
Communications in Advanced Mathematical Sciences
Vol. I, No. 1, 5-34, 2018

Annihilation of torZp
(G ab

K,S) for real abelian extensions
K/Q
Georges Gras1*

Abstract
Let K be a real abelian extension of Q. Let p be a prime number, S the set of p-places of K and GK,S the Galois
group of the maximal S∪{∞}-ramified pro-p-extension of K (i.e., unramified outside p and ∞). We revisit the
problem of annihilation of the p-torsion group TK := torZp

(
G ab

K,S

)
initiated by us and Oriat then systematized

in our paper on the construction of p-adic L-functions in which we obtained a canonical ideal annihilator of
TK in full generality (1978–1981). Afterwards (1992–2014) some annihilators, using cyclotomic units, were
proposed by Solomon, Belliard–Nguyen Quang Do, Nguyen Quang Do–Nicolas, All, Belliard–Martin. In this
text, we improve our original papers and show that, in general, the Solomon elements are not optimal and/or
partly degenerated. We obtain, whatever K and p, an universal non-degenerated annihilator in terms of p-adic
logarithms of cyclotomic numbers related to Lp-functions at s = 1 of primitive characters of K (Theorem 9.4). Some
computations are given with PARI programs; the case p = 2 is analyzed and illustrated in degrees 2, 3, 4 to test a
conjecture.
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1. Introduction
Let K/Q be a real abelian extension of Galois group GK . Let p be a prime number, S the set of p-places of K, and GK,S the
Galois group of the maximal S-ramified in the ordinary sense (i.e., unramified outside p and ∞, whence totally real if p = 2)
pro-p-extension of K.

We revisit the classical problem of annihilation of the so-called Zp[GK ]-module TK := torZp

(
G ab

K,S

)
, as dual of H2(GK,S,Zp(0)).

This was initiated by us [12] (1979) and improved by Oriat [22] (1981). Then in our paper [13] (1978/79) on the construction
of p-adic L-functions (via an “arithmetic Mellin transform” from the “Spiegel involution” of suitable Stickelberger elements)
we obtained incidentally a canonical ideal annihilator AK of TK in full generality, but our purpose, contrary to the present
work, was the semi-simple case with p-adic characters and the annihilation of the isotopic components; this aspect has then
been outdated by the “principal theorems” of Ribet–Mazur–Wiles–Kolyvagin–Greither (refer for instance to the bibliography
of [15]), and many other contributions.

Afterwards some annihilators, using cyclotomic units, were proposed by Solomon [26] (1992), Belliard–Nguyen Quang Do [5]
(2005), Nguyen Quang Do–Nicolas [21] (2011), All [1] (2013), Belliard–Martin [4] (2014), using techniques of Sinnott, Rubin,
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Thaine, Coleman, from Iwasawa’s theory.

In this text, we translate into english some parts of the above 1978–1981’s papers, written in french with tedious classical
techniques, then we show that, in general, the Solomon elements ΨK are often degenerated regarding the annihilator AK , even
for cyclic fields, and explain the origin of this gap due to trivialization of some Euler factors.

We obtain, whatever K and p (Theorem 9.4), an universal non-degenerated annihilator AK , in terms of p-adic logarithms of
cyclotomic numbers, perhaps the best possible regarding these classical methods, but probably too general to cover all the
possible Galois structures of TK , which raises the question of the existence of a better theorem than Stickelberger’s one.

Indeed, if the semi-simple case is now completely solved, the non-semi-simple case is far to be known. Numerical experiments
show in this case that the results are far to give the precise Galois structure of TK (e.g., in direction of its Fitting ideal),
moreover, it seems to us that many (all ?) papers are based on the classical reasoning with Kummer’s theory and Leopoldt’s
Spiegel involution applied to Stickelberger’s elements, even translated into Iwasawa’s theory, without practical analysis of the
results (e.g., with extensive numerical illustrations). So, there is some difficulties to compare these various contributions.

Thus, we perform some computations given with PARI programs [23] to analyse the quality of such annihilators, which is
in general not addressed by papers dealing with Iwasawa’s theory. We consider in a large part the case p = 2, illustrated in
degrees 2, 3, 4 to test the Conjecture 5.7.

2. Notations and reminders on p-ramification theory

Let K be a real abelian number field of degree d, of Galois group GK , and let p≥ 2 be a prime number; we denote by S the set
of prime ideals of K dividing p. Let GK,S be the Galois group of the maximal S∪{∞}-ramified pro-p-extension of K and let
Hpr

K be the maximal abelian S∪{∞}-ramified pro-p-extension of K. To simplify, we put G ab
K,S =: GK and (e.g., [8, Chapter III,

§ (c)]):

TK := torZp
(GK) = Gal(Hpr

K /K∞)

where K∞ = KQ∞ is the cyclotomic Zp-extension of K; so:

GK ' Zp
⊕

TK

since, in the abelian case, Leopoldt’s conjecture is true.

We denote by F an extension of K such that Hpr
K is the direct compositum of K∞ and F over K, then by C`∞

K the subgroup of the
p-class group C`K corresponding, by class field theory, to Gal(HK/K∞∩HK), where HK is the p-Hilbert class field. We have
(where ∼ means “equality up to a p-adic unit”):

#C`∞
K ∼

#C`K

[K∞ ∩HK : K]
∼ #C`K ·

[K∩Q∞ : Q]

ep
· 2

#(〈−1〉∩NK/Q(UK))
, (2.1)

where ep is the ramification index of p in K/Q [8, Theorem III.2.6.4], and UK is defined as follows:

For each p | p, let Kp be the p-completion of K and p the corresponding prime ideal of the ring of integers of Kp; then let:

UK :=
{

u ∈
⊕
p|p

K×p , u = 1+ x, x ∈
⊕
p|p

p
}

& WK := torZp
(UK)

the Zp-module (of Zp-rank d = [K : Q]) of principal local units at p and its torsion subgroup, respectively; by class field theory
this gives in the diagram:

Gal(Hpr
K /HK)'UK/EK & Gal(Hpr

K /K∞HK)' torZp

(
UK
/

EK
)
,
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where EK is the closure of the group EK of p-principal global units of K (i.e., units ε ≡ 1 (mod ∏p|p p)):

F

TK = torZp (GK)

'C`K

#C`∞
K

'UK/EK

GK

Hpr
KK∞HK

#RK · #WK
K∞

HKK∞∩HK

KQ
GK

For any field k, let µk be the group of roots of unity of k of p-power order. Then WK =
⊕
p|p

µKp
. We have the following exact

sequence defining WK and RK via the p-adic logarithm log ([8, Lemma III.4.2.4] or [9, Lemma 3.1 & § 5]):

1→WK :=WK/µK −−−→ torZp

(
UK
/

EK
)

log−−−→ torZp

(
log
(
UK
)/

log(EK)
)
=: RK → 0.

(2.2)

The group RK is called the normalized p-adic regulator of K and makes sense for any number field (see the above references in
[9] for more details and the main properties of these invariants).

It is clear that the annihilation of TK mainely concerns the group RK since the p-class group is in general trivial (and so for
p large enough) and because the regulator may be non-trivial with large valuations and unpredictible p (see [11] for some
conjectures and [10] giving programs of fast computation of the group structure of TK for any number field given by means of
polynomials).

Definition 2.1. A field K is said to be p-rational if the Leopoldt conjecture is satisfied for p in K and if the torsion group TK is
trivial ([14, Section III, § 2], then [8, Theorem IV.3.5], [10], and bibliographies for the history and properties of p-rationality).

This has deep consequences in Galois theory over K since TK is the dual of H2(GK,S,Zp(0)) [18].

3. Kummer theory and Spiegel involution

3.1 Kummer theory
We denote by Qn, n≥ 0, the nth stage in Q∞ so that [Qn : Q] = pn. Let n0 ≥ 0 be defined by K∩Q∞ =: Qn0 .

Let n≥ n0. We denote by Kn the compositum KQn and by Fn the compositum FKn = FQn (in other words, K = Kn0 , F = Fn0 ).
Then we have the group isomorphism Gal(Fn/Kn)'TK for all n≥ n0.

Put q = p (resp. 4) if p 6= 2 (resp. p = 2). Let L = K(µq) and M = F(µq); then put Ln := LKn for all n≥ n0.

Let Mn := Fn(µq) (whence L = Ln0 , M = Mn0). For p 6= 2, the degrees [Ln : Kn] = [Mn : Fn] are equal to a divisor δ of p−1
independent of n≥ n0 (δ is even since K is real). For p = 2, δ = 2. In any case, one has, for n≥ n0:

Ln = K(µqpn).

All this is summarized by the following diagram:
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Qn0(µq)

K′

Hpr
KK∞Q∞

Qn Kn Fn

Ln Mn

Qn0 K F

L M

Q
GK

K = Kn0 , F = Fn0

K′ := K∩Qn0(µq) & Qn0(µq) =Q(µqpn0 )

(for p = 2, K′ =Qn0 & δ = 2)

δ |ϕ(q)

TK

Gn GK

Lemma 3.1. Let fK be the conductor of K. Then the conductor fLn of Ln (n≥ n0) is equal to l.c.m. ( fK ,qpn). Thus for n large
enough (explicit), fLn = qpn f ′, with p - f ′. If p - fK , then fLn = qpn fK for all n≥ n0 + e.

Proof. A classical formula (see, e.g., [8, Proposition II.4.1.1]).

Lemma 3.2. Let pe, e ≥ 0, be the exponent of TK . Then, for all n ≥ n0 + e, the restriction TK −→ Gal(Fn/Kn) is an
isomorphism of GK-modules and TK ' Gal(Mn/Ln).

Proof. The abelian group GK := Gal(Hpr
K /K) is normal in Gal(Hpr

K /Q), then (GK)
pn−n0 is normal; but (GK)

pn−n0 fixes Fn which
is Galois over Q. In other words, GK , as well as Gal(Kn/Q) or Gal(K∞/Q), operate by conjugation in the same way since GK

is abelian; if F is clearly non-unique, then Fn0+e is canonical, being the fixed fiel of
(
GK
)pe

. Then Gal(Mn/Ln)' Gal(Fn/Kn)
is trivialy an somorphism of GK-modules.

The use of the extension F is not strictly necessary but clarifies the reasoning which needs to work at any level n≥ n0 + e to
preserve Galois structures.

The extension Mn/Ln (of exponent pe) is a Kummer extension for the “exponent” qpn since Ln contains the group µqpn and
since n≥ n0 + e.

Let Gn := Gal(Ln/Q) and let, for n≥ n0 + e,

Radn := {w ∈ L×n ,
qpn√

w ∈Mn}

be the radical of Mn/Ln. Then we have the group isomorphism:

Radn/L×qpn

n ' Gal(Mn/Ln).

In some sense, the group Radn/L×qpn

n does not depend on n ≥ n0 + e since the canonical isomorphism Gal(Mn+h/Ln+h) '

Gal(Mn/Ln) gives Ln+h(
qpn√

Radn) = Mn+h; the map Radn/L×qpn

n
ph

−→Radn+h/L×qpn+h

n+h is an isomorphism for any h ≥ 0. In
other words, as soon as n≥ n0 + e, we have:

Radn ⊆ L×qpn−e

n & Radn+h = Radph

n ·L
×qpn+h

n+h .
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3.2 Spiegel involution

The structures of (Z/qpnZ)[Gn]-modules of the Galois group Gal(Mn/Ln) and Radn/L×qpn

n are related via the “Spiegel
involution” defined as follows: let ωn : Gn −→ Z/qpnZ be the character of Teichmüller of level n defined by:

ζ
s = ζ

ωn(s), for all s ∈ Gn and all ζ ∈ µqpn .

The Spiegel involution is the involution of (Z/qpnZ)[Gn] defined by:

x := ∑
s∈Gn

as · s 7→ x∗ := ∑
s∈Gn

as ·ωn(s) · s−1.

Thus, if s is the Artin symbol
(

Ln

a

)
, then

(
Ln

a

)∗
≡ a ·

(
Ln

a

)−1
(mod qpn). For the convenience of the reader we prove once

again the very classical:

Lemma 3.3. Let n ≥ n0 + e where pn0 = [K ∩Q∞ : Q] and pe is the exponent of TK . The annihilators An of Gal(Mn/Ln)

(thus of TK) in (Z/qpnZ)[Gn] are the images of the annihilators Sn of Radn/L×qpn

n by the Spiegel involution and inversely. An
annihilator An of TK only depends on its projection AK,n in (Z/qpnZ)[GK ].

Proof. To simplify, put Rad := Radn/L×qpn

n , T := Gal(Mn/Ln)'TK . Let:

λ : Rad×T −−−→ µqpn

(w,τ) 7−→
( qpn√

w
)τ−1;

then λ is a non-degenerated Z/qpnZ-bilinear form such that:

λ (ws,τ) = λ (w,τs∗), for all s ∈ Gn,

where s∗ = ωn(s) · s−1 (see e.g., [8, Corollary I.6.2.1]).

Let Sn = ∑
s∈Gn

as · s ∈ (Z/qpnZ)[Gn]; then, for all (w,τ) ∈ Rad×T we have:

λ (wSn ,τ) = ∏
s∈Gn

λ (ws,τ)as = ∏
s∈Gn

λ (w,τs∗)as = λ (w,τS∗n).

So, if Sn annihilates Rad, then λ (w,τS∗n) = 1 for all w & τ; since λ is non-degenerated, τS∗n = 1 for all τ ∈ T . Whence the
annihilation of T by An = S∗n (without any assumption on K nor on p), then by the projection AK,n since Gal(Ln/K) acts
trivially on Gal(Mn/Ln).

Remark 3.4. (i) As we have mention, the radical Radn does not depend realy on the field Ln for n≥ n0 + e; so, if we consider
the radical of the maximal p-ramified abelian p-extension of Ln, of exponent qpn:

Rad′n := {w′ ∈ L×n , Ln(
qpn√

w′)/Ln is p-ramified},

we obtain a group whose p-rank tends to infinity with n; this is due mainely to the Zp-rank of the compositum of the Zp-
extensions of Ln (totally imaginary) and from the less known TLn which contains TKn . But since TK is annihilated by 1− s∞,
Radn/L×qpn

n is annihilated by (1− s∞)
∗ = 1+ s∞ which means that only the “minus part” of Rad′n/L×qpn

n is needed, which
eliminates the huge “plus” part containing in particular all the units. Thus Radn is essentially given by the “relative” S′n-units
of Ln (S′n being the set of p-places of Ln) and generators of some “relative” p-classes of Ln.

