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Abstract

This article introduces proximal planar vortex 1-cycles, resembling the structure of vortex
atoms introduced by William Thomson (Lord Kelvin) in 1867 and recent work on the
proximity of sets that overlap either spatially or descriptively. Vortex cycles resemble
Thomson’s model of a vortex atom, inspired by P.G. Tait’s smoke rings. A vortex cycle is a
collection of non-concentric, nesting 1-cycles with nonempty interiors (i.e., a collection of
1-cycles that share a nonempty set of interior points and which may or may not overlap).
Overlapping 1-cycles in a vortex yield an Edelsbrunner-Harer nerve within the vortex.
Overlapping vortex cycles constitute a vortex nerve complex. Several main results are
given in this paper, namely, a Whitehead CW topology and a Leader uniform topology are
outcomes of having a collection of vortex cycles (or nerves) equipped with a connectedness
proximity and the case where each cluster of closed, convex vortex cycles and the union of
the vortex cycles in the cluster have the same homotopy type.

1. Introduction

This paper introduces vortex cycles restricted to the Euclidean plane. Each vortex cycle A (denoted by vcycA) is a collection of non-
concentric, nesting 1-cycles with nonempty interiors. A 1-cycle is a finite, collection of vertices (0-cells) connected by oriented edges
(1-cells) that define a simple, closed path so that there is a path between any pair of vertices in each 1-cycle. A path is simple, provided it
has no self-intersections.

Let vcycA be a finite region of the Euclidean plane (denoted by R2). Also, let bdy(vcycA) be a set of boundary points of vcycA. Then,
for every vortex cycle, there is a collection of functions f : bdy(vcycA)−→ R2 such that each function maps a vcycA boundary point to an
interior fixed point shared by the 1-cycles in the vortex. The physical analogue of a vortex cycle is a collection of non-concentric, nesting
equipotential curves in an electric field [3, §5.1, pp. 96-97]. This view of vortex cycles befits a proximal physical geometry approach to the
study of vortices in the physical world [37].

Oriented 1-cycles by themselves in vortex cycles are closed braids [5] with nonempty interiors. The study of vortex cycles and their spatial
as well as descriptive proximities is important in isolating distinctive shape properties such as vertex area, cycle overlap count, hole count,
nerve count, perimeter, diameter over surface shape sub-regions. A finite, bounded planar shape A (denoted by shA) is a finite region of the
Euclidean plane bounded by a simple closed curve and with a nonempty interior [40]. In effect, a vortex cycle is a system of shapes within
a shape1

1Many thanks to M.Z. Ahmad for pointing this out.
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The geometry of vortex cycles is related to the study shape signatures [39], the study of Edelsbrunner-Harer nerves on tessellated, finite,
bounded planar regions [32] and the geometry of photon vortices by N.M. Litchinitser [26], overlapping vortices by E. Adelberger, G. Dvali
and A. Gruzinov [14], vortex properties of photons and electromagnetic vortices formed by photons by I.V. Dzedolik [13] and vortex atoms
introduced by Kelvin [24].
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Figure 1: Pair of Two Different Vortex Cycles

Overlapping 1-cycles in a vortex constitute an Edelsbrunner-Harer nerve within the vortex. Let F be a finite collection of sets. An
Edelsbrunner-Harer nerve [15, §III.2, p. 59] consists of all nonempty subcollections of F (denoted by NrvF) whose sets have nonempty
intersection, i.e.,

NrvF =
{

X ⊆ F :
∩

X ̸= /0
}

(Edelsbrunner-Harer Nerve).

Example 1. Two Forms of Vortex Cycles.
Two different vortex cycles vcycA,vcycB are shown in Fig. 1. Vortex vcycA contains a pair of non-overlapping 1-cycles cycA1,cycA2.
By contrast, vortex vcycB in Fig. 1 contains a pair of overlapping 1-cycles cycB1,cycB2 with a common vertex, namely, v13. Let F
be a collection of sets of edges in cycB1,cycB2. The pair of 1-cycles in vortex vcycB constitute an Edelsbrunner-Harer nerve, since
cycB1 ∩ cycB2 = v13, i.e., the intersection of 1-cycles cycB1,cycB2 is nonempty. The edges of the cycles in both forms of vortices define
closed convex curves. �

A number of simple results for vortex cycles come from the Jordan Curve Theorem.

Theorem 1. [Jordan Curve Theorem [23]].
A simple closed curve lying on the plane divides the plane into two regions and forms their common boundary.

Proof. For the first complete proof, see O. Veblen [50]. For a simplified proof via the Brouwer Fixed Point Theorem, see R. Maehara [28].
For an elaborate proof, see J.R. Mundres [29, §63, 390-391, Theorem 63.4].

Lemma 1. A finite planar shape contour separates the plane into two distinct regions.

Proof. The boundary of each planar shape is a finite, simple closed curve. Hence, from Theorem 1, a finite, planar shape separates the
plane into two regions, namely, the region outside the shape boundary and the region in the shape interior.

Theorem 2. A finite planar vortex cycle is a collection of non-concentric, nesting shapes within a shape.

Proof. Each 1-cycle in a finite planar vortex cycle is a simple, closed curve. By definition, a vortex cycle is a collection of non-concentric
1-cycles nesting within a 1-cycle, each with a nonempty interior. From Theorem 1, each vortex 1-cycle separates the plane into two regions.
Hence, from Lemma 1, a finite planar vortex is a collection of planar shapes within a shape.

A darkened region in a planar shape represents a hole in the interior of the shape. In cellular homology, a cell complex K is a Hausdorff
space and a sequence of subspaces called skeletons [8] (also called a CW complex or Closure-finite Weak topology complex [22]). Minimal
planar skeletons are shown in Table 1.

Table 1 includes a K1.5 skeleton, which is a filled triangle with a 2-hole in its interior. The fractional dimension of a K1.5 skeleton signals
the fact such a skeleton has a partially filled interior, punctured with one or more holes. A 2-hole is a planar region with a boundary and an
empty interior. For example, a finite simple, closed curve that is the boundary of a planar shape defines a 2-hole.
For a recent graphics study of polygons with holes in their interiors, see H. Boomari, M. Ostavari and A. Zarei [20]. Also, from Table 1, it
is apparent from the grey shading that a K2 skeleton is the intersection of three half planes that form a filled triangle. Similarly, a 6-sided
1-cycle such as cycA2 in vortex cycle vcycA in Fig. 1 is the intersection of six half planes that construct a 6-gon with a nonempty interior.
Recall that a polytope is the intersection of finitely-many closed half planes [53]. In general, a 1-cycle is an n-sided polytope that is the
intersection of n half planes.
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Figure 2: Pair of Two Different Vortex Cycles With Holes

Table 1: Minimal Planar Cell Complex Skeletons

Minimal Skeleton Ki, i = 0,1,1.5,2 Planar Geometry Interior

bc

K0 Vertex nonempty

b

b

bc

bc

K1 Line segment nonempty

bc

bc

bc
K1.5 Partially filled triangle containing a 2-hole nonempty

bc

bc

bc
K2 Filled triangle nonempty

Problem 1. How many 2-holes are needed to destroy a 1-cycle, making it a shape boundary with an empty interior?

