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Abstract

The KRAS G12D mutation poses a major therapeutic challenge, particularly in pancreatic and colorectal cancers where
current treatments are limited. While covalent inhibitors for KRAS G12C have reached clinical success, developing
effective G12D-targeted agents remains difficult due to its unique structural and biochemical features. This study
introduces a computational framework for structure-based optimization of adagrasib analogues targeting KRAS G12D.
Using an Advanced Molecular Design Platform, fifty derivatives were designed by modifying positions 17-25 of the
tetracyclic scaffold with medicinal chemistry-guided R-group substitutions. Molecular docking against KRAS G12D (PDB:
7RPZ) identified several high-affinity candidates (-6.9 to -9.6 kcal/mol) outperforming adagrasib (-7.7 kcal/mol).
Structure-activity analysis revealed isopropyl substitution at position 17 as optimal, with Deriv-34 achieving the
strongest binding (-9.6 kcal/mol) via key interactions with ARG-68, GLU-62, and TYR-96. Principal component analysis
highlighted hydroxylated derivatives with superior drug-likeness (QED = 0.384) and synthetic feasibility. Comprehensive
ADME profiling guided lead prioritization, defining a rational pipeline for KRAS G12D inhibitor design. This integrated
computational approach provides a promising foundation for experimental validation and advances targeted therapy
development against KRAS-driven cancers.
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ADAGRASIB (MRTX849) ANALOGLARININ YAPI TEMELLI OPTIMIiZASYONU:
KRAS G12D INHIBITOR TASARIMI iCiN GELiSMi$ HESAPLAMALI CERCEVE

Ozet

KRAS G12D mutasyonu, ézellikle mevcut tedavi seceneklerinin sinirli oldugu pankreas ve kolorektal kanserlerde énemli
bir terapétik zorluk olusturmaktadir. KRAS G12C mutasyonu i¢cin kovalent inhibitorler klinik basariya ulasmis olsa da,
G12DYyi hedefleyen etkili ajanlarin gelistirilmesi yapisal ve biyokimyasal farkliliklar nedeniyle giictiir. Bu calisma, KRAS
G12D’yi hedefleyen adagrasib analoglarinin yapi temelli optimizasyonu icin bir hesaplamali ¢cerceve sunmaktadir.
Gelismis Molekiiler Tasarim Platformu kullanilarak, 17-25 pozisyonlarindaki R-gruplarinin ilag kimyasi odakli
degistirilmesiyle elli tiirev tasarlanmistir. KRAS G12D (PDB: 7RPZ) iizerinde yapilan molekiiler kenetlenme analizleri,
adagrasib’e (-7.7 kcal/mol) kiyasla daha giiclii baglanan adaylar (-6.9 ila -9.6 kcal/mol) belirlemistir. Yapi-aktivite
analizinde 17. pozisyondaki izopropil grubunun en uygun oldugu ve Deriv-34’lin ARG-68, GLU-62 ve TYR-96 ile
etkilesimler lizerinden en yiiksek baglanma giiciinii (-9.6 kcal/mol) gésterdigi saptanmistir. Temel bilesen analizi,
hidroksillenmis tiirevlerin daha yiiksek ilag benzerligi (QED = 0.384) ve sentez kolayligina sahip oldugunu ortaya
koymustur. Kapsamlit ADME degerlendirmesiyle adaylarin énceliklendirilmesi, KRAS G12D inhibitor tasarimi icin rasyonel
bir yol haritast sunmaktadir.