(ii) In the case p = 2, let T res
K := torZ2

(
G resab

K,S

)
, where G res

K,S is the Galois group of the maximal abelian S-ramified (i.e.,

unramified outside 2 but possibly complexified) pro-2-extension of K and let Radres
n the corresponding radical {w ∈ L×n ,

4·2n√
w ∈

Mres
n }, where Mres

n is analogous to Mn for the restricted sense. We observe that in the restricted sense, we have the exact
sequence [8, Theorem III.4.1.5] 0→ (Z/2Z)d −→T res

K −→TK → 1, then a dual exact sequence with radicals. As in [2], one
may consider more general ray class fields and find results of annihilation with suitable Stickelberger or Solomon elements.
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4. Stickelberger elements and cyclotomic numbers

4.1 General definitions
Let f ≥ 1 be any modulus and let Q f be the corresponding cyclotomic field Q(µ f ). 1 Let L be a subfield of Q f .
(i) We define (where all Artin symbols are taken over Q):

SQ f :=−
f

∑
a=1

(
a
f
− 1

2

)
·
(
Q f

a

)−1

and the restriction:

SL := NQ f /L(SQ f ) :=−
f

∑
a=1

(
a
f
− 1

2

)
·
(

L
a

)−1

to L of SQ f , where a runs trough the integers a ∈ [1, f ] prime to f . In this case, one must precise the relation between f and
the conductor fL of L.
We know that the properties of annihilation of ideal classes need to multiply SL by an element of the ideal annihilator of the
group µ f (or µ2 f ), which is generated by f (or 2 f ) and the multiplicators:

δc := 1− c ·
(

Q f

c

)−1
,

for c odd, prime to f . This shall give integral elements in the group algebra.
(ii) Then we define in the same way:

ηQ f := 1−ζ f & ηL := NQ f /L(1−ζ f ), f 6= 1,

where ζ f is a primitive f th root of unity for which we assume the coherent definitions ζ m′
f = ζm if f = m′ ·m.

It is well known that if f is not a prime power, then η f is a unit, otherwise, NQ f /Q(1−ζ f ) = ` if f = `r, `≥ 2 prime, r ≥ 1.

Definition 4.1. Since f −a
f
− 1

2
=−

( a
f
− 1

2

)
, SQ f = S ′

Q f · (1− s∞) and SL = S ′
L · (1− s∞), where s∞ :=

(Q f

−1

)
is the complex

conjugation, and where:

S ′
Q f :=−

f/2
∑

a=1

(
a
f
− 1

2

)
·
(
Q f

a

)−1
& S ′

L :=−
f/2
∑

a=1

(
a
f
− 1

2

)
·
(

L
a

)−1
.

4.2 Norms of Stickelberger elements and cyclotomic numbers
Let f ≥ 1 and m | f be any modulus and let Q f and Qm ⊆ Q f be the corresponding cyclotomic fields. Let NQ f /Qm be the
restriction map:

Q[Gal(Q f /Q)]−→Q[Gal(Qm/Q)],

or the usual arithmetic norm in Q f /Qm. Consider as above:

SQ f :=−
f

∑
a=1

(
a
f
− 1

2

)
·
(
Q f

a

)−1
& ηQ f := 1−ζ f ( f 6= 1).

We have, respectively:

NQ f /Qm(SQ f ) = ∏
`| f , `-m

(
1−
(
Qm

`

)−1)
·SQm , (4.1)

NQ f /Qm(ηQ f ) =
(
ηQm

)
∏`| f , `-m

(
1−
(
Qm
`

)−1)
if m 6= 1. (4.2)

1Such modulus are conductors of the corresponding cyclotomic fields, except for an even integer not divisible by 4; but this point of view is essential to
establish the functional properties of Stickelberger elements and cyclotomic numbers. So, if f is odd, we distinguish, by abuse, the notations Q f and Q2 f

despite their equality.
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As we have explained in the previous footnote, if m is odd, then we have:

NQ2m/Qm(SQ2m) =
(
1−
(Qm

2

)−1) ·SQm , NQ2m/Qm(ηQ2m) = η

(
1−
(
Qm

2

)−1)
Qm ,

where the “norms” NQ2m/Qm are of course the identity. For instance one verifies immediately that SQ6 = 1
3 (1− s∞) and SQ3 =

1
6 (1− s∞), but since 2 is inert in Q3/Q,

(
1−
(Q3

2

)−1)
= 1− s∞ and one must compute (1− s∞)SQ3 = 1

6 (1− s∞)
2 = 1

3 (1− s∞)

as expected. We have SQ2 = 0 and SQ1 =− 1
2 .

If L (imaginary or real), of conductor f , is an extension of k, of conductor m | f , let SL := NQ f /L(SQ f ) and ηL := NQ f /L(ηQ f ),
then:

NL/k(SL) = ∏
`| f , `-m

(
1−
(

k
`

)−1)
·Sk,

NL/k(S
′

L)≡ ∏
`| f , `-m

(
1−
(

k
`

)−1)
·S ′

k (mod (1+ s∞) ·Q[Gk]),

NL/k(ηL) = (ηk)
∏`| f , `-m

(
1−
(

k
`

)−1)
if m 6= 1 (i.e., k 6=Q).

If f = `r, ` prime, r ≥ 1, then NQ f /Q(ηQ f ) = `, otherwise NQ f /Q(ηQ f ) = 1.

This implies that NL/k(SL) = 0 (resp. NL/k(ηL) = 1) as soon as there exists a prime ` | f , ` - m, totally split in k. In particular,
if k is real, the formula is valid for the infinite place and NL/k(SL) = 0 (of course, if L 6=Q is real, SL = 0).
For the classical proofs, we consider by induction the case f = ` ·m, with ` prime and examine the two cases ` | m and ` - m;
the case of Stickelberger elements been crucial for our purpose, we give again a proof (a similar reasoning will be detailed for
the Theorem 7.2).
To simplify, put SQ f =: S f , SQm =: Sm, and consider:

S f =−
f

∑
a=1

(
a
f
− 1

2

)
·
(
Q f

a

)−1
,

for f = ` ·m, ` - m, where a runs trough the integers a ∈ [1, f ] prime to f .
Put a = b+λ ·m, b ∈ [1,m], λ ∈ [0, `− 1]; since a must be prime to f , b is automatically prime to m but we must exclude
λ ∗b ∈ [0, `−1] such that:

b+λ ∗b ·m = b′` · `, b′` ∈ [1,m] (b′` is necessarily prime to m).

We then have:

NQ f /Qm(S f )

=−
f

∑
a=1

(
a
f
− 1

2

)
·
(
Qm

a

)−1
=− ∑

b,λ 6=λ ∗b

(
b+λ m
`m
− 1

2

)
·
(
Qm

b

)−1

=−∑
b

(
Qm

b

)−1
∑

λ 6=λ ∗b

(
b
`m

+
λ

`
− 1

2

)
=−∑

b

(
Qm

b

)−1( `−1
`

b
m
− `−1

2

)
−∑

b

(
Qm

b

)−1 1
`

(
`(`−1)

2
−λ

∗
b

)
=−

(
1− 1

`

)
∑
b

(
Qm

b

)−1 b
m
+

1
`

∑
b

(
Qm

b

)−1
λ
∗
b .

Since the correspondence b 7→ b′` is bijective on the set of elements prime to m in [1,m], one has, with λ ∗b =
b′` · `−b

m
and(

Qm

b

)
=
(
Qm

b′`

)(
Qm

`

)
:

1
`

∑
b

(
Qm

b

)−1
λ
∗
b = ∑

b

(
Qm

b

)−1 b′`
m
− 1

`
∑
b

(
Qm

b

)−1 b
m

=
(
Qm

`

)−1
∑
b

(
Qm

b′`

)−1 b′`
m
− 1

`
∑
b

(
Qm

b

)−1 b
m

=
((

Qm

`

)−1
− 1

`

)
·∑

b

(
Qm

b

)−1 b
m
.
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Thus we obtain:

NQ f /Qm(S f ) =−
(

1− 1
`

)
∑
b

(
Qm

b

)−1 b
m
+
((

Qm

`

)−1
− 1

`

)
·∑

b

(
Qm

b

)−1 b
m

=−
(

1−
(
Qm

`

)−1)
∑
b

(
Qm

b

)−1 b
m
.

But 1
2

∑
b

(
Qm

b

)−1(
1−
(
Qm

`

)−1)
= 0; so replacing b

m
by b

m
− 1

2
we get:

NQ f /Qm(S f ) =
(

1−
(
Qm

`

)−1)
·Sm.

Then it is easy to compute that if ` | m, any λ ∈ [0, `−1] is suitable, giving:

NQ f /Qm(S f ) = Sm.

The case of cyclotomic elements η f is exactly the same, replacing the additive setting by the multiplicative one.

4.3 Multiplicators of Stickelberger elements
The conductor of Ln, n ≥ n0, is fLn = l.c.m.( fK ,qpn) (Lemma 3.1). So in general fLn = qpn · f ′ with p - f ′, except if fK is
divisible by a large power of p in which case one must take n large enough in the practical computations (write fK = qpn0+r f ′,
r ≥ 0, and take n≥ n0 + r). In some formulas we shall abbreviate fLn by fn.
Let c be an (odd) integer, prime to fn, and let:

SLn(c) :=
(

1− c
(

Ln

c

)−1)
·SLn . (4.3)

Then SLn(c) ∈ Z[Gn] as we have explain; indeed, we have:

SLn(c) =
−1
fn

∑
a

[
a
(

Ln

a

)−1
−ac

(
Ln

a

)−1(Ln

c

)−1]
+

1− c
2

∑
a

(
Ln

a

)−1
.

Let a′c ∈ [1, fn] be the unique integer such that a′c · c ≡ a (mod fn) and put a′c · c = a+λ n
a (c) fn, λ n

a (c) ∈ Z; then, using the
bijection a 7→ a′c in the second summation and the fact that

(
Ln

a′c

)(
Ln

c

)
=
(

Ln

a

)
, this yields:

SLn(c) =
−1
fn

[
∑
a

a
(

Ln

a

)−1
−∑

a
a′c · c

(
Ln

a′c

)−1(Ln

c

)−1]
+

1− c
2

∑
a

(
Ln

a

)−1

=
−1
fn

∑
a

[
a−a′c · c

](
Ln

a

)−1
+

1− c
2

∑
a

(
Ln

a

)−1

= ∑
a

[
λ

n
a (c)+

1− c
2

](
Ln

a

)−1
∈ Z[Gn].

Lemma 4.2. We have the relations λ n
fn−a(c)+

1−c
2 =−

(
λ n

a (c)+
1−c

2

)
for all a ∈ [1, fn] prime to fn. Then:

S ′
Ln(c) :=

fn/2
∑

a=1

[
λ

n
a (c)+

1− c
2

](
Ln

a

)−1
∈ Z[Gn] (4.4)

is such that SLn(c) = S ′
Ln
(c) · (1− s∞), whence SLn(c)

∗ = S ′
Ln
(c)∗ · (1+ s∞).

Proof. By definition, the integer ( fn− a)′c is in [1, fn] and congruent modulo fn to ( fn− a)c−1 ≡ −ac−1 ≡ −a′c (mod fn);
thus ( fn−a)′c = fn−a′c and

λ
n
fn−a(c) =

( fn−a)′c c− ( fn−a)
fn

=
( fn−a′c)c− ( fn−a)

fn
= c−1−λ

n
a (c),

whence λ n
fn−a(c)+

1−c
2 =−

(
λ n

a (c)+
1−c

2

)
and the result.

The multiplicator δc :=
(
1−c

(Ln
c

)−1) has a great importance since the image of δc by the Spiegel involution is δ ∗c := 1−
(Ln

c

)
(mod qpn); the order of the Artin symbol of c shall be crucial.
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5. Annihilation of radicals and Galois groups

5.1 Annihilation of Radn/L×qpn

n
We begin with the classical property of annihilation of class groups of imaginary abelian fields by modified Stickelberger
elements SLn(c) = δc ·SLn . Before let’s give two technical lemmas. Recall that SLn(c) = S ′

Ln
(c) · (1− s∞) and that, from

§ 4.2, the SLn , SLn(c) and S ′
Ln
(c) (mod (1+ s∞)Z[Gn]) form coherent families in lim←−

n≥n0+e
Q[Gn] for the “norm” since fLn and

fLn+h are divisible by the same prime numbers for all h≥ 0.

Lemma 5.1. Let ζ ∈ µqpn , n≥ n0 + e. If ζ ∈ Radn (or Radres
n when p = 2) then ζ = 1.

Proof. If ζ 6= 1 with Ln(
qpn√

ζ )⊆Mn (or Mres
n ), we would have Ln(

qpn√
ζ ) = Ln+h, where h≥ 1 since

qpn√
ζ is of order ≥ qpn+1

and since µp∞ ∩L×n = µqpn , which is absurd because of the linear disjonction Ln+h∩Mn = Ln (or Ln+h∩Mres
n = Ln).

Lemma 5.2. Let w0 ∈ Radn be real. Then w2
0 ∈ L×qpn

n .

Proof. Since K is real, we know that 1− s∞ annihilates the (Z/qpnZ)[Gn]-module Gal(Mn/Ln), thus 1+ s∞ annihilates
Radn/L×qpn

n and w1+s∞

0 = w2
0 ∈ L×qpn

n (this does not work for the restricted sense since the minus part of T res
K is of order

2d).

Theorem 5.3. Let pe be the exponent of TK := torZp

(
G ab

K,S

)
(p-ramification in the ordinary sense). For p = 2, let 2eres

be
the exponent of T res

K := torZ2

(
G resab

K,S

)
, where G res

K,S is the Galois group of the maximal S-ramified in the restricted sense (i.e.,
unramified outside 2 but complexified) pro-2-extension of K and let Radres

n be the corresponding radical.

(i) p > 2. For all n≥ n0 + e, the (Z/qpnZ)[Gn]-module Radn/L×qpn

n is annihilated by S ′
Ln
(c). Thus, S ′

Ln
(c)∗ annihilates TK .

(ii) p = 2, ordinary sense. The annihilation occurs with 2SLn(c) and with 4S ′
Ln
(c). Thus 2SLn(c)

∗ and 4S ′
Ln
(c)∗ annihilate

TK .

(iii) p = 2, restricted sense. For all n≥ n0 + eres, the (Z/4 ·2nZ)[Gn]-module Radres
n /L×4·2n

n is annihilated by 2SLn(c); thus
2SLn(c)

∗ annihilates T res
K .

Proof. Let w ∈Radn; since Ln(
qpn√

w)/Ln is p-ramified, (w) = aqpn ·b where a is an ideal of Ln, prime to p, and b is a product of
prime ideals pn of Ln dividing p. Let pn | b and consider pSLn (c)

n ; one can replace SLn(c) by its restriction to the decomposition

field k (possibly k =Q) of p in the abelian extension Ln/Q, which gives rise to the Euler factor 1−
(

k
p

)−1
since k, of conductor

prime to p, is strictely contained in Ln of conductor qpn f ′ for n≥ n0 + e; so this factor is 0 and bSLn (c) = 1.