Problem 2. The diameter of a 2-hole is the maximum distance between a pair of points on the boundary of the 2-hole. What is the diameter
of a 2-hole in a filled, planar n-sided polytope that destroys a 1-cycle, making it a shape boundary with an empty interior?

Example 2. Vortex Cycles with Holes.
Two different vortex cycles with holes are shown in Fig. 2, namely, vcycE,vcycG. The vortex cycle vcycE is an example of a 1-cycle within
a 1-cycle (i.e., cycE2 within cycE1) in which cycE2 has a 2-hole h in its interior. The vortex cycle vcycG is an example of intersecting
1-cycles (i.e., cycG2 within cycG1) that form a vortex nerve in which cycG2 has a 2-hole h′ in its interior. In both cases, each inner 1-cycle
is in the interior of an outer 1-cycle. Hence, the 2-hole in the interior of the inner 1-cycle is common to the interiors of both 1-cycles in
each vortex. For example, 2-hole h′ in vortex nerve vcycG is common to both of its 1-cycles. �

Theorem 3. Let K be a collection of skeletons in a planar cell complex.
1o In K, skeletons K0,K1,K2 are planar shapes.
2o A K1.5 skeleton is a planar shape.
3o A 1-cycle cycA with a hole h ∈ int(cycA) that is a proper subset in the interior of cycA is a planar shape.
4o A planar vortex cycle with a hole is a collection of overlapping 1-cycles, each with a hole.
5o A planar vortex cycle with a hole is a collection of concentric planar shapes.

Proof.

1o: By definition, every member of K is a skeleton. Each of the skeletons K0,K1,K2 has a boundary with nonempty interior. Hence, these
skeletons are planar shapes.

2o: By definition, a K1.5 skeleton is a closed 3-sided polytope that has a nonempty interior with a hole. That is, let h ∈ int(cycA) be a
2-hole that is a proper subset in the interior of a K1.5 skeleton. In that case, the nonempty part of interior of the K1.5 skeleton int(cycA)
equals int(cycA)\h. In effect, cycA is a planar shape.

3o: That a 1-cycle cycA with a hole that is a proper subset in the interior of cycA is a planar shape, follows from Part 2.
4o: Immediate from Part 3.
5o: Immediate from Part 3 and Theorem 2.

Let (K,δΦ) be a collection of planar vortex cycles equipped with a descriptive proximity δΦ [6, §4], [35, §1.8], based on the descriptive
intersection ∩

Φ
of nonempty sets A and B [33, §3]. With respect to vortex cycles vcycE,vcycG in K, for example, we consider vcycE∩

Φ
vcycG,

i.e., the set of descriptions common to a pair of vortex cycles. A vortex cycle description is a mapping Φ : 2K 7−→ Rn (an n-dimensional
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feature space). For each given vortex cycle vcycE, find all vortex cycles vcycG in K that have nonempty descriptive intersection with
vcycE, i.e., cycA ∩

Φ
cycB ̸= /0 such that Φ(vcycG) = Φ(vcycE). This results in a Leader uniform topology on H1 [25].

2. Preliminaries

This section briefly presents the axioms for connectedness, strong and descriptive proximity. A nonempty set P is a proximity space,
provided the closeness or remoteness of any two subsets in P can be determined.

2.1. Cech Proximity Space

A proximity space P is sometimes called a δ -space [44], provided P is equipped with a relation δ that satisfies, for example, the following
C̆ech axioms for sets A,B,C ∈ 2P [48, §2.5, p. 439].

C̆ech axioms
P1 All subsets in P are far from the empty set.
P2 A δ B =⇒ B δ A, i.e., A close to B implies B is close to A.
P3 A δ (B∪C) ⇔ A δ B or A δ C.
P4 A∩B ̸= /0 =⇒ A δ B.

A space P equipped with the C̆ech proximity (denoted by (P,δ )) is called a C̆ech proximity space. We adopt the convention for a proximity
metric δ : 2P × 2P −→ {0,1} introduced by Ju. M. Smirnov [44, §1, p. 8]. We write δ (A,B) = 0, provided subsets A,B ∈ 2P are close
and δ (E,H) = 1, provided subsets A,B ∈ 2P are not close, i.e., there is a non-zero distance between E and H. Let A,B,C ∈ 2P. Then a
proximity space satisfies the following properties.

Smirnov Proximity Space Properties
Q1 If A ⊆ B, then for any C, δ (A,C)≥ δ (B,C).
Q2 Any sets which intersect are close.
Q3 No set is close to the empty set.

In a C̆ech proximity space, Smirnov proximity space property Q3 is satisfied by axiom P1 and property Q2 is satisfied by axioms P2-P4,
i.e., any subsets of P are close, provided the subsets have nonempty intersection. That is, A close to B implies B is close to A (axiom P2).
Similarly, A close to B∪C implies A is close to B or A is close to C (axiom P3) or A is close to B∩C (axiom P4). Let A∩C = /0. Then
δ (A,C) = 1, since A has no points in common with C. Similarly, assume B∩C = /0. Then, δ (B,C) = 1, since B and C have no points in
common. Hence, property Q1 is satisfied, since

δ (A,C) = δ (B,C) = 1 ⇒ δ (A,C)≥ δ (B,C).

For A ⊂ B and C ⊂ B, we have δ (A,C) = 0, since A and C have points in common. Similarly, δ (B,C) = 0. Hence, δ (A,C) = δ (B,C) =
0 ⇒ δ (A,C)≥ δ (B,C).

2.2. Connectedness Proximity Space

Let K be a collection of skeletons in a planar cell complex and let A,B,C be subsets containing skeletons in K equipped with the relation
conn
δ . The pair A,B is connected, provided A∩B ̸= /0, i.e., there is a skeleton in A that has at least one vertex in common a skeleton in B.

Otherwise, A and B are disconnected.
Let X be a nonempty set and let A,B ∈ 2X , nonempty subsets in the collection of subsets 2X . A and B are mutually separated, provided
A∩B = /0, i.e., A and B have no points in common [52, §26.4, p. 192]. From the notion of separated sets, we obtain the following result for
connected spaces.

Theorem 4. [52]

If X =
∞∪

n−1
Xn, where each Xn ∈ 2X is connected and Xn−1 ∩Xn ̸= /0 for each n ≥ 2, then space X is connected.

