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Abstract 

The main aim of software projects is developing software programs to meet functional and non-functional 

requirements within the project budget and at a particular time. The greatest challenge in reaching this goal 

is the software errors that were found in the software projects. The most basic technique that is used to solve 

software errors is testing the software programs according to the methods in the literature. These methods are 

the software tests that are basically conducted by software developers, although they have different methods 

of verification and validation according to their size, experience, techniques or tools they use. When software 

is tested, it is very significant that software errors are found in the early phases. Software error estimation is 

a proven method of effectiveness and validity that increases the quality of software and reduces the cost of 

software development. In this study, by using machine learning algorithms and software metrics; software 

error estimation has been carried out with a developed software. 
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1. Introduction 

To obtain successful results, software projects should be 

completed at the planned time and within the limits of 

project budget, and satisfy customers' functional and 

non-functional requirements. However, the biggest 

challenge faced in achieving this aim is software faults 

detected during the development of software projects. 

The most basic technique used to correct software faults 

is testing the software according to the methods in 

literature. While these are diverse confirmation and 

validation methods varying based on the size, experience, 

techniques or tools of the software development firms, 

what is done basically is software testing. It is highly 

important that software faults are detected at earlier 

stages. There are huge differences between the cost of 

correcting a fault detected in needs analysis and a fault 

found at later stages. By keeping an account of the faults 

encountered in the software, estimations are made as to 

whether there is any fault in the next module in an attempt 

to reduce fault correction costs. Software fault 

predication can be made using software metrics [1]. In 

addition, the use of software metrics makes it easier to 

carry out software maintenance and allows adding new 

properties to the software in a shorter time [1]. Besides, 

the use of software metrics makes the software more 

reliable, robust, high performing and more easily testable 

[2]. In this context, software fault prediction can be 

defined as estimating where defects can be in newly 

developed modules or current modules by keeping an 

account of the defects in the previous software and using 

software metrics [3].  

Software fault prediction is a method with proven 

efficiency and validity that enhances software quality 

while reducing software development cost [4]. This 

method is used to determine the relationships between 

software metrics and faults. Many researchers have 

attempted to develop various prediction methods to 

reveal the relationship between software metrics and 

software faults [5].  

Part 2 in the study provides basic information about 

software metrics and explains the importance of software 

testing. Part 3 provides an insight into similar studies in 

literature while Part 4 clarifies evaluation criteria used for 

the accuracy of classification. The data set used in the 

study, the software and test results are explained in Part 

5 and Part 6. The final part of the study presents results 

and future work. 

2. Background 

2.1 Software Metrics 

Software faults affect software quality negatively. 

Although it is difficult to say anything directly about the 

quality of software projects, it is possible to have 

information about the quality of the source codes of the 

projects through assessments on the source codes based 

on the metrics [6].  
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Software metrics help us to understand technical 

processes used in the development of a software product. 

Software assessment is a necessary process for 

understanding, controlling and managing software 

processes. It helps to analyze software faults, decrease 

software complexity, and monitor and evaluate 

processes. Metrics are standards that define measurable 

attributes of objects. Software metrics are values that can 

be assessed or calculated based on assessments. There are 

also definitions for different metrics such as the number 

of faults detected during the development of software or 

the number of faults detected in the code review. The 

metrics recorded during software development process 

help to monitor the progress of the software and increase 

its quality. The use of these metrics also helps to see 

whether testing process is going as planned. Here, the 

most fundamental metric is the number of running and 

failed test cases. While looking at the number of faults, 

significance level of faults is also taken into account. 

Even if there is no problem with software metrics being 

calculated, more software faults can always be found 

since not all circumstances and situations are tested in the 

software. However, software tests or metrics do not 

indicate that there is no fault in the software. 

2.2 Software Testing 

There are two types of software testing: white-box testing 

and black-box testing. White-box and black-box tests are 

performed together to reduce software faults by 

validating software interface and verifying internal 

functioning of the software. Software can be tested using 

automatic code review tools; however, diverse methods 

need to be applied to detect the location of software faults 

with greater possibility. For this purpose, machine 

learning classification algorithms are used. Classification 

is determining in which class the new data belongs when 

the class of the data collected in the past is already known 

[7]. Thus, the objects whose class is known (learning data 

set) are used to establish a model. This model is tested 

with the objects that are not part of the learning set 

(testing data set) to measure its performance.  