From the principality of the ideal aSLn (c) (Stickelberger’s theorem) there exists αn ∈ L×n and a unit εn of Ln such that:

wSLn (c) = α
qpn

n · εn. (5.1)

We see that ε1+s∞
n is the qpnth power of a unit of Ln: consider ε1+s∞

n in (5.1) with the fact that SLn(c) = S ′
Ln
(c)(1− s∞). Since

the Z-rank of the groups of units of Ln and L+
n (the maximal real subfield of Ln) are equal, a power εN

n of εn is a real unit; so
ε1−s∞

n is a torsion element and ε2
n = ε1+s∞

n ε1−s∞
n is equal, up to a qpnth power, to a p-torsion element of the form ζ ′ ∈ Radn.

Thus ζ ′ = 1 (Lemma 5.1) and ε2
n ∈ L×qpn

n .

(i) Case p 6= 2. We deduce from the above that εn ∈ L×pn+1
n . We have wS ′Ln (c)(1−s∞) = β

pn+1
n ; but β 1+s∞

n = 1 (the property is also
true for p = 2 since the result is a totally positive root of unity in L+

n , but the proof only works taking the square of the relation

(5.1) using ε2
n ), and there exists γn ∈ L×n such that βn = γ1−s∞

n , and wS ′Ln (c) · γ−pn+1
n = w0, a real number in the radical, thus a

pn+1th power (Lemma 5.2) (as above, the proof for p = 2 only works taking once again the square of this relation to get w2
0).

Other proof for any p≥ 2: since TK is annihilated by 1− s∞, Radn/L×qpn

n is annihilated by 1+ s∞, thus w1−s∞ ∈ w2 ·L×qpn

n for
all w ∈ Radn, and wSLn (c) = w2S ′Ln (c) up to L×qpn

n .

(ii) Case p = 2 in the ordinary sense (so L+
n = Kn). The result is obvious taking the square in the previous computations giving

ε2
n instead of εn for the annihilation with 2SLn(c), then w2

0 for the annihilation with 4S ′
Ln
(c).

(iii) Case p = 2 in the restricted sense. The proof is in fact contained in the same relation (w) = a4·2n ·b, for all w∈Radres
n , where

a is an ideal of Ln, prime to 2, and b is a product of prime ideals pn of Ln dividing 2, then the relation (5.1), n≥ n0 + e.
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5.2 Computation of SLn(c)
∗ or S ′

Ln
(c)∗ – Annihilation of TK

From the expressions (4.3) and (4.4) of SLn(c), the image by the Spiegel involution is:

SLn(c)
∗ ≡

fn
∑

a=1

[
λ

n
a (c)+

1− c
2

]
a−1
(

Ln

a

)
(mod qpn),

which defines a coherent familly (SLn(c)
∗)n ∈ lim←−

n≥n0+e
Z/qpnZ[Gn] of annihilators of the Galois groups Gal(Mn/Ln)'TK . In

the case p 6= 2, one may use equivalently S ′
Ln
(c)∗ with the half summation.

Since the operation of Gal(Ln/K) on Gal(Mn/Ln) is trivial, by restriction of SLn(c)
∗ to K (see Lemma 3.3), one obtains a

coherent familly of annihilators of TK denoted (AK,n(c))n ∈ lim←−
n≥n0+e

Z/qpnZ[GK ], whose p-adic limit:

AK(c) := lim
n→∞

AK,n(c) = lim
n→∞

fn
∑

a=1

[
λ

n
a (c)+

1− c
2

]
a−1
(

K
a

)
∈ Zp[GK ]

is a canonical annihilator of TK that we shall link to p-adic L-functions; of course, it is sufficient to know its coefficients
modulo the exponent pe of TK and in a programming point of view, the element AK,n0+e(c) annihilates TK , knowing that [10,
Program I, § 3.2] gives the group structure of TK .

Remark 5.4. Let αLn :=
fn
∑

a=1
a−1
(

Ln

a

)
≡
[ fn

∑
a=1

(
Ln

a

)−1]∗
; we have:

αLn :=
fn/2
∑

a=1
a−1
(

Ln

a

)
+( fn−a)−1

(
Ln

fn−a

)
≡

fn/2
∑

a=1
a−1
(

Ln

a

)
(1− s∞)(mod fn)

which annihilates TK and is such that NLn/K(αLn)≡ 0 (mod qpn) since K is real. We shall neglect such expressions and use

the symbol ≡̃ , where A ≡̃ B (mod pn+1) will mean A = B+µ · pn+1 +ν ·
fn
∑

a=1
a−1
(

K
a

)
, in the group algebra Zp[GK ], µ,ν

in Zp (we put the modulus pn+1 instead of qpn to cover, subsequently, the case p = 2; moreover, pn+1 annihilates TK since
n≥ n0 + e). By abuse, we still denote AK(c) = lim

n→∞
∑

fn
a=1 λ n

a (c)a−1
(K

a

)
.

Thus, we have obtained:

Theorem 5.5. Let c be any integer prime to 2p and to the conductor of K.
Assume n≥ n0 + e and let fn be the conductor of Ln; for all a ∈ [1, fn], prime to fn, let a′c be the unique integer in [1, fn] such
that a′c · c≡ a (mod fn) and put a′c · c−a = λ n

a (c) fn, λ n
a (c) ∈ Z.

Let AK,n(c) :=
fn
∑

a=1
λ

n
a (c)a−1

(
K
a

)
and put AK,n(c) = A ′

K,n(c) · (1+ s∞) where A ′
K,n(c) =

fn/2
∑

a=1
λ

n
a (c)a−1

(
K
a

)
. Let AK(c) :=

lim
n→∞

[ fn
∑

a=1
λ

n
a (c)a−1

(
K
a

)]
and put AK(c) =: A ′

K(c) · (1+ s∞).

(i) For p 6= 2, A ′
K(c) annihilates the Zp[GK ]-module TK .

(ii) For p = 2, the annihilation is true for 2 ·AK(c) and 4 ·A ′
K(c).

In practice, when the exponent pe is known, one can use n = n0 + e and the annihilators AK,n(c) or A ′
K,n(c), the annihilator

limit AK(c) being related to p-adic L-functions of primitive characters, thus giving the other approach than Solomon one, that
we shall obtain in Theorem 9.4.

Remark 5.6. We have proved in a seminar report (1977) that for p = 2, S ′
Ln
(c) annihilates C`Ln/C`

0
Ln

, where C`Ln is the
2-class group of Ln and where C`0

Ln
is generated by the classes of the the invariant ideals in Ln/Kn.

This shows that some 2-classes may give an obstruction; but Radn is particular as we have explained in Remark 3.4. In [15],
Greither gives suitable statements about Stickelberger’s theorem for p = 2, using the main theorems of Iwasawa’s theory about
the orders 1

2 L2(1,χ) of the isotypic components.

From this, as well as some numerical experiments, and the roles of εn and w0 in the above reasonings, we may propose the
following conjecture:

Conjecture 5.7. Let p = 2 and let K be a real abelian number field linearly disjoint from the cyclotomic Z2-extension. Put
AK(c) = A ′

K(c) · (1+ s∞) (see formula of Theorem 5.5). Then A ′
K(c) annihilates TK .

If there exists, in the class of A ′
K(c) modulo ∑σ∈GK σ , an element of the form 2 ·A ′′

K (c), A ′′
K (c) ∈ Zp[GK ], one may ask if

A ′′
K (c) does annihilate TK . We shall give a counterexample for the annihilation of TK by A ′′

K (c) (see § 6.5.5), but we ignore if
this may be true under some assumptions.
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5.3 Experiments for cyclic cubic fields with p≡ 1 (mod 3)
To simplify we suppose fK prime. The first part of the program gives a defining polynomial. A second part computes the p-adic
valuation of #TK using [10, Program I, § 3.2] and gives AK(c) = Λ0 +Λ1σ−1 +Λ2σ−2 modulo a power of p, after the choice
of c, prime to 2p fK , with an Artin symbol of order 3; in the program pex is the exponent pe of TK and fn the conductor of Ln.
The parameter nt must be > ex.

{p=7;nt=8;forprime(f=7,10ˆ4,if(Mod(f,3)!=1,next);
for(bb=1,sqrt(4*f/27),if(vf==2 & Mod(bb,3)==0,next);A=4*f-27*bbˆ2;
if(issquare(A,&aa)==1,if(Mod(aa,3)==1,aa=-aa);
P=xˆ3+xˆ2+(1-f)/3*x+(f*(aa-3)+1)/27;K=bnfinit(P,1);Kpn=bnrinit(K,pˆnt);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
h=component(component(component(K,8),1),2);L=List;ex=0;
i=component(matsize(Hpn),2);R=0;for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,R=R+1;val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);if(vptor>1,S0=0;S1=0;S2=0;
pN=p*pˆex;nu=(f-1)/3;fn=pN*f;z=znprimroot(f);
zz=lift(z);t=lift(Mod((1-zz)/f,2*p));c=zz+t*f;
for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)ˆ-1);
lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
a0=lift((a*zˆ0)ˆnu);a1=lift((a*zˆ2)ˆnu);a2=lift((a*z)ˆnu);
if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u));
L0=lift(S0);L1=lift(S1);L2=lift(S2);
j=Mod(y,yˆ2+y+1);Y=L0+j*L1+jˆ2*L2;nj=valuation(norm(Y),p);
print(f," ",P," vptor=",vptor," T_K=",L," A= ",L0," ",L1," ",L2," ",nj)))))}

Let’s give a partial table for p= 7 and 13, in which vptor := vp(#TK) (examples limited to vptor≥ 2), and nj= vp
(
NQ( j)/Q(Λ0+

Λ1 · j+Λ2 · j2)
)
; one sees that, as expected, all the examples give nj= vptor since TK is a finite Z7[ j]-module which may be

decomposed with two 7-adic characters:

f P vptor T_K coefficients nj
313 xˆ3+xˆ2-104*x+371 2 [7,7] [41, 41, 48] 2
577 xˆ3+xˆ2-192*x+171 2 [49] [183, 17, 280] 2
823 xˆ3+xˆ2-274*x+61 3 [343] [761, 419, 437] 3
883 xˆ3+xˆ2-294*x+1439 2 [7,7] [14, 0, 35] 2
1051 xˆ3+xˆ2-350*x-2608 2 [49] [4, 247, 309] 2
1117 xˆ3+xˆ2-372*x+2565 2 [7,7] [7, 7, 42] 2
1213 xˆ3+xˆ2-404*x+629 2 [49] [45, 313, 268] 2
1231 xˆ3+xˆ2-410*x-1003 2 [49] [247, 73, 273] 2
1237 xˆ3+xˆ2-412*x+1741 2 [49] [108, 336, 128] 2
1297 xˆ3+xˆ2-432*x-1345 2 [49] [277, 62, 14] 2
1327 xˆ3+xˆ2-442*x-344 2 [49] [217, 340, 251] 2
1381 xˆ3+xˆ2-460*x-1739 4 [343,7] [1738, 2186, 2361] 4
1567 xˆ3+xˆ2-522*x-4759 2 [49] [219, 137, 78] 2
(...)
2203 xˆ3+xˆ2-734*x+408 2 [7,7] [28, 28, 35] 2
2251 xˆ3+xˆ2-750*x-1584 2 [49] [191, 274, 151] 2
2557 xˆ3+xˆ2-852*x+9281 3 [49,7] [235, 3, 286] 3

For f = 33199, P = x3 + x2− 11066x+ 238541, TK ' Z/7Z×Z/7Z, h = 14, and the annihilator is equivalent, modulo
1+σ +σ2, to A = σ −2.

For f = 20857, P = x3+x2−6952x+210115, TK 'Z/72Z×Z/72Z, h = 1, and the annihilator is equivalent to A = 72(σ−3)
where σ −3 is invertible modulo 7.

For f = 1381, TK ' Z/73Z×Z/7Z, h = 1, A = 1738+2186σ +2361σ2 is equivalent to 7 · (448+623σ) and 448+623σ

operates on T 7
K ' Z/72Z as σ −18 modulo 72 where 18 is of order 3 modulo 72 as expected.

For f = 39679, TK ' Z/73Z×Z/7Z×Z/7Z, h = 7, and one finds the annihilator A = 72(σ −4) where σ −4 is not invertible
(NQ( j)/Q( j−4) = 21).
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For p = 13, the same program gives the following similar results:

f P vptor T_K coefficients nj
1033 xˆ3+xˆ2-344*x+1913 2 [169] [311, 455, 919] 2
1459 xˆ3+xˆ2-486*x+2864 2 [13,13] [101, 88, 153] 2
1483 xˆ3+xˆ2-494*x-2197 2 [169] [911, 1868, 1628] 2
1543 xˆ3+xˆ2-514*x+4229 2 [169] [1598, 603, 1866] 2
1747 xˆ3+xˆ2-582*x-4141 2 [169] [1952, 505, 155] 2
3391 xˆ3+xˆ2-1130*x+14192 3 [169,13] [803, 1765, 283] 3
4423 xˆ3+xˆ2-1474*x+10648 2 [169] [52, 1213, 1888] 2
4933 xˆ3+xˆ2-1644*x-1827 2 [13,13] [92, 79, 105] 2
5011 xˆ3+xˆ2-1670*x-4083 2 [169] [602, 1673, 869] 2
5479 xˆ3+xˆ2-1826*x+13799 2 [13,13] [93, 158, 28] 2
7321 xˆ3+xˆ2-2440*x-45824 2 [169] [745, 409, 1546] 2
7963 xˆ3+xˆ2-2654*x+43944 2 [169] [1805, 794, 860] 2
9319 xˆ3+xˆ2-3106*x-67649 2 [13,13] [26, 52, 0] 2

6. Experiments and heuristics about the case p = 2

Conjecture 5.7 gives various possibilities of annihilation, depending on the choice of AK,n(c), A ′
K,n(c) or else, and of the

degree of K/Q, odd, even, or a 2th power. We shall give some illustrations with quadratic, quartic and cubic fields.

