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sedatsen@harran.edu.tr, ORCID ID: orcid.org/0000-0001-6962-4960  

** Asst. Prof. Dr., Kilis 7 Aralık University, Faculty of Education, Educational Sciences, Kilis-Turkey, e-mail: tugba-

mat@hotmail.com, ORCID ID: orcid.org/0000-0002-8738-7177 

*** Research Prof. Dr. Korea University, Office of Research Management, Seoul, South Korea, e-mail: heom@korea.ac.kr, 

ORCID ID: orcid.org/0000-0003-0611-1994 

**** Prof. Dr., University of Georgia, College of Education, Educational Psychology Department, Athens-Georgia, USA, e-

mail: acohen@uga.edu, ORCID ID: orcid.org/0000-0002-8776-9378 

***** Prof. Dr., University of Georgia, College of Education, Educational Psychology Department, Athens-Georgia, USA, 

e-mail: shkim@uga.edu, ORCID ID: orcid.org/0000-0002-2353-7826 

___________________________________________________________________________________________________________________ 

Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, Cilt 9, Sayı 3, Sonbahar 2018, 258-276.  
Journal of Measurement and Evaluation in Education and Psychology, Vol. 9, Issue 3, Autumn 2018, 258-276. 

                                                                                                                                                                            Received: 21.03.2018 
DOI:    10.21031/epod.408451                                                                                                                             Accepted: 16.08.2018 

ISSN: 1309 – 6575 

Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 

Journal of Measurement and Evaluation in Education and Psychology  

2018; 9(3);258-276 

 

 
 

An Implementation of the Gibbs Sampling Method under the 

Rasch Model 
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Abstract 

A brief explication of the implementation of the Gibbs sampling method via rejection sampling to obtain 

Bayesian estimates of difficulty and ability parameters under the Rasch model is presented. The Gibbs sampling 

method via rejection sampling was used in conjunction with the computer program OpenBUGS. Examples that 

compared the estimation method with another Gibbs sampling method via data augmentation as well as 

conditional, marginal, and joint maximum likelihood estimation methods are presented using empirical data sets. 

The effects of prior specifications on the difficulty and ability estimates are illustrated with the empirical data 

sets. A discussion is presented for related issues of Bayesian estimation in item response theory.   

 

Key Words: Bayesian estimation, data augmentation, Gibbs sampling, rejection sampling, Rasch model. 

 

INTRODUCTION  

For the one-parameter logistic Rasch model (Rasch, 1980) many estimation methods can be used to 

obtain item difficulty and person’s ability parameter estimates (Fischer & Molenaar, 1995; Hoijtnik & 

Boomsma, 1995; Molenaar, 1995). Difficulty and ability parameters can be estimated jointly by 

maximizing the joint likelihood function (i.e., JML; Wright & Stone, 1979). Conditional maximum 

likelihood (CML; Andersen, 1980) seems to be the standard estimation method under the one-

parameter logistic model for estimation of difficulty parameters (e.g., Molenaar, 1995). Also, marginal 

maximum likelihood (MML) estimation using the expectation and maximization algorithm can be 

used to obtain difficulty parameter estimates (du Toit, 2003; Thissen, 1982). In addition, joint Bayesian 

estimation and marginal Bayesian estimation can be employed to obtain parameter estimates under the 

one-parameter logistic model (e.g., Birnbaum, 1969; Mislevy, 1986; Swaminathan & Gifford, 1982; 

see also Tsutakawa, & Lin, 1986). 

Point estimates of the Rasch model difficulty and ability parameters are obtained in these earlier 

maximum likelihood estimation and Bayesian estimation methods by maximizing some forms of the 

likelihood function or of the posterior distribution. Instead of obtaining point estimates, procedures to 

approximate the posterior distribution under the Bayesian framework have been proposed relatively 

recently. One such method, Gibbs sampling approaches the estimation of item and ability parameters 

using the joint posterior distribution rather than the marginal distribution (e.g., Albert, 1992; Johnson 

& Albert, 1999; Kim, 2001; Patz & Junker, 1999). It can be noted that there are several different 

versions and implementations of Gibbs sampling that can be used to estimate item and ability 

parameters. Even so, all Bayesian estimation methods should yield comparable item and ability 
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parameter estimates, especially when comparable priors are used or when ignorance or locally-uniform 

priors are used. This paper was designed to investigate this issue using the one-parameter logistic 

Rasch model. Specifically, difficulty and ability parameter estimates from a Gibbs sampling method 

that used the rejection sampling (GS1) is examined and compared with another Gibbs sampling 

method that used data augmentation (GS2) as well as CML, MML, and JML. Because there exists 

Swaminathan and Gifford’s (1982) seminal paper for Bayesian estimation under the Rasch model, 

GS1 is explained below with their framework instead of employing new notations. The main issue that 

differentiates GS1 in the current paper and the implementation used in Swaminathan and Gifford 

(1982) lies in the notion of the posterior maximization and approximation. 

It should be noted that in item response theory Gibbs sampling and the more general Markov chain 

Monte Carlo methods are originally proposed to estimate parameters in rather complicated item 

response models for that the usual estimation methods may not be readily available. Although Gibbs 

sampling and the Markov chain Monte Carlo methods have been successfully applied to the modeling 

of complex response data in some studies (e.g., Bolt, Cohen, & Wollack, 2001, 2002; Cohen & Bolt, 

2005; Karabatsos & Batchelder, 2003; Sen, Cohen, & Kim, 2018) and some specialized computer 

programs (e.g., Baker, 1998; Johnson & Albert, 1999; Wang, Bradlow, & Wainer, 2005) as well as a 

general computer program (Spiegelhalter, Thomas, Best, & Gilks, 1997a) have been available, only 

limited studies are available that investigated the characteristics of parameter estimates from Gibbs 

sampling or the Markov chain Monte Carlo methods for the traditional item response theory models 

including the Rasch model. Wollack, Bolt, Cohen, and Lee (2002), for example, investigated the 

recovery characteristics of Gibbs sampling for the nominal response model, and Baker (1998) 

investigated the recovery characteristics for the two-parameter logistic model. Kim (2001) reported 

results from a comparison study for the one-parameter logistic model in which a Gibbs sampling 

method was contrasted with other maximum likelihood estimation methods. Öztürk and Karabatsos 

(2017) discussed Gibbs sampling methods for estimating difficulty and ability parameters along with 

item response outlier detection parameters under the Rasch model. Levy (2009) presented an excellent 

review of the Markov chain Monte Carlo methods and Gibbs sampling for estimating item response 

theory models and the discussion of prior specifications for the Bayesian estimation. Interested readers 

should consult with Levy (2009) and references therein for the various computational methods under 

the Bayesian framework. Recently, Sheng (2010, 2017) investigated the use or specification of priors 

on the Markov chain Monte Carlo estimates under the three-parameter normal ogive model. Natesan, 

Nandakumar, Minka, and Rubright (2016) investigated the effects of priors on the Markov chain 

Monte Carlo and variational Bayes estimates for the one-, two-, and three-parameter logistic models. 

Note that, despite the importance of the specification of priors in Bayesian estimation and the Gibbs 

sampling method, there is not much transparency regarding the selection and use of priors in the 

literature. This paper also illustrates the role of priors in the context of hierarchical Bayesian 

framework of Swaminathan and Gifford (1982) under the Rasch model. 

In the subsequent sections, various implementations of the estimation methods for the Rasch model 

are briefly presented for the maximum likelihood methods and the Bayesian methods with a detailed 

explication of prior specifications. Results from a comparison study for the various estimation methods 

for the Rasch model are reported using empirical data from a published article. In order to assess the 

effects of prior specifications on the parameter estimates in GS1, results from a comparison study for 

employing various prior specifications are reported. Discussion for the general issues related Bayesian 

estimation in item response theory is followed.  

 

Implementations of Estimation Methods 

Methods of Maximum Likelihood 

This paper employed proprietary computer programs for the maximum likelihood estimation of the 

difficulty and ability parameters. Specifically, WINMIRA (van Davier, 2001) was used for CML, 

IRTPRO (Cai, Thissen, & du Toit, 2010) was used for MML, and Winsteps (Linacre, 2003) was used 
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for JML. Technical treatments of these estimation methods can be found in several original articles 

contained as references in the computer program manuals. Baker and Kim (2004) also contains some 

accounts of the implementations of the respective methods. 

A main reference for CML is Andersen (1980) (see also Andersen, 1970, 1972; Baker & Harwell, 

1994). Earlier FORTRAN code of CML can be found in Fischer (1968) and Fischer and Allerup 

(1968). Thissen (1982) presented detailed accounts for theoretical background and the implementation 

of MML of difficulty parameters under the Rasch model. The explication of the two versions of 

Thissen’s (1982) MML can be found in Baker and Kim (2004, pp. 397–411) with BASIC and Java 

code. Wright and his colleagues published many papers that presented implementations of JML (e.g., 

Wright & Panchapakesan, 1969). FORTRAN code for the earlier predecessors of Winsteps can be 

found in Wright and Mead (1978) and Wright, Mead, and Bell (1980) (cf. Wright, Linacre, & Schultz, 

1989). Although not treated in this manuscript, it should be noted that there are other recent 

implementations of these earlier methods in R (Venables, Smith, & The R Development Core Team, 

2009). Examples of R packages for item response theory modeling include ltm (Rizopoulos, 2006), 

eRm (Mair & Hatzinger, 2007), and mirt (Chalmers, 2012). 

