed substantially 
enhanced binding, with Deriv-34 (17-isopropyl 
substitution) emerging as the most potent inhibitor (-
9.6 kcal/mol), forming critical interactions. Similarly, 
Deriv-4 (23-cyano) and Deriv-5 (8-ethyl) demonstrated 

strong binding affinities (-9.5 and -9.3 kcal/mol, 
respectively). Structure-activity relationship analysis 
revealed that isopropyl substitution at position 17 
provided optimal binding, outperforming bulkier 
groups, while position 23 favored compact polar groups 
over halogens, and position 18 showed preference for 
small alkyl chains. The docking reliability was 
confirmed by consistent reproduction of key 
interactions across multiple runs and progressive 
improvement in binding energy with strategic 
modifications. These results demonstrate that targeted 
structural optimization, particularly at positions 17, 18, 
and 23, can significantly enhance KRAS G12D inhibition 
through optimized hydrophobic contacts and additional 
specific interactions, with Deriv-34 representing the 
most promising candidate for further development 
(Figure 4, Table 2 and Table 3). 

 
Figure 3. Principal Component Analysis of molecular 
properties. Score plot showing PC1 (35.4% variance, 

dominated by MW and cLogP) versus PC2 (24.5% 
variance, driven by HBA and TPSA). 
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Figure 4. Molecular docking results of parent compound and derivatives against KRAS G12D mutant (PDB ID: 7RPZ). 

 

Table 2. Calculated binding affinities (ΔG, kcal/mol) of parent compound and derivatives against KRAS G12D mutant 
(PDB ID: 7RPZ). 

Ligand 
ΔG 
(kcal/mol) 

Ligand 
ΔG 
(kcal/mol) 

Ligand 
ΔG 
(kcal/mol) 

Ligand 
ΔG 
(kcal/mol) 

Parent -7.7 Deriv-13 -9.2 Deriv-26 -7.6 Deriv-39 -9.1 

Deriv-1 -8.7 Deriv-14 -8.3 Deriv-27 -9.0 Deriv-40 -6.9 

Deriv-2 -7.6 Deriv-15 -8.0 Deriv-28 -7.6 Deriv-41 -8.1 

Deriv-3 -8.2 Deriv-16 -7.6 Deriv-29 -8.7 Deriv-42 -8.2 

Deriv-4 -9.5 Deriv-17 -8.0 Deriv-30 -6.9 Deriv-43 -8.0 

Deriv-5 -9.3 Deriv-18 -8.1 Deriv-31 -7.8 Deriv-44 -8.3 

Deriv-6 -7.2 Deriv-19 -8.0 Deriv-32 -7.7 Deriv-45 -7.7 

Deriv-7 -8.6 Deriv-20 -8.2 Deriv-33 -8.1 Deriv-46 -7.8 

Deriv-8 -8.6 Deriv-21 -7.9 Deriv-34 -9.6 Deriv-47 -8.4 

Deriv-9 -7.9 Deriv-22 -7.1 Deriv-35 -8.5 Deriv-48 -8.2 

Deriv-10 -8.4 Deriv-23 -8.4 Deriv-36 -8.8 Deriv-49 -8.7 

Deriv-11 -8.8 Deriv-24 -7.8 Deriv-37 -7.5 Deriv-50 -8.3 

Deriv-12 -7.5 Deriv-25 -9.2 Deriv-38 -8.2   
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Table 3. Key molecular interactions of high-affinity derivatives with KRAS G12D active site residues. 

 

4. Conclusion 

Herein we present a computational framework for the 
structure-based optimization of adagrasib analogues 
targeting the KRAS G12D mutant. Through this 
integrated molecular design approach, several 
promising lead compounds with significantly enhanced 
predicted binding affinities were identified relative to 
the parent scaffold. Comprehensive analysis of fifty 
derivatives elucidated structure-activity relationships 
that may inform subsequent medicinal chemistry 
efforts. Notably, isopropyl substitutions at position 17 
(exemplified by Deriv-34) exhibited superior binding 
profiles via optimal engagement with key residues in 
the Switch-II pocket. These specific interactions 
contributed to a binding affinity enhancement of 
approximately 2 kcal/mol, potentially corresponding to 
a 25-fold increase in inhibitory potency. 
Physicochemical characterization revealed that 
hydroxylated derivatives (Deriv-24 and Deriv-46) 
demonstrated favorable Lipinski compliance 

concomitant with optimal Quantitative Estimate of 
Drug-likeness scores. Principal component analysis of 
molecular descriptors provided valuable insights into 
property space exploration, establishing a foundation 
for property-guided optimization strategies. Several 
methodological limitations warrant acknowledgment, 
including the necessity for experimental validation of 
computational predictions and the absence of protein 
flexibility considerations within the framework. The 
most promising candidates identified herein merit 
synthesis and experimental evaluation through 
biochemical binding assays followed by cellular viability 
assessments in relevant cancer models. 