6.1 Quadratic fields
Although the order of TK is known and given by 1

2 L2(1,χ) (for K 6= Q(
√

2)), we give the computations for the quadratic
fields K of conductor f ≥ 5 with A ′

K,n(c) (a ∈ [1, fn/2]) instead of AK,n(c) to test the conjecture; the computation of the Artin
symbols is easily given by PARI with kronecker(f,a) =±1. The modulus fn = l.c.m.( fK ,4 ·2n) is computed exactely and we
take n = e+2.
From the annihilator A′ = a0 +a1 ·σ (in (L0,L1)), we deduce, modulo the norm, an equivalent annihilator denoted by abuse
A′ = a1−a0 ∈ Z.
One finds A′ ≡ 2 · #TK (mod 22+e) for all f 6= 8 (only case with K∩Q∞ 6=Q) in this interval; then the class group is given (be
careful to take nt large enought for the computation of the structure of TK):

{p=2;nt=18;bf=5;Bf=10ˆ4;for(f=bf,Bf,v=valuation(f,2);M=f/2ˆv;
if(core(M)!=M,next);if((v==1||v>3)||(v==0 & Mod(M,4)!=1)||
(v==2 & Mod(M,4)==1),next);P=xˆ2-f;K=bnfinit(P,1);Kpn=bnrinit(K,pˆnt);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
h=component(component(component(K,8),1),2);L=List;ex=0;
i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);tor=pˆvptor;S0=0;S1=0;w=valuation(f,p);
pN=pˆ2*pˆex;fn=pN*f/2ˆw;if(ex==0 & w==3,fn=p*fn);
for(cc=2,10ˆ2,if(gcd(cc,p*f)!=1 || kronecker(f,cc)!=-1,next);c=cc;break);
for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)ˆ-1);
lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
s=kronecker(f,a);if(s==1,S0=S0+u);if(s==-1,S1=S1+u));
L0=lift(S0);L1=lift(S1);A=L1-L0;if(A!=0,A=pˆvaluation(A,p));
print(f," P=",P," ",L0," ",L1," A=",A," tor=",tor," T_K=",L," Cl_K=",h))}

f_K=8 P=xˆ2-8 (1,0) A’=1 tor=1 T_K=[] Cl_K=[]
(...)
f_K=508 P=xˆ2-508 (223,479) A’=256 tor=128 T_K=[128] Cl_K=[]
(...)
f_K=1160 P=xˆ2-1160 (2,6) A’=4 tor=2 T_K=[2] Cl_K=[2,2]
f_K=1164 P=xˆ2-1164 (12,4) A’=8 tor=4 T_K=[4] Cl_K=[4]
(...)
f_K=1185 P=xˆ2-1185 (1640,1640) A’=0 tor=1024 T_K=[2,512] Cl_K=[2]
f_K=1189 P=xˆ2-1189 (2,6) A’=4 tor=2 T_K=[2] Cl_K=[2]
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(...)
f_K=1196 P=xˆ2-1196 (4,20) A’=16 tor=8 T_K=[8] Cl_K=[2]
f_K=1201 P=xˆ2-1201 (7752,3656) A’=4096 tor=2048 T_K=[2048] Cl_K=[]
(...)
f_K=1209 P=xˆ2-1209 (4,4) A’=0 tor=4 T_K=[2,2] Cl_K=[2]
(...)
f_K=1217 P=xˆ2-1217 (16,48) A’=32 tor=16 T_K=[16] Cl_K=[]
f_K=1221 P=xˆ2-1221 (8,8) A’=0 tor=8 T_K=[2,4] Cl_K=[4]
(...)
f_K=1596 P=xˆ2-1596 (16,16) A’=0 tor=16 T_K=[8, 2] Cl_K=[4,2]

Remark 6.1. (i) For f = 1160, one sees that #C`∞
K = 1

2
#C`K (indeed, −1 is norm in K/Q, cf. (2.1)).

(ii) It seems that for all the conductors, A′ is of the form 2h (1+σ) up to a 2-adic unit, where h≥ 0 takes any value and can
exceed the exponent.

(iii) For f prime, the annihilator of TK , given by the Theorem 9.4, or by any Solomon’s type element, is related to its order:
1
2

L2(1,χ)∼
1
2 ∑

f
a=1 χ(a) · log(1−ζ a

f ) =
1
2
·
[
log(ηK)− log(ησ

K )
]
,

where ηK = NQ f /K(1−ζ f ) (here the character χ is primitive modulo f since K = kχ ). The following program verifies (at least
for these kind of prime conductors with trivial class group) that we have ηK ·ε =±

√
f , where ε is the fundamental unit of K or

its inverse (the program gives in N0 and N1 the conjugates of ηK and gives ε in E):

{f=1201;N0=1;N1=1;X=exp(2*I*Pi/f);z=znprimroot(f);E=quadunit(f);zk=1;
for(k=1,(f-1)/2,zk=zk*zˆ2;N0=N0*(1-Xˆlift(zk));N1=N1*(1-Xˆlift(zk*z)));
print(N0*E," ",N1/E)}

We find N0 ε = N1 ε−1 ≈ 34.65544690 =
√

1201, which implies that:

1
2

L2(1,χ)∼
1
2
(2log(ε)) = log(ε).

A direct computation gives log(ε)∼ 212 as expected since #TK = 211 with #RK ∼ 210 [9, Proposition 5.2] and #WK = 2 since 2
splits in K. Same kind of result with f = 1217.

6.2 A familly of cyclic quartic fields of composite conductor
We consider a conductor f product of two prime numbers q1 and q2 such that q1−1≡ 2 (mod 4) and q2−1≡ 0 (mod 8). So
there exists only one real cyclic quartic field K of conductor f which is found eliminating the imaginary and non-cyclic fields;
the quadratic subfield of K is k =Q(

√
q2). The program is written with A ′

K,n(c) and gives all information for k and K.

The following result may help to precise the annihilations (see [14, Theorem 2] or [8, Theorem IV.3.3, Exercise IV.3.3.1]):

Lemma 6.2. Let k be a totally real number field and let K/k be a Galois p-extension with Galois group g of order pr. Then we
have the fixed point formula: #T g

K = #Tk · ph, where (l - p being the ramified primes in K/k):

h := min(n0 + r ; . . . ,νl+ϕl+ γl, . . .)− (n0 + r)+ ∑
l - p

el,

with:

pνl := p-part of q−1log(`), where l∩Z=: `Z,
pϕl := p-part of the residue degree of ` in K/Q,
pγl := p-part of the number of prime ideals L | l in K/k,
pel := p-part of the ramification index of l in K/k.

In such famillies of cyclic quartic fields, h = ∑
l - p

el.

6.2.1 The program
In the present familly, h = 2 (resp. 3) if q is inert (resp. splits) in k/Q.
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{p=2;nt=18;forprime(qq=17,100,if(Mod(qq,8)!=1,next);Pk=xˆ2-qq;
k=bnfinit(Pk,1);kpn=bnrinit(k,pˆnt);Hkpn=component(component(kpn,5),2);
Lk=List;i=component(matsize(Hkpn),2);
for(j=1,i-1,C=component(Hkpn,i-j+1);if(Mod(C,p)==0,
listinsert(Lk,pˆvaluation(C,p),1)));forprime(q=5,100,
if(valuation(q-1,2)!=2,next);f=q*qq;Q=polsubcyclo(f,4);
for(j=1,7,P=component(Q,j);K=bnfinit(P,1);C7=component(K,7);
S=component(C7,2);D=component(C7,3);
if(Mod(D,f)!=0 || S!=[4,0] || component(polgalois(P),2)!=-1,next);break);
Cl=component(component(component(K,8),1),2);Kpn=bnrinit(K,pˆnt);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
Hpn=component(component(Kpn,5),2);L=List;ex=0;
i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);if(vptor>0,S0=0;S1=0;S2=0;S3=0;
pN=pˆ2*pˆex;fn=pN*f;dqq=(qq-1)/4;dq=(q-1)/2;
z=znprimroot(q);zz=znprimroot(qq);for(cc=3,f,if(gcd(cc,p*f)!=1,next);
cz=lift((cc*z)ˆdq);czz=lift((cc*zz)ˆdqq);if(cz!=1 || czz!=1,next);
c=cc;break);cm1=Mod(c,fn)ˆ-1;for(a=1,fn/2,if(gcd(a,fn)!=1,next);
asurc=lift(a*cm1);lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
aqq0=lift((a*zzˆ0)ˆdqq);aqq1=lift((a*zzˆ1)ˆdqq);
aqq2=lift((a*zzˆ2)ˆdqq);aqq3=lift((a*zzˆ3)ˆdqq);
aq0=lift((a*zˆ0)ˆdq);aq1=lift((a*zˆ1)ˆdq);
if(aqq0==1 & aq0==1,S0=S0+u);if(aqq0==1 & aq1==1,S2=S2+u);
if(aqq1==1 & aq0==1,S1=S1+u);if(aqq1==1 & aq1==1,S3=S3+u);
if(aqq2==1 & aq0==1,S2=S2+u);if(aqq2==1 & aq1==1,S0=S0+u);
if(aqq3==1 & aq0==1,S3=S3+u);if(aqq3==1 & aq1==1,S1=S1+u));
L0=lift(S0);L1=lift(S1);L2=lift(S2);L3=lift(S3);Y=Mod(y,yˆ2+1);
ni=L0+Y*L1+Yˆ2*L2+Yˆ3*L3;Nni=valuation(norm(ni),2));V0=1;V1=1;V2=1;V3=1;
if(L0!=0,V0=2ˆvaluation(L0,2));if(L1!=0,V1=2ˆvaluation(L1,2));
if(L2!=0,V2=2ˆvaluation(L2,2));if(L3!=0,V3=2ˆvaluation(L3,2));
print();F=component(factor(f),1);
print("f=",F," Cl=",Cl," P=",P," tor=",2ˆvptor," Nni=",2ˆNni);
print("A=",V0,"*",L0/V0," ",V1,"*",L1/V1," ",V2,"*",L2/V2," ",V3,"*",L3/V3);
print("q=",q," qq=",qq," T_k=",Lk," T_K=",L)))}

f=[5, 17] h=[2] P=xˆ4-xˆ3-23*xˆ2+x+86 tor=16 Nni=16
A=[2*5, 4*1, 2*1, 1*0] q=5 qq=17 T_k=List([2]) T_K=[4, 2, 2]

f=[13, 17] h=[2] P=xˆ4-xˆ3-57*xˆ2+x+664 tor=32 Nni=32
A=[2*1, 2*1, 2*3, 2*3] q=13 qq=17 T_k=[2] T_K=[4, 4, 2]

f=[17, 29] h=[2] P=xˆ4-xˆ3-125*xˆ2+x+3452 tor=16 Nni=16
A=[4*3, 2*1, 1*0, 2*1] q=29 qq=17 T_k=[2] T_K=[4, 2, 2]

f=[17, 37] h=[10] P=xˆ4-xˆ3-159*xˆ2+x+5662 tor=16 Nni=16
A=[4*1, 2*3, 8*1, 2*7] q=37 qq=17 T_k=[2] T_K=[4, 2, 2]

f=[17, 53] h=[2, 2] P=xˆ4-xˆ3-227*xˆ2+x+11714 tor=32 Nni=32
A=[2*1, 2*5, 2*3, 2*7] q=53 qq=17 T_k=[2] T_K=[4, 4, 2]

f=[17, 61] h=[2] P=xˆ4-xˆ3-261*xˆ2+x+15556 tor=16 Nni=16
A=[2*1, 8*1, 2*5, 4*3] q=61 qq=17 T_k=[2] T_K=[4, 2, 2]

f=[5, 41] h=[2] P=xˆ4-xˆ3-56*xˆ2-100*x+160 tor=256 Nni=32
A=[2*13, 2*45, 2*59, 2*27] q=5 qq=41 T_k=[16] T_K=[32, 4, 2]

f=[13, 41] h=[2] P=xˆ4-xˆ3-138*xˆ2-264*x+1472 tor=256 Nni=32
A=[2*13, 2*27, 2*51, 2*5] q=13 qq=41 T_k=[16] T_K=[32, 4, 2]

f=[29, 41] h=[2] P=xˆ4-xˆ3-302*xˆ2-592*x+8032 tor=1024 Nni=128
A=[4*21, 4*5, 4*15, 4*15] q=29 qq=41 T_k=[16] T_K=[32, 8, 4]

f=[37, 41] h=[2] P=xˆ4-xˆ3-384*xˆ2-756*x+13280 tor=256 Nni=32
A=[2*57, 2*7, 2*47, 2*33] q=37 qq=41 T_k=[16] T_K=[32, 4, 2]

f=[41, 53] h=[2] P=xˆ4-xˆ3-548*xˆ2-1084*x+27712 tor=512 Nni=64
A=[4*23, 8*15, 4*5, 8*7] q=53 qq=41 T_k=[16] T_K=[32, 4, 4]

f=[41, 61] h=[2, 2] P=xˆ4-xˆ3-630*xˆ2-1248*x+36896 tor=8192 Nni=1024
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A=[32*3, 16*7, 1*0, 16*7] q=61 qq=41 T_k=[16] T_K=[32, 16, 16]
f=[5, 73] h=[2] P=xˆ4-xˆ3-100*xˆ2+187*x+1389 tor=8 Nni=8
A=[1*5, 1*9, 1*15, 1*3] q=5 qq=73 T_k=[2] T_K=[4, 2]

f=[13, 73] h=[2] P=xˆ4-xˆ3-246*xˆ2+479*x+11171 tor=8 Nni=8
A=[1*7, 1*13, 1*13, 1*15] q=13 qq=73 T_k=[2] T_K=[4, 2]

f=[29, 73] h=[2] P=xˆ4-xˆ3-538*xˆ2+1063*x+58767 tor=8 Nni=8
A=[1*5, 1*7, 1*15, 1*5] q=29 qq=73 T_k=[2] T_K=[4, 2]

f=[37, 73] h=[2] P=xˆ4-xˆ3-684*xˆ2+1355*x+96581 tor=128 Nni=128
A=[1*0, 16*1, 8*1, 8*1] q=37 qq=73 T_k=[2] T_K=[8, 8, 2]

f=[53, 73] h=[10] P=xˆ4-xˆ3-976*xˆ2+1939*x+200241 tor=8 Nni=8
A=[1*15, 1*15, 1*5, 1*13] q=53 qq=73 T_k=[2] T_K=[4, 2]

f=[61, 73] h=[2] P=xˆ4-xˆ3-1122*xˆ2+2231*x+266087 tor=16 Nni=16
A=[8*1, 2*3, 1*0, 2*1] q=61 qq=73 T_k=[2] T_K=[4, 2, 2]

f=[5, 89] h=[2, 2] P=xˆ4-xˆ3-122*xˆ2-217*x+1699 tor=16 Nni=16
A=[1*0, 2*1, 8*1, 2*3] q=5 qq=89 T_k=[2] T_K=[4, 2, 2]

f=[13, 89] h=[2] P=xˆ4-xˆ3-300*xˆ2-573*x+13625 tor=8 Nni=8
A=[1*1, 1*7, 1*11, 1*13] q=13 qq=89 T_k=[2] T_K=[4, 2]

f=[29, 89] h=[2] P=xˆ4-xˆ3-656*xˆ2-1285*x+71653 tor=8 Nni=8
A=[1*11, 1*5, 1*1, 1*15] q=29 qq=89 T_k=[2] T_K=[4, 2]

f=[37, 89] h=[2] P=xˆ4-xˆ3-834*xˆ2-1641*x+117755 tor=8 Nni=8
A=[1*9, 1*15, 1*3, 1*5] q=37 qq=89 T_k=[2] T_K=[4, 2]

f=[53, 89] h=[2] P=xˆ4-xˆ3-1190*xˆ2-2353*x+244135 tor=16 Nni=16
A=[4*1, 2*5, 4*1, 2*7] q=53 qq=89 T_k=[2] T_K=[4, 2, 2]

f=[61, 89] h=[2] P=xˆ4-xˆ3-1368*xˆ2-2709*x+324413 tor=8 Nni=8
A=[1*1, 1*9, 1*11, 1*11] q=61 qq=89 T_k=[2] T_K=[4, 2]

f=[5, 97] h=[2] P=xˆ4-xˆ3-133*xˆ2-479*x+36 tor=16 Nni=16
A=[2*5, 8*1, 2*1, 4*3] q=5 qq=97 T_k=[2] T_K=[4, 2, 2]

f=[13, 97] h=[10] P=xˆ4-xˆ3-327*xˆ2-1255*x+2558 tor=16 Nni=16
A=[4*1, 2*7, 8*1, 2*3] q=13 qq=97 T_k=[2] T_K=[4, 2, 2]

f=[29, 97] h=[2] P=xˆ4-xˆ3-715*xˆ2-2807*x+16914 tor=16 Nni=16
A=[2*3, 8*1, 2*3, 4*3] q=29 qq=97 T_k=[2] T_K=[4, 2, 2]

f=[37, 97] h=[2] P=xˆ4-xˆ3-909*xˆ2-3583*x+28748 tor=16 Nni=16
A=[4*3, 2*7, 1*0, 2*3] q=37 qq=97 T_k=[2] T_K=[4, 2, 2]

f=[53, 97] h=[2] P=xˆ4-xˆ3-1297*xˆ2-5135*x+61728 tor=64 Nni=64
A=[8*3, 4*7, 16*1, 4*7] q=53 qq=97 T_k=[2] T_K=[8, 4, 2]

f=[61, 97] h=[2] P=xˆ4-xˆ3-1491*xˆ2-5911*x+82874 tor=32 Nni=32
A=[2*7, 2*5, 2*5, 2*7] q=61 qq=97 T_k=[2] T_K=[4, 4, 2]