Anahtar Kelimeler: KRAS G12D mutasyonu, Adagrasib analoglari, Molekiiler kenetlenme, Ila¢-benzerligi, Hedefe yonelik
kanser tedavisi
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approximately 30% of all cancers with particularly high
) frequencies in pancreatic (90%), colorectal (45%), and
KRAS mutations are among the most prevalent lung adenocarcinomas (35%) [1, 2]. Among these, the
oncogenic drivers in human malignancies, occurring in G12D mutation represents a significant clinical
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challenge, accounting for 41% of KRAS-mutant
pancreatic ductal adenocarcinomas and 28% of KRAS-
mutant colorectal cancers [3, 4]. This point mutation
substitutes aspartic acid for glycine at position 12,
resulting in constitutive activation of KRAS and
persistent downstream signaling through MAPK and
PI3K pathways, thereby promoting uncontrolled cellular
proliferation, survival, and metabolic reprogramming
[5, 6]. For decades, KRAS was considered "undruggable”
due to its high binding affinity for GTP/GDP, lack of
deep hydrophobic pockets, and smooth protein surface
that offers limited opportunities for small molecule
binding [7, 8]. However, groundbreaking research over
the past decade has transformed this paradigm,
culminating in the recent clinical approval of sotorasib
(AMG 510) and adagrasib (MRTX849) for mutant KRAS
non-small cell lung cancer [9-11]. These irreversible
inhibitors form a covalent bond with the mutant
cysteine residue and lock KRAS in its inactive GDP-
bound state, providing proof-of-concept for direct KRAS
targeting [12, 13]. Despite these advances, developing
effective inhibitors against other KRAS mutations,
particularly G12D, presents distinct challenges. Unlike
G12C, the aspartic acid substitution lacks a nucleophilic
thiol group required for covalent bond formation,
necessitating alternative targeting strategies [14].
Recent crystallographic studies have revealed that
adagrasib derivatives can be modified to interact with
the G12D mutant through specific non-covalent
interactions, exploiting  subtle  conformational
differences in Switch-II pocket geometry [15, 16].
Notably, MRTX1133, a KRAS G12D-selective inhibitor
derived from the adagrasib scaffold, has shown
promising preclinical activity by leveraging increased
polarity and specific hydrogen bonding networks [17-
19]. Computational approaches have become
increasingly valuable in guiding KRAS inhibitor
optimization by identifying favorable substitution
patterns and predicting binding modes [20-22].
Structure-based drug design, molecular docking, and
multiparameter optimization techniques have facilitated
rapid exploration of chemical space while balancing
potency with drug-like properties [23-25]. Moreover,
recent advances in machine learning approaches have
enhanced our ability to predict protein-ligand
interactions and guide lead optimization strategies for
challenging oncogenic targets [26-28].

Building upon these foundations, we report herein a
systematic computational framework for structure-
based optimization of adagrasib analogues targeting the
KRAS G12D mutant. Our approach integrates molecular
docking, physicochemical property analysis, and
structure-activity relationship studies to identify
promising chemical modifications that enhance binding
affinity while maintaining favorable drug-like
characteristics. By strategically exploring substitution
patterns at positions 17-25 of the tetracyclic scaffold,
we have identified several derivatives with significantly
improved predicted binding affinities and refined
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molecular interactions with key residues in the Switch-
II pocket. These findings provide valuable insights for
the rational design of potent and selective KRAS G12D
inhibitors and establish a comprehensive computational
workflow applicable to other challenging oncogenic
targets.

2. Materials and Methods

2.1. Computational Environment and Software
Framework

All computational analyses were conducted using a
custom-developed Advanced Molecular Design Platform
implemented in Python 3.8. The cheminformatics
foundation relied on RDKit (2023.09.5) [29], an open-
source toolkit for computational chemistry and drug
discovery, supplemented by NumPy (1.24.0), pandas
(2.0.3), and scikit-learn (1.3.0) for data processing and
statistical analyses. Visualization capabilities were
provided by Matplotlib (3.7.2), Seaborn (0.12.2), and
py3Dmol for interactive 3D molecular representation.
This integrated computational environment facilitated
seamless molecular manipulation, property calculation,
and statistical analysis throughout the investigation.

