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The sum of the largest and smallest signless
laplacian eigenvalues and some Hamiltonian
properties of graphs
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Abstract
The signless Laplacian eigenvalues of a graph G are eigenvalues of the matrix Q(G) = D(G)+A(G), where D(G)
is the diagonal matrix of the degrees of the vertices in G and A(G) is the adjacency matrix of G. Using a result
on the sum of the largest and smallest signless Laplacian eigenvalues obtained by Das in [2], we in this note
present sufficient conditions based on the sum of the largest and smallest signless Laplacian eigenvalues for
some Hamiltonian properties of graphs.
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1. Introduction
We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow
those in [1]. For a graph G = (V (G), E(G)), we use n to denote its order |V (G)|. A subset V1 of the vertex set V (G) is
independent if no two vertices in V1 are adjacent in G. The size of a maximum independent set is called the independence
number of G and it is denoted by α(G). We use G1∨G2 to denote the the join of two disjoint graphs G1 and G2. The graph
consists of p isolated vertices is denoted by pK1. Let D(G) be a diagonal matrix such that its diagonal entries are the degrees of
vertices in a graph G. The signless Laplacian matrix of a graph G, denoted Q(G), is defined as D(G)+A(G), where A(G) is the
adjacency matrix of G. The eigenvalues q1(G)≥ q2(G)≥ ·· · ≥ qn(G) of Q(G) are called the signless Laplacian eigenvalues of
G. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian
if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A
graph G is called traceable if G has a Hamiltonian path.

In this note we present sufficient conditions based on the sum of the largest and smallest signless Laplacian eigenvalues for
the Hamiltonian and traceable graphs. The main results are as follows.

Theorem 1.1. Let G be a k-connected graph (k ≥ 2) of order n≥ 4. If q1 +qn ≥ 3n−2k−4, then G is Hamiltonian or G is
(k+1)K1∨Kr with 2≤ r ≤ k.
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Theorem 1.2. Let G be a k-connected (k ≥ 1) graph of order n ≥ 4. If q1 + qn ≥ 3n− 2k− 6, then G is traceable or G is
(k+2)K1∨Kr with 1≤ r ≤ k.

2. Proofs
In order to prove Theorem 1.1 and Theorem 1.2, we need the following result obtained by Das as our lemma. Lemma 2.1 below
is Theorem 3.2 on Page 995 in [2].

Lemma 2.1. Let G be a connected graph on n≥ 4 vertices with independence number α . Then q1 +qn +2α ≤ 3n−2 with
equality holding if and only if G is αK1∨Kn−α .

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1.1. Suppose, to the contrary, that G is not
Hamiltonian. Since k ≥ 2, G has a cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not
Hamiltonian, there exists a vertex u0 ∈V (G)−V (C). By Menger’s theorem, we can find k pairwise disjoint (except for u0)
paths P1, P2, ..., Pk between u0 and V (C). Let vi be the end vertex of Pi on C, where 1≤ i≤ k. Without loss of generality, we
assume that the appearance of v1, v2, ..., vk agrees with the orientation of C. We use v+i to denote the successor of vi along the
orientation of C, where 1≤ i≤ k. Since C is a longest cycle in G, we have that v+i 6= vi+1, where 1≤ i≤ k and the index k+1
is regarded as 1. Moreover, S := {u0,v+1 ,v

+
2 , ...,v

+
k } is independent (otherwise G would have cycles which are longer than C).

From Lemma 2.1, we have that

3n−2 = 3n−2k−4+2(k+1)≤ q1 +qn +2|S| ≤ q1 +qn +2α ≤ 3n−2.

From Lemma 2.1 again, we have that q1 + qn = 3n− 2k− 4, S is a maximum independent set of size α = k+ 1, and G is
(k+1)K1∨Kn−(k+1). Notice that G is Hamiltonian if n− (k+1)≥ (k+1). Thus n− (k+1)≤ k. Since G is k-connected with
k ≥ 2, G must be (k+1)K1∨Kr with 2≤ r ≤ k. �
Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to the contrary, that G is not
traceable. Choose a longest path P in G and give an orientation on P. Let x and y be the two end vertices of P. Since G is
not traceable, there exists a vertex u0 ∈V (G)−V (P). By Menger’s theorem, we can find k pairwise disjoint (except for u0)
paths P1, P2, ..., Pk between u0 and V (P). Let vi be the end vertex of Pi on P, where 1≤ i≤ s. Without loss of generality, we
assume that the appearance of v1, v2, ..., vk agrees with the orientation of P. Since P is a longest path in G, x 6= vi and y 6= vi,
for each i with 1≤ i≤ k, otherwise G would have paths which are longer than P. We use v+i to denote the successor of vi along
the orientation of P, where 1≤ i≤ k. Since P is a longest path in G, we have that v+i 6= vi+1, where 1≤ i≤ k−1. Moreover,
{u0,v+1 ,v

+
2 , ...,v

+
k ,x} is independent (otherwise G would have paths which are longer than P). From Lemma 2.1, we have that

3n−2 = 3n−2k−6+2(k+2)≤ q1 +qn +2|S| ≤ q1 +qn +2α ≤ 3n−2.

From Lemma 2.1 again, we have that q1 + qn = 3n− 2k− 6, S is a maximum independent set of size α = k+ 2, and G is
(k+2)K1∨Kn−(k+2). Notice that G is traceable if n− (k+2)≥ (k+1). Thus n− (k+2)≤ k. Since G is k-connected with
k ≥ 1, G must be (k+2)K1∨Kr with 1≤ r ≤ k. �
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