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Abstract

In this paper, we present for the first time a sequence of quaternions of order 4 that we
will call the fourth-order Jacobsthal and the fourth-order Jacobsthal-Lucas quaternions. In
particular, we are interested in the generating function, Binet formula, explicit formula and
some interesting results for fourth-order Jacobsthal quaternions and fourth-order Jacobsthal-
Lucas quaternions. This generalizes some previous results given by Szynal-Liana and
Włoch in [13], Torunbalci Aydin and Yüce in [14] and Cerda-Morales in [2].

1. Introduction

The Jacobsthal numbers have many interesting properties and applications in many fields of science (see, e.g. [1, 4, 12, 9]). In [1], Barry
investigated a Jacobsthal decomposition of Pascal’s triangle. In [4], Deveci et. al. defined the generalized order-k Jacobsthal sequences
modulo m. In [12], Köken and Bozkurt showed that the Jacobsthal numbers are also generated by a special matrix. The Jacobsthal numbers
Jn are defined [9] by the recurrence relation

J0 = 0, J1 = 1, Jn+2 = Jn+1 +2Jn, n≥ 0. (1.1)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the recurrence relation

j0 = 2, j1 = 1, jn+2 = jn+1 +2 jn, n≥ 0. (1.2)

In [3] the Jacobsthal recurrence relation is extended to higher order recurrence relations and the basic list of identities provided by Horadam
[9] is expanded and extended to several identities for some of the higher order cases. Furthermore, the authors generalized the Jacobsthal
recursion as

J(r)n+r =
r−1

∑
s=1

J(r)n+r−s +2J(r)n . (1.3)

with n≥ 0 and initial conditions J0 = 0 and Js = 1 for s = 1, . . . ,r−1. For the n-th order-r Jacobsthal-Lucas numbers j(r)n we use the same
recursion with initial conditions j(r)s = j(r−1)

s for s = 1, . . . ,r−1.
In this work we consider the particular case r = 4, the fourth-order Jacobsthal numbers {J(4)n }n≥0 and the fourth-order Jacobsthal-Lucas

numbers { j(4)n }n≥0 are defined by

J(4)n+4 = J(4)n+3 + J(4)n+2 + J(4)n+1 +2J(4)n , J(4)0 = 0, J(4)1 = J(4)2 = J(4)3 = 1 (1.4)

and

j(4)n+4 = j(4)n+3 + j(4)n+2 + j(4)n+1 +2 j(4)n , j(4)0 = 2, j(4)1 = 1, j(4)2 = 5, j(4)3 = 10, (1.5)

respectively.
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The first fourth-order Jacobsthal numbers and fourth-order Jacobsthal-Lucas numbers are presented in the following table.

s 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

J(4)s 0 1 1 1 3 7 13 25 51 103 205 409 819 ...

j(4)s 2 1 5 10 20 37 77 154 308 613 1229 2458 4916 ...

On the other hand, Horadam [7] introduced the n-th Fibonacci and the n-th Lucas quaternion as follows

Qn = Fn + iFn+1 + jFn+2 + kFn+3 (1.6)

and

Qn = Ln + iLn+1 + jLn+2 + kLn+3, (1.7)

respectively. Here Fn and Ln are the n-th Fibonacci and n-th Lucas numbers, respectively. Furthermore, the basis i, j, k satisface the following
rules:

i2 = j2 = k2 =−1, i jk =−1. (1.8)

Furthermore, the rules (1.8) imply i j = − ji = k, jk = −k j = i and ki = −ik = j. In general, a quaternion is a hyper-complex number
and is defined by Q = qr + iqi + jq j + kqk, where i, j, k are as in (1.8) and {qr,qi,q j,qk} ⊂ R. Note that we can write Q = qr +VQ
where VQ = iqi + jq j + kqk. The conjugate of the quaternion Q is denoted by Q = qr−VQ. The norm of a quaternion Q is defined by
Nr(Q) = QQ = q2

r +q2
i +q2

j +q2
k ∈ R.