2.2.Molecular Standardization Protocol

Input molecules underwent a rigorous standardization
protocol to ensure consistent chemical representation.
The molecular preprocessing workflow began with
SMILES parsing using explicit hydrogen preservation,
followed by application of the MolVS Standardizer for
tautomer handling, charge neutralization, and
stereochemistry validation. Three-dimensional
conformer generation employed the ETKDG v3
algorithm [30] with a fixed random seed (42) to ensure
reproducibility. For molecules where initial 3D
embedding  proved challenging, the  system
automatically implemented alternative embedding
strategies  with increased sampling attempts.
Conformers were subsequently optimized using the
Merck Molecular Force Field (MMFF94) with a
maximum of 500 iterations, followed by hydrogen
removal, stereochemistry refinement, and molecular
sanitization to ensure chemically valid structures
throughout the analysis pipeline.

2.3.R-Group Library Design and Selection Strategy

A comprehensive library of 31 R-groups representing
medicinally relevant chemical moieties was established
for molecular diversification. The library encompassed
four primary chemical classes: (1) halogens and small
functional groups (F, Cl, CF3) assigned high probability
weights (0.7-0.9); (2) alkyl substituents (methyl, ethyl,
cycloalkyl) with medium weights (0.5-0.7); (3) polar
functional groups (hydroxyl, amino, carboxyl) with
variable weights (0.3-0.6); and (4) aromatic and
heterocyclic systems with lower weights (0.2-0.4). The
R-group selection algorithm employed probability-
weighted random sampling, systematically favoring
synthetically tractable modifications while maintaining
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structural diversity. This approach effectively mimicked
medicinal chemistry decision-making processes in lead
optimization campaigns, balancing synthetic
accessibility with chemical space exploration.

2.4.Modification Site Identification and Selection

Criteria
Modification sites on parent molecules were
algorithmically  identified using structure-based

reactivity criteria. The site identification algorithm
evaluated each non-hydrogen atom against predefined
reactivity rules that prioritized: (1) aromatic carbon
atoms conducive to electrophilic aromatic substitution,
and (2) heteroatoms (N, O, S) with available hydrogen
atoms suitable for nucleophilic substitution reactions.
These criteria were established to align with
conventional synthetic chemistry approaches, focusing
on positions with demonstrated reactivity in medicinal
chemistry transformations. The modification site
selection for individual derivatives employed random
sampling from the qualified pool of sites, ensuring
diverse exploration of substitution patterns across the
parent scaffold while maintaining synthetic plausibility.

2.5.Derivative Generation and Molecular Editing
Methodology

The derivative generation process implemented a
systematic transformation of parent molecules into
structurally diverse analogs through well-defined
molecular editing operations. For each derivative, the
workflow executed the following sequence: (1) random
selection of a modification site from pre-identified
candidates; (2) probabilistically weighted selection of
an R-group from the library; (3) conversion of the
parent molecule to an editable representation with
explicit hydrogens; (4) identification and removal of a
hydrogen atom at the selected position; (5) combination
of the edited parent molecule with the selected R-group;
(6) formation of a new covalent bond between the
modification site and R-group; and (7) structure
processing including sanitization, hydrogen removal,
and canonical SMILES generation. A duplicate detection
system based on canonical SMILES representations
prevented redundancy, focusing computational
resources on unique chemical entities. Generation
continued until either the target number of derivatives
was produced or the maximum attempt threshold was
reached, with comprehensive error handling
implemented throughout the process.

2.6.Molecular Property Calculation and ADMET
Prediction

Comprehensive  molecular characterization  was
achieved through calculation of physicochemical and
drug-likeness properties for each generated compound.
Standard descriptors included molecular weight,
calculated octanol-water partition coefficient (LogP),
hydrogen bond  donors/acceptors (HBD/HBA),
topological polar surface area (TPSA), rotatable bond
count, and aromatic ring count, all computed via RDKit's

137

descriptor module. Advanced metrics included
quantitative estimate of drug-likeness (QED) [31], a
custom synthetic accessibility score incorporating ring
count and structural complexity factors, and a natural
product likeness score based on heteroatom
distribution patterns. ADMET properties were
estimated using rule-based models that incorporated
molecular descriptors to predict blood-brain barrier
permeability and cytochrome P450 2D6 inhibition
potential. These predictive models applied established
medicinal chemistry heuristics including Lipinski's Rule
of Five parameters, providing preliminary insights into
pharmacokinetic behavior.