 

Bayesian Methods 

Swaminathan and Gifford (1982) presented Bayesian1 estimation for the Rasch model. There are other 

papers that presented Bayesian estimation methods for more general item response theory models (e.g., 

Leonard & Novick, 1985; Mislevy, 1986; Swaminathan & Gifford, 1985, 1986; Swaminathan, 

Hambleton, Sireci, Xing, & Rizavi, 2003; Tsutakawa & Lin, 1986). As indicated earlier, nearly all 

Bayesian methods in item response theory that were implemented on the computer programs were 

used to obtain parameter estimates by maximizing some form of the posterior distribution. 

Only recently, for example, Fox (2010), Stone and Zhu (2015), Levy and Mislevy (2016), and Luo 

and Jiao (2017) presented Bayesian estimation of item and ability parameters based on the techniques 

for the approximation of the posterior distribution, although Albert (1992) presented such a method 

some time ago. Kim and Bolt (2007) presented excellent instructional material for the Markov chain 

Monte Carlo methods to estimate parameters in item response theory models. 

This paper is based on Swaminathan and Gifford’s framework and presents its implementation on 

OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2014). It deals with two different Bayesian 

estimation cases; (1) ability parameter estimation with known difficulty parameters and (2) difficulty 

and ability parameter estimation. The first case may provide a good foundational information for the 

second case. These two cases are presented below without employing detailed equations because 

nearly all of them can be found in Swaminathan and Gifford (1982). 

 

Ability Estimation with Known Difficulty Parameters  

In Bayesian ability estimation with known difficulty parameters, the posterior distribution can be 

defined as  

 p(|x)= 
p(x|)p()

p(x)
,                                                                      (1) 

where p(x|)l() is the likelihood function of the ability parameter  with item response data x, p() 

is the prior distribution, and 𝑝(𝑥) = ∫ 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃. Following Lindley and Smith (1972) and 

                                                      
1
It is not known to us that what will be the Reverend Thomas Bayes’s (1701–1761) answer to the question of “Are you a Bayesian? ” He 

was the first by the eponymy to solve the inverse problem of passage from the sample to population using ideas that are very popular today 

(Dodge, 2003, p. 29; Trader, 1997; cf. Stigler, 1980). Bayes’s (1763) original paper was reprinted (see Bayes, 1958) with a biographical note 

by Barnard (1958). It should be noted that there is a list of eight errata for the original paper (Bayes, 1763) on the supposedly page 543 of 

the Philosophical Transactions, Vol. 53. Barnard’s (1958) note didn’t indicate that there is the errata page, and the reprint on Biometrika, 

Vol. 45 with modern notation did not include two of the errata. 
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Novick, Lewis, and Jackson (1973), Swaminathan and Gifford (1982) used a hierarchical prior, 

𝑝(𝜃) = П𝑖𝑝(𝜃𝑖|𝜇, 𝜙)𝑝(𝜇, 𝜙), where i designates each person, p(,)=p() for which p() has an 

improper uniform distribution and p() has the inverse chi-square distribution with parameters  and 

 (i.e., ϕ~𝜒−2(𝜈, 𝜆); Novick & Jackson, 1974, pp. 190–194). The nuisance parameters  and  are 

integrated out of the posterior distribution and then the resulting proportional posterior distribution is 

maximized with the Newton-Raphson scheme to obtain point estimates of the ability parameters. With 

a fixed  value, the kernel of the resulting ability distribution is that of the multivariate t distribution 

(Anderson, 1984, pp. 272–273), and all ability parameters are estimated simultaneously in the Newton-

Raphson scheme. The specification of the hyperparameters  and  is a key issue in such hierarchical 

Bayesian estimation. 

In conjunction with the Markov chain Monte Carlo method for approximating the entire posterior 

distribution and in the context of the computer program OpenBUGS (Spiegelhalter, Thomas, Best, & 

Lunn, 2014) used in this study, it is better to use a proper yet noninformative uniform or normal 

hyperprior distribution for  in addition to employing an independent hyperprior distribution for . 

The specification of the hyperparameters for the hyperprior distributions seems to be a very important 

issue. A noninformative, diffuse hyperprior distribution can be used for  by specifying appropriate 

hyperparameters, and an informative hyperprior distribution can be used for  by specifying 

appropriate hyperparameters. 

One problem frequently encountered when specifying the distributional characteristics is that there are 

too many different definitions of the specific distributions in Bayesian literature (cf. Segal’s law; 

Block, 1977, p. 79). Because this paper is based on Swaminathan and Gifford’s notation but uses 

OpenBUGS to obtain posterior distributional statistics in GS1, it is imperative to connect seemingly 

the same yet different notations from different sources. An illustration below is for the inverse chi-

square distribution and the gamma distribution in essence. 

Swaminathan and Gifford (1982, p. 178) used the scaled inverse chi-square distribution for :  

 p(|,) 
1


 
1

2
+1

exp 








 


−2
,   0<<,   >0,   >0 (2) 

(see Novick & Jackson, 1974, pp. 190–194; Isaacs, Christ, Novick, & Jackson, 1974, 175–196). Hence 


−2

(,) and ϕ−1~𝜒2(𝜈, 𝜆−1) = 𝜒2(𝜈, 𝜔), where W=
−1

 variable has a scaled chi-square 

density,  

 p(W|,) 
W

(/2)−1


/2

exp 








 
−W

2
,   W>0,   >0,   >0   (3) 

(see Novick & Jackson, 1974, pp. 186–190). It is not good that functions are shown with 

proportionality because the exact density of the distribution is not explicit. 

In terms of the exact density of the scaled inverse chi-square without employing proportionality (see 

e.g., Gelman, Carlin, Stern, & Rubin, 1995, pp. 474–475 with their  and s
2
 of Novick & 

Jackson, 1974, p. 191),  

 p(|,)= 
(/2)

/2

(/2)
 

1


 
1

2
+1

exp 








 


−2
,                                                   (4) 

where 𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
 is a gamma function (Davis, 1964, p. 255). Note that this distribution is 

Berger’s (1985, p. 561) inverse gamma density, IG(,), where =/2 and =2/ (n.b., this  is not 

the difficulty parameter). 
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In prior specification, a different but better form of the distribution can be used. If 
l
/

2
() 

(Lindley, 1965, p. 26; Leonard & Hsu, 1999, p. 214; subscript l designates  from Lindley and Leonard 

& Hsu), then  

 p(|,
l
)= 

(
l
/2)

/2

(/2)
 

1


 
1

2
+1

exp 








− 


l

2
,                                     (5) 

where  is the prior sample size and 
−1

l
 is the prior mean of 

−1
 with the prior mean of  to be 


l
/(−2) for >2. In terms of Berger’s IG(,), the corresponding parameters should be =/2 and 

=2/(
l
). In terms of Swaminathan and Gifford’s (1982, p. 178) 𝜒−2(𝜈, 𝜆), = and =

l
 of Lindley 

(1965, p. 26), yielding the prior sample size is , the prior mean of 
−1

 is /, and the prior mean of  

is /(−2) for >2. 

These distributions may not be directly used in available computer software. In OpenBUGS, 

WinBUGS, as well as BUGS (e.g., Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2013, pp. 345–

346), dgamma(a,b) denotes the density is  

 p(|a,b)=b
a


a−1
e
−b

/(a)   for   >0, a,b>0 (6) 

with mean a/b and variance a/b
2
. In Berger’s (1985, p. 560) gamma density, G(,), the parameters 

are =a and =1/b with mean  and variance 
2
. Note that IG(/2,2/) means 

 

𝜙−1~𝐺(𝑣/2,2/𝜆) = dgamma(𝑣/2,2/𝜆) in OpenBUGS with =2a to be the prior sample size, 

/=a/b to be the prior mean of 
−1

, and /(−2)=b/(a−1) to be the prior mean of  for =2a>2. 

 

Estimation of Both Difficulty and Ability Parameters  

The posterior distribution in this case can be defined as  

 𝑝(𝜃, 𝛽|𝑥) =
𝑝(𝑥|𝜃, 𝛽)𝑝(𝜃,𝛽)

𝑝(𝑥)
,                                                             (7) 

where p(x|,)l(,) is the likelihood function of the ability parameter  and the difficulty parameter 

 with item response data x, p(,) is the prior distribution, and 𝑝(𝑥) = ∫ 𝑝(𝑥|𝜃, 𝛽)𝑝(𝜃, 𝛽)𝑑(𝜃, 𝛽). 