Proof. The proof is given by S. Willard [52, §26.4, p. 193]. For a new kind of connectedness in which nonempty intersection is replaced
by strong nearness, see C. Guadagni [19, p. 72] and in J.F. Peters [35, §1.16].

In this work, connectedness is defined in terms of the connectedness proximity
conn
δ and overlap connectedness

∧∧
conn
δ in Section 2.5. In

both cases, nonempty intersection is replaced by a connectedness proximity in the study of connected cell complex spaces populated by

connected skeletons. For connected sets A,B ⊂ K, we write A
conn
δ B. In effect, for each pair of skeletons A,B in K, A

conn
δ B, provided

there is a path between at least one vertex in A and one or more vertices in B. A path is sequence of edges between a pair of vertices.
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Equivalently, A∩B ̸= /0 implies A
conn
δ B. If the sets of skeletons A,B ∈ K are separated (i.e., A,B have no vertices in common), we write

A
conn
̸ δ B. This view of connectedness

Then the C̆ech axiom P4 is replaced by

P4conn A∩B ̸= /0 ⇔ A
conn
δ B.

By replacing δ with
conn
δ in the remaining C̆ech axioms, we obtain

Connectedness proximity axioms.

P1conn A∩B = /0 ⇔ A
conn
̸ δ B, i.e., the sets of skeletons A and B are not close (A and B are far from each other).

P2conn A
conn
δ B =⇒ B

conn
δ A, i.e., A close to B implies B is close to A.

P3conn A
conn
δ (B∪C) =⇒ A

conn
δ B or A

conn
δ C.

P4conn A∩B ̸= /0 ⇔ A
conn
δ B (Connectedness Axiom).

A connectedness proximity space is denoted by (K,
conn
δ ). For A,B ∈ K, the Smirnov metric δ (A,B) = 0 means that there is a path between

any two vertices in A∪B and δ (A,B) = 1 means that there is no path between any two vertices in A∪B.

Lemma 2. Let K be a collection of skeletons in a planar cell complex equipped with the relation
conn
δ . Then A

conn
δ B implies A∩B ̸= /0.

Proof. A
conn
δ B, provided there is a path between any pair of vertices in skeletons A and B, i.e., A,B are connected, provided there is a

vertex common to A and B. Consequently, A∩B ̸= /0.

Lemma 3. Let K be a connectedness space containing a collection of skeletons in a planar cell complex equipped with the relation
conn
δ .

The space K is a proximity space.

Proof. Let A,B,C ∈ K. Smirnov proximity space property Q3 is satisfied by axiom P1conn and property Q2 is satisfied by axioms P2conn-
P4conn, i.e., any sets of skeletons that are close, are connected. Let C ⊂ A∪B (C is part of the skeleton A∪B ∈ K). For any vertex p

in A or B, there is a path between p and any vertex q ∈ C. Then A
conn
δ C and B

conn
δ C. Consequently, δ (A,C) = 0 = δ (B,C), Hence,

δ (A,C) ≥ δ (B,C). If (A∪B)∩C = /0 (the skeletons in A and B have no vertices in common with C), then δ (A,C) = 1 = δ (B,C) and
δ (A,C)≥ δ (B,C). From axiom P4conn, we have

(A∪B)
conn
̸ δ C ⇔ (A∪B)∩C = /0 ⇔ δ (A,C) = 1 = δ (B,C)⇒ δ (A,C)≥ δ (B,C).

Smirnov property Q1 is satisfied. Hence, (K,
conn
δ ) is a proximity space.
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Figure 3: Collection of Skeletons, including a Vortex Cycle with a Hole

Example 3. Connectedness Proximity Space.

Let K be a collection of skeletons represented in Fig. 3, equipped with the proximity
conn
δ . A pair of skeletons in K are close, provided the

skeletons have at least one vertex in common. For example, vortex cycle vcycA and skeleton skelE have vertex v6 in common. Hence, from
axiom P4conn, we have

v6 ∈ vcycA ∩ skelE ⇔ vcycA
conn
δ skelE
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Skeletons that are not close have no vertices in common. For example, in Fig. 3,

skelE
conn
̸ δ skelH,

since the pair of skeletons skelE,skelH have no vertices in common. �

Theorem 5. Let K be a collection of vortex cycles in a planar cell complex. The space K equipped with the relation
conn
δ is a proximity

space.

Proof. A vortex cycle is a collection of concentric 1-cycles. Each 1-cycle is a skeleton. Then vortex cycle is a collection of skeletons and
each collection of vortex cycles is also a collection of skeletons. Hence, from Lemma 3, K is a connectedness proximity space.
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2.3. Vortex Nerves Proximity space

A vortex cycle vcycA containing 1-cycles with a common vertex is an example of a vortex nerve (denoted by vNrvA). A collection of

vortex nerves equipped with the
conn
δ proximity is a connectedness proximity space.

Theorem 6. Let K be a collection of vortex nerves in a planar cell complex. The space K equipped with the relation
conn
δ is a proximity

space.

Proof. Each vortex nerve is a collection of intersecting 1-cycles, which are skeletons. The results follows from Lemma 3, since K is also a

collection of skeletons equipped with the proximity
conn
δ .

Example 4. Vortex Nerves Proximity Space.
Three vortex nerves vNrvA,vNrvE attached to vNrvA,vNrvB,vNrvH in the interior of vNrvB in a cell complex K are represented in Fig. 4.
The filled interior of a 1-cycle in a vortex that appears in Fig. 4 is represented with a shaded interior in cycH2 ∈ vNrvH ∈ vNrvB in Fig. 5.
For simplicity, the filled interiors of the 1-cycles in Fig. 4 are hidden (not shaded). Let the collection of vortex nerves K be equipped

with the proximity
conn
δ . Vortex nerves are close, provided the nerves have nonempty intersection. For example, vNrvA

conn
δ vNrvE, i.e.,

δ (vNrvA,vNrvE) = 0. Hence, Smirnov property Q2 is satisfied by
(

K,
conn
δ

)
. Vortex nerves are far (not close), provided the vortex nerves

have empty intersection. For example, vNrvA
conn
̸ δ vNrvE, i.e., δ (vNrvA,vNrvE) = 1 (Smirnov property Q3). We also have, for example,

δ (vNrvA,vNrvH) = 1 = δ (vNrvB,vNrvH) non-intersecting nerves are far,

δ (vNrvH,vNrvE) = 1 and δ (vNrvA,vNrvE) = 0

⇔ δ (vNrvH,vNrvE)≥ δ (vNrvA,vNrvE).

