

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

297

Software Fault Prediction in Object Oriented Software Systems

Using Ensemble Classifiers

Emin Borandağ*, Fatih Yücalar, Kamil Akarsu

Department of Software Engineering, Faculty of Technology, Manisa Celal Bayar University, Manisa, Turkey

*emin.borandag@cbu.edu.tr

Received: 17 May 2018

Accepted: 21 September 2018

DOI: 10.18466/cbayarfbe.424521

Abstract

The main aim of software projects is developing software programs to meet functional and non-functional

requirements within the project budget and at a particular time. The greatest challenge in reaching this goal

is the software errors that were found in the software projects. The most basic technique that is used to solve

software errors is testing the software programs according to the methods in the literature. These methods are

the software tests that are basically conducted by software developers, although they have different methods

of verification and validation according to their size, experience, techniques or tools they use. When software

is tested, it is very significant that software errors are found in the early phases. Software error estimation is

a proven method of effectiveness and validity that increases the quality of software and reduces the cost of

software development. In this study, by using machine learning algorithms and software metrics; software

error estimation has been carried out with a developed software.

Keywords: Data mining, software fault prediction, rotation forest algorithm, ensemble learning.

1. Introduction

To obtain successful results, software projects should be

completed at the planned time and within the limits of

project budget, and satisfy customers' functional and

non-functional requirements. However, the biggest

challenge faced in achieving this aim is software faults

detected during the development of software projects.

The most basic technique used to correct software faults

is testing the software according to the methods in

literature. While these are diverse confirmation and

validation methods varying based on the size, experience,

techniques or tools of the software development firms,

what is done basically is software testing. It is highly

important that software faults are detected at earlier

stages. There are huge differences between the cost of

correcting a fault detected in needs analysis and a fault

found at later stages. By keeping an account of the faults

encountered in the software, estimations are made as to

whether there is any fault in the next module in an attempt

to reduce fault correction costs. Software fault

predication can be made using software metrics [1]. In

addition, the use of software metrics makes it easier to

carry out software maintenance and allows adding new

properties to the software in a shorter time [1]. Besides,

the use of software metrics makes the software more

reliable, robust, high performing and more easily testable

[2]. In this context, software fault prediction can be

defined as estimating where defects can be in newly

developed modules or current modules by keeping an

account of the defects in the previous software and using

software metrics [3].

Software fault prediction is a method with proven

efficiency and validity that enhances software quality

while reducing software development cost [4]. This

method is used to determine the relationships between

software metrics and faults. Many researchers have

attempted to develop various prediction methods to

reveal the relationship between software metrics and

software faults [5].

Part 2 in the study provides basic information about

software metrics and explains the importance of software

testing. Part 3 provides an insight into similar studies in

literature while Part 4 clarifies evaluation criteria used for

the accuracy of classification. The data set used in the

study, the software and test results are explained in Part

5 and Part 6. The final part of the study presents results

and future work.

2. Background

2.1 Software Metrics

Software faults affect software quality negatively.

Although it is difficult to say anything directly about the

quality of software projects, it is possible to have

information about the quality of the source codes of the

projects through assessments on the source codes based

on the metrics [6].

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

298

Software metrics help us to understand technical

processes used in the development of a software product.

Software assessment is a necessary process for

understanding, controlling and managing software

processes. It helps to analyze software faults, decrease

software complexity, and monitor and evaluate

processes. Metrics are standards that define measurable

attributes of objects. Software metrics are values that can

be assessed or calculated based on assessments. There are

also definitions for different metrics such as the number

of faults detected during the development of software or

the number of faults detected in the code review. The

metrics recorded during software development process

help to monitor the progress of the software and increase

its quality. The use of these metrics also helps to see

whether testing process is going as planned. Here, the

most fundamental metric is the number of running and

failed test cases. While looking at the number of faults,

significance level of faults is also taken into account.

Even if there is no problem with software metrics being

calculated, more software faults can always be found

since not all circumstances and situations are tested in the

software. However, software tests or metrics do not

indicate that there is no fault in the software.