This investigation contributes to the expanding 
repertoire of computational methodologies for targeting 
historically intractable oncoproteins and represents a 
significant advancement toward the development of 
efficacious therapeutics for KRAS-driven malignancies. 

 

Ligands ΔG 
(kcal/mol) 

R-Group Interactions 

Parent -7.7 N/A 

Conventional Hydrogen Bond (VAL A:14, GLY A:15, LYS A:16 and SER 
A:17); Carbon Hydrogen Bond (PRO A:34 and TYR A:32); Pi-Anion (ASP 
A:12); Alkyl (PRO A:34); Pi-Alkyl (PRO A:34); Halogen(Fluorine) (SER 
A:17) 

Deriv-4 -9.5 23-CN 

Conventional Hydrogen Bond (GLY A:10 and TYR A:96); Carbon 
Hydrogen Bond (TYR A:64); Pi-Anion (GLU A:62); Alkyl (ALA A:11); Pi-
Alkyl (VAL A:9, MET A:72, HIS A:95, TYR A:96 and VAL A:103); Pi-Sigma 
(MET A:72) 

Deriv-5 -9.3 18-Et 

Carbon Hydrogen Bond (ASP A:12, GLY A:13, GLY A:15,ASP A:30 and 
PRO A:34); Pi-Pi T-shaped (PHE A:28); Alkyl (LYS A:16, ALA A:59 and 
LYS A:147); Pi-Alkyl (LYS A:117, ALA A:146 and LYS A:147); 
Halogen(Fluorine) (ASP A:12); Halogen(Chlorine) (GLY A:15) 

Deriv-13 -9.2 23-i-Pr 

Conventional Hydrogen Bond (LYS A:117); Carbon Hydrogen Bond (ASP 
A:30, PRO A:34 and THR A:58); Pi-Cation (LYS A:117); Pi-Pi T-shaped 
(PHE A:28); Alkyl (PRO A:34 and ALA A:59); Pi-Alkyl (ALA A:18, LYS 
A:117, ALA A:146 and LYS A:147); Pi-Sigma (LYS A:117); 
Halogen(Chlorine) (ASP A:30) 

Deriv-25 -9.2 18-i-Pr 

Conventional Hydrogen Bond (HIS A:95); Carbon Hydrogen Bond (ASP 
A:12, GLY A:60 and GLU A:62); Pi-Cation (ARG A:68); Pi-Anion (GLU 
A:62); Pi-Pi Stacked (TYR A:64); Alkyl (VAL A:9 and ILE A:100); Pi-
Sigma (HIS A:95); Pi-Alkyl (ARG A:68, MET A:72 and TYR A:96); Pi-Lone 
Pair (TYR A:96) 

Deriv-27 -9.0 24-i-Pr 

Conventional Hydrogen Bond (GLU A:62 and LYS A:88); Pi-Donor 
Hydrogen Bond (ARG A:68); Pi-Cation (ARG A:68); Pi-Anion (ASP A:12 
and GLU A:62); Pi-Pi T-shaped (TYR A:96); Alkyl (ALA A:11, MET A:72 
and LYS A:88) 

Deriv-34 -9.6 17-i-Pr 

Carbon Hydrogen Bond (ASP A:12); Pi-Donor Hydrogen Bond (ARG 
A:68); Pi-Cation (ARG A:68); Pi-Anion (GLU A:62);Pi-Alkyl (ARG A:68, 
HIS A:95 and TYR A:96); Halogen(Fluorine) (GLU A:62); Pi-Sulfur (MET 
A:72); Pi-Lone Pair (TYR A:96) 

Deriv-39 -9.1 23-Piper 

Conventional Hydrogen Bond (ARG A:68 and HIS A:95);Carbon 
Hydrogen Bond (ASP A:12); Pi-Anion (GLU A:62); Alkyl (MET A:72); Pi-
Sigma (HIS A:95); Pi-Alkyl (TYR A:64, HIS A:95 and TYR A:96); 
Halogen(Fluorine) (GLU A:63); Pi-Lone Pair (TYR A:96) 
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