In effect, Smirnov property Q1 is satisfied. Hence,
(

K,
conn
δ

)
is a connectedness proximity space. �
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Example 5. Spacetime Vortex Nerves Proximity Space.
Spacetime vortex nerves (overlapping vortex cycles) have been observed in recent studies of ground vortex aerodynamics by J.P. Murphy
and D.G. MacManus [30] and in the vortex flows of overlapping jet streams in ground proximity by J.M.M. Barata, N. Bernardo, P.J.C.T.
Santos and A.R.R. Silva [4] and by A.R.R. Silva, D.F.G. Durão, J.M.M. Barata, P. Santos S. Ribeiro [43]. Physical vortex nerves can
be observed in the representation of the contours of overlapping turbulence velocity vortices in, for example, Figure 6 in [43, p. 8] and
systems of vortex in Figure 7 in P.R. Spalart, M. Kh. Strelets, A.K. Travin and M.L. Slur [42]. �

The presence of holes in the interiors of vortex nerves in a cell complex equipped with the proximity
conn
δ gives us the following result.

Corollary 1. Let K be a collection of vortex nerves containing holes in their interiors in a planar cell complex. The space K equipped with

the relation
conn
δ is a proximity space.

Proof. Immediate from Theorem 6, since the relationships between vortex nerves in K are unaffected by the presence of holes in the
interiors of the nerves.

Example 6. A pair of disjoint vortex nerves containing holes in their interiors is represented in Fig. 6. �
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Problem 3. Let K be a collection of vortex nerves so that the boundary of each of the holes has more than one vertex that is in the
intersection 1-cycles in each of the nerves in a planar cell complex. For an example of vortex cycles that overlap vertices on the boundary
of a hole, see Fig. 7. Prove that a vortex nerve is destroyed by a hole whose boundary overlaps the nerve cycles in more than one vertex.

Problem 4. Let K be a collection of vortex nerves so that the boundary of each of the holes has a single vertex that is in the intersection

of the 1-cycles in each of the nerves in a planar cell complex. Also let K be equipped the proximity
conn
δ . Prove that K is a connectedness

proximity space.

2.4. Neighbourhoods, Set Closure, Boundary, Interior and CW Topology

The interior of a nonempty set is considered, here. It is the interior of a vortex cycle that leads to strong forms of connectedness proximity
on a shapes in cell complex in which the interiors of vortices overlap either spatially or descriptively. Let A be a nonempty set of vertices,
p ∈ A in a bounded region X of the Euclidean plane. An open ball Br(p) with radius r is defined by

Br(p) = {q ∈ X : ∥p−q∥< r} .

The closure of A (denoted by clA) is defined by

clA = {q ∈ X : Br(q)⊂ A for some r} (Closure of set A).

The boundary of A (denoted by bdyA) is defined by

bdyA = {q ∈ X : B(q)⊂ A ∩ X \A} (Boundary of set A).
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Of great interest in the study of the closeness of vortex cycles is the interior of a shape, found by subtracting the boundary of a shape from
its closure. In general, the interior of a nonempty set A ⊂ X (denoted by intA) defined by

intA = clA−bdyA (Interior of set A).

Let the cell complex K be a Hausdorff space. Let A be a cell (skeleton) in K. Each cell decomposition A,B ∈ K is called a CW complex,
provided

Closure Finiteness Closure of every cell (skeleton) clA intersects on a finite number of other cells.
Weak topology A ∈ 2K is closed (A = bdyA∪ intA), provided A∩ clB is closed, i.e.,

A∩ clB = bdy(A∩ clB)∪ Int(A∩ clB).

K has a topology τ that is a CW topology [51], [39, §2.4, p. 81], provided τ has the closure finiteness and weak topology properties.
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Figure 8: Vortex Nerves with Overlapping Interiors

2.5. Overlap Connectedness Proximity Space

In this section, weak and strong connectedness proximities of skeletons arise when we consider pairs of vortex cycles with overlapping

interiors. Let K be a collection of vortex cycles equipped with the proximity
∧∧

conn
δ , which is a form of the strong proximity

∧∧
δ [35, §1.9, pp.

28-30]. The weak and strong forms of
∧∧

conn
δ satisfy the following axioms.

P4overlap [weak option] intA ∩ intB ̸= /0 ⇒ A
∧∧

conn
δ B.

P5overlap [strong option] A
∧∧

conn
δ B ⇒ A∩B ̸= /0

Axiom P4overlap is a rewrite of the C̆ech axiom P4 and axiom P5overlap is addition to the usual C̆ech axioms. It is easy to see that
∧∧
δ

satisfies the remaining C̆ech axioms after replacing δ with
∧∧
δ . Let A,B,C ∈ K, a cell complex space equipped with the proximity

∧∧
conn
δ , which

satisfies the following axioms.

Overlap Connectedness proximity axioms.

P1intConn A∩B = /0 ⇔ A
∧∧

conn
δ B, i.e., the sets of skeletons A and B are not close (A and B are far from each other).

P2intConn A
∧∧

conn
δ B =⇒ B

∧∧
conn
δ A, i.e., A overlaps (is close to) B implies B overlaps (is close to) A.

P3intConn A
∧∧

conn
δ (B∪C) =⇒ A

∧∧
conn
δ B or A

∧∧
conn
δ C.

P4intConn intA ∩ intB ̸= /0 ⇒ A
∧∧

conn
δ B (Weak Overlap Connectedness Axiom).

P5intConn A
∧∧

conn
δ B ⇒ A∩B ̸= /0 (Strong Overlap Connectedness Axiom). �
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An overlap connectedness space is denoted by

K,

∧∧
conn
δ

. Skeletons A,B in K are close, provided the interior intA has nonempty intersec-

tion with the interior intA.

Theorem 7. Let K be a collection of vortex nerves in a planar cell complex. The space K equipped with the relation
∧∧

conn
δ is a proximity

space.

Proof. The result follows from Lemma 3, since K is also a collection of skeletons equipped with the proximity
conn
δ .

Example 7. Overlapping Vortex Nerves.

Two pairs of overlapping vortex nerves are represented in Fig. 8, namely, vNrvA
∧∧

conn
δ vNrvE and vNrvB

∧∧
conn
δ vNrvH. In the case of the pair

of vortex nerves vNrvA,vNrvE, the gray region for these nerves in Fig. 8 represents the nonempty intersection of the interior of the 1-cycle
intcycA2 ∈ vNrvA and the interior of the 1-cycle intcycE2 ∈ vNrvE. From axiom P4intConn, we have

intcycA2 ∩ intcycE2 ̸= /0 ⇒ cycA2

∧∧
conn
δ cycE2

⇒ vNrvA
∧∧

conn
δ vNrvE, Axiom P5intConn, we have

vNrvA
∧∧

conn
δ vNrvE ⇒ intcycA2 ∩ intcycE2 ̸= /0.