2.2 Software Testing

There are two types of software testing: white-box testing

and black-box testing. White-box and black-box tests are

performed together to reduce software faults by

validating software interface and verifying internal

functioning of the software. Software can be tested using

automatic code review tools; however, diverse methods

need to be applied to detect the location of software faults

with greater possibility. For this purpose, machine

learning classification algorithms are used. Classification

is determining in which class the new data belongs when

the class of the data collected in the past is already known

[7]. Thus, the objects whose class is known (learning data

set) are used to establish a model. This model is tested

with the objects that are not part of the learning set

(testing data set) to measure its performance.

There are various types of classification algorithms in

literature such as decision trees, bayes classifiers, rule-

based classifiers, artificial neural networks, nearest

neighbors’ classifiers (KNN), support vector machine

and community learning methods.

3. Related Work

In the past 15 years, people from diverse areas like

software developers, software engineers and researchers

in the sector have been conducting studies on software

fault prediction approaches [1, 3, 4 and 7].

In his study in 1999, Kaszycki used process metrics and

product metrics in software fault prediction. He used 4

product metrics obtained from the source code in the

study. As evaluation metric, true negative and true

positive rates were used. Thanks to this study, a risk

assessment tool was developed [8].

In another study conducted by Xu, Khoshgoftaar and

Allen (2000), feature selection and fuzzy nonlinear

regression (FNR) methods were applied for the first time

in software fault prediction. They used the data from 24

method-level metrics obtained from the software of a

very large legacy telecommunications system written in

Protel (a high-level language) in order to estimate faulty

modules in the software [9].

Reformat conducted a study in 2003 using fuzzy rule-

based models in fault prediction. He used 11 method-

level metrics obtained through commercial medical

imaging software for defect prediction [10].

Menzies and Di Stefano (2004) conducted a study using

the data set created by NASA for software fault

prediction. They used Linear Standard Regression (LSR)

method in the study. The study indicated that Cyclomatic

complexity was directly related to software faults. They

detected software faults when Cyclomatic complexity

value was 10 or above [11].

In 2007, Cagatay Catal and Banu Diri developed a model

based on class level metrics. They used Artificial Based

Immune Recognition (AIRS) algorithm for fault

prediction in the system they developed [12].

In their study in 2010, Marco D'Ambros, Michele Lanza

and Ramain Robbes created a data set consisting of the

defects in Eclipse JDT Core, Eclipse PDE UI, Equinox

framework, Mylyn and Apache Lucene software

systems. In the study, they predicted software faults using

this data set and software metrics (CK and OO metrics)

[13].

In another study conducted by Ayse Tosun Mısırlı, Ayşe

Başar Bener and Burak Turhan (2011), classifier

ensembles were used for fault prediction in embedded

software systems. In the study conducted through

ensemble classifiers, the researchers observed a 15% FP

fall rate [14].

In their study in 2012, Supreet Kaur, and Dinesh Kumar

applied Density Based Clustering approach in object-

oriented software systems. In the study conducted

through Density Based Spatial Clustering Applications

with Noise (DBSCAN) algorithm, 8 different attributes

and NASA's Metrics Data Program (MDP) data

repository were used as data set [15].

4. Assessment Criteria

In this study, Confusion Matrix is used for the accuracy

of the classification model. In Confusion Matrix, rows

display class label while columns show prediction

results. A confusion matrix example is given in Table 1.

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

299

Table 1. Confusion Matrix.

Estimated Class

 Prediction No (-) Prediction Yes (+)

No (Actual) Tn Fp

Yes (Actual) Fn Tp

Accuracy rate (ACC) is a widely used measure to identify

distinction capacity of the classifier. It is defined as the

percentage of test samples that are correctly classified by

the algorithm. ACC is one of the primary metrics used in

the assessment of classifier performances [16]. ACC rate

is calculated using the formula given in Equation 4.1.

ACC =
(TP + TN)

Positive + Negative
 (4.1)

Another widely used metric is the area under ROC curve

(Area Under Curve - AUC). The higher the AUC rate, the

better is the accuracy rate of the classifier. AUC values

vary between 0.5 - 1.0. It is calculated using the formula

in Equation 4.2 [16].