Again, following Lindley and Smith (1972) and Novick, Lewis, and Jackson (1973), Swaminathan 

and Gifford (1982) used independent hierarchical priors, 𝑝(𝜃, 𝛽) = 𝑝(𝜃)𝑝(𝛽) =
П𝑖𝑝(𝜃𝑖|𝜇𝜃 , 𝜙𝜃)𝑝(𝜇𝜃, 𝜙𝜃) × П𝑗𝑝(𝛽𝑗|𝜇𝛽 , 𝜙𝛽)𝑝(𝜇𝛽 , 𝜙𝛽), where i designates each person and j 

designates each item, p(


,


)=p(


) and p(


,


)=p(


) for which p(


) and p(


) have improper 

uniform distributions and p(


) and p(


) have the inverse chi-square distributions with parameters 




, 


, 


, 


, respectively (i.e., 



−2
(


,


) and 



−2
(


,


)). Again, the nuisance parameters 




, 


, 


, 


 are integrated out of the posterior distribution and then the resulting proportional 

posterior distribution is maximized with the Newton-Raphson scheme to obtain point estimates of the 

ability and item parameters. An iterative Birnbaum paradigm is used to obtain a set of ability estimates 

and then a set of difficulty parameter estimates until the overall convergence criterion can be met 

(Swaminathan & Gifford, 1982, p. 184).  

The specification of the hyperparameters (i.e., 


, 


, 


, 


) is a key issue in hierarchical Bayesian 

estimation. In conjunction with the Markov chain Monte Carlo method for approximating the entire 
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posterior distribution and in the context of the computer program OpenBUGS (Spiegelhalter, Thomas, 

Best, & Lunn, 2014) used in this study, it is better to use a proper yet noninformative uniform or 

normal hyperprior distribution for 


 or 


 in addition to employ an independent hyperprior for 


 or 




. A noninformative, diffuse hyperprior distribution can be used for each  by specifying appropriate 

hyperparameters, and an informative hyperprior distribution can be used for each  by specifying 

appropriate hyperparameters. 

 

METHOD 

Without loss of generality, we present below a comparison study for estimation of both difficulty and 

ability parameters under Rasch model. Ability estimation can also be done by modifying the programs 

in a trivial manner and hence not presented. 

To compare GS1, GS2, CML, MML, and JML, illustrations using (1) the Law School Admission Test-

Section 6 (LSAT6; Bock & Aitkin, 1981; Bock & Lieberman, 1970) data and (2) the Law School 

Admission Test-Section 7 (LSAT7) are presented below. It should be noted that the LSAT6 and 

LSAT7 data have been analyzed in many published articles and books (e.g., Andersen, 1980; 

McDonald, 1999). Use of these data instead of employing simulation data, hence, may provide a 

familiar baseline to make comparisons of different estimation methods. 

GS1 estimates were obtained using OpenBUGS. GS2 estimates were obtained using MATLAB (The 

MathWorks, 1996) employing the code from Johnson and Albert (1999). Instead of OpenBUGS, 

WinBUGS or BUGS (e.g., Spiegelhalter et al., 1997a) can also be used. Difficulty parameter estimates 

are reported first and ability parameter estimates are subsequently reported for LSAT6 and LSAT7, 

respectively. It is not necessary to show the listings of the input lines of CML, MML, and JML. Also 

for GS2, the MATLAB function presented in Johnson and Albert (1999, p. 248) was used without any 

modification. However, it is necessary to present the input lines for OpenBUGS. The portions of the 

input lines are contained in Appendix. Note that in Appendix the inverse of the hyperparameter 

variance was specified with dgamma (a=2.5, b=5) for both ability and difficulty prior distributions. 

This prior specification is equivalent to Swaminathan and Gifford’s (1982) =5 and =10. Also note 

that the centered value of the log odds of the classical item facilities denoted as p
j
 (i.e., values of 

log[(1−p
j
)/p

j
] centered at 0) were used for the initial values for difficulty parameters. Similar initial 

values were specified for the ability parameters. 

Based on the suggestions from Kim and Bolt (2007) and Kim (2001), burn-in was set to 1000 and the 

next 10,000 iterations were used for GS1 to construct the posterior distributions that showed 

convergence of the simulated draws (see Gilks, Richardson, & Spiegelhalter, 1996). The convergence 

of the chains was visually monitored by checking history and autocorrelation plots. It should be noted 

that there are many different ways to summarize the sampled values in GS1 or GS2. Instead of using 

the actual posterior credibility interval, the posterior means and the posterior standard deviations are 

used in this study. The marginal posterior densities of the samples values for respective parameters all 

followed unimodal and likely normal distributions in GS1. GS2 also yielded similar results for the 

sampled values. 

 

RESULTS 

Comparison of Estimation Methods 

LSAT6 Estimation Results  

For the LSAT6 data that contained responses of 1000 subjects to five items, all five methods yielded 

practically the same results for the difficulty estimates. Table 1 presents difficulty parameter estimates 

based on the usual Rasch model scaling (i.e., the mean of difficulties is zero) that is the default setting 
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for nearly all Rasch model calibration computer programs. Note that some differences still exist among 

the difficulty parameter estimates and the accompanied standard errors or posterior standard 

deviations. Although results from this simple data set may not be sufficient for fully evaluating 

different estimation methods, these may provide good enough information about the agreement in 

estimation results. 

 

Table 1. LSAT6 Difficulty Estimates 

  GS1  GS2a  CML  MMLa  JML 

 Item  bj (p.s.d.)  bj (p.s.d.)  bj (s.e.)  bj (s.e.)  bj (s.e.) 

1  −1.26 (0.11)  −1.38 (0.10)  −1.26 (0.13)  −1.26 (0.13)  −1.24 (0.11) 

2  0.48 (0.07)  0.52 (0.07)  0.47 (0.08)  0.48 (0.08)  0.45 (0.07) 

3  1.25 (0.07)  1.43 (0.07)  1.24 (0.08)  1.24 (0.07)  1.30 (0.07) 

4  0.17 (0.07)  0.16 (0.08)  0.17 (0.09)  0.17 (0.09)  0.13 (0.07) 

5  −0.63 (0.09)  −0.72 (0.09)  −0.62 (0.11)  −0.63 (0.11)  −0.64 (0.08) 

Note. p.s.d. = posterior standard deviation; s.e. = standard error 

aEstimates were transformed onto the zero centered logistic metric. 

  

LSAT6 ability estimates and either the accompanied standard errors or the posterior standard 

deviations are reported in Table 2 for each number-correct raw score from 0 to 5. In GS1 and GS2 

there were different posterior means for examinees with the same response pattern or the same raw 

score. In reporting of the ability estimates, the first examinees who got the respective raw scores were 

used to obtain the estimates (i.e., examinees 1, 4, 12, 28, 62, and 703). Although the estimates who got 

the same raw score were trivially different in the consideration of the magnitude of the posterior 

standard deviation, obtaining such odd results were not seen in other maximum likelihood based 

estimation procedures. 

The most pronounced pattern in Table 2 is that estimates from GS1 and MML/EAP (i.e., expected a 

posteriori) were very similar. Other estimation methods look somewhat different due to the extremely 

small test size. Except for the scores 0 and 5, however, ability estimates from CML/ML and JML were 

very similar. Because in the Rasch model with conditional maximum likelihood estimation the 

weighted likelihood estimation (WLE; Warm, 1989) is popular, the results for such a case were 

reported in the CML/WLE column.  

 

Table 2. LSAT6 Ability Estimates 

  GS1  GS2a  CML/ML  CML/WLE  MML/EAPa  JMLb 

 Score  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (s.e.)  𝜃𝑖  (s.e.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (s.e.) 

0  −0.09 (0.64)  −1.61 (0.98)     −2.79 (1.72)  0.03 (1.05)  −22 (1.93) 

1  0.31 (0.64)  −0.74 (0.91)  −1.60 (1.18)  −1.34 (1.11)  0.40 (1.05)  −1.72 (1.21) 

2  0.71 (0.64)  0.02 (0.87)  −0.47 (0.99)  −0.41 (0.99)  0.76 (1.07)  −0.52 (1.03) 

3  1.12 (0.66)  0.79 (0.85)  0.48 (0.99)  0.42 (0.98)  1.14 (1.11)  0.51 (1.21) 

4  1.56  (0.67)  1.48 (0.91)  1.60 (1.18)  1.34 (1.11)  1.54 (1.11)  1.72 (1.21) 

5  2.02 (0.70)  3.32 (1.24)     2.78 (1.71)  1.95 (1.13)  3.28 (1.93) 

Note. p.s.d. = posterior standard deviation; s.e. = standard error. GS1 and GS2 estimates were from examinees 1, 4, 12,  

28, 62, and 703. 

aEstimates were transformed onto the zero centered logistic metric of item difficulty. 

bAd hoc estimates were inserted to scores 0 and 5, respectively. 