Concentric vortex nerves vNrvB,vNrvH are also represented in Fig. 8, The interior IntcycH2 is represented in Fig. 5in the vortex nerve
vNrvH, which is in the interior of vortex nerve vNrvB. Again, from axiom P4intConn, we have

intvNrv B ∩ int vNrv H ̸= /0 ⇒ vNrv B
∧∧

conn
δ vNrv H, and from Axiom P5intConn, we have

vNrvB
∧∧

conn
δ vNrvH ⇒ intvNrv B ∩ int vNrv H ̸= /0. �

Example 8. Spacetime Vortex Cycles: Overlapping Electromagnetic Vortices.
I.V. Dzedolik observes that an electromagnetic vortex is formed by photons that possess some net angular momentum about the longitudinal
axis of a dielectric waveguide [12, p. 135]. Photons are almost massless objects that carry energy from an emitter to an absorber [49].

Modeling spiraling vortices as vortex cycles equipped with the
∧∧

conn
δ proximity suggests the possibility of obtaining an expanded range

of measurements in vortex optics. N.M. Litchinitser observes that vortex-preshaped femtosecond laser pulses indicate the possibility
of achieving repeatable and predictable spatial and temporal distribution in using metamaterials in light filamentation [27, p. 1055].
The overlap connectedness proximity space approach to characterizing, analysing and modelling neighboring photons gains strength by
considering recent work by M. Hance on isolating and comparing different forms of photons (and photon vortical flux) [21, §4, pp. 8-11].
�

2.6. Descriptive Connectedness Proximity

In this section, weak and strong descriptive connectedness proximities of skeletons arise when we consider pairs of vortex cycles with
matching description. A vortex cycle description is a feature vector that contains features values extracted from vortices with what are

known as probe functions. Let K be a collection of vortex cycles equipped with the descriptive proximity

∧∧
conn
δΦ , which is an extension of

the descriptive proximity
∧∧
δΦ [7, §3-4, pp. 95-98]. The mapping Φ : K −→ Rn yields an n-dimensional feature vector in Euclidean space

Rn either a vortex cycA ∈ K (denoted by Φ(cycA)) or a vortex cycle vcycE in K (denoted by Φ(vcycE)) or a vortex nerve vNrvH in K
(denoted by Φ(vNrvH)). For the axioms for a descriptive proximity, the usual set intersection is replaced by descriptive intersection [34,
§3] (denoted by ∩

Φ
) defined by

A∩
Φ

B = {x ∈ A∪B : Φ(x) ∈ Φ(A), Φ(x) ∈ Φ(B)}.

The descriptive closure of A (denoted by clΦA) [35, §1.4, p. 16] is defined by

clΦA =

x ∈ K : x

∧∧
conn
δΦ A

 .

The weak and strong forms of

∧∧
conn
δΦ satisfy the following axioms.
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PΦ4 [weak option] intA ∩
Φ

intB ̸= /0 ⇒ A

∧∧
conn
δΦ B.

PΦ5 option] A

∧∧
conn
δΦ B ⇒ A∩

Φ
B ̸= /0

nerveCount

nerveCycleCount

maxArea

holeCount

vertexCount

0 5 10 15 20 25 30 35 40 45 50 55

Cell Complex Feature Value

K1 cell complex
K2 cell complex

Figure 9: Comparison of Cell Complex Feature Values

Axiom PΦ4 is a rewrite of the C̆ech axiom P4 and axiom PΦ5 is an addition to the usual C̆ech axioms. It is easy to see that

∧∧
conn
δΦ satisfies the

remaining C̆ech axioms after replacing δ with

∧∧
conn
δΦ . Let A,B,C ∈ K, a cell complex space equipped with the proximity

∧∧
conn
δΦ , which satisfies

the following axioms.

Descriptive Overlap Connectedness proximity axioms.

PΦ1dConn A∩
Φ

B = /0 ⇔ A

∧∧
conn
̸ δΦ B, i.e., the sets of skeletons A and B are not descriptively close (A and B are far from each other).

PΦ2dConn A

∧∧
conn
δΦ B =⇒ B

∧∧
conn
δΦ A, i.e., A is descriptively close to B implies B is descriptively close to A.

PΦ3dConn A

∧∧
conn
δΦ (B∪C) =⇒ A

∧∧
conn
δΦ B or A

∧∧
conn
δΦ C.

PΦ4dConn intA ∩
Φ

intB ̸= /0 ⇒ A

∧∧
conn
δΦ B (Weak Descriptive Connectedness Axiom).

PΦ5dConn A

∧∧
conn
δΦ B ⇒ A∩

Φ
B ̸= /0 (Strong Descriptive Connectedness Axiom). �

A descriptive overlap connectedness space is denoted by

K,

∧∧
conn
δΦ

. Skeletons A,B in K are close descriptively, provided the interior intA

has nonempty descriptive intersection with the interior intA. This form of proximity has many applications, since we often want to compare
objects such as 1-cycles by themselves or vortex cycles or the more complex vortex nerves that do not overlap spatially or at the same time.

Example 9. Descriptive Connectedness Overlap of Disjoint Vortex Cycles in Spacetime.

Let vcycA,vcycB be a pair of vortex cycles in a collection of vortex cycles equipped with the proximities
∧∧

conn
δ and

∧∧
conn
δΦ . Assume these
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Figure 10: Comparison of Vortex Cell Feature Values

vortices represent non-overlapping electromagnetic vortexes that have matching descriptions in spacetime, e.g., Φ(vcycA) = Φ(vcycB) =

(persistence duration). That is, the length of time that vcycA persists equals the duration of vcycB. In that case, vcycA

∧∧
conn
δΦ vcycB. �

Example 10. Descriptive Connectedness Overlap of Cell Complexes.
The bar graph2 in Fig. 9 compares feature values for a pair of cell complexes, namely, vertex count, hole count, maximum vortex cycle

area, nerve cycle count and nerve count. From the bar graph, K1

∧∧
conn
δΦ K2, since

Φ(K1vertexCount) = Φ(K2vertexCount) = 35, and

Φ(K1nerveCount) = Φ(K2nerveCount) = 21.

This is the case, even though the hole count and nerve cycle count are far apart. �

Example 11. Absence of Descriptive Connectedness of Sample Vortex Cycles.
The bar graph in Fig. 10 compares normalized feature values for a pair of sample vortex cycles vcycA,vcycB, namely, vertex count, vortex
cycle area, overlap (i.e., number of overlapping 1-cycles in a vortex cycle), hole count, cycle count, perimeter (i.e., length of the boundary
of a vortex cycle), diameter (i.e., maximum distance between a pair of vertices on the boundary of a vortex cycle). From the bar graph, it

is apparent that vcycA

∧∧
conn
̸ δΦ vcycB, since there are no matching feature values for the sample pair of vortex cycles. �

Theorem 8. Let K be a collection of vortex cycles in a planar cell complex. The space K equipped with the relation

∧∧
conn
δΦ is a proximity

space.