AUC =
1

2
(

(TP)

TP + FN
+

(TN)

TN + FP
) (4.2)

In machine learning algorithms and particularly in the

studies on fault prediction, there are other indicators as

well such as KE, Probability of Detection, True Negative

Rate, G_mean_1 and F-measure [16].

5. Experimental Study

5.1 Metrics Used in the Study

The study uses the metrics obtained from a software

project. The metrics are as follows: Lines, Statements,

Comment Rate, Docs Rate, Classes Number,

Methods/Class, Class/Method, Maximum Complexity,

Statements/Method Maximum Depth, Average Depth,

Average Complexity and Fault rates. To calculate

Cyclomatic Complexity (CC) metric, the following

formula was used [17, 18].

CC = E - N + 2P (5.1)

E is the number of edges of the graph, N is the number of

nodes of the graph and P is the number of connected

components [18]. Comment value was determined in

percentage. A percentage value was taken in the

statement.

𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 =
𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
 (5.2)

For calculating average depth, the block depths of each

line in the code were added, and the result was divided

by total statement value [19].

Avg Depth = ∑
(BlockDepth(i) ∗ Statements(i))

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑛

𝑖=0
 (5.3)

5.2 Data Set

The data set obtained from the software consists of

472.443 lines and 241.377 statements in total. There are

1893 classes in the software. Other metrics in the

software are as follows: 2.8% Comment rate, 9.1% Doc

rate, 14.2 Methods/Class ratio, 5 Calls/Method ratio, 8.82

Stmts/Method ratio, 6.76 Max complexity ratio, 3.94

Max Depth ratio, 1.91 Avg Depth ratio, and 2.75 Avg

Complexity ratio, on average. The parameter value of the

statement with the highest block depth was taken as Max

Depth value in the data set. The highest subroutine value

in the code was taken as the Biggest Subroutine value.

Table 2. The description of datasets

C.: Complexity; Avg.: Average; Stmts: Statements

Table 2 presents the examples taken from the data set.

The USP-1299 dataset has been made publicly available

for researchers to conduct their own studies [20].

5.3 Evaluation Criteria

Using Weka data mining software, 10 base classification

algorithms and 10 ensemble classifiers algorithms that

are used for software fault prediction in literature were

tested through leave-one-out method. These algorithms

can be seen in Table 3 and Table 4.

File

Name
Lines Stmts

Comments

(%)

Docs

(%)

Methods/

Class

Calls/

Method

Stmts/

Method

Max

C.

Max

Depth

Avg.

Depth

Avg.

C.
Error

Sample1 304 119 3 17.8 10 2 10 3 3 2.18 3 No

Sample2 155 64 0 26.5 5 2 10 3 3 2.03 3 No

Sample3 630 240 1.3 24.1 21 2 10 3 3 2.27 3 No

Sample4 397 152 3.3 17.9 13 2 10 3 3 2.22 3 No

Sample5 393 152 3.3 17.3 13 2 10 3 3 2.22 3 No

Sample6 186 75 3.2 15.6 6 2 10 3 3 2.08 3 No

Sample7 719 368 5 8.1 11 20.55 31.36 6 5 2.94 4.09 Yes

Sample8 243 148 2.1 16.9 5 17.4 26.2 4 5 2.33 3.2 No

Sample9 1284 705 3.3 12.1 22 19.68 30.5 6 5 2.78 3.86 No

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

300

In this method called as 10-fold cross validation,

classification accuracy is computed 10 times, each time

leaving out one of the subsamples from the computations

and using that subsample as a test sample for cross

validation. In this structure, each subsample is used 9

times in the learning sample and just once as the test

sample [16].