  

LSAT7 Estimation Results  
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For the LSAT7 data, all five methods yielded practically the same results for the difficulty estimates 

as did for the LSAT6 data. Table 3 presents difficulty parameter estimates based on the usual Rasch 

model scaling. Note that some differences still exist among the difficulty parameter estimates and the 

accompanied standard errors or posterior standard deviations.  

 

Table 3. LSAT7 Difficulty Estimates 

  GS1  GS2a  CML  MMLa  JML 

 Item  bj (p.s.d.)  bj (p.s.d.)  bj (s.e.)  bj (s.e.)  bj (s.e.) 

1  −0.54 (0.08)  −0.59 (0.14)  −0.54 (0.10)  −0.54 (0.13)  −0.55 (0.08) 

2  0.54 (0.07)  0.59 (0.12)  0.54 (0.08)  0.54 (0.09)  0.53 (0.07) 

3  −0.13 (0.07)  −0.17 (0.14)  −0.13 (0.09)  −0.13 (0.11)  −0.15 (0.07) 

4  0.81 (0.07)  0.90 (0.11)  0.81 (0.08)  0.80 (0.09)  0.83 (0.07) 

5  −0.67 (0.08)  −0.73 (0.15)  −0.67 (0.10)  −0.66 (0.14)  −0.67 (0.08) 

Note. p.s.d. = posterior standard deviation; s.e. = standard error 

aEstimates were transformed onto the zero centered logistic metric. 

  

Table 4 shows the ability estimates and either the accompanied standard errors or the posterior standard 

deviations for each number-correct raw score from 0 to 5 for LSAT7. As was the case for LSAT6, in 

GS1 and GS2 there were different posterior means for examinees with the same response pattern or 

the same raw score. In reporting of the ability estimates, the first examinees who got the respective 

raw scores were used to obtain the estimates (i.e., examinees 1, 13, 33, 65, 145, and 693).  

Note that ability estimates from GS1 and MML/EAP were very similar in Table 4. Other estimation 

methods yielded somewhat different ability estimates partly due to the extremely small test size. 

Except for the scores 0 and 5, however, ability estimates from CML/ML and JML were very similar. 

 

Table 4. LSAT7 Ability Estimates 

  GS1  GS2a  CML/ML  CML/WLE  MML/EAPa  JMLb 

 Score  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (s.e.)  𝜃𝑖  (s.e.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (s.e.) 

0  −0.63 (0.73)  −1.72 (1.00)     −2.57 (1.66)  −0.59 (0.70)  −2.96 (1.90) 

1  −0.12 (0.71)  −0.81 (0.91)  −1.49 (1.14)  −1.21 (1.07)  −0.10 (0.69)  −1.54 (1.16) 

2  0.38 (0.72)  0.11 (0.90)  −0.44 (0.95)  −0.38 (0.94)  0.39 (0.70)  −0.47 (0.97) 

3  0.91 (0.73)  0.78 (0.91)  0.44 (0.95)  0.37 (0.95)  0.89 (0.72)  0.45 (0.97) 

4  1.47 (0.77)  1.54 (0.94)  1.49 (1.15)  1.21 (1.07)  1.44 (0.75)  1.54 (1.16) 

5  2.11 (0.83)  2.86 (1.16)     2.59 (1.67)  2.05 (0.80)  2.98 (1.91) 

Note. p.s.d. = posterior standard deviation; s.e. = standard error. GS1 and GS2 estimates were from examinees 1, 13, 33, 

65, 145, and 693. 

aEstimates were transformed onto the zero centered logistic metric of item difficulty. 

bAd hoc estimates were inserted to scores 0 and 5, respectively. 
  

Comparison of Prior Specifications 

To assess the effects of prior specifications on the difficulty and ability parameter estimates, the same 

LSAT6 and LSAT7 data were analyzed with OpenBUGS. Four prior specifications with four different 

sets of hyperparameters were used for both ability and difficulty prior distributions; (1) 

dgamma(a=2.5, b=5), (2) dgamma(a=4, b=5), (3) dgamma(a=7.5, b=5), and (4) dgamma(a=12.5, 

b=5). Because the first specification was the same as in the earlier calibration condition, only three 

additional OpenBUGS runs were performed for LSAT6 and LSAT7, respectively. Except for the prior 

specification, all other settings to obtain the estimates remained the same for the OpenBUGS runs. 
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Note that these prior specifications of a=2.5, 4, 7.5, 12.5 with b=5 are fully equivalent to Swaminathan 

and Gifford’s (1982) =5, 8, 15, 25 with =10 used in their study. 

 

LSAT6 Prior Specification Results  

For the LSAT6 data, all four prior specifications yielded practically the same results for the difficulty 

estimates, but a bit different results for the ability estimates. Table 5 presents difficulty parameter 

estimates based on the usual Rasch model scaling. Note that only trivial differences exist among the 

difficulty parameter estimates and the posterior standard deviations, that occur in the second decimal 

places. Because each difficulty parameter was estimated with the sample size of 1000, shrinkage 

toward the mean of the difficulty estimates might exist with the increasing hyperparameter a values 

but barely noticeable. In Figure 1(a) LSAT6 difficulty estimates are plotted with the four different 

values of the hyperparameter a=2.5, 4, 7.5, 12.5 (because the hyperparameter b=5 for all cases only 

the four hyperparameters of a were used). The numbers in the plot designate the item numbers.  

 

Table 5. LSAT6 Difficulty Estimates from Prior Specifications 

  GS1 Hyperparameters 

  a=2.5, b=5  a=4, b=5  a=7.5, b=5  a=12.5, b=5 

 Item  bj (p.s.d.)  bj (p.s.d.)  bj (p.s.d.)  bj (p.s.d.) 

1  −1.26 (0.11)  −1.25 (0.10)  −1.24 (0.10)  −1.22 (0.10) 

2  0.48 (0.07)  0.48 (0.07)  0.47 (0.07)  0.46 (0.07) 

3  1.25 (0.07)  1.24 (0.07)  1.23 (0.07)  1.21 (0.07) 

4  0.17 (0.07)  0.17 (0.07)  0.16 (0.07)  0.16 (0.07) 

5  −0.63 (0.09)  −0.63 (0.08)  −0.62 (0.08)  −0.61 (0.08) 

Note. p.s.d. = posterior standard deviation 

  

LSAT6 ability estimates from the four prior specifications and the posterior standard deviations are 

reported in Table 6 for each number-correct raw score from 0 to 5. In GS1 there were different posterior 

means for examinees with the same response pattern or the same raw score. In reporting of the ability 

estimates, the first examinees who got the respective raw scores were used to obtain the estimates (i.e., 

examinees 1, 4, 12, 28, 62, and 703). 

Considering the magnitude of the posterior standard deviations, it can be noted in Table 6 that 

practically trivial differences exist among the ability estimates and the posterior standard deviations. 

Nevertheless, because each ability parameter was estimated with the truly small number of items, 

shrinkage toward the mean of ability estimates with the increasing hyperparameter a values was quite 

noticeable. In Figure 1(b) LSAT6 ability estimates are plotted with the four different values of the 

hyperparameter a=2.5, 4, 7.5, 12.5 (because the hyperparameter b=5 for all cases only the four 

hyperparameters of a were used). The numbers in the plot designate the raw scores from 0 to 5.  

 

Table 6. LSAT6 Ability Estimates from Four Prior Specifications 

  GS1 Hyperparameters 

  a=2.5, b=5  a=4, b=5  a=7.5, b=5  a=12.5, b=5 

 Score  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.) 

0  −0.09 (0.64)  −0.07 (0.64)  0.01 (0.62)  0.12 (0.60) 

1  0.31 (0.64)  0.33 (0.63)  0.39 (0.62)  0.45 (0.59) 

2  0.71 (0.64)  0.72 (0.64)  0.77 (0.62)  0.79 (0.59) 

3  1.12 (0.66)  1.13 (0.64)  1.13 (0.62)  1.15 (0.60) 

4  1.56 (0.67)  1.56 (0.65)  1.54 (0.64)  1.50 (0.61) 

5  2.02 (0.70)  2.02 (0.68)  1.97 (0.66)  1.89 (0.63) 

Note. p.s.d. = posterior standard deviation 
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Figure 1. Plots of (a) LSAT6 difficulty estimates, (b) LSAT6 ability estimates, (c) LSAT7 difficulty 

estimates, and (d) LSAT7 ability estimates for the hyperparameter values of a=2.5, 4, 7.5, 12.5 with 

b=5. 

 

LSAT7 Prior Specification Results  

For the LSAT7 data, all four prior specifications yielded practically the same results for the difficulty 

estimates, but a bit different results for the ability estimates. Table 7 presents difficulty parameter 

estimates based on the usual Rasch model scaling. Note that only trivial differences exist among the 

difficulty parameter estimates and the posterior standard deviations, that occur in the second decimal 

places. Because each difficulty parameter was estimated with the sample size of 1000, shrinkage 

toward the mean of difficulty estimates might exist but not really noticeable. In Figure 1(c) LSAT7 
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difficulty estimates are plotted with the four different values of the hyperparameter a=2.5, 4, 7.5, 12.5. 