6.2.2 The case f = 5 ·73
One may try to find a contradiction to Conjecture 5.7 with the A ′

K,n(c) given by the above data. One sees that 1
2A ′

K,n(c) is not
always in Z[GK ], but modulo the norm we have an annihilator of the form 2 ·A ′′

K,n(c), and similarly we may ask under what
condition A ′′

K,n(c) annihilates TK .

For f = 5 ·73, P = x4− x3−100x2 +187x+1389, for which we have TK ' Z/4Z×Z/2Z, Tk ' Z/2Z, Cl= 2, A ′
K,n(c) =

5+9σ +15σ2 +3σ3, giving:

A ′′
K,n(c) =

1
2

[
5+9σ +15σ

2 +3σ
3−3(1+σ +σ

2 +σ
3)
]
≡ 1−σ +2σ

2 (mod 4)

without obvious contradiction since #T g
K = 8 (i.e., T g

K = TK) and #T GK
K = 4 (Lemma 6.2). Moreover, we deduce from this

that NK/k(TK) = Tk.

6.3 Cyclic cubic fields of prime conductors
The following program gives, for p = 2 and for cyclic cubic fields of prime conductor f, the group structure of TK in L (from
[10, § 3.2]; recall that in all such programs, the parameter nt must be large enough regarding the exponent of TK), then the
(conjectural) annihilator A ′

K,n(c), reduced modulo 1+σ +σ2; it is equal, up to an invertible element, to a power of 2 (2 is inert
in Q( j)):

{p=2;nt=12;forprime(f=10ˆ4,2*10ˆ4,if(Mod(f,3)!=1,next);P=polsubcyclo(f,3);
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K=bnfinit(P,1);Kpn=bnrinit(K,pˆnt);C5=component(Kpn,5);
Hpn0=component(C5,1);Hpn=component(C5,2);L=List;ex=0;
i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);if(vptor>2,S0=0;S1=0;S2=0;pN=pˆ2*pˆex;
D=(f-1)/3;fn=pN*f;z=znprimroot(f);zz=lift(z);t=lift(Mod((1-zz)/f,p));
c=zz+t*f;for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)ˆ-1);
lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
a0=lift((a*zˆ0)ˆD);a1=lift((a*zˆ2)ˆD);a2=lift((a*z)ˆD);
if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u));
L0=lift(S0);L1=lift(S1);L2=lift(S2);L1=L1-L0;L2=L2-L0;
A=gcd(L1,L2);A=2ˆvaluation(A,2);print(f," ",P," ", A," ",L)))}

f P A L
10399 xˆ3+xˆ2-3466*x+7703 4 [4,4]
10513 xˆ3+xˆ2-3504*x-80989 8 [8,8]
10753 xˆ3+xˆ2-3584*x-76864 4 [4,4]
10771 xˆ3+xˆ2-3590*x-26728 4 [4,4]
10903 xˆ3+xˆ2-3634*x+26248 8 [8,8]
10939 xˆ3+xˆ2-3646*x-46592 16 [16,16]
10957 xˆ3+xˆ2-3652*x-39364 4 [4,4]
11149 xˆ3+xˆ2-3716*x+39228 4 [2,2,2,2]
(...)
12757 xˆ3+xˆ2-4252*x+103001 4 [4,4]
13267 xˆ3+xˆ2-4422*x+96800 16 [16,16]
13297 xˆ3+xˆ2-4432*x+94064 4 [4,4]
13309 xˆ3+xˆ2-4436*x+100064 4 [4,4]
13591 xˆ3+xˆ2-4530*x-63928 8 [8,8]

6.4 Cyclic quartic fields of prime conductors
Let’s give the same program for prime conductors f ≡ 1 (mod 8), with the annihilator AK,n(c):

{p=2;nt=18;d=4;forprime(f=5,500,if(Mod(f,2*d)!=1,next);P=polsubcyclo(f,d);
K=bnfinit(P,1);Kpn=bnrinit(K,pˆnt);C5=component(Kpn,5);Hpn0=component(C5,1);
Hpn=component(C5,2);L=List;ex=0;
i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);if(vptor>1,S0=0;S1=0;S2=0;S3=0;
pN=pˆ2*pˆex;D=(f-1)/d;fn=pN*f;z=znprimroot(f);zz=lift(z);
t=lift(Mod((1-zz)/f,p));c=zz+t*f;for(a=1,fn,if(gcd(a,fn)!=1,next);
asurc=lift(a*Mod(c,fn)ˆ-1);lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
a0=lift((a*zˆ0)ˆD);a1=lift((a*zˆ1)ˆD);a2=lift((a*zˆ2)ˆD);a3=lift((a*zˆ3)ˆD);
if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u);if(a3==1,S3=S3+u));
L0=lift(S0);L1=lift(S1);L2=lift(S2);L3=lift(S3);Y=Mod(y,yˆ2+1);
ni=L0+Y*L1+Yˆ2*L2+Yˆ3*L3;Nni=valuation(norm(ni),2);
print(f," ",P," ",L0," ",L1," ",L2," ",L3," ",L," ",2ˆNni)))}

One gets the following examples (with vptor > 1 and where 2Nni is the norm of L0−L2 +(L1−L3)
√
−1 with AK,n(c) =

L0 +L1σ +L2σ2 +L3σ3, given in A= [L0,L1,L2,L3]); then the list L gives the structure of TK :

f P A L 2ˆNni
17 xˆ4+xˆ3-6*xˆ2-x+1 [4, 6, 0, 6] [4] 16
41 xˆ4+xˆ3-15*xˆ2+18*x-4 [90, 28, 102, 100] [32] 16
73 xˆ4+xˆ3-27*xˆ2-41*x+2 [4, 4, 0, 0] [2,2,2] 32
89 xˆ4+xˆ3-33*xˆ2+39*x+8 [4, 4, 0, 0] [2,2,2] 32
97 xˆ4+xˆ3-36*xˆ2+91*x-61 [8, 10, 12, 2] [4] 16
113 xˆ4+xˆ3-42*xˆ2-120*x-64 [16, 28, 8, 12] [2,2,8] 64
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137 xˆ4+xˆ3-51*xˆ2-214*x-236 [26, 8, 30, 16] [16] 16
193 xˆ4+xˆ3-72*xˆ2-205*x-49 [6, 0, 14, 12] [4] 16
233 xˆ4+xˆ3-87*xˆ2+335*x-314 [4, 0, 0, 4] [2,2,2] 32
241 xˆ4+xˆ3-90*xˆ2-497*x-739 [6, 0, 6, 4] [4] 16
257 xˆ4+xˆ3-96*xˆ2-16*x+256 [28, 20, 20, 60] [2,4,16] 128
281 xˆ4+xˆ3-105*xˆ2+123*x+236 [4, 4, 0, 0] [2,2,2] 32
313 xˆ4+xˆ3-117*xˆ2+450*x-324 [78, 12, 106, 108] [32] 16
337 xˆ4+xˆ3-126*xˆ2+316*x+104 [28, 12, 28, 28] [2,8,8] 256
353 xˆ4+xˆ3-132*xˆ2+684*x-928 [112, 60, 80, 68] [2,2,32] 64
401 xˆ4+xˆ3-150*xˆ2-25*x+625 [14, 4, 6, 8] [4] 16
409 xˆ4+xˆ3-153*xˆ2-230*x+548 [22, 8, 26, 24] [8] 16
433 xˆ4+xˆ3-162*xˆ2+839*x-1003 [2, 4, 10, 0] [4] 16
449 xˆ4+xˆ3-168*xˆ2-477*x+335 [10, 4, 10, 8] [4] 16
457 xˆ4+xˆ3-171*xˆ2+1114*x-2044 [76, 10, 28, 30] [32] 16

6.5 Detailed example of annihilation
The case of the cyclic quartic field K of conductor f = 3433 is particularly interesting:

6.5.1 Numerical data
We have P = x4 + x3−1287x2−12230x+3956 and TK ' Z/27Z, knowing that the quadratic subfield k =Q(

√
3433) is such

that Tk ' Z/26Z:

{P=xˆ4+xˆ3-1287*xˆ2-12230*x+3956;K=bnfinit(P,1);p=2;nt=18;
Kpn=bnrinit(K,pˆnt);Hpn=component(component(Kpn,5),2);L=List;
i=component(matsize(Hpn),2);for(k=1,i-1,c=component(Hpn,i-k+1);
if(Mod(c,p)==0,listinsert(L,pˆvaluation(c,p),1)));print("Structure: ",L)}
Structure: List([128])

{P=xˆ2-3433;K=bnfinit(P,1);p=2;nt=18;Kpn=bnrinit(K,pˆnt);
Hpn=component(component(Kpn,5),2);L=List;i=component(matsize(Hpn),2);
for(k=1,i-1,c=component(Hpn,i-k+1);if(Mod(c,p)==0,
listinsert(L,pˆvaluation(c,p),1)));print("Structure: ",L)}
Structure: List([64])

The class group of K is trivial and its three fundamental units are:

[227193/338*xˆ3-6613325/338*xˆ2-93274465/338*x+14925255/169,
34349/169*xˆ3+1388772/169*xˆ2+10559389/169*x-3491425/169,
70276336974818125/338*xˆ3-677429229869394661/338*xˆ2

-83238272983560888143/338*x+13065197272033438434/169]

6.5.2 Annihilation from AK,n(c)
We have computed AK,n(c) and obtained:

AK,n(c) =: AK ≡ 8 ·13+2 ·21σ +16 ·7σ
2 +2 ·23σ

3 (mod 27).

Let h be a group generator of TK (order 27) and let h0 be a generator of Tk (order 26); it is easy to prove that one may suppose
h2 = jK/k(h0) (injectivity of the transfer map jK/k) and hσ2

0 = h0. We put jK/k(h0) =: h0 for simplicity. Then it follows that

hAK = h4·13+21σ+8·7σ2+23σ3

0 = 1.

Since hσ2

0 = h0, we obtain hAK = h(4·13+8·7)+(21+23)σ

0 = h4·27+4·11σ

0 = 1; giving, modulo the norm 1+σ , h4·(27−11)
0 = h26

0 = 1,
as expected.

6.5.3 Annihilation from A ′K,n(c)
There is (by accident ?) no numerical obstruction for an annihilation by A′K := A ′

K,n(c), with the same program replacing

“for(a= 1, fn, ...)” by “for(a= 1, fn/2, ...)”. Then it follows that the program gives hA′K = h4·13+21σ+8·15σ2+23σ3
= 1. Since
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the restriction of A′K to k is A′k (no Euler factors), we get:

h
A′k
0 = h4·13+8·15+(21+23)·σ

0 = h4·43+4·11σ

0 = 1

which is equivalent, modulo the norm, to the annihilation by 4 ·43−4 ·11 = 27 for a cyclic group of order 26.

Now we may return to the annihilation of h; since h1+σ2 ∈ jK/k(Tk) we put h1+σ2
= ht

0. Then, with u = 13, v = 21, w = 15,
z = 23, we have:

h4u+vσ+8wσ2+zσ3
= h2u+4wσ2

0 h(v+zσ2)σ

= h2u+4w+23 t σ

0 h(v−z)σ = h2·43+23 t σ

0 h−2σ

= h2·43+(23 t−1)σ

0 = h2·43−23 t+1
0 = h87−23 t

0 = 1

so necessarily 87−23 t ≡ 0 (mod 26), giving t ≡ 1 (mod 26). So we can write:

h1+σ2
= jK/k(h0).

6.5.4 Direct study of the GK-module structure of TK

We consider TK only given with the following information: h is a group generator such that h2 = h0, a generator of jK/k(TK);

hσ = hx, x ∈ Z/27Z, whence hσ
0 = hx

0 = h−1
0 giving x ≡ −1 (mod 26). The relation hσ2+1 = hx2+1 = h2 = h0 gives again

t = 1 in the previous notation hσ2+1 = ht
0. Moreover, hσ2−1 = hx2−1 = 1, which is in accordance with Lemma 6.2 and gives

T g
K = TK .

If we take into account these theoretical informations for the “annihilators” AK and A′K we find no contradiction, but we do not
know if x =−1 or x =−1+26 (modulo 27). The prime 2 splits in k, is inert in K/k and the class number of K is 1; so we have
WK 'Wk ' Z/2Z and TK = torZ2

(
UK
/

EK
)
; then the result about x depends on the exact sequence (2.2):

1→ Z/2Z−→TK ' Z/27Z log−−−→ torZ2

(
log
(
UK
)/

log(EK)
)
=: RK → 0,

knowing the units and then the structure of the regulator RK .

6.5.5 About the case fK = 233
The field K is defined by the polynomial P = x4 + x3−87x2 +335x−314 for which TK ' (Z/2Z)3 and Tk ' Z/2Z.

In this case an annihilator is AK = 4 · (1+σ3), which shows that A′K = 2 · (1+σ3) is also suitable. Then A′′K = 1
2 A′K should be

equivalent to 1−σ .