Table 3. Base Classifiers Algorithms

No Algorithm

1 Bayes Net

2 Naïve Bayes (NB)

3 Logistic Regression (LR)

4 RBF Network (RBF)

5 Sequential Minimal Optimization (SMO)

6 Pegasos (PG)

7 Voted Perceptron (VP)

8 Instance Based Learner (IB1)

9 KStar (KS)

10 Jrip (JR)

Table 4. Ensemble Classifiers Algorithms

No Algorithm

1 AdaboostM1 (AB)

2 Logic Boost (LB)

3 MultiBoost AB (MAB)

4 Bagging (BG)

5 Decorate

6 Dagging (DG)

7 Rotation Forest (ROF)

8 Stacking (ST)

9 Multi Class Classifier (MCC)

10 Voting (VT)

5.4 Developed Software

Thanks to the software developed using Weka library and

Java programming language, data with .csv and .arff

extensions can be selected. The selected data can be run

according to machine learning algorithm. In addition,

ACC and F-Measure values can be calculated. The screen

shot of the software is given in Figure 1. The developed

software has been made publicly available for

researchers to conduct their own studies [20].

Figure 1. Developed Software

6. Experimental Results

In the study, the data set including software faults and

created with the metrics obtained from the software being

developed was tested using 10 base classifier algorithms

and 10 ensemble classifiers algorithms. The test results

are given in Table 5 and Table 6.

Table 5. The Base Classifiers

No Class Algorithm ACC AUC

1 Bayes Bayes Net 86.61 89.2

2 Bayes Naive Bayes 92.07 87.9

3 Function Logistic Regression 93.37 87.4

4 Function RBF Network 92.80 85.2

5 Function SMO 91.91 95.8

6 Function Pegasos 91.68 95.6

7 Function Voted Perceptron 91.68 95.7

8 Lazy Instance Based Learner 90.68 95.0

9 Lazy KStar 91.14 95.2

10 Rules JRip 92.76 96.1

Average 91.47 92.31

Table 6. The Ensemble Classifiers

No Class Algorithm ACC AUC

1 Meta AdaboostM1 (AB) 93.61 96.5

2 Meta Logic Boost (LB) 93.22 96.4

3 Meta MultiBoost AB (MAB) 94.07 96.8

4 Meta Bagging (BG) 91.68 95.7

5 Meta Decorate 93.14 96.3

6 Meta Dagging (DG) 91.91 95.8

7 Meta Rotation Forest (ROF) 93.30 96.4

8 Meta Stacking (ST) 91.68 95.7

9 Meta Multi Class Classifier 93.37 96.5

10 Meta Vote 91.68 95.7

Average 92.77 96.18

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

301

6.1 Assessment

Evaluation of Table 5 and Table 6 together shows that

ensemble classifier algorithms increase ACC metric

value by 1.30% and AUC metric value by 3.87%

compared to the base classifiers algorithms. The highest

accuracy rate in ACC rate in the base classifiers is

obtained from Logistic Regression algorithm by 93.37%

while the highest accuracy rate in ACC rate in the

ensemble classifiers is obtained from MultiBoost AB

algorithm by 94.07%. The highest accuracy rate in ACU

rate in the base classifiers is obtained from JRip

algorithm by 96.1%, and the highest accuracy rate in

ACU rate in the ensemble classifiers is obtained from

MultiBoost AB algorithm again by 96.8%. The graphs

displaying the results of the study are given in Figure 2

and Figure 3. MultiBoost AB algorithm again by 96.8%.

The graphs displaying the results of the study are given

in Figure 2 and Figure 3.

 Figure 2. ACC Rates (Base Classifiers & Ensemble

Classifiers)

Figure 3. AUC Ratios (Base Classifiers & Ensemble

Classifiers)

7. Conclusion

This study created a data set consisting of about half a

million lines and 1893 classes to be used in software

defect prediction. The data set includes metrics such as

Cyclomatic Complexity, Comment Rate, Avg Depth,

Biggest Depth and Biggest Subroutine. On the data set,

10 base classifier algorithms and 10 ensemble classifier

algorithms were tested through leave-one-out method.

For testing, we used a software using Weka library and

developed in the Java programming language. The test

results show that ensemble classifier algorithms increase

ACC rate by 1.30% and AUC ratio by 3.87% compared

to the base classifier algorithms. To repeat the studies, the

data set is open to public access. Also, the newly

developed software is freely available for researchers.