The numbers in the plot designate the item numbers.  

 

Table 7. LSAT7 Item Difficulty Estimates from Four Prior Specifications 

  GS1 Hyperparameters 

  a=2.5, b=5  a=4, b=5  a=7.5, b=5  a=12.5, b=5 

 Item  bj (p.s.d.)  bj (p.s.d.)  bj (p.s.d.)  bj (p.s.d.) 

1  −0.54 (0.08)  −0.54 (0.08)  −0.53 (0.08)  −0.53 (0.08) 

2  0.54 (0.07)  0.53 (0.07)  0.53 (0.07)  0.52 (0.07) 

3  −0.13 (0.07)  −0.13 (0.07)  −0.13 (0.07)  −0.13 (0.07) 

4  0.81 (0.07)  0.80 (0.07)  0.79 (0.07)  0.78 (0.07) 

5  −0.67 (0.08)  −0.66 (0.08)  −0.65 (0.08)  −0.65 (0.08) 

Note. p.s.d. = posterior standard deviation 

  

LSAT7 ability estimates from the four prior specifications and the posterior standard deviations are 

reported in Table 8 for each number-correct raw score from 0 to 5. In GS1 there were different posterior 

means for examinees with the same response pattern or the same raw score. In reporting of the ability 

estimates, the first examinees who got the respective raw scores were used to obtain the estimates (i.e., 

examinees 1, 13, 33, 65, 145, and 693). 

It can be noted that practically trivial differences exist among the ability estimates and the posterior 

standard deviations, considering the magnitude of the posterior standard deviations. Nevertheless, each 

ability parameter was estimated with the truly small number of items, shrinkage toward the mean of 

ability estimates with the increasing hyperparameter a values was quite noticeable. In Figure 1(d) 

LSAT7 ability estimates are plotted with the four different values of the hyperparameter a=2.5, 4, 7.5, 

12.5. The numbers in the plot designate the raw scores from 0 to 5.  

 

Table 8. LSAT7 Ability Estimates from Four Prior Specifications 

  GS1 Hyperparameters 

  a=2.5, b=5  a=4, b=5  a=7.5, b=5  a=12.5, b=5 

 Score  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.)  𝜃𝑖  (p.s.d.) 

0  −0.63 (0.73)  −0.60 (0.73)  −0.56 (0.71)  −0.49 (0.69) 

1  −0.12 (0.71)  −0.11 (0.72)  −0.08 (0.69)  −0.05 (0.69) 

2  0.38 (0.72)  0.38 (0.72)  0.42 (0.69)  0.44 (0.70) 

3  0.91 (0.73)  0.90 (0.73)  0.92 (0.72)  0.91 (0.71) 

4  1.47 (0.77)  1.47 (0.77)  1.45 (0.75)  1.44 (0.73) 

5  2.11 (0.83)  2.08 (0.83)  2.04 (0.80)  2.01 (0.78) 

Note. p.s.d. = posterior standard deviation 

 

DISCUSSION and CONCLUSION  

The main difference between the two Gibbs sampling methods, GS1 and GS2, lies in both the 

specifications of prior distributions and the underlying sampling procedures. The prior distributions 

used in GS1 had the hierarchical form following Swaminathan and Gifford (1982). For example, the 

hyperparameter mean of the normal prior distribution for ability had a noninformative uniform 

distribution and the inverse of the hyperparameter variance of the normal prior had a gamma 

distribution. In GS1 with gamma(a=2.5, b=5) the prior sample size of the gamma distribution was 

specified as 2(2.5)=5 and the prior expected value was 2.5/5=0.5 (i.e., the expected value of the 

hyperparameter variance to be 5/1.5=3.33). Note that this prior specification is equivalent to 

Swaminathan and Gifford’s (1982) ν=5 and λ=10, one of the prior specifications in their paper. They 
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used three other prior specifications that were converted to the equivalent specifications in the second 

study. The use of gamma(2.5, 5) seems reasonable among the choices. Swaminathan and Gifford 

(1982) concluded similarly. Note that there are also other ways of specifying priors for the Rasch 

model (see Kim, 2001; Levy & Mislevy, 2016; Spiegelhalter et al., 1997b; Stone & Zhu, 2015) instead 

of using priors in the hierarchical form. In Johnson and Albert’s (1999) item_r1 function for GS2 the 

hyperparamaters of the theta prior was set to have a standard normal distribution while prior standard 

deviation of the item difficulty parameters was set to unity. See Johnson and Albert (1999, pp. 202–

204) for the detailed Gibbs sampling for GS2. Hence GS1 and GS2 differ not only the mathematical 

forms of the model but also the priors employed. 

Because the full conditional distributions for the Rasch model are log-concave (Ghosh, Ghosh, Chen, 

& Agresti, 1999), the sampling in GS1 used the derivative-free adaptive rejection sampling algorithm 

(Gilks, 1996; Gilks & Wild, 1992). Due to the use of hierarchical prior distributions, more general 

sampling procedures can be employed for various parameters in GS1 (see Lunn et al., 2013, pp. 68–

70) that include slice sampling (Neal, 2003) and Metropolis-within-Gibbs (Metropolis et al., 1953; 

Hasting, 1970). In GS2, direct Gibbs sampling method was used with data augmentation because the 

actual item response theory model was that of the normal ogive instead of the logistic ogive (Albert, 

1992; Baker, 1998). The resulting parameter estimates in GS2 were initially expressed on the normal 

ogive metric but placed onto the logistic metric. 

When difficulty and ability are estimated together in GS1 or GS2, the ability estimate for specific case 

is not unique. The same response pattern may yield different ability estimates and that is not acceptable 

in practice. In addition, because of employing the exchangeability concept, all ability estimates are 

estimated simultaneously and there exists some dependency in the resulting estimates. Although 

estimates are not independent in general, it seems troublesome that estimating ability even with known 

item parameters may yield different estimates for a specific response pattern. Hence, Gibbs sampling 

methods or some other estimation methods based on Markov chain Monte Carlo may not be seen as 

viable methods for the usual item and ability parameter estimation for the usual item response theory 

models for dichotomous items that include the Rasch model. 

In this study, the Rasch model was employed without addressing the problem of model selection, 

choice of link function, or model fit. Kim and Bolt (2007) contains an excellent introductory review 

of these issues. Interested readers should refer to Kim and Bolt (2007) and other general references 

including Lunn et al. (2013). 

Note that although Gibbs sampling methods and some computer programs which implemented such 

procedures have been available sometime, the accuracy of the methods has not been thoroughly 

studied. Obviously these techniques have been applied to some complicated modeling situations where 

the traditional maximum likelihood based methods are too difficult to implement, and hence have not 

been thoroughly tested and compared. Because maximum likelihood based methods have not been 

implemented at all in such applications, still we need to investigate the relevant estimation procedures. 

In addition, because there are many different ways of implementing Gibbs sampling methods in item 

response theory and many different prior distributions can be employed with many different 

specifications in Bayesian estimation, the illustrative implementation of the Gibbs sampling method 

and comparing results with other existing Bayesian and likelihood based methods should provide 

measurement specialists and test developers as well as the users of the computer programs with 

guidelines for using the Gibbs sampling method under the Rasch item response theory model. 

In this study, explications of nearly all estimation methods for the Rasch model were presented 

together with the two methods based on Gibbs sampling. The specification of priors for ability and 

difficulty parameters in Bayesian estimation and the Gibbs sampling method was fully explained with 

detailed mathematical statistical formulas, basically following the framework of Swaminathan and 

Gifford (1982). Illustrations about the effects of prior specifications on the estimates were presented 

with empirical data. It should be noted that additional, full scale simulation studies as well as more 

cumulative experience with regard to prior specifications for Bayesian estimation are definitely 

needed. 



Journal of Measurement and Evaluation in Education and Psychology 

___________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 270 

REFERENCES 
Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal 

of Educational Statistics, 17, 251–269. 

Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the 

Royal Statistical Society, Series B, 32, 283–301. 

Andersen, E. B. (1972). The numerical solution to a set of conditional estimation equations. Journal of the Royal 

Statistical Society, Series B, 34, 42–54. 

Andersen, E. B. (1980). Discrete statistical models with social science applications. Amsterdam,: North-

Holland. 

Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). New York, NY: Wiley. 

Baker, F. B. (1998). An investigation of the item parameter recovery characteristics of a Gibbs sampling 

approach. Applied Psychological Measurement, 22, 153–169. 

Baker, F. B., & Harwell, M. R. (1994). Estimation of item parameters in the Rasch model via conditional 

maximum likelihood: A didactic. Unpublished manuscript, Department of Educational Psychology, 

University of Wisconsin, Madison, WI. 

Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York, 

NY: Dekker. 

Barnard, G. A. (1958). Thomas Bayes - a biographical note. Biometrika, 45, 293–295. 

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions 

(of the Royal Society of London), 53, 370-418; Errara, c. 543. 

Bayes, T. (1958). An essay towards solving a problem in the doctrine of changes. Biometrika, 45, 296–315. 