Since 2 splits completely in K, we have TK = WK ' (Z/2Z)3 and in the same way, Tk = Wk ' Z/2Z, for which the Galois
structures are well-known: in particular, 1−σ does not annihilate TK (the class of (1,−1,1,−1) is invariant). Another proof:
use Lemma 6.2 giving here #T GK

K = 2.

7. p-adic measures and annihilations

To establish (in Section 9) a link with the values of p-adic L-functions, Lp(s,χ), at s = 1, we shall refer to [13, Section II] using
the point of view of explicit p-adic measures (from pseudo-measures in the sense of [24]) with a Mellin transform for the
construction of Lp(s,χ) and the application to some properties of the λ invariants of Iwasawa’s theory.

But since we only need the value Lp(1,χ), instead of Lp(s,χ), for s ∈ Zp, we can simplify the general setting, using a similar
computation of SLn(c)

∗, directly in Z[Gn], given by Oriat in [22, Proposition 3.5].

7.1 Definition of ALn and ALn(c)

Let n≥ n0 + e, where T pe

K = 1, and put ϕn := ϕ(qpn) = (p−1) · pn if p 6= 2, ϕn = 2n+1 otherwise.

We consider (where c is odd and prime to fn and where a runs trough the integers in [1, fn], prime to fn):

ALn := −1
fnϕn

∑
a

aϕn
(

Ln

a

)
& ALn(c) :=

[
1− cϕn

(
Ln

c

)]
ALn . (7.1)
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For now, these elements, or more precisely their restrictions to K, are not to be confused with the restrictions AK,n(c) of
SLn(c)

∗ defined in § 5.2, even we shall prove that they are indeed equal; but such an expression is more directly associated to
Lp-functions. Then:

ALn(c) =
[
1− cϕn

(
Ln

c

)]
−1
fnϕn

∑
a

aϕn
(

Ln

a

)
≡̃ −1

fnϕn

[
∑
a

aϕn
(

Ln

a

)
−∑

a
aϕncϕn

(
Ln

a

)(
Ln

c

)]
(in the same way, use a′c such that

a′c · c≡ a (mod fn), 1≤ a′c ≤ fn)

≡̃ −1
fnϕn

[
∑
a

aϕn
(

Ln

a

)
−∑

a
a′c

ϕncϕn
(

Ln

a′c

)(
Ln

c

)]
≡̃ 1

fnϕn
∑
a

[
(a′c · c)ϕn −aϕn

](
Ln

a

)
.

Lemma 7.1. We have (a′c · c)ϕn −aϕn ≡ 0 (mod fnϕn).

Proof. By definition, a′c · c = a+λ n
a (c) fn with λ n

a (c) ∈ Z. Consider:

A :=
(a′c · c)ϕn −aϕn

fnϕn

=
[aϕn +λ n

a (c) fnϕnaϕn−1 +λ n
a (c)

2 f 2
n

ϕn(ϕn−1)
2 aϕn−2 + · · · ]−aϕn

fnϕn

≡ λ
n
a (c)a

ϕn−1 +λ
n
a (c)

2 fn
(ϕn−1)

2
aϕn−2

≡ λ
n
a (c)a

ϕn−1 ≡ λ
n
a (c)a

−1 (mod pn+1),

since aϕn ≡ 1 (mod qpn).

When p = 2, one must take into account the term λ n
a (c) fn

ϕn−1
2

aϕn−2 ∼ 1
2

λ n
a (c) fn, in which case the congruence is with the

modulus pn+1 (which is sufficient since for n≥ n0 + e, this modulus annihilates TK for any p).

We have obtained for all n≥ n0 + e:

ALn(c) ≡̃
fn
∑

a=1
λ

n
a (c) ·a−1

(
Ln

a

)
≡̃SLn(c)

∗, (7.2)

thus giving again, by restriction to K, the annihilator AK,n(c)∈Zp[GK ] of TK such that (for all n≥ n0+e) AK,n(c) ≡̃
fn
∑

a=1
λ

n
a (c)a−1

(
K
a

)
.

7.2 Normic properties of the ALn – Euler factors
Theorem 7.2. [13, Proposition II.2 (iv)]. Let K be of conductor f = m` where m is the conductor of a subfield k of K and where
` 6= p is a prime number. For n≥ n0, let Ln := K(µqpn) and the analogous field ln for k, of conductors fn and mn, respectively;
recall that ϕn = ϕ(qpn).

Let ALn := −1
fnϕn

fn
∑
a

aϕn
(

Ln

a

)
and Aln := −1

mnϕn

mn
∑
b

bϕn
(

ln
b

)
. Then:

NLn/ln(ALn) ≡̃
(

1− `ϕn 1
`

(
ln
`

))
Aln , resp., NLn/ln(ALn) ≡̃ Aln ,

if ` - m, resp., ` | m (congruences modulo pn+1Zp[Gn]+ (1− s∞)Zp[Gn]).

Proof. Suppose first that ` - m, so fn = lmn. 2 Put a = b+λ mn, λ ∈ [0, `− 1], b ∈ [1,mn] prime to mn; since a ∈ [1, fn] is
prime to fn, b is prime to mn and λ 6= λ ∗b such that b+λ ∗b mn =: b′` · `, b′` ∈ Z. Thus aϕn = (b+λ mn)

ϕn ≡ bϕn +bϕn−1λ mnϕn

2For `= 2 and m odd, f = 2m is not a conductor stricto sensu, but the following computations are exact and necessary with the modulus mn and fn = 2mn;
then if f = 2k ·m (m odd, k≥ 2), the second case of the theorem applies and shall give the Euler factor

(
1−2ϕn 1

2

( ln
2

))
≡̃
(
1− 1

2

( ln
2

))
. If p | f and p - m, there

is no Euler factor for p since mn and fn are divisible by p; in other words, these computations and the forthcoming ones are, by nature, not “primitive” at p.
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(mod mnϕn pn+1). Then:

NLn/ln(ALn) ≡̃
−1

`mnϕn
· ∑

b,λ 6=λ ∗b

[
bϕn +bϕn−1

λ mnϕn

](
ln
b

)
≡̃ −(`−1)

`mnϕn
∑
b

bϕn
(

ln
b

)
− 1

`
∑

b,λ 6=λ ∗b
bϕn−1

λ

(
ln
b

)
≡̃
(

1− 1
`

)
Aln −

1
`

∑
b,λ 6=λ ∗b

bϕn−1
λ

(
ln
b

)
≡̃
(

1− 1
`

)
Aln −

1
`

∑
b

bϕn−1
(

ln
b

)(
∑

λ 6=λ ∗b
λ

)
≡̃
(

1− 1
`

)
Aln −

1
`

∑
b

bϕn−1
(

ln
b

)(
`(`−1)

2
−λ

∗
b

)
.

We remark that λ ∗b = λ n
b (`) is relative to the writing b′` · ` = b+λ n

b (`)mn and that bϕn−1 ≡ b−1 (mod pn+1), whence using
∑b b−1

( ln
b

)
≡̃ 0:

NLn/ln(ALn) ≡̃
(

1− 1
`

)
Aln +

1
`

∑
b

λ
∗
b ·b−1

(
ln
b

)
.

But as we know (see relations 7.1 and (7.2)), ∑
b

λ
∗
b b−1

(
ln
b

)
≡̃ Aln(`); so NLn/ln(ALn) ≡̃

(
1− 1

`

)
Aln +

1
`
Aln(`): since

Aln(`) ≡̃
(

1− `ϕn
(

ln
`

))
Aln , we get NLn/ln(ALn) ≡̃

(
1− `ϕn 1

`

(
ln
`

))
Aln .

The case ` | m is obtained more easily from the same computations.

Of course, for all h≥ 0 we get:
NLn+h/Ln(ALn+h) ≡̃ ALn ,

which expresses the coherence of the family
(
ALn

)
n in the cyclotomic tower.

Corollary 7.3. (i) Let K/k be an extension of fields of conductors fK and fk, respectively. Multiplying by
[
1− cϕn

(
ln
c

)]
=

NLn/ln

[
1−cϕn

(
Ln

c

)]
to get elements in the algebras (Z/pn+1Z)[Gal(Ln/Q)] and (Z/pn+1Z)[Gal(ln/Q)], one obtains NLn/ln(ALn(c)) ≡̃ ∏

`| fK , `-p fk

(
1−

1
`

(
ln
`

))
Aln(c).

(ii) Let AK,n(c) and Ak,n(c) be the restrictions of ALn(c) and Aln(c) to K and k, respectively; then NK/k(AK,n(c)) ≡̃ ∏
`| fK , `-p fk

(
1−

1
`

(
k
`

))
·Ak,n(c).

(iii) The family (AK,n)n = (NLn/K(ALn))n defines a pseudo-measure denoted AK by abuse, such that the measure (AK,n(c))n

defines the element AK(c) =
(

1−
(

K
c

))
·AK ∈ Zp[GK ] and gives the main formula:

NK/k(AK(c)) ≡̃ ∏
`| fK , `-p fk

(
1− 1

`

(
k
`

))
·Ak(c).

Remark 7.4. (i) In a numerical point of view, we only need a minimal value of n, and we shall write (e.g., for n = e when
K∩Q∞ =Q):

AK,e(c) ≡̃ ∑
σ∈GK

[
∑

a,(K
a )=σ

λ
e
a (c)a−1

]
·σ =: ∑

σ∈GK
Λ

e
σ (c) ·σ .

Then the next step shall be to interprete the limit, Λσ (c), of the coefficients Λn
σ (c) = ∑a,(K

a )=σ
λ n

a (c)a−1, for n→ ∞, giving an
equivalent annihilator, but with a more canonical interpretation.
(ii) In [12, 13, 22, 26, 28, 29, 5, 19, 27, 21, 1, 2, 4], some limits are expressed by means of p-adic logarithms of cyclotomic
numbers/units of Q f as expressions of the values at s = 1 of the p-adic L-functions of K (for instance, in [29, Theorem 2.1]
a link between Stickelberger elements and cyclotomic units is given following Iwasawa and Coleman). But these results are
obtained with various non-comparable techniques; this will be discussed later.

(iii) In the relation AK(c) :=
[
1−

(
K
c

)]
AK , the choice of c must be such that the integers 1− χ(c) be of minimal p-adic

valuation for the characters χ of K. But 1−χ(c) is invertible if and only if χ(c) is not a root of unity of p-power order.
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8. Remarks about Solomon’s annihilators
We shall give two examples: one giving the same annihilator as our’s, and another giving a Solomon annihilator in part
degenerated, contrary to AK(c).

8.1 Cubic field of conductor 1381 and Solomon’s ΨK

We have (see the previous table of § 5.3) P = x3 + x2−460x−1739 and the classical program gives the class number in h, the
group structure of TK (in L) and the units in E:

{P=xˆ3+xˆ2-460*x-1739;K=bnfinit(P,1);p=7;nt=8;Kpn=bnrinit(K,pˆnt);r=1;
Hpn=component(component(Kpn,5),2);C8=component(K,8);E=component(C8,5);
h=component(component(C8,1),1);L=List;i=component(matsize(Hpn),2);
for(k=1,i-1,c=component(Hpn,i-k+1);if(Mod(c,p)==0,
listinsert(L,pˆvaluation(c,p),1)));print(L);print("h=",h," ",L," E=",E)}

h=1 List([343, 7])
E=[245/13*xˆ2-4606/13*x-21522/13, 147/13*xˆ2+3479/13*x+11272/13]

So, the class group is trivial, TK = RK ' Z/73Z×Z/7Z and the cyclotomic units are the fundamental units. Then we shall
use a definition of the automorphism σ to define the Galois operation on the units:

{P=xˆ3 + xˆ2 - 460*x - 1739;print(nfgaloisconj(P))}
[x, -1/13*xˆ2 - 2/13*x + 302/13, 1/13*xˆ2 - 11/13*x - 315/13]

From ε = 245
13 x2− 4606

13 x− 21522
13 and σ : x 7→ − 1

13 x2− 2
13 x+ 302

13 , one gets:

Mod(245/13*(-1/13*xˆ2 - 2/13*x + 302/13)ˆ2 -
4606/13*(-1/13*xˆ2 - 2/13*x + 302/13) - 21522/13,P)=
Mod(147/13*xˆ2 + 3479/13*x + 11259/13, xˆ3 + xˆ2 - 460*x - 1739)

which is εσ and the units are, on the Q-base {1,x,x2}:

ε = ε1 =
245
13 x2− 4606

13 x− 21522
13 ,

εσ = ε2 =
147
13 x2 + 3479

13 x+ 11259
13 ,

εσ2
= ε3 =− 392

13 x2 + 1127
13 x+ 175948

13 .

The second unit given by PARI is 147
13 x2 + 3479

13 x+ 11272
13 =−ε−σ2

. The order of ε modulo p = 7 is 114. We compute Ai := ε114
i

modulo 76, i = 1,2,3), then Li := Ai−1:

{P=xˆ3+xˆ2-460*x-1739;
E1=Mod(245/13*xˆ2-4606/13*x-21522/13,P+Mod(0,7ˆ6));
E2=Mod(147/13*xˆ2+3479/13*x+11259/13,P+Mod(0,7ˆ6));
E3=Mod(-392/13*xˆ2+1127/13*x+175948/13,P+Mod(0,7ˆ6));
L1=E1ˆ114-1;L2=E2ˆ114-1;L3=E3ˆ114-1;
print(lift(L1)," ",lift(L2)," ",lift(L3))}

L1 = 17542x2 +48608x+81879 = 72(358x2 +992x+1671) = 72α1,
L2 = 62867x2 +833x+33761 = 72(1283x2 +17x+689) = 72α2,
L3 = 37240x2 +68208x+2009 = 72(760x2 +1392x+41) = 72α3,

giving 1
7

log(εi)≡ 7αi−
1
2

73α2
i (mod 74):

1
7

log(ε)≡ 791x2 +2142x+378 = 7(113x2 +306x+54) (mod 74),
1
7

log(εσ )≡ 2121x2 +119x+364 = 7(303x2 +17x+52) (mod 74),
1
7

log(εσ2
)≡ 1890x2 +140x+1659 = 7(270x2 +20x+237) (mod 74).

So, the Solomon annihilator 1
p

∑
σ∈GK

log(εσ ) ·σ−1 of TK is (modulo 73 and up to a 7-adic unit):

ΨK ≡ 7 ·
[
15x2 +12x+5+(9x2 +17x+3)σ−1 +(25x2 +20x+41)σ−2].
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Since the norm is a trivial annihilator, we can replace ΨK by

Ψ
′
K = ΨK−7 · (15x2 +12x+5)(1+σ

−1 +σ
−2)

≡ 7 ·
[
(43x2 +5x+47)σ

−1 +(10x2 +8x+36)
]

σ
−2 (mod 73).