Proof. The result follows from Lemma 3, since each vortex cycle in K is also a collection of skeletons equipped with the proximity

∧∧
conn
δΦ .

Corollary 2. Let K be a collection of vortex nerves in a planar cell complex. The space K equipped with the relation

∧∧
conn
δΦ is a proximity

space.

Proof. The result follows from Theorem 8, since each vortex nerve in K is also a collection of intersecting vortex cycles equipped with the

proximity

∧∧
conn
δΦ .

Example 12. Non-Overlapping Vortex Nerve with Matching Descriptions.

Let KvNrv be a collection of vortex nerves in a planar cell complex the proximities
conn
δ and

∧∧
conn
δΦ . Let vNrvA be a vortex nerve and let

Φ(vNrvA) = (number of 1-cycles) be a description of the nerve based on one feature, namely, the number of 1-cycles in the nerve. Pairs of

2Many thanks to M.Z. Ahmad for the LATEX script used to display this bar graph, which does not depend on an external file.
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non-overlapping vortex nerves with matching descriptions are represented in Fig. 8, namely,

vNrvA
conn
̸ δ vNrvB (Nerves vNrvA,vNrvB do not overlap) ,

vNrvA

∧∧
conn
δΦ vNrvB, since ΦvNrvA) = Φ(vNrvB) = (2),

vNrvA
conn
̸ δ vNrvH (Nerves vNrvA,vNrvH do not overlap) ,

vNrvA

∧∧
conn
δΦ vNrvH since Φ(vNrvA) = Φ(vNrvH) = (2),

vNrvE
conn
̸ δ vNrvB (Nerves vNrvE,vNrvB do not overlap) ,

vNrvE

∧∧
conn
δΦ vNrvB since Φ(vNrvE) = Φ(cycH1) = (2),

vNrvE
conn
̸ δ vNrvH (Nerves vNrvE,vNrvH do not overlap) ,

vNrvE

∧∧
conn
δΦ vNrvH since Φ(vNrvE) = Φ(vNrvH) = (2). �

Example 13. Non-Overlapping Vortex Nerve Cycles with Matching Descriptions.

Let Kcyc be a collection of 1-cycles in a planar cell complex the proximities
conn
δ and

∧∧
conn
δΦ . Let cycA be a 1-cycle in a vortex cycle and let

Φ(cycA) = (number of vertices) be a description of the cycle based on one feature, namely, the number of vertices in the cycle. Pairs of
non-overlapping vortex nerves containing 1-cycles with matching descriptions are represented in Fig. 8, namely,

cycA2
conn
̸ δ cycH1 (Cycles cycA2,cycH1 do not overlap) ,

cycA2

∧∧
conn
δΦ cycH1, since Φ(cycA2) = Φ(cycH1) = (6),

cycA2
conn
̸ δ cycB2 (Cycles cycA2,cycB2 do not overlap) ,

cycA2

∧∧
conn
δΦ cycB2 since Φ(cycA2) = Φ(cycB2) = (6),

cycA1
conn
̸ δ cycH1 (Cycles cycA1,cycH1 do not overlap) ,

cycA1

∧∧
conn
δΦ cycH1 since Φ(cycA1) = Φ(cycH1) = (6),

cycA1
conn
̸ δ cycB2 (Cycles cycA1,cycB2 do not overlap) ,

cycA1

∧∧
conn
δΦ cycB2 since Φ(cycA1) = Φ(cycB2) = (6). �

2.7. Vortex Cycle Spaces Equipped with Proximal Relators

This section introduces a connectedness proximal relator [36] (denoted by R), an extension of a Száz relator [45], which is a non-void
collection of connectedness proximity relations on a nonempty cell complex K. A space equipped with a proximal relator R is called a
proximal relator space (denoted by (K,R)).

Example 14. Proximal Relator Space. Example 12 introduces a proximal relator space

KvNrv,

conn
δ ,

∧∧
conn
δΦ


, useful in measuring,

comparing, and classifying collections of vortex nerves that either have or do not have matching descriptions. Similarly, Example 13

introduces a proximal relator

Kcyc,

conn
δ ,

∧∧
conn
δΦ


, useful in the study of collections of 1-cycles that either have or do not have matching

descriptions. �

The connection between
∧∧
δ and δ is summarized in Lemma 4.

Lemma 4. Let

K,


∧∧

conn
δΦ ,

∧∧
conn
δ ,

conn
δ


 be a proximal relator space K, A,B ⊂ K. Then

1o A
∧∧

conn
δ B ⇒ A

conn
δ B.

2o A
∧∧

conn
δ B ⇒ A

∧∧
conn
δΦ B.
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Proof.

1o: From Axiom P5conn, A
∧∧

conn
δ B implies A ∩ B ̸= /0, which implies A

conn
δ B. From Lemma 2, A

conn
δ B implies A ∩ B ̸= /0, which

implies A δ B (from C̆ech Axiom P4).
2o: From (1), there are cyc x ∈ A,cyc y ∈ B common to A and B. Hence, Φ(cyc x) = Φ(cyc y), which implies A ∩

Φ
B ̸= /0. Then, from the

descriptive connectedness Axiom PΦ4conn, A ∩
Φ

B ̸= /0 ⇒ A

∧∧
conn
δΦ B. This gives the desired result.

Let vNrvA be a vortex nerve. By definition, vNrvA is collection of 1-cycles with nonempty intersection. The boundary of vNrvA (denoted
by bdyvNrvA) is a sequence of connected vertices. That is, for each pair of vertices v,v′ ∈ bdyvNrvA, there is a sequence of edges, starting
with vertex v and ending with vertex v′. There are no loops in bdyvNrvA. Consequently, bdyvNrvA defines a simple, closed polygonal
curve. The interior of bdyvNrvA is nonempty, since NrvA is a collection of filled polytopes. Hence, by definition, a vNrvA is also a nerve
shape.

Theorem 9. Let

K,


∧∧

conn
δΦ ,

∧∧
conn
δ


 be a proximal relator space with nerve vortices vNrvA,vNrvB ∈ K. Then

1o vNrvA
∧∧

conn
δ vNrvB implies vNrvA

∧∧
conn
δΦ vNrvB.

2o A 1-cycle cycE ∈ vNrvA∩ vNrvB implies cycE ∈ vNrvA ∩
Φ

vNrvB.

3o A 1-cycle cycE ∈ vNrvA∩ vNrvB implies vNrvA

∧∧
conn
δΦ vNrvB.