 References

1. Song, O, Sheppard, M, Cartwright, M, Mair, C, Software Defect

Association Mining and Defect Correction Effort Prediction, IEEE

Transactions on Software Engineering, 2006, 32(2), 69-82.

2. McGregor, J, Sykes, D, A Practical Guide to Testing Object-

Oriented Software, Addison-Wesley Professional, 2001.

3. Catal, C, Sevim, U, Diri, B, Practical development of an Eclipse-

based software fault prediction tool using Naive Bayes algorithm,
Expert Systems with Application, 2011, 38(3), 2347-2353.

4. Catal, C, Sevim, U, Diri, B, Software Fault Prediction of Unlabeled

Program Modules, Proceedings of the World Congress on

Engineering, London, UK, 2009, vol.I.

5. Patton, R, Software Testing, 2nd edition, Sams Publishing, 2006.

6. Craig, R, D, Jaskiel, S, P, Systematic Software Testing, Artech

House, 2002.

7. Catal, C, Diri, B, Investigating the effect of dataset size, metrics

sets, and feature selection techniques on software fault prediction

problem, Information Sciences, Elsevier, 2009, 179(8), 1040–
1058.

8. Kaszycki, G, Using process metrics to enhance software fault
prediction models, In Proceedings of Tenth International

Symposium on Software Reliability Engineering, Boca Raton,

Florida, Academic Press, 1999.

9. Xu, Z, Khoshgoftaar, T, M, Allen, E, B, Prediction of software

faults using fuzzy nonlinear regression modeling, In Fifth IEEE
International Symposium on High Assurance Systems Engineering

(HASE 2000), Albuquerque, New Mexico, USA, 2000, 281-290.

10. Reformat, M, A fuzzy-based meta-model for reasoning about

number of software defects, International Fuzzy Systems

Association World Congress, IFSA 2003: Fuzzy Sets and Systems,
Istanbul, Turkey, 2003, pp 644-651.

11. Menzies T, Di Stefano, J, How good is your blind spot sampling
policy, Eighth IEEE International Symposium on High Assurance

Systems Engineering, Tampa, Florida, USA, 2004, pp 129-138.

12. Cagatay, C, Diri, B, Software Fault Prediction with Object-

Oriented Metrics Based Artificial Immune Recognition System,

International Conference on Product Focused Software Process
Improvement, Springer-Verlag, Berlin Heidelberg, 2007, pp 300–

314.

Celal Bayar University Journal of Science

Volume 14, Issue 3, 2018, p 297-302 F. Yücalar

302

13. D'Ambros, M, Lanza, M, and Robbes, R, An Extensive
Comparison of Bug Prediction Approaches, 7th IEEE Working

Conference on Mining Software Repositories (MSR 2010), Cape

Town, South Africa, 2010.

14. Mısırlı, A, T, Bener, A, B, Turhan, B, An industrial case study of

classifier ensembles for locating software defects, Software Quality
Journal, Springer Science, 2011, 19(3), 515-536.

15. Kaur, S, Kumar, D, Software Fault Prediction in Object Oriented

Software Systems Using Density Based Clustering Approach,

International Journal of Research in Engineering and Technology
(IJRET), 2012, 1(2).

16. Ozcift, A, Gulten, A, Classifier Ensemble Construction with
Rotation Forest to Improve Medical Diagnosis Performance of

Machine Learning Algorithms, Computer Methods and Programs

in Biomedicine, 2011, 104(3), 443-451.

17. McCabe, T, J, A Complexity Measure, IEEE Transactions on

Software Engineering, 1976, 2(4), 308-320.

18. Shepperd, M, A Critique of Cyclomatic Complexity as a Software

Metric, Software Engineering Journal, 1988, 3(2), 30-36.

19. Sharma, R, Singh, P, Sharma, S, Deviation Causing Factors in a

Code based on Environment of Analysis, International Journal of
Applied Information Systems (IJAIS), 2012, 12(9), 23-30.

20. Online: Dataset USP-1299 and Developed Software,
https://github.com/KamilAkarsu/Voting, (accessed date

24.09.2018).