Then, 43x2 +5x+47 is invertible p-adically (its norm is prime to 7) which gives the equivalent annihilator:

7 ·
[
σ +(10x2 +8x+36) · (43x2 +5x+47)−1 ≡ σ +31 (mod 72)

]
equivalent to the annihilator defined by 7 · (σ −18) modulo 73.

Our annihilator, given by the previous table, is 1738+2186σ−1+2361σ−2 equivalent to 448+623σ ≡ 7 ·(σ−18) (mod 73).

So σ −18 is an annihilator for the submodule T 7
K ' Z/72Z, which is coherent since 18 is of order 3 modulo 73.

The perfect identity of the two results shows that no information has been lost for this particular case, whatever the method (but
in the case of cyclic fields of prime degree, there is not any Euler factor).

8.2 Cyclic quartic field of conductor 37 ·45161 and Solomon’s ΨK
Let K be a real cyclic quartic field of conductor f such that the quadratic subfield k has conductor m | f , with for instance
f = `m, ` prime split in k/Q. We take p≡ 1 (mod 4), p - f .

Put η f := 1−ζ f , ηm := 1−ζm, ηK := NQ f /K(η f ), ηk := NQm/k(ηm).

Then we have the Solomon annihilator:
ΨK =

1
p

∑
σ∈GK

log(ησ
K ) ·σ−1.

Since, from the formula (4.2) (which applies since m 6= 1), one has NQ f /Qm(η f )=η
(1−(Q

m
` )−1)

m , i.e., NK/k(ηK)=η
(1−( k

` )
−1)

k = 1,
we get (with GK = {1,σ ,σ2,σ3}):

ΨK =
1
p

(
log(ηK)+ log(ησ

K ) ·σ−1 + log(ησ2

K ) ·σ−2 + log(ησ3

K ) ·σ−3)
=

1
p

(
log(ηK)+ log(ησ

K ) ·σ−1− log(ηK) ·σ−2− log(ησ
K ) ·σ−3)

So, in this particular situation, one has:

ΨK =
1
p

(
log(ηK)+ log(ησ

K ) ·σ−1) · (1−σ
2). (8.1)

Suppose that TK is equal to the transfer of Tk (many examples are available), then TK is annihilated by (1−σ2), whatever the
structure of Tk 'TK ; but one expects annihilators AK such that NK/k(AK) = Ak be a non-trivial annihilator of Tk.

For instance, define K by x =

√
`
√

m
√

m+a
2

where m = a2 +b2, b = 2b′. This gives the polynomial P = x4− `mx2 + `2mb′2.

The following program gives many examples with non-trivial Tk (with m prime, p = 5):

{p=5;forprime(m=1,10ˆ5,if(Mod(m,20)!=1,next);P=xˆ2-m;K=bnfinit(P,1);nt=12;
Kpn=bnrinit(K,pˆnt);Hpn=component(component(Kpn,5),2);L=List;
i=component(matsize(Hpn),2);R=0;for(k=1,i-1,c=component(Hpn,i-k+1);
if(Mod(c,p)==0,R=R+1;listinsert(L,pˆvaluation(c,p),1)));if(R>0,
print("m=",m," structure",L)))}

For m = 45161, one obtains Tk ' Z/55Z; then a = 205, b′ = 28. Now we find some primes ` with the following program:

{p=5;m=45161;bprim=28;forprime(ell=7,10ˆ3,if(Mod(ell,4)!=1,next);
if(kronecker(m,ell)!=1,next);P=xˆ4-ell*m*xˆ2+ellˆ2*m*bprimˆ2;
K=bnfinit(P,1);nt=12;Kpn=bnrinit(K,pˆnt);Hpn=component(component(Kpn,5),2);
L=List;i=component(matsize(Hpn),2);
for(k=1,i-1,c=component(Hpn,i-k+1);if(Mod(c,p)==0,
listinsert(L,pˆvaluation(c,p),1)));
print("ell=",ell," m=",m," P=",P," structure",L))}
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giving the following examples (for which Tk is a direct factor in TK):

ell=13 P=xˆ4-587093*xˆ2+5983651856 structure [3125]
ell=17 P=xˆ4-767737*xˆ2+10232398736 structure [3125,5,5]
ell=37 P=xˆ4-1670957*xˆ2+48471120656 structure [3125]
ell=997 P=xˆ4-45025517*xˆ2+35194105312016 structure [3125,25]

We consider the case `= 37, P = x4−1670957x2 +48471120656 for wich PARI gives the following information that may be
used by the reader:

nfgaloisconj(xˆ4-1670957*xˆ2+48471120656)=
[-x, x, -1/212380*xˆ3 + 43593/5740*x, 1/212380*xˆ3 - 43593/5740*x]

{P=xˆ4-1670957*xˆ2+48471120656;K=bnfinit(P,1);p=5;nt=8;Kpn=bnrinit(K,pˆnt);
r=1; Hpn=component(component(Kpn,5),2);C8=component(K,8);E=component(C8,5);
h=component(component(C8,1),1);L=List;i=component(matsize(Hpn),2);R=0;
for(k=1,i-1,c=component(Hpn,i-k+1);if(Mod(c,p)==0,R=R+1;
listinsert(L,pˆvaluation(c,p),1)));print("h=",h," ",L);print("E=",E)}

h=2 List([3125])

Now, consider the annihilator AK,n(c) =: AK ; since TK 'Tk, we get T AK
K 'T

NK/k(AK)

k , where (see Corollary 7.3):

NK/k(AK,n(c)) ≡̃
(

1− 1
`

(
k
`

))
Ak,n(c).

Then `= 37≡ 2 (mod 5) splits in k and 1− 1
`

(
k
`

)
= 1− 1

`
is invertible modulo 5.

So AK acts on TK as Ak,n(c) on Tk; we can use the program for quadratic fields and p > 2 (of course the bounds b f ,B f may
be arbitrary):

{p=5;nt=8;bf=45161;Bf=45161;for(f=bf,Bf,v=valuation(f,2);M=f/2ˆv;
if(core(M)!=M,next);if((v==1||v>3)||(v==0 & Mod(M,4)!=1)||
(v==2 & Mod(M,4)==1),next);P=xˆ2-f;K=bnfinit(P,1);Kpn=bnrinit(K,pˆnt);
C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
h=component(component(component(K,8),1),2);L=List;ex=0;
i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1);
if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val);
listinsert(L,pˆval,1)));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);tor=pˆvptor;S0=0;S1=0;pN=p*pˆex;fn=pN*f;
for(cc=2,10ˆ2,if(gcd(cc,p*f)!=1 || kronecker(f,cc)!=-1,next);c=cc;break);
for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)ˆ-1);
lambda=(asurc*c-a)/fn;u=Mod(lambda*aˆ-1,pN);
s=kronecker(f,a);if(s==1,S0=S0+u);if(s==-1,S1=S1+u));
L0=lift(S0);L1=lift(S1);A=L1-L0;if(A!=0,A=pˆvaluation(A,p));
print(f," P=",P," ",L0," ",L1," A=",A," tor=",tor," T_K=",L," Cl_K=",h))}

giving the annihilator Ak ≡ 10185+3935σ (mod 56) where σ generates Gal(k/Q); then, Ak is equivalent, modulo the norm,
to the integer 10185−3935≡ 2 ·55 (mod 56), which is perfect since Tk ' Z/55Z.
The class group of k being trivial, the fundamental unit ε is the cyclotomic one and is such that ε4 = 1+56 ·α , α prime to 5,
which confirms that:

Ψk ∼
1
5
(log(ε)+ log(εσ ) ·σ) =

1
5

log(ε)(1−σ) (8.2)

equivalent (modulo the norm) to 2
5 log(ε) and Ψk = Ak as expected. Meanwhile, the Solomon annihilator ΨK does not give Ψk

by restriction, but 0.

9. About the annihilator AK(c) and the primitive Lp(1,χ)
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9.1 Galois characters v.s. Dirichlet characters
Let fK be the conductor of K. In most formulas, the characters χ of K must be primitive of conductor fχ | fK , whence Dirichlet

characters on (Z/ fχZ)× such that χ
[(Q fχ

a

)]
makes sense for a ∈ Z, prime to fχ , but not necessarily for χ

[(Q fK
a

)]
if a prime `

divides both a and fK but not fχ . This is an obstruction to consider them as Galois characters over Zp[GK ] for instance, whence
defined on (Z/ fKZ)×; so we shall introduce the corresponding Galois character of GK , denoted ψχ =: ψ . A Galois character
ψ of GK is also a character of Gn = Gal(Ln/Q) whose kernel fixes K, so ψ(a) (a ∈ [1, fn] prime to fn) is the image by ψ of the
Artin symbol

(
Ln

a

)
whence of

(
K
a

)
.

Any non-primitive writing ψ(AK), for AK ∈ Zp[GK ], may introduce a product of Euler factors. Indeed, let kχ be the subfield
fixed by the kernel of ψ = ψχ (then χ is a primitive character of kχ but not necessarily of K); then, ψ(AK) = ψ(NK/kχ

(AK)) =

χ(Ekχ
) ·χ(Akχ

) in which χ(Ekχ
) may be non-invertible (or 0).

9.2 Expression of ψ(AK(c))
Let ψ be any Galois character of K considered as Galois character of Gal(Ln/Q), for n≥ n0 + e. We then have the following
result about the computation of the annihilator AK(c) =: ∑

σ∈GK
Λσ (c) ·σ (given explicitely by the Theorem 5.5), without any

hypothesis on K and p:

Lemma 9.1. The expression ψ(AK(c)) is the product of the multiplicator 1−ψ
((L∞

c

))
by the non-primitive value Lp(1,ψ).

In other words, one has:

ψ(AK(c)) = (1−ψ(c)) ·Lp(1,ψ)

= (1−ψ(c)) · ∏
`| fK , `-p fχ

(
1−χ(`)`−1)Lp(1,χ).

Proof. This comes from the classical construction of p-adic L-functions [13, Propositions II.2, II.3, Définition II.3, II.4, and
Remarques II.3, II.4], then [7, page 292]. Thus we obtain, using the computations of the § 7.1, the link between the limit (for
n→ ∞):

ψ(AK(c)) = ∑
σ∈GK

Λσ (c) ·ψ(σ) (cf. Remark 7.4 (i)),

of ψ(ALn(c)) = ψ(AK,n(c)) = ∑
σ∈GK

Λ
n
σ (c)ψ(σ), and the value at s = 1 of the Lp-function of the primitive character χ

associated to ψ .

Remark 9.2. Note that in the various calculations in § 7.1, ϕn = ϕ(qpn) when n→ ∞ plays the role of 1− s when s→ 1 in the
construction of p-adic Lp-functions by reference to Bernoulli numbers.

For all primitive Dirichlet character χ 6= 1 of K, of modulus fχ (or p fχ if p - fχ ), and for all p ≥ 2, we have the classical
formulas of the value at s = 1 of the p-adic L-functions (see for instance [30, Theorem 5.18]), where τ(χ) = ∑(a, fχ )=1 χ(a)ζ a

fχ

is the primitive Gauss sum of χ:

Lp(1,χ) =−
(

1− χ(p)
p

)
· τ(χ)

fχ

∑
a∈[1, fχ ],(a, fχ )=1

χ
−1(a)log(1−ζ

a
fχ
),

where the Euler factor 1−χ(p)p−1 illustrates the fact that for Lp-functions, any character χ is considered modulo p fχ when
p - fχ .

From the Coates formula [6] and classical computations (see also some details in [11, § 2.2]) we recall that #TK ∼ [K∩Q∞ :
Q] ·∏χ 6=1

1
2 Lp(1,χ) (up to a p-adic unit), thus #TK ∼∏χ 6=1

1
2 Lp(1,χ) if K∩Q∞ =Q (i.e., n0 = 0). Moreover, we know that

in the semi-simple case, one obtains the orders of the isotypic components of TK by means of the 1
2 Lp(1,χ); but the whole

Galois structure of TK is more precise that the set of those given by the components T eθ

K , where the eθ are the corresponding
p-adic idempotents.

Remark 9.3. Let χ be a primitive Dirichlet character of conductor fχ 6= 1. We define the “modified Solomon element” of
Zp[Gkχ

]:

Ψkχ
:=−

(
1− χ(p)

p

)
· τ(χ)

fχ

∑
τ∈Gkχ

log(ητ
kχ
) · τ−1.
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Whence Lp(1,χ) = χ
(
Ψkχ

) (χ 6= 1 primitive). Put:

Cχ :=−
(

1− χ(p)
p

)
· τ(χ)

fχ

.

When p - fχ , τ(χ) is invertible and Cχ · log(ητ
kχ
)∼ 1

p · log(ητ
kχ
)∼Ψkχ

(the original Solomon element); when p | fχ , the factor
1
p in Cχ is replaced, ahead the logarithms, by the quotient 1

τ(χ)
having the suitable p-valuations. For instance, if d is prime and

p unramified, 1
p

∑
σ∈GK

log(ησ
K ) ·σ−1 annihilates TK .

9.3 The annihilator AK(c) and the Ψkχ

The following statement does not assume any hypothesis on K and p and gives again the known results of annihilation (e.g.,
semi-simple case, but also the point of view of [22]):

Theorem 9.4. Let K be a real abelian number field, of degree d, of Galois group GK and of conductor fK . Let AK(c) =
lim
n→∞

AK,n(c) ∈ Zp[GK ] annihilating TK (cf. Theorem 5.5). Then we have (where each χ is the primitive Dirichlet character

associated to the Galois character ψ of GK):

AK(c) =
1
d ∑

σ∈GK

[
∑

ψ 6=1
ψ
−1(σ)(1−ψ(c)) · ∏

`| fK , `-p fχ

(
1− χ(`)

`

)
·χ(Ψkχ

)
]
·σ ,

with Ψkχ
=−

(
1− χ(p)

p

)
τ(χ)

fχ

∑
τ∈Gkχ

log
(
NQ fχ /kχ

(1−ζ fχ
)τ
)
· τ−1.

Thus, TK is annihilated by the ideal AK of Zp[GK ] generated by the AK(c), c ∈ Z, prime to 2 p fK .

Proof. For all Galois character ψ of GK , Lemma 9.1 leads to the identity:

ψ(AK(c)) = ∑
σ∈GK

Λσ (c) ·ψ(σ)

= (1−ψ(c)) · ∏
`| fK , `-p fχ

(
1−χ(`)`−1) ·Lp(1,χ)

= (1−ψ(c)) · ∏
`| fK , `-p fχ

(
1−χ(`)`−1) ·χ(Ψkχ

)

with ψ1(AK(c)) = 0 for the unit character ψ1.

Since the matrix
(
ψ(σ)

)
ψ,σ

is invertible with inverse 1
d

(
ψ−1(σ)

)
σ ,ψ

, this yields Λσ (c)=
1
d

∑
ψ

ψ
−1(σ)ψ(AK(c))=

1
d

∑
ψ

ψ
−1(σ)(1−

ψ(c)) ·Lp(1,ψ). Whence the result using the expression of Lp(1,ψ) in Lemma 9.1.