2.7.Chemical Space Analysis and Statistical Methods
Chemical space exploration was visualized using
Principal Component Analysis (PCA) of the calculated
molecular properties. The analytical procedure first
standardized property data using z-score normalization
(mean=0, standard deviation=1) via scikit-learn's
StandardScaler, followed by dimensionality reduction
using PCA to identify orthogonal vectors capturing
maximal variance in the dataset. The first two principal
components were extracted and used to generate two-
dimensional projections of the chemical space,
facilitating visualization of relationships between
derivatives and parent compounds in terms of their
physicochemical profiles. This approach enabled
quantitative assessment of structural diversity and
property distributions across the generated molecular
library, identifying clusters and outliers within the
multidimensional property space.

2.8.Drug-likeness Assessment and Lead
Prioritization

Generated compounds were systematically evaluated
for drug-likeness using Lipinski's Rule of Five [32], with
violations tallied based on established criteria:
molecular weight >500 Da, calculated LogP >5,
hydrogen bond donors >5, and hydrogen bond
acceptors >10. The assessment was implemented as a
series of conditional statements evaluating each
property against its corresponding threshold.
Compounds were subsequently categorized based on
violation counts, facilitating the prioritization of
molecules with favorable drug-like characteristics. This
systematic evaluation of pharmaceutical relevance
complemented the structural diversity and synthetic
accessibility assessments, providing a comprehensive
framework for lead candidate identification and
optimization.

2.9.Molecular Docking Studies

The X-ray crystallographic structure of the KRAS G12D
mutant in complex with the inhibitor MRTX-1133 (PDB
ID: 7RPZ) was retrieved from the RCSB Protein Data
Bank. Prior to docking, the protein structure was refined
by removing water molecules and co-crystallized
ligands not involved in the binding interface, followed
by the addition of polar hydrogen atoms and charges
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using AutoDock Tools v1.5.6 [33]. Ligands of interest
were energy-minimized and similarly prepared for
docking. The docking grid was centered around the
MRTX-1133 binding site, with dimensions set to 25 x 25
x 25 A to accommodate ligand flexibility and fully
enclose the active pocket. Docking simulations were
carried out using AutoDock Vina, which employs a
scoring function optimized through stochastic global
optimization algorithms, including Genetic Algorithm
with Local Search (GA-LS) [34, 35]. For each ligand,
twenty binding conformations were generated, and the
top-ranked poses based on binding affinity were
selected for further analysis. The molecular interactions
between the KRAS G12D protein and ligands were
visualized using PyMOL and BIOVIA Discovery Studio
Visualizer [36].

3. Results and Discussion

3.1.Design and Generation of Novel Derivatives

The study employed a rational design approach to
develop a library of fifty derivatives based on a
tetracyclic parent scaffold (MW = 604.13 Da, cLogP =
4.73). Modifications were strategically introduced at
positions 17-25 to explore structure-activity
relationships while maintaining core scaffold integrity
(Figure 1). Halogen substitutions (F, Cl, Br, I) were
incorporated to investigate hydrophobic interactions
and electronic effects, while alkyl chains of varying
lengths (methyl to butyl) probed steric tolerance limits.
The design further incorporated electronic modulators,
including strong electron-withdrawing groups (CF3, CN,
NO,) and electron-donating moieties (OH, NH,, OMe), to
systematically alter electronic properties. Heterocyclic
substitutions (morpholine, piperidine, furan) were
introduced to assess the impact of polarity and
conformational constraints on molecular properties.
This comprehensive diversification strategy yielded
ligands with significant variations in physicochemical
properties, as detailed in Table 1, which presents
representative examples spanning the full range of
molecular diversity. The hydrogen bond acceptor count
remained within Lipinski's recommended range (8-10)
across all derivatives, while only three compounds
(Deriv-10, -24, -46) were designed with hydrogen bond
donors to strategically balance permeability and
polarity.