Proof.
1o: Immediate from part (2) of Lemma 4.

2o: By definition, vNrvA,vNrvB are nerve shapes. From Axioms P4conn, P5conn, cycE ∈ vNrvA∩vNrvB, if and only if vNrvA

∧∧
conn
δΦ vNrvB.

Consequently, cycE is common to vNrvA,vNrvB. Then there is a cycle cycE ∈ NrvA with the same description as a cycle cycE ∈ vNrvB.
Let Φ(cycE) be a description of cycE. Then, Φ(cycE) ∈ Φ(vNrvA)& ∈ Φ(cycE) ∈ Φ(vNrvB), since cycE ∈ vNrvA∩ vNrvB. Hence,
cycE ∈ vNrvA ∩

Φ
vNrvB.

3o: Immediate from (2) and Lemma 4.

3. Main Results

This section gives some main results for collections of proximal vortex cycles and proximal vortex nerves.

3.1. Topology on Vortex Cycle Spaces

This section introduces the construction of topology (homology) classes of vortex cycles and vortex nerves. Topology classes have proved
to be useful in classifying physical objects such as quasi-crystals [11] and in knowledge extraction [17]. Such classes provide a basis for
knowledge extraction about proximal vortex cycles and nerves. A strong beneficial side-effect of the construction of such classes is the ease
with which the persistence of homology class objects can be computed (see, e.g., [16], [2]). More importantly, the construction of topology
classes leads to problem size reduction (see, e.g., [31, §3.1, p. 5]).

Lemma 5. Let K be a nonempty collection of finite skeletons on a finite cell complex K that is a Hausdorff space equipped the proximity
conn
δ . From the pair

(
K,

conn
δ

)
, a Whitehead Closure Finite Weak (CW) Topology can be constructed.

Proof.

From Lemma 3,
(

K,
conn
δ

)
is a connectedness proximity space. Let skA,skB be skeletons in a finite cell complex K. The closure cl(skA) is

finite and includes the connected vertices on the boundary bdy(skA) and in the interior bdy(skA) of skA. Since K is finite, cl(skA) intersects
a only a finite number of other skeletons in K. The intersection skA∩ skB ̸= /0 is itself a finite skeleton, which can be either a single vertex

or a set of edges common to skA,skB. In that case, skA
conn
δ skB. By definition, skA∩ skB is a skeleton in K. Consequently, whenever

skA
conn
δ skB, then skA∩ skB ∈ K. Hence,

(
K,

conn
δ

)
defines a Whitehead CW topology.

Theorem 10. Let K be a nonempty collection of finite skeletons on a finite cell complex K that is a Hausdorff space equipped the proximity
∧∧

conn
δ . From the pair

K,

∧∧
conn
δ

, a Whitehead Closure Finite Weak (CW) Topology can be constructed.

Proof.
Immediate from Lemma 5.

Next, we construct a Leader uniform topology on a collection of vortex cycles equipped with the descriptive connectedness proximity

∧∧
conn
δΦ .
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Definition 1. Let X be a nonempty set. For each given set A ∈ 2X , form a cluster containing all subsets B ∈ 2X such that A∩B ̸= /0. The
intersection as well as the union of clusters belong to K, defining a Leader uniform topology on K, namely, the collection of all uniform
clusters on K. �

Theorem 11. Let K be a finite collection of vortex cycles equipped the proximity
∧∧

conn
δ and let τ be a Leader uniform topology on the

proximity space

K,

∧∧
conn
δ

. Then each cluster of vortex cycles E ∈ τ has a CW topology on E.

Proof.

Each E ∈ τ is a finite collection of vortex cycles equipped with the proximity

∧∧
conn
δΦ . Each closure cl(vcycH) ∈ E intersects with a finite

number of other vortex cycles in E, since E is finite (closure finiteness property). Let cl(vcycA),cl(vcycB) ∈ E. For int(vcycA) ∩

int(vcycB) ̸= /0 ⇒ cl(vcycA)
∧∧

conn
δ cl(vcycB), from Axiom P4intConn (weak topology property). Hence, E has a CW topology.

For descriptive proximity spaces, the construction of Leader uniform topologies is accomplished by considering the descriptive intersection
∩
Φ

and descriptive union ∪
Φ

of nonempty sets of vortex cycles. Let K be a nonempty collection of vortex cycles, A,B ∈ K. Then descriptive

union ∪
Φ

is defined by

A ∪
Φ

B = {E ∈ K : Φ(E) ∈ Φ(A∪B)} (Descriptive union of sets of vortex cycles).

Lemma 6. Let K be a nonempty collection of vortex cycles on a finite cell complex K equipped the proximity

∧∧
conn
δΦ . From the pair

K,

∧∧
conn
δΦ

,

a Leader uniform topology can be constructed.

Proof.
We have Φ(K) = {Φ(vcycA) : vcycA ∈ K}, the feature space for K. Let vcycA ∩

Φ
vcycB ̸= /0 be descriptive intersection of a pair of vortex

cycles vcycA,vcycB in K. From Axiom PΦ4conn, vcycA

∧∧
conn
δΦ vcycB. For each given vcycA, find all vortex cycles vcycB∈K with nonempty

intersection vcycA ∩
Φ

vcycB ∈ Φ(K) (intersection property), i.e., all vortex cycles vcycB such that vcycA

∧∧
conn
δΦ vcycB. Let A ∪

Φ
B = G be a

descriptive union of sets of vortex cycles A,B ∈ K. By definition, Φ(G) ∈ Φ(A∪B) (union property). This gives the desired result.

Theorem 12. Let K be a nonempty finite collection of vortex nerves equipped the proximity
∧∧

conn
δ . The proximity space

K,

∧∧
conn
δ

 constructs

a Leader uniform topology.

Proof.
Immediate from Lemma 6.

From what we have observed so far, a form of problem reduction results from the construction of CW topology on a cluster in a Leader
uniform topology.

Theorem 13. Let C be a Leader uniform topology cluster in a collection of skeletons K equipped the proximity
conn
δ . The proximity space(

C ,
conn
δ

)
constructs a CW topology.

Proof.
Immediate from Lemma 5.

Corollary 3. Let C be a Leader uniform topology cluster in a collection of skeletons K equipped the proximity
∧∧

conn
δ . The proximity spaceC ,

∧∧
conn
δ

 constructs a CW topology.

Proof.
Immediate from Theorem 13.

Corollary 4. Let C be a Leader uniform topology cluster in a collection of vortex cycles K equipped the proximity
∧∧

conn
δ . The proximity

space

C ,

∧∧
conn
δ

 constructs a CW topology.