9.4 A cyclic quartic field K of conductor 37 ·45161
We recall from § 8.2 that m = 45161 is totally ramified in K, that ` = 37 splits in the quadratic subfield k = Q(

√
m) and is

ramified in K/k; then p = 5 totally splits in K. We have Tk ' Z/55Z.
Denote the four characters by ψ1, ψ2, ψ4 & ψ

−1
4 (orders 1,2, 4, respectively) and let GK = {1,σ2,σ ,σ−1} with σ of order 4.

We shall put ψ4(σ) = i, and so on by conjugation and the relation ψ2 = ψ2
4 .

Then, using the modified Solomon elements Ψk, ΨK (expressions (8.1), (8.2)):

Ψk = 55·u & ΨK =
v
5

(
log(A)+ log(B)σ

)
(1−σ

2),

where u and v are p-adic units, A & B = Aσ are the two independent units of K of relative norm 1.
We have to compute the coefficients ψ−1(σ)(1−ψ(c)), which gives the array:

ψ1 ψ2 ψ4 ψ
−1
4

1 0 1 ·2 1 · (1− i) 1 · (1+ i)

σ
2 0 1 ·2 −1 · (1− i) −1 · (1+ i)

σ 0 −1 ·2 −i · (1− i) i · (1+ i)

σ
−1 0 −1 ·2 i · (1− i) − i · (1+ i)

Then the terms ∏
`| fK , `-p fχ

(
1−χ(`)`−1) ·χ(Ψkχ

) have the following values, depending on the character ψ in the summation of

the theorem:
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• 55·u for ψ2, since 1−χ2(`)`
−1 = 1−37−1 ∼ 1,

• 2v
5

(
log(A)+ i log(B)

)
& 2v

5

(
log(A)− i log(B)

)
, for ψ4 & ψ

−1
4 .

We obtain, up to a p-adic unit, using the coefficients of the above array:

AK(c) =[
v
5

[
log(A)+ log(B)

]
+55·u

]
+
[

v
5

[
− log(A)− log(B)

]
+55·u

]
·σ2+[

v
5

[
− log(A)+ log(B)

]
−55·u

]
·σ +

[
v
5

[
log(A)− log(B)

]
−55·u

]
·σ−1

= 55u·(1−σ)(1+σ
2)

+ v
[

1
5

[
log(A)+ log(B)

]
− 1

5

[
log(A)− log(B)

]
·σ
]
· (1−σ

2).

We give A, one of the two units of relative norm 1 (the other being B = Aσ ):

377216797578975495402206020260112295002483855252847326395960961891321756
935656033880097414072613343385538964199960251752277854265043908282068622
071287/424760*xˆ3 -
863005972214749996449837366815586234260744443520807110375190268414267539
937539821074892103868728835668111842347981799323725052575447796376125480
7708541/7585*xˆ2 -
301058401703043815651487372068244675606729686675124486738439428208587682
003249385550605088262234049232685807258542997079887400411162925713036023
300228411/11480*x +
137753779960320144069066397981124894126287808388246384703621136571725449
454295610577594731673630502306081901547245942649393930683936045056394190
29007385081/410

So it is easy to compute A4−1, congruent modulo 58 to:

5 ·α = 317056x3 +260605x2 +260934x+182595,

whence log(A)∼ 5 ·α . The decompositions into prime ideals of 5 (which is totally split in K/Q) and of 5 ·α give respectively
for the 5-places:

[[5,[-3,-2,2,2]˜,1,1,[3,4,1,1]˜]1] [[5,[-3,0,2,-2]˜,1,1,[2,0,4,1]˜]1]
[[5,[-1,-2,-2,-2]˜,1,1,[1,1,1,1]˜]1] [[5,[0,-1,-2,2]˜,1,1,[2,2,4,1]˜]1]

[[5,[-3,-2,2,2]˜,1,1,[3,4,1,1]˜]2] [[5,[-3,0,2,-2]˜,1,1,[2,0,4,1]˜]1]
[[5,[-1,-2,-2,-2]˜,1,1,[1,1,1,1]˜]2] [[5,[0,-1,-2,2]˜,1,1,[2,2,4,1]˜]1]

Dividing by 5, we find that 1
5

log(A)∼ π1 ·π2 then 1
5

log(Aσ )∼ (π1 ·π2)
σ =: π3 ·π4, where the πi are integers with valuation 1

at the four prime ideals dividing 5; thus the coefficient:

U−V σ =
1
5

log(AB)− 1
5

log(AB−1)

∼ uπ1 ·π2 +u′π3 ·π4− (uπ1 ·π2−u′π3 ·π4) ·σ ,

of 1−σ2 in AK(c) is such that:
U2 +V 2 ≡ 2(u2

π
2
1 ·π2

2 +u′2 π
2
3 ·π2

4 ) (mod 5)

is 5-adically invertible. So AK(c) = 55u(1−σ)(1+σ2)+w(1−σ2), u,w invertible. This gives the optimal annihilation
of both Tk (since TK = jK/k(Tk)), and the relative factor T ∗

K = 1, as kernel of the relative norm 1+σ2 in K/k, since the
operation is given by U−V σ which is invertible.

9.5 A cyclic quartic field K of conductor 22 ·16212 ·677

Let K = Q(x) where x =

√
677 1621+39

√
1621

2
. This field is also defined by P = x4 − 1097417x2 + 18573782725. The

conjugates of x are given by:
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nfgaloisconj(P)=[-x, x, -1/132015*xˆ3+1571/195*x, 1/132015*xˆ3-1571/195*x]

We still consider the case p = 5. The prime `= 677 splits in the quadratic subfield k =Q(
√

1621), the ramified prime 2 does
not split in k; the class number of k is 1 and that of K is 4, so we obtain a trivial 5-class group and the following group structures
giving, here, a non-trivial relative T ∗

K :

Tk ' Z/52Z, TK ' Z/52Z×Z/53Z.

In k, the cyclotomic unit is the fundamental unit and is given by:

ε =
119806883557

26403
x2− 3042847629386

39
;

we compute that 1
5 · log(ε)∼ 52 ∼Ψk as expected since Tk = Rk.

The cyclotomic units A and B = Aσ of K, of relative norm 1, are too large to be given here, but we can work with some
representatives modulo a large power of 5. As in the previous example, we have to compute (up to 5-adic units since the Euler
factors for 2 and 677 are invertible):[

1
5

[
log(A)+ log(B)

]
− 1

5

[
log(A)− log(B)

]
·σ
]
· (1−σ

2). (9.1)

We see that log(A) is of the form 5 ·α , where α is a 5-adic unit, and that 1
5

[
log(A)− log(B)

]
and 1

5

[
log(A)+ log(B)

]
are

5-adically invertible, so we consider for instance:

C := log(A)+ log(B)
log(A)− log(B)

≡ 13 ·52x3 +53x2 +19 ·52x+57 (mod 54)

and we verify that, despite the denominators 5, 3
5
· x3− 1

5
· x is an integer of K (congruent to xσ modulo 5 as given by

n f galoiscon j(P)) so that:
C ≡ 53 ·3 ·

(
3
5

x3− 1
5

x+ x2
)
+57 (mod 54).

Since the exponent of TK is 53, we obtain that the coefficient U−V ·σ (in (9.1)) is equal to (57−σ) · (1−σ2); thus the whole
annihilator is:

AK(c)≡ 52 ·u · (1−σ)(1+σ
2)+ v · (57−σ) · (1−σ

2) (mod 54).

So, on the factor Tk the annihilator AK(c) acts as the order 52 of Tk, and on the relative submodule T ∗
K , it acts as 57−σ ,

which is very satisfactory since 57 is of order 4 modulo 53 (note that 572 +1 = 53 ·26).

These examples show that AK(c) takes into account the whole structure of TK ; but when the Euler factor is not a p-adic unit
because of a prime `≡ 1 (mod p) which splits in k and is ramified in K/k, the annihilation is probably not optimal.
It should be usefull to know if the annihilators, given more recently in the literature, have best properties or not in this point of
view, which is not easy since numerical tests are absent (to our knowledge).

9.6 Ideal of annihilation for arbitrary real abelian number fields
We do not make any assumption on p and GK , nor on the decomposition of the primes ` | fK in the real abelian extension K/Q.
If K/Q is cyclic, one can choose c (prime to 2p fK) such that for all ψ 6= 1, 1−ψ(c) is non-zero with minimal p-adic valuation;
this valuation is 0 as soon as d is not divisible by p, taking

(K
c

)
as a generator of GK . Since in the non-cyclic case, this is

impossible, we can consider the augmentation ideal IK =
〈
1−
(K

c

)
, c prime to 2p fK

〉
Z[GK ]

of GK and the ideal:

IK ·AK

which annihilates TK . It is clear, from Corollary 7.3, that the pseudo-measure AK does not depend on IK and that any choice
of δK ∈IK is such that δK AK ∈ Zp[GK ].
In a p-group GK of p-rank r, δK = ∑

r
i=1 λi · (1− σi), where the generators σi are suitable Artin symbols of integers ci

prime to 2p fK ; then the characters ψ may be written ψ = ∏
r
i=1 ψi, with obvious definition of the ψi, so that ψ(δK) =

∑
r
i=1 ψ(λi) · (1−ψi(σi)) = ∑

r
i=1 ψ(λi) · (1− ξi), where the ξi are roots of unity of p-power order. So we can minimize the

p-adic valuations of the ψ(δK) to obtain the best annihilator.
For instance, if K is the compositum of two cyclic cubic fields and p = 3, whatever the choice of δK = λ1 (1−σ1)+λ2 (1−σ2),
λ1,λ2 prime to 3, where σ1, σ2 are two generators of GK , then ψ(δK) ∼ 1− j for 6 characters and ψ(δK) ∼ 3 for 2 other
characters ψ 6= 1. So the result depends on the structures of the Tk of the 4 cubic subfields k of K.
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Remark 9.5. (i) Let k be a subfield of K and let jK/k be the “transfer map” Tk→TK . Then, for δKAK , we get:

( jK/k(Tk))
δKAK = jK/k(T

NK/k(δKAK)

k )'T
NK/k(δKAK)

k = T Ek·δkAk
k ;

indeed, this comes from the injectivity of the transfer since the Leopoldt conjecture is true in abelian extensions (see e.g., [8,
Theorem IV.2.1]); then if the product of Euler factors Ek := ∏`| fK , `-p fk

(
1− 1

`

(
k
`

))
is invertible (i.e., χ(Ek) prime to p for all

χ), this means that there is no loss of information by using the annihilation of TK by the δKAK , instead of that of Tk by the
δkAk; otherwise, it is not possible to eliminate the Euler factors “hidden” in δKAK when they are non-invertible (although they
are never zero) unless to restrict ourselves to the use of the δkAk for Tk, at the cost of a weaker information on the global
Galois structure of TK .

(ii) The GK-module TK gives rise to the following submodules or quotients-modules which have interesting arithmetical
meaning and are of course annihilated by the δKAK: 3

• The submodule C`∞
K := Gal(K∞HK/K∞) isomorphic to a sub-module of C`K . Note that if p is unramified in K/Q and if

(for p = 2) −1 is not a local norm at 2, then C`∞
K ' C`K (cf. (2.1)), which explains that, in general, one says that the p-class

group is annihilated by the annihilators of TK .

• The module WK and the normalized p-adic regulator RK defining the exact sequence (2.2).

• The Bertrandias–Payan module BPK := TK/WK for which the fixed field Hbp
K by WK in Hpr

K /K∞ is the compositum of the
p-cyclic extensions of K which are embeddable in p-cyclic extensions of arbitrary large degree.

Then some “logarithmic objects” defined and studied by Jaulent (see [16], [17, § 2.3, Schéma] and [3]), in a theoretical and
computational point of view:

• The logarithmic class group C̃`K := Gal(H lc
K /K∞) (H lc

K is the maximal abelian locally cyclotomic pro-p-extension of K),

defining the exact sequence 1→ C̃`
[p]
K → C̃`K → C`S∞

K → 1 (C`S
K := C`K/c̀ K(S) is the p-group of S-classes of K and C̃`

[p]
K the

subgroup generated by S).

• The “logarithmic regulator” R̃K as quotient of the group of “semi-local logarithmic units” by the “global logarithmic
units”.

10. Conclusion
This elementary study, especially with the help of numerical computations, shows that the broad generalizations of Zp[GK ]-
annihilations, that come from values of partial ζ -functions, with various base fields (see, e.g., [19, 20, 21, 25] among many
others), may be difficult to analyse, owing to the fact that the results are not so efficients (especially in the non semi-simple and/or
the non-cyclic cases), and that some degeneracies may occur because of Euler factors as soon as the p-adic pseudo-measures
that are used are of “Stickelberger’s type“ like Solomon’s elements or cyclotomic units.

Moreover, Iwasawa’s techniques give more elegant formalism but do not avoid the question of Euler factors.

Depending on whether one deals with imaginary or real fields, the suitable object to be annihilated is not defined in an unique
way as shown by the context of the present paper about the GK-module TK . Moreover, roughly speaking, some objects are
relative to the values Lp(0,χ) (order of some component of the p-class group of some non-real “mirror field”), while some
other are relative to the values Lp(1,χ) (groups TK), and it is well known that the points “s = 0” and “s = 1” are mysteriousely
independent, giving sometimes abundant “Siegel zeros” near 1, as explained by Washington in many papers (see [11] and its
bibliography), whence an unpredictible order of magnitude of the annihilators.

11. Note
All the programs of the paper may be found at:
https://www.dropbox.com/s/jb5nfc3l8gcn630/Georges%20Gras%20–%20Annihilation%20%28programs%29.pdf?dl=0

References
[1] T. All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (2013), no. 7, 2324–2338. https://doi.

org/10.1016/j.jnt.2012.12.013

3For some CK := Gal(H∗K/K), H∗K ⊆ Hpr
K , we put C ∞

K := Gal(K∞H∗K/K∞).

https://doi.org/10.1016/j.jnt.2012.12.013
https://doi.org/10.1016/j.jnt.2012.12.013


Annihilation of torZp
(G ab

K,S) for real abelian extensions K/Q — 33

[2] T. All, Gauss sums, Stickelberger’s theorem, and the Gras conjecture for ray class groups (2015). https://arxiv.
org/abs/1502.01578

[3] K. Belabas and J-F. Jaulent The logarithmic class group package in PARI/GP, Publ. Math. Fac. Sci. Besançon (Théorie des
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l’institut Fourier 29 (1979), no 1, 15–32.

http://www.numdam.org/item?id=AIF_1979__29_1_15_0
[13] G. Gras, Sur la construction des fonctions L p-adiques abéliennes, Séminaire Delange–Pisot–Poitou (Théorie des nombres),
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