3.2.Physicochemical Property Analysis

Detailed analysis of the derivative library revealed
distinct trends in physicochemical properties critical for
drug development. All compounds exhibited molecular
weights exceeding 500 Da, reflecting the inherent
complexity of the tetracyclic scaffold. Calculated LogP
values ranged from 4.32 to 6.40, indicating moderate to
high lipophilicity across the series. Polar surface area
measurements showed considerable variation (88.83-
131.97 A?), with electron-donating substituents such as
amino and hydroxyl groups significantly enhancing
molecular polarity. For instance, Deriv-10 (NH,-
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substituted) achieved a TPSA of 114.85 A?, representing
a 29% increase over the parent compound. Halogenated
derivatives followed predictable lipophilicity trends,
with fluorine substitutions yielding the lowest cLogP
values (4.87) and bromine substitutions the highest
(5.50). Interestingly, the iodinated Deriv-7 (MW =
730.03 Da) exhibited a slightly lower cLogP (5.34) than
its brominated counterpart, suggesting that steric bulk
may partially offset the lipophilicity contribution of the
heavy halogen. These systematic variations in molecular
properties provided a robust foundation for establishing
structure-property relationships.

3.3.Drug-Likeness and Lead Prioritization

Comprehensive assessment of the molecular property
distribution profiles (Figure 2) provided critical insights
into the structure-property relationships governing our
derivative library. Multivariate analysis of
physicochemical parameters revealed that the majority
of compounds (54%) violated two of Lipinski's Rule of
Five criteria, predominantly due to elevated molecular
weight (MW >500 Da) and lipophilicity (cLogP >5.0).
This group included derivatives with bulky aromatic
substitutions, such as the phenyl-substituted Deriv-37
(cLogP = 6.40). A significant subset (46%) violated only
the molecular weight criterion, encompassing various
polar analogs including the cyano-substituted Deriv-4
(MW = 629.14 Da, cLogP = 4.60). Notably, hydroxylated
derivatives (Deriv-24 and -46) emerged as exceptional
cases, fully complying with all Lipinski parameters
while achieving the highest Quantitative Estimate of
Drug-likeness (QED) scores (0.384) in the series.
Synthetic accessibility scores remained favorable
throughout the library (0.55-0.75), with the top-
performing hydroxylated derivatives maintaining
excellent synthetic tractability (SA = 0.60). This
comprehensive assessment enabled clear prioritization
of lead compounds based on balanced drug-like
properties and synthetic feasibility.

3.4. Structure-Property Relationships and
Pharmacokinetic Insights

Principal component analysis (Figure 3) revealed
distinctive clustering patterns, with PC1 and PC2
accounting for 35.4% and 24.5% of wvariance,
respectively. The parent compound (red star) occupies a
unique position in chemical space. In-depth analysis of
structure-property relationships revealed several key
trends with implications for further optimization. Polar
substituents, particularly hydroxyl and amino groups,
demonstrated superior property modulation, increasing
polar surface area by 20-30% while reducing cLogP by
0.4-1.0 units compared to alkyl analogs. Positional
effects were relatively modest, with identical
substituents at different positions (e.g., 17 vs. 25)
showing minimal property variations (AcLogP <0.3).
Bulky substitutions, including OCF3; and phenyl groups,
consistently impaired drug-likeness by simultaneously
increasing molecular weight and lipophilicity.
Pharmacokinetic predictions indicated all derivatives
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CYP2D6

inhibition potential, suggesting favorable safety profiles
for peripheral targets. Carboxymethyl ester derivatives
(Deriv-1, -19) presented an interesting case, increasing

hydrogen bond acceptor count without substantial
lipophilicity penalties (AcLogP <0.2 versus parent).
Cyano-substituted analogs (Deriv-4, -6) demonstrated
particular promise, combining moderate polarity (TPSA
~112 A?) with potential metabolic stability advantages.
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Figure 1. Comprehensive structural library of designed derivatives. Parent scaffold (top left) and 50 derivatives
showing systematic R-group variations at positions 17-25.