Proof.
Immediate from Theorem 13.
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Corollary 5. Let C be a Leader uniform topology cluster in a collection of vortex nerves K equipped the proximity
∧∧

conn
δ . The proximity

space

C ,

∧∧
conn
δ

 constructs a CW topology.

Proof.
Immediate from Theorem 13.

3.2. Homotopic Types of Vortex Cycles and Vortex Nerves

Theorem 14. [15, §III.2, p. 59] Let F be a finite collection of closed, convex sets in Euclidean space. Then the nerve of F and the union
of the sets in F have the same homotopy type.

Lemma 7. Let cycA be a vortex cycle in a finite collection of closed, convex skeletons in a cell complex K. Then vortex cycle cycA and the
union of the skeletons in cycA have the same homotopy type.

Proof. From Theorem 14, we have that the union of the skeletons skE ∈ cycA and cycA have the same homotopy type.

Theorem 15. Let K be a finite collection of vortex cycles equipped the proximity
∧∧

conn
δ and let τ be a Leader uniform topology on the

proximity space

K,

∧∧
conn
δ

. Then each cluster of closed, convex vortex cycles C ∈ τ and the union of vortex cycles in C have the same

homotopy type.

Proof. Each vortex cycle vcycA in C is constructed from a collection of closed, convex skeletons in the cell complex K. Consequently, C
is a collection of closed, convex vortex cycles. Hence, from Lemma 7, we have that the union of the vortex cycles cycA ∈ C and C have
the same homotopy type.

Corollary 6. Let K be a finite collection of vortex nerves equipped the proximity
∧∧

conn
δ and let τ be a Leader uniform topology on the

proximity space

K,

∧∧
conn
δ

. Then each cluster of closed, convex vortex nerves N ∈ τ and the union of vortex nerves in N have the same

homotopy type.

Proof.
Immediate from Theorem 15, since vortex nerve is a collection of intersecting closed convex vortex cycles in K.

3.3. Open Problems

This section identifies open problems emerging from the study of proximal vortex cycles and proximal vortex nerves. Vortex cycles can
either be spatially close (overlapping vortex cycles have one or more common vertices) or descriptively close (pairs of vortex cycles that
intersect descriptively). For such cell complexes, we have the following open problems.

open-1o Vortex photons can be spatially close (overlap). From Theorem 11, a CW topology can be constructed on each cluster of vortex
photons in a uniform Leader topology on a collection of vortex photons. In that case, the problem of considering the spatial
closeness of vortex photons for classification and analysis purposes, is simplified by considering a CW topology on each cluster
of intersecting vortex photons. This is a form of problem reduction, which has not yet been attempted.

open-2o The space between the spiraling flux of vortex photons can be viewed as holes. Modelling vortex photons with holes using a
combination of connectedness proximity and CW topology on clusters of such photons for classification and analysis purposes, is
an open problem. This is a form of knowledge extraction.

open-3o It is well-known that real elementary particles can have the form of knots [18], which have various forms in knot theory [46].
Vortex cycles can be viewed as collections of intersecting knots. The collection of all possible configurations of spatially close
vortex cycles is an open problem.

open-4o A class of elementary particles known as glueballs exist as knotted chromodynamics flux lines [18]. Vortex nerves can be viewed
as collections of intersecting (overlapping) glueballs. The collection of all possible configurations of spatially close vortex nerves
is an open problem.

open-5o From what has been observed in this paper, vortex cycles can be spatially close (overlap) vortex nerves. The collection of all
possible configurations of vortex cycles spatially close to vortex nerves is an open problem.

open-6o Let the cell complex K be a Hausdorff space equipped with

∧∧
conn
δΦ and descriptive closure clΦ. Let A be a cell (skeleton) in K. A

descriptive CW complex can be defined on each cell decomposition A,B ∈ K, if and only if

descriptive Closure Finiteness Closure of every cell (skeleton) clΦA intersects on a finite number of other cells.
descriptive Weak topology A ∈ 2K is descriptively closed (A = clΦA), provided A∩

Φ
clΦB is closed, i.e., A∩

Φ
clB = clΦ(A∩ clB).

Prove that K has a topology τ that is a descriptive CW topology, provided τ has the descriptive closure finiteness and descriptive
weak topology properties.



Journal of Mathematical Sciences and Modelling 71

open-7o Let K be a finite collection of vortex cycles that is a Hausdorff space equipped the proximity

∧∧
conn
δΦ and descriptive closure clΦ

and let τ be a Leader uniform topology on the proximity space

K,

∧∧
conn
δΦ

. Prove that each cluster of vortex cycles E ∈ τ has a

descriptive CW topology on E.

open-8o Let K be a finite collection of vortex nerves that is a Hausdorff space equipped the proximity

∧∧
conn
δΦ and descriptive closure clΦ

and let τ be a Leader uniform topology on the proximity space

K,

∧∧
conn
δΦ

. Prove that each cluster of vortex cycles E ∈ τ has a

descriptive CW topology on E.
open-9o Inner and outer contours on maximal nucleus clusters (MNCs) on tessellated digital images [38, §8.9-8.2] form vortex cycles. An

open problem is to construct a CW topology on collections of MNC vortex cycles equipped with the relator

conn
δ ,

∧∧
conn
δ ,

∧∧
conn
δΦ

.

open-10o An open problem is to construct a Leader uniform topology on a collection of MNC vortex cycles equipped with the relatorconn
δ ,

∧∧
conn
δ ,

∧∧
conn
δΦ

 and a CW topology on a Leader uniform topology cluster.

open-11o Brain tissue tessellation shows an absence of canonical microcircuits [41]. For related work on donut-like trajectories along
preferential brain railways, shaped as a torus, see, e.g., [47]. An open problem is to construct a CW topology on a Leader uniform

topology cluster (equipped with the proximity
∧∧

conn
δ or with

∧∧
conn
δΦ ) that results from a brain tissue tessellation. This is an application

of the result from Problem 9.
open-12o Vortex Cat in spacetime. By tessellating a video frame showing a cat, finding the maximum nucleus cluster MNC on the

tessellated frame, and constructing fine and coarse contours surrounding the MNC nucleus, we obtain a vortex cycle. By repeating
these steps over a sequence of frames in a video, we obtain a vortex cat cycle in spacetime. See, for example, the sample vortex
cat cycles in [9] and [10]. An open problem is the construction of a Leader uniform topology on the collection of video frame

vortex cat cycles equipped with the proximity
∧∧

conn
δ and to track the persistence of a Leader uniform topology cluster over a video

frame sequence.
open-13o C̆ech nerve contours. Contours on C̆ech nerve nuclei are introduced in [1, §4.3.2, p. 119ff]. An open problem is to construct a

descriptive CW topology on a collection of C̆ech nerve contours equipped with the proximity

∧∧
conn
δΦ . �
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