Many interesting properties of Fibonacci and Lucas quaternions can be found in [5, 6, 7, 8, 10]. In [6], Halici investigated complex Fibonacci
quaternions. In [8] Horadam mentioned the possibility of introducing Pell quaternions and generalized Pell quaternions. In [13], the authors
defined the Jacobsthal quaternions and the Jacobsthal-Lucas quaternions. Recently, in [2] the author defined the third-order Jacobsthal
quaternions and mentioned the possibility of introducing higher order Jacobsthal quaternions.
In this paper, we introduce and study the fourth-order Jacobsthal quaternions and the fourth-order Jacobsthal-Lucas quaternions. In particular,
we give generating function, Binet formula and some interesting results for the fourth-order Jacobsthal quaternions and fourth-order
Jacobsthal-Lucas quaternions.
For fourth-order Jacobsthal and fourth-order Jacobsthal-Lucas numbers some identities are given, see [3]. In this paper we need some of
them.

j(4)n −6J(4)n =


2 if n≡ 0 (mod 4)
−5 if n≡ 1 (mod 4)
−1 if n≡ 2 (mod 4)
4 if n≡ 3 (mod 4)

, (1.9)

6J(4)n + j(4)n − j(4)n+1 =


1 if n≡ 0,2 (mod 4)
2 if n≡ 1 (mod 4)
−4 if n≡ 3 (mod 4)

, (1.10)

J(4)n+2− J(4)n − j(4)n−1 =


0 if n≡ 0 (mod 4)
−2 if n≡ 1 (mod 4)
1 if n≡ 2,3 (mod 4)

(n≥ 1), (1.11)

n

∑
s=0

J(4)s =


J(4)n+1−1 if n≡ 0 (mod 4)

J(4)n+1 if n≡ 1,3 (mod 4)

J(4)n+1 +1 if n≡ 2 (mod 4)

(1.12)

and

n

∑
s=0

j(4)s =

{
j(4)n+1−2 if n 6≡ 0 (mod 3)

j(4)n+1 +1 if n≡ 0 (mod 3)
. (1.13)

Using standard techniques for solving recurrence relations, the auxiliary equation, and its roots are given by

x4− x3− x2− x−2 = 0; x = 2, x =−1, and x =±i.

Note that the latter two are the complex conjugate quartic roots of unity. Call them ω1 and ω2, respectively. Thus the Binet formulas can be
written as

J(4)n =
1
5

(
2n−

(
1+3i

2

)
ω

n
1 −
(

1−3i
2

)
ω

n
2

)
(1.14)

and

j(4)n =
3
10

(
2n+2 +

5
3
(−1)n +

(
1+3i

2

)
ω

n
1 +

(
1−3i

2

)
ω

n
2

)
, (1.15)
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respectively.
Now, we use the notation

H(4)
n (a,b) =

Aωn
1 −Bωn

2
ω1−ω2

=


a if n≡ 0 (mod 4)
b if n≡ 1 (mod 4)
−a if n≡ 2 (mod 4)
−b if n≡ 3 (mod 4)

, (1.16)

where A = b−aω2 and B = b−aω1, in which ω1 and ω2 are the complex conjugate quartic roots of unity (i.e. ω4
1 = ω4

2 = 1). Furthermore,
note that for all n≥ 0 we have

H(4)
n+2(a,b) =−H(4)

n (a,b), (1.17)

where H(4)
0 (a,b) = a and H(4)

1 (a,b) = b.
From the Binet formulas (1.14), (1.15) and Eq. (1.16), we have

J(4)n =
1
5

(
2n−V (4)

n

)
,

j(4)n =
3

10

(
2n+2 +

5
3
(−1)n +V (4)

n

)
,

(1.18)

where V (4)
n = H(4)

n (1,−3).