139



Aysegiil Varol
Structure-Based Optimization of Adagrasib (MRTX849) Analogues: Advanced Computational Framework for KRAS G12D Inhibitor

Design

Table 1. Comprehensive characterization of representative derivatives

Ligand R- MW  LogP HBD HBA TPSA

Group (Da) (A%
Parent - 60413 473 0 8 88.83
Deriv-1 COOMe 662.17 452 0 10  115.13
Deriv-4 CN 629.14 460 0 9 112.62
Deriv-7 1 730.03 534 0 8 88.83
11);”"' NH, 619.15 432 1 9 114.85
?;”"' n-Bu 66024 608 0 8 8883
g:""' OH 620.13 4.44 1 9 109.06
3;”‘" OMe 63416 474 0 9 98.06
g;”"' Ph 680.23 640 0 8 88.83
Z;”"' OH 62013 444 1 9 109.06

Figure 2. Distribution of physicochemical properties
(MW, LogP, HBD, HBA, TPSA, QED, and SAScore) for a
parent compound (red dashed line) and its derivatives
(blue filled distribution).

3.5. Molecular Docking Analysis

Molecular docking studies against the KRAS G12D
mutant (PDB ID: 7RPZ) demonstrated significant
variations in binding affinity across the derivative
series, with AG values ranging from -6.9 to -9.6 kcal/mol
(Table 2). The parent compound exhibited moderate
binding (-7.7 kcal/mol) through conventional hydrogen
bonds, carbon hydrogen bonds, pi-anion, pi-alkyl, alkyl
and halogen (fluorine) interactions (Figure 4 and Table
3). Notably, several derivatives showed substantially
enhanced binding, with Deriv-34 (17-isopropyl
substitution) emerging as the most potent inhibitor (-
9.6 kcal/mol), forming critical interactions. Similarly,
Deriv-4 (23-cyano) and Deriv-5 (8-ethyl) demonstrated
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RotB QED SAScore Violations Notable
Features
Baseline

7 0.358 0.60 1 scaffold

8 0.252 0.70 1 High polarity

7 0.346  0.60 1 e
profile

7 0.238 0.60 2 Heavy halogen

7 0.305 0.60 0 Optimal  Ro5
compliance

10 0242 0.75 2 High flexibility

7 0.384 0.60 0 Best QED

8 0326 0.65 1 Methoxy
variant

8 0.198 0.55 2 Aromatic bulk

7 0.384 0.60 0 Positional
isomer

strong binding affinities (-9.5 and -9.3 kcal/mol,
respectively). Structure-activity relationship analysis
revealed that isopropyl substitution at position 17
provided optimal binding, outperforming bulkier
groups, while position 23 favored compact polar groups
over halogens, and position 18 showed preference for
small alkyl chains. The docking reliability was
confirmed by consistent reproduction of key
interactions across multiple runs and progressive
improvement in binding energy with strategic
modifications. These results demonstrate that targeted
structural optimization, particularly at positions 17, 18,
and 23, can significantly enhance KRAS G12D inhibition
through optimized hydrophobic contacts and additional
specific interactions, with Deriv-34 representing the
most promising candidate for further development
(Figure 4, Table 2 and Table 3).

PCA of Molecular Properties

+ FParent
@ Derivatives

PC2 (24.5%)
.
Derivative Index

" *% .