There are various types of classification algorithms in 

literature such as decision trees, bayes classifiers, rule-

based classifiers, artificial neural networks, nearest 

neighbors’ classifiers (KNN), support vector machine 

and community learning methods. 

3. Related Work 

In the past 15 years, people from diverse areas like 

software developers, software engineers and researchers 

in the sector have been conducting studies on software 

fault prediction approaches [1, 3, 4 and 7].  

In his study in 1999, Kaszycki used process metrics and 

product metrics in software fault prediction. He used 4 

product metrics obtained from the source code in the 

study. As evaluation metric, true negative and true 

positive rates were used. Thanks to this study, a risk 

assessment tool was developed [8].  

In another study conducted by Xu, Khoshgoftaar and 

Allen (2000), feature selection and fuzzy nonlinear 

regression (FNR) methods were applied for the first time 

in software fault prediction. They used the data from 24 

method-level metrics obtained from the software of a 

very large legacy telecommunications system written in 

Protel (a high-level language) in order to estimate faulty 

modules in the software [9].  

Reformat conducted a study in 2003 using fuzzy rule-

based models in fault prediction. He used 11 method-

level metrics obtained through commercial medical 

imaging software for defect prediction [10].  

Menzies and Di Stefano (2004) conducted a study using 

the data set created by NASA for software fault 

prediction. They used Linear Standard Regression (LSR) 

method in the study. The study indicated that Cyclomatic 

complexity was directly related to software faults. They 

detected software faults when Cyclomatic complexity 

value was 10 or above [11].  

In 2007, Cagatay Catal and Banu Diri developed a model 

based on class level metrics. They used Artificial Based 

Immune Recognition (AIRS) algorithm for fault 

prediction in the system they developed [12].  

In their study in 2010, Marco D'Ambros, Michele Lanza 

and Ramain Robbes created a data set consisting of the 

defects in Eclipse JDT Core, Eclipse PDE UI, Equinox 

framework, Mylyn and Apache Lucene software 

systems. In the study, they predicted software faults using 

this data set and software metrics (CK and OO metrics) 

[13].  

In another study conducted by Ayse Tosun Mısırlı, Ayşe 

Başar Bener and Burak Turhan (2011), classifier 

ensembles were used for fault prediction in embedded 

software systems. In the study conducted through 

ensemble classifiers, the researchers observed a 15% FP 

fall rate [14].  

In their study in 2012, Supreet Kaur, and Dinesh Kumar 

applied Density Based Clustering approach in object-

oriented software systems. In the study conducted 

through Density Based Spatial Clustering Applications 

with Noise (DBSCAN) algorithm, 8 different attributes 

and NASA's Metrics Data Program (MDP) data 

repository were used as data set [15]. 

4. Assessment Criteria 

In this study, Confusion Matrix is used for the accuracy 

of the classification model. In Confusion Matrix, rows 

display class label while columns show prediction 

results. A confusion matrix example is given in Table 1. 
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Table 1. Confusion Matrix. 

Estimated Class 

 Prediction No (-) Prediction Yes (+) 

No (Actual) Tn Fp 

Yes (Actual) Fn Tp 

 

Accuracy rate (ACC) is a widely used measure to identify 

distinction capacity of the classifier. It is defined as the 

percentage of test samples that are correctly classified by 

the algorithm. ACC is one of the primary metrics used in 

the assessment of classifier performances [16]. ACC rate 

is calculated using the formula given in Equation 4.1. 

 

ACC =
(TP + TN)

Positive +  Negative
 (4.1) 

  

Another widely used metric is the area under ROC curve 

(Area Under Curve - AUC). The higher the AUC rate, the 

better is the accuracy rate of the classifier. AUC values 

vary between 0.5 - 1.0. It is calculated using the formula 

in Equation 4.2 [16]. 

 

AUC =
1

2
(

(TP)

TP + FN
+

(TN)

TN + FP
) (4.2) 

 

In machine learning algorithms and particularly in the 

studies on fault prediction, there are other indicators as 

well such as KE, Probability of Detection, True Negative 

Rate, G_mean_1 and F-measure [16]. 