2. The fourth-order jacobsthal quaternions

The n-th fourth-order Jacobsthal quaternion JQ(4)
n and the n-th fourth-order Jacobsthal-Lucas quaternion jQ(4)

n can be defined as

JQ(4)
n = J(4)n + iJ(4)n+1 + jJ(4)n+2 + kJ(4)n+3 (2.1)

and

jQ(4)
n = j(4)n + i j(4)n+1 + j j(4)n+2 + k j(4)n+3, n≥ 0, (2.2)

respectively. Here J(4)n and j(4)n are the n-th fourth-order Jacobsthal and n-th fourth-order Jacobsthal-Lucas numbers, respectively. Further-
more, the basis i, j, k satisface the rules in (1.8).
The function G(t) = ∑n≥0 JQ(4)

n tn is called the generating function for the sequence {JQ(4)
n }. In [3], the authors found a generating function

for fourth-order Jacobsthal numbers. In the following theorem, we established the generating function for fourth-order Jacobsthal and
fourth-order Jacobsthal-Lucas quaternions.

Theorem 2.1. The generating function for fourth-order Jacobsthal-Lucas quaternion is

∑
n≥0

jQ(4)
n tn =

{
2+ i+5 j+10k+ t (−1+4i+5 j+10k)+ t2 (2+4i+5 j+7k)

+t3 (2+4i+2 j+10k)

}
1− t− t2− t3−2t4 . (2.3)

Proof. Assuming that the generating function of the quaternion { jQ(4)
n }n≥0 has the form G(t) = ∑n≥0 jQ(4)

n tn , we obtain that

(1− t− t2− t3−2t4)G(t) =
(

jQ(4)
0 + jQ(4)

1 t + · · ·
)
−
(

jQ(4)
0 t + jQ(4)

1 t2 + · · ·
)
−·· ·

= jQ(4)
0 + t

(
jQ(4)

1 − jQ(4)
0

)
+ t2

(
jQ(4)

2 − jQ(4)
1 − jQ(4)

0

)
+ t3

(
jQ(4)

3 − jQ(4)
2 − jQ(4)

1 − jQ(4)
0

)
,

since jQ(4)
n+4 = jQ(4)

n+3 + jQ(4)
n+2 + jQ(4)

n+1 +2 jQ(4)
n (n≥ 0) and the coefficients of tn for n≥ 4 are equal to zero. In equivalent form is

G(t) =

 jQ(4)
0 + t

(
jQ(4)

1 − jQ(4)
0

)
+ t2

(
jQ(4)

2 − jQ(4)
1 − jQ(4)

0

)
+t3

(
jQ(4)

3 − jQ(4)
2 − jQ(4)

1 − jQ(4)
0

) 
1− t− t2− t3−2t4 .

Thus, the proof is completed.

Thus, the Binet formula for jQ(4)
n can be given in the following theorem.

Theorem 2.2. If jQ(4)
n = j(4)n + i j(4)n+1 + j j(4)n+2 + k j(4)n+3 be the n-th fourth-order Jacobsthal-Lucas quaternion. Then,

jQ(4)
n =

3
10

[
2n+2

α +
5
3
(−1)n

β +

(
1+3i

2

)
ω

n
1 ω1 +

(
1−3i

2

)
ω

n
2 ω2

]
=

3
10

[
2n+2

α +
5
3
(−1)n

β +V Q(4)
n

]
,

(2.4)

where ω1, ω2 are the complex conjugate quartic roots of unity. Furthermore, α = 1+ 2i+ 4 j + 8k, β = 1− i+ j− k and V Q(4)
n =