[

-6 -4 =2 0 2 4
PC1 (35.4%)

Figure 3. Principal Component Analysis of molecular
properties. Score plot showing PC1 (35.4% variance,
dominated by MW and cLogP) versus PC2 (24.5%
variance, driven by HBA and TPSA).



Aysegiil Varol
Structure-Based Optimization of Adagrasib (MRTX849) Analogues: Advanced Computational Framework for KRAS G12D Inhibitor

Design

Deriv_25

Figure 4. Molecular docking results of parent compound and derivatives against KRAS G12D mutant (PDB ID: 7RPZ).

Table 2. Calculated binding affinities (AG, kcal/mol) of parent compound and derivatives against KRAS G12D mutant
(PDB ID: 7RPZ).

Ligand

Parent
Deriv-1
Deriv-2
Deriv-3
Deriv-4
Deriv-5
Deriv-6
Deriv-7
Deriv-8
Deriv-9
Deriv-10
Deriv-11
Deriv-12

AG
(kcal/mol)

-7.7
-8.7
-7.6
-8.2
-9.5
-9.3
-7.2
-8.6
-8.6
-7.9
-8.4
-8.8
-7.5

Ligand

Deriv-13
Deriv-14
Deriv-15
Deriv-16
Deriv-17
Deriv-18
Deriv-19
Deriv-20
Deriv-21
Deriv-22
Deriv-23
Deriv-24
Deriv-25

AG

(kcal/mol)

-9.2
-8.3
-8.0
-7.6
-8.0
-8.1
-8.0
-8.2
-7.9
-7.1
-8.4
-7.8
-9.2
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Ligand

Deriv-26
Deriv-27
Deriv-28
Deriv-29
Deriv-30
Deriv-31
Deriv-32
Deriv-33
Deriv-34
Deriv-35
Deriv-36
Deriv-37
Deriv-38

AG
(kcal/mol)

-7.6
-9.0
-7.6
-8.7
-6.9
-7.8
-7.7
-8.1
-9.6
-8.5
-8.8
-7.5
-8.2

Ligand

Deriv-39
Deriv-40
Deriv-41
Deriv-42
Deriv-43
Deriv-44
Deriv-45
Deriv-46
Deriv-47
Deriv-48
Deriv-49
Deriv-50

AG
(kcal/mol)

-9.1
-6.9
-8.1
-8.2
-8.0
-8.3
-7.7
-7.8
-8.4
-8.2
-8.7
-8.3
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Table 3. Key molecular interactions of high-affinity derivatives with KRAS G12D active site residues.

Interactions

Conventional Hydrogen Bond (VAL A:14, GLY A:15, LYS A:16 and SER
A:17); Carbon Hydrogen Bond (PRO A:34 and TYR A:32); Pi-Anion (ASP
A:12); Alkyl (PRO A:34); Pi-Alkyl (PRO A:34); Halogen(Fluorine) (SER

Conventional Hydrogen Bond (GLY A:10 and TYR A:96); Carbon
Hydrogen Bond (TYR A:64); Pi-Anion (GLU A:62); Alkyl (ALA A:11); Pi-
Alkyl (VAL A:9, MET A:72, HIS A:95, TYR A:96 and VAL A:103); Pi-Sigma

Carbon Hydrogen Bond (ASP A:12, GLY A:13, GLY A:15,ASP A:30 and
PRO A:34); Pi-Pi T-shaped (PHE A:28); Alkyl (LYS A:16, ALA A:59 and
LYS A:147); Pi-Alkyl (LYS A:117, ALA A:146 and LYS A:147);
Halogen(Fluorine) (ASP A:12); Halogen(Chlorine) (GLY A:15)
Conventional Hydrogen Bond (LYS A:117); Carbon Hydrogen Bond (ASP
A:30, PRO A:34 and THR A:58); Pi-Cation (LYS A:117); Pi-Pi T-shaped
(PHE A:28); Alkyl (PRO A:34 and ALA A:59); Pi-Alkyl (ALA A:18, LYS
and LYS A:147); Pi-Sigma (LYS A:117);
Halogen(Chlorine) (ASP A:30)