 

5. Experimental Study 

5.1 Metrics Used in the Study 

The study uses the metrics obtained from a software 

project. The metrics are as follows: Lines, Statements, 

Comment Rate, Docs Rate, Classes Number, 

Methods/Class, Class/Method, Maximum Complexity, 

Statements/Method Maximum Depth, Average Depth, 

Average Complexity and Fault rates. To calculate 

Cyclomatic Complexity (CC) metric, the following 

formula was used [17, 18]. 

 

CC = E - N + 2P (5.1) 

 

E is the number of edges of the graph, N is the number of 

nodes of the graph and P is the number of connected 

components [18]. Comment value was determined in 

percentage. A percentage value was taken in the 

statement. 

 

𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 =
𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
 (5.2) 

 

For calculating average depth, the block depths of each 

line in the code were added, and the result was divided 

by total statement value [19]. 

 

Avg Depth = ∑
(BlockDepth(i) ∗ Statements(i))

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑛

𝑖=0
 (5.3) 

 

5.2 Data Set 

The data set obtained from the software consists of 

472.443 lines and 241.377 statements in total. There are 

1893 classes in the software. Other metrics in the 

software are as follows: 2.8% Comment rate, 9.1% Doc 

rate, 14.2 Methods/Class ratio, 5 Calls/Method ratio, 8.82 

Stmts/Method ratio, 6.76 Max complexity ratio, 3.94 

Max Depth ratio, 1.91 Avg Depth ratio, and 2.75 Avg 

Complexity ratio, on average. The parameter value of the 

statement with the highest block depth was taken as Max 

Depth value in the data set. The highest subroutine value 

in the code was taken as the Biggest Subroutine value.  

Table 2. The description of datasets 

 

C.: Complexity; Avg.: Average; Stmts: Statements 

 

Table 2 presents the examples taken from the data set. 

The USP-1299 dataset has been made publicly available 

for researchers to conduct their own studies [20]. 

 

5.3 Evaluation Criteria 

Using Weka data mining software, 10 base classification 

algorithms and 10 ensemble classifiers algorithms that 

are used for software fault prediction in literature were 

tested through leave-one-out method. These algorithms 

can be seen in Table 3 and Table 4.  

 

File 

Name 
Lines Stmts 

Comments 

(%) 

Docs 

(%) 

Methods/ 

Class 

Calls/ 

Method 

Stmts/ 

Method 

Max 

C. 

Max 

Depth 

Avg. 

Depth 

Avg. 

C. 
Error 

Sample1 304 119 3 17.8 10 2 10 3 3 2.18 3 No 

Sample2 155 64 0 26.5 5 2 10 3 3 2.03 3 No 

Sample3 630 240 1.3 24.1 21 2 10 3 3 2.27 3 No 

Sample4 397 152 3.3 17.9 13 2 10 3 3 2.22 3 No 

Sample5 393 152 3.3 17.3 13 2 10 3 3 2.22 3 No 

Sample6 186 75 3.2 15.6 6 2 10 3 3 2.08 3 No 

Sample7 719 368 5 8.1 11 20.55 31.36 6 5 2.94 4.09 Yes 

Sample8 243 148 2.1 16.9 5 17.4 26.2 4 5 2.33 3.2 No 

Sample9 1284 705 3.3 12.1 22 19.68 30.5 6 5 2.78 3.86 No 
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In this method called as 10-fold cross validation, 

classification accuracy is computed 10 times, each time 

leaving out one of the subsamples from the computations 

and using that subsample as a test sample for cross 

validation. In this structure, each subsample is used 9 

times in the learning sample and just once as the test 

sample [16]. 