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis (2nd ed.). New York, NY: Springer. 

Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal 

of Mathematical Psychology, 6, 258–276. 

Block, A. (1977). Murphy’s law and other reasons why things go wrong!  Los Angeles, CA: Price/Stern/Sloan. 

Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2001). A mixture item response model for multiple-choice data. 

Journal of Educational and Behavioral Statistics, 26, 381–409. 

Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions of test 

speededness: Application of a mixture Rasch model with ordinal constraints. Journal of Educational 

Measurement, 39, 331–348. 

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Applications 

of an EM algorithm. Psychometrika, 46, 443–459. 

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. 

Psychometrika, 35, 179–197. 

Cai, L., Thissen, D., & du Toit, S. (2010). IRTPRO: Item response theory for patient-reported outcomes 

[Computer software]. Skokie, IL: Scientific Software International. 

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal 

of Statistical Software, 48(6), 1–29. 

Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of 

Educational Measurement, 42, 133–148. 

Davis, P. J. (1964). Gamma function and related functions. In M. Abramowitz & I. A. Stegun (Eds.), Handbook 

of mathematical functions with formulas, graphs, and mathematical tables (pp. 253–293). Washington, 

DC: National Bureau of Standards. 

Dodge, Y. (Ed.). (2003). The Oxford dictionary of statistical terms. Oxford, Great Britain: Oxford University 

Press. 

du Toit, M. (Ed.). (2003). IRT from SSI: BILOG-MG, MULTILOG, PARSCALE, TESTFACT. Chicago, IL: 

Scientific Software International. 

Fischer, G. H. (1968). Einführung in die theorie psychologischer tests: Grunddlagen und anwendungen 

[Introduction to the theory of psychological tests: Foundations and applications]. Bern, Switzerland: 

Huber. 

Fischer, G. H., & Allerup, P. (1968). Rechentechnische fragen zu raschs eindimensionalem modell 

[Computational questions on Rasch’s unidimensional model]. In G. H. Fischer (Hrsg. [Ed.]), 

Psychologsche Testtheorie [Psychological test theory] (pp. 269–280). Bern, Switzerland: Huber. 

Fischer, G. H., & Molenaar, I. W. (Eds.). (1995). Rasch models: Foundations, recent developments, and 

applications. New York, NY: Springer-Verlag. 

Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York, NY: Springer. 

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London, Great Britain: 

Chapman & Hall. 



Şen, S., Karadavut, T., Eom, H.J., Cohen, A.S., & Kim, S.-H. / An Implementation of the Gibbs Sampling Method 

Under the Rasch Model 

___________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

271 

Ghosh, M., Ghosh, A., Chen, M.-H., & Agresti, A. (1999). Bayesian estimation for item response model (Tech. 

Rep.). Gainsville, FL: University of Florida, Department of Statistics. 

Gilks, W. R. (1996). Full conditional distribution. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), 

Markov chain Monte Carlo in practice (pp. 75–88). London, England: Chapman and Hall. 

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov chain Monte Carlo in practice. 

London, England: Chapman and Hall. 

Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337–

348. 

Hasting, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 

57, 97–109. 

Hoijtink, H., & Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In G. 

H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications 

(pp. 53–68). New York, NY: Springer-Verlag. 

Isaacs, G. I., Christ, D. E., Novick, M. R., & Jackson, P. H. (1974). Tables for Bayesian statisticians. The Iowa 

Testing Program, The University of Iowa, Iowa City, IA. 

Johnson, V. E., & Albert, J. H. (1999). Ordinal data modeling. New York, NY: Springer. 

Karabatsos, G., & Batchelder, W. H. (2003). Markov chain Monte Carlo estimation for test theory without an 

answer key. Psychometrika, 68, 373–389. 

Kim, J.-S., & Bolt, D. M. (2007). Estimating item response theory models using Markov chain Monte Carlo 

methods. Educational Measurement: Issues and Practice, 26(4), 38–51. 

Kim, S.-H. (2001). An evaluation of a Markov chain Monte Carlo method for the Rasch model. Applied 

Psychological Measurement, 25, 163–176. 

Leonard, T., & Hsu, J. S. J. (1999). Bayesian methods: An analysis for statisticians and interdisciplinary 

researchers. New York, NY: Cambridge University Press. 

Leonard, T., & Novick, M. R. (1985). Bayesian inference and diagnostics for the three parameter logistic model 

(ONR Technical Report No. 85-5). Iowa City, IA: The University of Iowa, Cada Research Group. (ERIC 

Document Reproduction Service No. ED261068) 

Levy, R. (2009). The rise of Markov chain Monte Carlo estimation for psychometric modeling. Journal of 

Probability and Statistics, 2009, ID 537139. doi:10.155/2007/537139 

Levy, R., & Mislevy, R. J. (2016). Bayesian psychometric modeling. Boca Raton, FL: CRC Press. 

Linacre, J. M. (2003). WINSTEPS Rasch measurement computer program [Computer software]. Chicago, IL: 

Winsteps.com. 

Lindley, D. V. (1965). Introduction to probability and statistics from a Bayesian viewpoint: Part 2, Inference. 

London, Great Britain: Cambridge University Press. 

Lindley, D. V., & Smith, A. F. (1972). Bayesian estimates for the linear model. Journal of the Royal Statistical 

Society, Series B, 34, 1–41. 

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book: A practical 

introduction the Bayesian analysis. Boca Raton, FL: CRC Press. 

Luo, Y., & Jiao, H. (2017). Using the Stan program for Bayesian item response theory. Educational and 

Psychological Measurement, Advance Online Publication. https://doi.org/10.1177/0013164417693666 

Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models 

in R. Journal of Statistical Software, 20(9), 1–20. 

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum Associates. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state 

calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092. 

Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177–195. 

Molenaar, I. W. (1995). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: 

Foundations, recent developments, and applications (pp. 39–51). New York, NY: Springer-Verlag. 

Natesan, P., Nandakumar, R., Minka, T., & Rubright, J. D. (2016). Bayesian prior choice in IRT estimation using 

MCMC and variational Bayes. Frontiers in Psychology, 7:1422. doi:10.3389/fpsyg.2016.01422 

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31, 705–741. 

Novick, M. R., & Jackson, P. H. (1974). Statistical methods for educational and psychological research. New 

York, NY: McGraw-Hill. 

Novick, M. R., Lewis, C., & Jackson, P. H. (1973). The estimation of proportions in n groups. Psychometrika, 

38, 19–46. 

Öztürk, N., & Karabatsos, G. (2017). A Bayesian robust IRT outlier detecion model. Applied Psychological 

Measurement, 41, 195–208. 

Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item 

response models. Journal of Educational and Behavioral Statistics, 24, 146–178. 



Journal of Measurement and Evaluation in Education and Psychology 

___________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 272 

Rasch, G. (1980). Probabilistic model for some intelligence and attainment tests (With a foreword and afterword 

by B. D. Wright). Chicago, IL: The University of Chicago Press. 

Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analysis. 

Journal of Statistical Software, 17(5), 1–25. 

Sen, S., Cohen, A. S., & Kim, S. H. (2018). Model selection for multilevel mixture Rasch models. Applied 

Psychological Measurement, 1-18. doi: 10.1177/0146621618779990 

Sheng, Y. (2010). A sensitivity analysis of Gibbs sampling for 3PNO IRT models: Effects of prior specifications 

on parameter estimates. Behaviormetrika, 37, 87–110. 

Sheng, Y. (2017). Investigating a weakly informative prior for item scale hyperparameters in hierarchical 3PNO 

IRT models. Frontiers in Psychology, 8:123. doi:10.3389/fpsyg.2017.00123 

Spiegelhalter, D. J., Thomas, A., Best, N. G., & Gilks, W. R. (1997a). BUGS: Bayesian inference using Gibbs 

sampling (Version 0.6) [Computer software]. Cambridge, UK: University of Cambridge, Institute of 

Public Health, Medical Research Council Biostatistics Unit. 

Spiegelhalter, D. J., Thomas, A., Best, N. G., & Gilks, W. R. (1997b). BUGS 0.5 examples (Vol. 1, Version i). 

Cambridge, UK: University of Cambridge, Institute of Public Health, Medical Research Council 

Biostatistics Unit. 

Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2014). OpenBUGS user manual. Cambridge, UK: MRC 

Biostatistics Unit, Institute of Public Health. 

Stigler, S. M. (1980). Stigler’s law of eponymy. Transactions of the New York Academy of Sciences, Series 2, 

39, 147–157. 

Stone, C. A., & Zhu, X. (2015). Bayesian analysis of item response theory models using SAS. Cary, NC: SAS 

Institute. 

Swaminathan, H., & Gifford, J. A. (1982). Bayesian estimation in the Rasch model. Journal of Educational 

Statistics, 7, 175–191. 

Swaminathan, H., & Gifford, J. A. (1985). Bayesian estimation in the two-parameter logistic model. 

Psychometrika, 50, 349–364. 

Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. 

Psychometrika, 51, 589–601. 