Conventional Hydrogen Bond (HIS A:95); Carbon Hydrogen Bond (ASP
A:12, GLY A:60 and GLU A:62); Pi-Cation (ARG A:68); Pi-Anion (GLU
A:62); Pi-Pi Stacked (TYR A:64); Alkyl (VAL A:9 and ILE A:100); Pi-
Sigma (HIS A:95); Pi-Alkyl (ARG A:68, MET A:72 and TYR A:96); Pi-Lone

Conventional Hydrogen Bond (GLU A:62 and LYS A:88); Pi-Donor
Hydrogen Bond (ARG A:68); Pi-Cation (ARG A:68); Pi-Anion (ASP A:12
and GLU A:62); Pi-Pi T-shaped (TYR A:96); Alkyl (ALA A:11, MET A:72

Carbon Hydrogen Bond (ASP A:12); Pi-Donor Hydrogen Bond (ARG
A:68); Pi-Cation (ARG A:68); Pi-Anion (GLU A:62);Pi-Alkyl (ARG A:68,
HIS A:95 and TYR A:96); Halogen(Fluorine) (GLU A:62); Pi-Sulfur (MET
A:72); Pi-Lone Pair (TYR A:96)

Conventional Hydrogen Bond (ARG A:68 and HIS A:95);Carbon
Hydrogen Bond (ASP A:12); Pi-Anion (GLU A:62); Alkyl (MET A:72); Pi-

Ligands R-Group
(kcal/mol)
Parent -7.7 N/A
A:17)
Deriv-4 -9.5 23-CN
(MET A:72)
Deriv-5 -9.3 18-Et
Deriv-13 -9.2 23-i-Pr
A:117, ALA A:146
Deriv-25 -9.2 18-i-Pr
Pair (TYR A:96)
Deriv-27 -9.0 24-i-Pr
and LYS A:88)
Deriv-34 -9.6 17-i-Pr
Deriv-39 -9.1 23-Piper

Sigma (HIS A:95); Pi-Alkyl (TYR A:64, HIS A:95 and TYR A:96);
Halogen(Fluorine) (GLU A:63); Pi-Lone Pair (TYR A:96)

4. Conclusion

Herein we present a computational framework for the
structure-based optimization of adagrasib analogues
targeting the KRAS G12D mutant. Through this
integrated molecular design approach, several
promising lead compounds with significantly enhanced
predicted binding affinities were identified relative to
the parent scaffold. Comprehensive analysis of fifty
derivatives elucidated structure-activity relationships
that may inform subsequent medicinal chemistry
efforts. Notably, isopropyl substitutions at position 17
(exemplified by Deriv-34) exhibited superior binding
profiles via optimal engagement with key residues in
the Switch-II pocket. These specific interactions
contributed to a binding affinity enhancement of
approximately 2 kcal/mol, potentially corresponding to
a  25-fold increase in inhibitory  potency.
Physicochemical = characterization revealed that
hydroxylated derivatives (Deriv-24 and Deriv-46)
demonstrated favorable Lipinski compliance
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concomitant with optimal Quantitative Estimate of
Drug-likeness scores. Principal component analysis of
molecular descriptors provided valuable insights into
property space exploration, establishing a foundation
for property-guided optimization strategies. Several
methodological limitations warrant acknowledgment,
including the necessity for experimental validation of
computational predictions and the absence of protein
flexibility considerations within the framework. The
most promising candidates identified herein merit
synthesis and experimental evaluation through
biochemical binding assays followed by cellular viability
assessments in relevant cancer models.

This investigation contributes to the expanding
repertoire of computational methodologies for targeting
historically intractable oncoproteins and represents a
significant advancement toward the development of
efficacious therapeutics for KRAS-driven malignancies.
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