Table 3. Base Classifiers Algorithms 

No Algorithm 

1 Bayes Net 

2 Naïve Bayes (NB) 

3 Logistic Regression (LR) 

4 RBF Network (RBF) 

5 Sequential Minimal Optimization (SMO) 

6 Pegasos (PG) 

7 Voted Perceptron (VP) 

8 Instance Based Learner (IB1) 

9 KStar (KS) 

10 Jrip (JR) 

Table 4. Ensemble Classifiers Algorithms 

No Algorithm 

1 AdaboostM1 (AB) 

2 Logic Boost (LB) 

3 MultiBoost AB (MAB) 

4 Bagging (BG) 

5 Decorate 

6 Dagging (DG) 

7 Rotation Forest (ROF) 

8 Stacking (ST) 

9 Multi Class Classifier (MCC) 

10 Voting (VT) 

 

5.4  Developed Software 

Thanks to the software developed using Weka library and 

Java programming language, data with .csv and .arff 

extensions can be selected. The selected data can be run 

according to machine learning algorithm. In addition, 

ACC and F-Measure values can be calculated. The screen 

shot of the software is given in Figure 1. The developed 

software has been made publicly available for 

researchers to conduct their own studies [20]. 

 

 

Figure 1. Developed Software 
 

6. Experimental Results 

In the study, the data set including software faults and 

created with the metrics obtained from the software being 

developed was tested using 10 base classifier algorithms 

and 10 ensemble classifiers algorithms. The test results 

are given in Table 5 and Table 6. 

Table 5. The Base Classifiers 

No Class Algorithm ACC AUC 

1 Bayes Bayes Net 86.61 89.2 

2 Bayes Naive Bayes 92.07 87.9 

3 Function Logistic Regression 93.37 87.4 

4 Function RBF Network  92.80 85.2 

5 Function SMO 91.91 95.8 

6 Function Pegasos  91.68 95.6 

7 Function Voted Perceptron  91.68 95.7 

8 Lazy Instance Based Learner  90.68 95.0 

9 Lazy KStar  91.14 95.2 

10 Rules JRip 92.76 96.1 

Average 91.47 92.31 

Table 6. The Ensemble Classifiers 

No Class Algorithm ACC AUC 

1 Meta AdaboostM1 (AB) 93.61 96.5 

2 Meta Logic Boost (LB) 93.22 96.4 

3 Meta MultiBoost AB (MAB) 94.07 96.8 

4 Meta Bagging (BG) 91.68 95.7 

5 Meta Decorate 93.14 96.3 

6 Meta Dagging (DG) 91.91 95.8 

7 Meta Rotation Forest (ROF) 93.30 96.4 

8 Meta Stacking (ST) 91.68 95.7 

9 Meta Multi Class Classifier 93.37 96.5 

10 Meta Vote 91.68 95.7 

Average 92.77 96.18 
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6.1 Assessment 

Evaluation of Table 5 and Table 6 together shows that 

ensemble classifier algorithms increase ACC metric 

value by 1.30% and AUC metric value by 3.87% 

compared to the base classifiers algorithms. The highest 

accuracy rate in ACC rate in the base classifiers is 

obtained from Logistic Regression algorithm by 93.37% 

while the highest accuracy rate in ACC rate in the 

ensemble classifiers is obtained from MultiBoost AB 

algorithm by 94.07%. The highest accuracy rate in ACU 

rate in the base classifiers is obtained from JRip 

algorithm by 96.1%, and the highest accuracy rate in 

ACU rate in the ensemble classifiers is obtained from 

MultiBoost AB algorithm again by 96.8%. The graphs 

displaying the results of the study are given in Figure 2 

and Figure 3. MultiBoost AB algorithm again by 96.8%. 

The graphs displaying the results of the study are given 

in Figure 2 and Figure 3. 

 

 Figure 2. ACC Rates (Base Classifiers & Ensemble 

Classifiers) 

 

Figure 3. AUC Ratios (Base Classifiers & Ensemble 

Classifiers) 

 

7. Conclusion 

This study created a data set consisting of about half a 

million lines and 1893 classes to be used in software 

defect prediction. The data set includes metrics such as 

Cyclomatic Complexity, Comment Rate, Avg Depth, 

Biggest Depth and Biggest Subroutine. On the data set, 

10 base classifier algorithms and 10 ensemble classifier 

algorithms were tested through leave-one-out method. 

For testing, we used a software using Weka library and 

developed in the Java programming language. The test 

results show that ensemble classifier algorithms increase 

ACC rate by 1.30% and AUC ratio by 3.87% compared 

to the base classifier algorithms. To repeat the studies, the 

data set is open to public access. Also, the newly 

developed software is freely available for researchers. 
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