Swaminathan, H., Hambleton, R. K., Sireci, S. G., Xing, D., & Rizavi, S. M. (2003). Small sample estimation in 

dichotomous item response models: Effect of priors based on judgmental information on the accuracy 

of item parameter estimates. Applied Psychological Measurement, 27, 27–51. 

The MathWorks. (1996). MATLAB (Version 5) [Computer program]. Natick, MA: Author. 

Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. 

Psychometrika, 47, 175–186. 

Trader, R. L. (1997). Bayes, Thomas. in N. L. Johnson & S. Kotz (Eds.), Leading personalities in statistical 

sciences: From the seventeenth century to the present (pp. 11–14). New York, NY: John Wiley & Sons. 

Tsutakawa, R. K., & Lin, H. Y. (1986). Bayesian estimation of item response curves. Psychometrika, 51, 251–

267. 

Venables, W. N., Smith, D. M., & The R Development Core Team. (2009). An introduction to R (2nd ed.). La 

Vergne, TN: Network Theory. 

von Davier, M. (2001). WINMIRA 2001 [Computer program]. St. Paul, MN: Assessment Systems Corporation. 

Wang, X., Bradlow, E. T., & Wainer, H. (2005). User’s guide for SCORIGHT (Version 3.0): A computer 

program for scoring tests built of testlets including a module for covariate analysis (ETS Research Rep. 

RR-04-49). Princeton, NJ: Educational Testing Service. 

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response models. Psychometrika, 54, 427–

450. 

Wollack, J. A., Bolt, D. M., Cohen, A. S., & Lee, Y.-S. (2002). Recovery of item parameters in the nominal 

response model: A comparison of marginal maximum likelihood estimation and Markov chain Monte 

Carlo estimation. Applied Psychological Measurement, 26, 339–352. 

Wright, B. D., & Linacre, J. M., & Schultz, M. (1989). A user’s guide to BIGSCALE: Rasch-model rating scale 

analysis computer program. Chicago, IL: MESA Press. 

Wright, B. D., & Mead, R. J. (1978). BICAL: Calibrating items and scales with the Rasch model (Research 

Memorandum No. 23A). Chicago, IL: University of Chicago, Department of Education, Statistical 

Laboratory. 

Wright, B. D., Mead, R. J., & Bell, S. R. (1980). BICAL: Calibrating items with the Rasch model (Research 

Memorandum No. 23C). Chicago, IL: University of Chicago, Department of Education, Statistical 

Laboratory. 

Wright, B. D., & Panchapakesan, N. (1969). A procedure for sample-free item analysis. Educational and 

Psychological Measurement, 29, 23–48. 



Şen, S., Karadavut, T., Eom, H.J., Cohen, A.S., & Kim, S.-H. / An Implementation of the Gibbs Sampling Method 

Under the Rasch Model 

___________________________________________________________________________________ 

 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 

273 

Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago, IL: MESA Press. 

 

Rasch Modelinde Gibbs Örnekleme Yönteminin Uygulanması 

Giriş 

Tek parametreli lojistik Rasch modelinde (Rasch, 1980), madde güçlüğü ve kişi yetenek parametre 

kestirimlerini elde etmek için birçok kestirim metodu kullanılabilir (Fischer ve Molenaar, 1995; 

Molenaar, 1995; Hoijtnik ve Boomsma, 1995). Madde güçlük ve kişi yetenek parametreleri, ortak 

olabilirlik fonksiyonunu maksimize ederek ortak olarak kestirilebilir (yani, JML; Wright ve Stone, 

1979). Koşullu maksimum olabilirlik (CML; Andersen, 1980), madde güçlük parametrelerinin tahmini 

için tek parametreli lojistik modelin altında standart kestirim metodu olarak görünmektedir (ör. 

Molenaar, 1995). Ayrıca, beklenti ve maksimizasyon algoritmasını kullanarak marjinal maksimum 

olabilirlik (MML) kestirimi, madde güçlük parametre kestirimlerini elde etmek için kullanılabilir (du 

Toit, 2003; Thissen, 1982). Ek olarak, tek parametreli lojistik model altında parametre kestirimlerini 

elde etmek için ortak Bayes kestirimi ve marjinal Bayes kestirimi kullanılabilir (ör. Birnbaum, 1969; 

Mislevy, 1986; Swaminathan & Gifford, 1982; ayrıca bkz. Tsutakawa, & Lin, 1986). 

Rasch modeli madde güçlük ve kişi yetenek parametrelerinin nokta tahminleri, bu olasılık 

fonksiyonlarını veya sonsal (posterior) dağılımın bazı formlarını maksimize ederek, maksimum 

olasılık kestirimi ve Bayes kestirimi yöntemlerinden elde edilir. Nokta tahminleri elde etmek yerine, 

Bayesci çerçevesindeki sonsal dağılımı tahmin etmeye yönelik prosedürler nispeten yakın zamanda 

önerilmiştir. Böyle bir yöntem olan Gibbs örneklemesi, marjinal dağılımdan ziyade ortak sonsal 

dağılımı kullanarak madde ve yetenek parametrelerini kestiren bir yaklaşımdır (ör. Albert, 1992; 

Johnson & Albert, 1999; Kim, 2001; Patz & Junker, 1999). Madde ve yetenek parametrelerini 

kestirmek için kullanılabilecek Gibbs örneklemesinin birkaç farklı versiyonu ve uygulamasının olduğu 

unutulmamalıdır. Yine de, tüm Bayesci kestirim metotları, özellikle karşılaştırılabilir önseller 

kullanıldığında veya yerel olarak tekdüze önseller kullanıldığında karşılaştırılabilir madde ve yetenek 

parametre kestirimleri vermelidir. Bu çalışma, tek parametreli lojistik Rasch modelini kullanarak bu 

sorunu araştırmak için tasarlanmıştır. Özellikle, reddetme örneklemesi (GS1) kullanılan bir Gibbs 

örnekleme yönteminin madde güçlük ve kişi yetenek parametre kestirimleri incelenmiş ve veri artırma 

(GS2) yönteminin yanı sıra CML, MML ve JML kullanılan başka bir Gibbs örnekleme yöntemi ile 

karşılaştırılmıştır. Bu çalışmada GS1 için yeni notasyonlar kullanmak yerine Swaminathan ve 

Gifford’un (1982) Rasch modelinde Bayes kestirimi ile ilgili önermiş olduğu notasyon takip edilmiştir. 

GS1'i mevcut çalışmada farklılaştıran temel konu ve Swaminathan ve Gifford (1982)'da kullanılan 

uygulama, sonsal maksimizasyon ve yakınsama kavramında yatmaktadır. Bayes kestiriminde ve Gibbs 

örnekleme yönteminde önsellerin belirlenmesinin önemine rağmen, literatürde önsel seçimi ve 

kullanımı konusunda fazla bir şeffaflık olmadığı gözlenmiştir. Bu çalışma aynı zamanda, Rasch 

modelinde Swaminathan ve Gifford'un (1982) hiyerarşik Bayes çerçevesi bağlamında önsel seçiminin 

rolünü de göstermektedir. 

 

Yöntem 

Bu çalışmada Rasch modeli altında hem madde güçlük hem de kişi yetenek parametrelerinin kestirimi 

için bir karşılaştırma yapılmıştır. GS1, GS2, CML, MML ve JML'yi karşılaştırmak için, (1) Hukuk 

Fakültesi Kabul Testi 6. Bölüm (LSAT6; Bock & Aitkin, 1981; Bock & Lieberman, 1970) ve (2) 

Hukuk Fakültesi Kabul Testi 7. Bölüm (LSAT7) verileri kullanılmıştır. LSAT6 (1000 kişi ve 5 madde) 

ve LSAT7 verileri yayınlanmış birçok makale ve kitapta daha önce analiz edilmiştir (ör., Andersen, 

1980; McDonald, 1999). Simülasyon verileri yerine bu verilerin kullanılması, farklı kestirim 

yöntemlerinin karşılaştırılmasını yapmak için okuyuculara bir temel sağlamaktadır. 

Bu çalışmada GS1 kestirimleri OpenBUGS programı kullanılarak elde edilmiştir. GS2 tahminleri, 

Johnson ve Albert (1999)'dan gelen kodu içeren MATLAB (MathWorks, 1996) kullanılarak elde 

edilmiştir. LSAT6 ve LSAT7 için önce madde güçlük parametre kestirimleri daha sonra da kişi 
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yetenek parametre tahminleri rapor edilmiştir. CML, MML ve JML sözdizimlerini göstermek gerekli 

değildir. Ayrıca GS2 için Johnson ve Albert (1999, s. 248)’de sunulan MATLAB fonksiyonu herhangi 

bir modifikasyon olmaksızın kullanılmıştır. Bununla birlikte, OpenBUGS sözdizimini sunmak gerekli 

görülmüştür. Sözdiziminin gerekli bölümleri Ekte yer almaktadır. Ekte, hiperparametre varyansının 

tersi hem yetenek hem de madde güçlük parametreleri için dgamma (a = 2.5, b = 5) ile belirtilmiştir. 

Bu önsel belirleme Swaminathan ve Gifford’un (1982)  = 5 ve  = 10 değerlerine eşdeğerdir. Ayrıca, 

güçlük parametrelerinin başlangıç değerleri için, pj olarak gösterilen klasik madde güçlüğünün log 

oranlarının ortalanmış değerinin (yani, 0'da ortalanmış olan log [(1-pj) / pj] değerleri) kullanıldığı 

dikkate alınmalıdır. Yetenek parametreleri için benzer başlangıç değerleri belirtilmiştir. 

Kim ve Bolt (2007) ve Kim (2001)'in önerilerine dayanarak burn-in kısmındaki tekrar sayısı 1000'e 

ayarlanmış ve sonraki 10,000 tekrarı simüle edilmiş çekilişlerin yakınlaşmasını gösteren sonsal 

dağılımları oluşturmak için GS1 ve GS2’de kullanılmıştır (bkz. Gilks, Richardson & Spiegelhalter, 

1996). Zincirlerin yakınsaklığı, geçmiş ve otokorelasyon çizimleri kontrol edilerek görsel olarak 

izlenmiştir. GS1 veya GS2'deki örneklenmiş değerleri özetlemenin birçok farklı yolu olduğuna dikkat 

edilmelidir. Gerçek sonsal güvenilirlik aralığını kullanmak yerine, bu çalışmada sonsal ortalamalar ve 

sonsal standart sapmalar kullanılmıştır. İlgili parametreler için örneklerin marjinal sonsal 

yoğunlukları, GS1’de tek modlu ve normal dağılım göstermiştir. GS2’de örneklenen değerler de 

benzer sonuçlar vermiştir. 

 

Sonuç ve Tartışma 

Bu çalışmada farklı kestirim metotları ve farklı önsel dağılımlar aynı veriler üzerinden 

karşılaştırılmıştır. LSAT6 verisi ile elde edilen madde güçlük parametresi tahminleri ve eşlik eden 

standart hatalar veya sonsal standart sapmalar arasında bazı farklılıklar gözlenmiştir. Bu bulgular 

arasında en belirgin olanı GS1 ve MML/EAP kestirimlerinin çok benzer çıkmasıdır. Diğer kestirim 

yöntemleri küçük test büyüklüğü nedeniyle biraz farklılık göstermiştir. LSAT7 verileri için, tüm 

metotlar, LSAT6 verileri için olduğu gibi, madde güçlük kestirimleri için pratik olarak aynı sonuçları 

vermiştir. Önsel belirlemelerin (prior specifications) madde güçlük ve yetenek parametre kestirimleri 

üzerindeki etkilerini değerlendirmek için, aynı LSAT6 ve LSAT7 verileri OpenBUGS ile analiz 

edilmiştir. LSAT6 ve LSAT7 verileri için, önsel belirlemelerin hepsi, madde güçlük tahminleri için 

pratik olarak aynı sonuçları vermiştir, fakat yetenek tahminleri için biraz farklı sonuçlar elde edilmiştir. 

İki Gibbs örnekleme yöntemi, GS1 ve GS2, arasındaki ana fark, hem önsel dağılımların özelliklerinde 

hem de temel örnekleme prosedürlerinde yatmaktadır. GS1'de kullanılan önsel dağılımlar, 

Swaminathan ve Gifford (1982)’un önerisini takip eden hiyerarşik forma sahiptir. Örneğin, yetenek 

parametresinin normal olan önsel dağılımına ait hiperparametrenin ortalaması, bilgi-verici olmayan 

(non-informative) bir tekdüze dağılıma sahip iken önsel normal olanın hiperparametre varyansının 

tersi, bir gama dağılımına sahiptir. Gama (a = 2.5, b = 5) dağılımlı GS1'de, gama dağılımının önsel 

örneklem büyüklüğü 2*(2.5) = 5 olarak belirlendi ve önsel beklenen değer 2.5 / 5 = 0.5 idi (yani, 

hipermetre varyansının beklenen değeri 5 / 1.5 = 3.33). Bu önsel belirlemenin, Swaminathan ve 

Gifford’un (1982)  = 5 ve  = 10 değerlerine eşdeğer olduğunu unutmayın. Swaminathan ve Gifford 

ikinci bir çalışmada, eşdeğer belirlemelere dönüştürülmüş olan başka üç özellik daha kullanmıştır. Bu 

çalışmada Gamma (2.5, 5) kullanımı makul bir seçenek olarak görünmektedir. Swaminathan ve 

Gifford (1982) da benzer sonuçları raporlamıştır. Hiyerarşik formda önselleri kullanmanın yanında 

Rasch modeli için önselleri belirlemenin başka yolları da vardır (bkz. Kim, 2001; Levy & Mislevy, 

2016; Spiegelhalter ve ark., 1996b; Stone & Zhu, 2015). Johnson ve Albert'ın (1999) item_r1 

fonksiyonunda GS2 için, önsel teta hiperparamatreleri standart bir normal dağılıma ayarlanmış, öte 

yandan standart sapma parametrelerinin birliği olarak ayarlanmıştır. GS2’ye ait ayrıntılı Gibbs 

örneklemesi için Johnson ve Albert (1999, s. 202–204)'e bakılabilir. Dolayısıyla GS1 ve GS2 sadece 

modelin matematiksel formlarında değil, aynı zamanda kullanılan önsellerde de farklılık 

göstermektedir. 
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Appendix: OpenBUGS Code 

 

model { 

# patterned data to individual responses 

  for (i in 1:cof[1]) { 

    for (j in 1:J) { x[i, j] <- pattern[1, j] } 

  } 

  for (g in 2:G) { 

    for (i in cof[g-1]+1:cof[g]) { 

      for (j in 1:J) { x[i, j] <- pattern[g, j] } 

    } 

  } 

# Rasch model 

  for (i in 1:I) { 

    for (j in 1:J) { 

      logit(p[i, j]) <- theta[i] - beta[j] 

      x[i, j] ~ dbern(p[i, j]) 

    } 

# ability prior 

    theta[i] ~ dnorm(mut, taut) 

    t[i] <- theta[i] - mean(beta[]) 

  } 

# item prior 

  for (j in 1:J) { 

    beta[j] ~ dnorm(mub, taub) 

    b[j] <- beta[j] - mean(beta[]) 

  } 

# hyperpriors 

  mut ~ dunif(-5, 5) 

  taut ~ dgamma(2.5, 5) 

  phit <- 1 / sqrt(taut) 

  mub ~ dunif(-5, 5) 

  taub ~ dgamma(2.5, 5) 

} 

  

# lsat6 patterned data with cumulative observed frequencies 

list(I = 1000, G = 32, J = 5, 

  cof = c(3, 9, 11, 22, 23, 24, 27, 31, 32, 40, 

    40, 56, 56, 59, 61, 76, 86, 115, 129, 210, 

    213, 241, 256, 336, 352, 408, 429, 602, 613, 674, 

    702, 1000), 

  pattern = structure(.Data = c(   

    0, 0, 0, 0, 0, 

    0, 0, 0, 0, 1, 

    0, 0, 0, 1, 0, 

    0, 0, 0, 1, 1, 

    0, 0, 1, 0, 0, 

    0, 0, 1, 0, 1, 

    0, 0, 1, 1, 0, 

    0, 0, 1, 1, 1, 

    0, 1, 0, 0, 0, 

    0, 1, 0, 0, 1, 

    0, 1, 0, 1, 0, 

    0, 1, 0, 1, 1, 

    0, 1, 1, 0, 0, 

    0, 1, 1, 0, 1, 

    0, 1, 1, 1, 0, 

    0, 1, 1, 1, 1, 

    1, 0, 0, 0, 0, 

    1, 0, 0, 0, 1, 

    1, 0, 0, 1, 0, 



Journal of Measurement and Evaluation in Education and Psychology 

___________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575   Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 
Journal of Measurement and Evaluation in Education and Psychology 276 

    1, 0, 0, 1, 1, 

    1, 0, 1, 0, 0, 

    1, 0, 1, 0, 1, 

    1, 0, 1, 1, 0, 

    1, 0, 1, 1, 1, 

    1, 1, 0, 0, 0, 

    1, 1, 0, 0, 1, 

    1, 1, 0, 1, 0, 

    1, 1, 0, 1, 1, 

    1, 1, 1, 0, 0, 

    1, 1, 1, 0, 1, 

    1, 1, 1, 1, 0, 

    1, 1, 1, 1, 1), .Dim = c(32, 5)) 

) 

 

# initial values 

list( 

  beta = c(-1.163685322, 0.44376115, 1.121494003, 0.165095519, -0.566665352), 

  mut = 0, taut = 1, 

  mub = 0, taub = 1, 

  theta = c(-2.1972246, -2.1972246, -2.1972246, -1.3862944, -1.3862944, 

  . 

  . 

  . 

  2.1972246) # 1000 initial theta values 

) 

 