V (4)
n + iV (4)

n+1 + jV (4)
n+2 + kV (4)

n+3.
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Proof. Let V (4)
n = H(4)

n (1,−3). Using the relation (1.18), we have

10
3
· jQ(4)

n =
10
3

(
j(4)n + i j(4)n+1 + j j(4)n+2 + k j(4)n+3

)
=

(
2n+2 +

5
3
(−1)n +V (4)

n

)
+ i
(

2n+3− 5
3
(−1)n +V (4)

n+1

)
+ j
(

2n+4 +
5
3
(−1)n +V (4)

n+2

)
+ k
(

2n+5− 5
3
(−1)n +V (4)

n+3

)
= 2n+2(1+2i+4 j+8k)+

5
3
(−1)n(1− i+ j− k)+V Q(4)

n ,

where V Q(4)
n =V (4)

n + iV (4)
n+1 + jV (4)

n+2 + kV (4)
n+3. Furthermore,

V Q(4)
n =

((
1+3i

2

)
ω

n
1 +

(
1−3i

2

)
ω

n
2

)
+ i
((

1+3i
2

)
ω

n+1
1 +

(
1−3i

2

)
ω

n+1
2

)
+ j

((
1+3i

2

)
ω

n+2
1 +

(
1−3i

2

)
ω

n+2
2

)
+ k
((

1+3i
2

)
ω

n+3
1 +

(
1−3i

2

)
ω

n+3
2

)
=

(
1+3i

2

)
ω

n
1 ω1 +

(
1−3i

2

)
ω

n
2 ω2,

with ω1 = 1+ω1i− j−ω1k and ω2 = 1+ω2i− j−ω2k, since ω2
1 = ω2

2 =−1. So, the theorem is proved.

In a similar way, using the Eqs. (2.3) and (2.4) one can easily prove the following theorem.

Theorem 2.3. If JQ(4)
n = J(4)n + iJ(4)n+1 + jJ(4)n+2 + kJ(4)n+3 be the n-th fourth-order Jacobsthal quaternion. Then,

∑
n≥0

JQ(4)
n tn =

(
i+ j+ k+ t (1+2k)

+t2 (−i+ j+3k)+ t3 (−1+2 j+2k)

)
1− t− t2− t3−2t4 , (2.5)

JQ(4)
n =

1
5

[
2n

α−V Q(4)
n

]
, (2.6)

where α = 1+2i+4 j+8k and V Q(4)
n =V (4)

n + iV (4)
n+1 + jV (4)

n+2 + kV (4)
n+3.

3. Some identities for the fourth-order jacobsthal quaternions

By some elementary calculations we find the following recurrence relations for the fourth-order Jacobsthal and fourth-order Jacobsthal-Lucas
quaternions from (2.1) and (2.2):

JQ(4)
n+2 + JQ(4)

n+1+JQ(4)
n +2JQ(4)

n−1

= (J(4)n+2 + iJ(4)n+3 + jJ(4)n+4 + kJ(4)n+5)+(J(4)n+1 + iJ(4)n+2 + jJ(4)n+3 + kJ(4)n+4)

+(J(4)n + iJ(4)n+1 + jJ(4)n+2 + kJ(4)n+3)+2(J(4)n−1 + iJ(4)n + jJ(4)n+1 + kJ(4)n+2)

= (J(4)n+2 + J(4)n+1 + J(4)n +2J(4)n−1)+(J(4)n+3 + J(4)n+2 + J(4)n+1 +2J(4)n )i

+(J(4)n+4 + J(4)n+3 + J(4)n+2 +2J(4)n+1) j+2(J(4)n+5 + J(4)n+4 + J(4)n+3 +2J(4)n+2)k

= J(4)n+3 + iJ(4)n+4 + jJ(4)n+5 + kJ(4)n+6

= JQ(4)
n+3

(3.1)

and similarly jQ(4)
n+3 = jQ(4)

n+2 + jQ(4)
n+1 + jQ(4)

n +2 jQ(4)
n−1, for n≥ 1.

Now, we give some interesting results for the fourth-order Jacobsthal quaternions {JQ(4)
n }n≥0 and the fourth-order Jacobsthal-Lucas

quaternions { jQ(4)
n }n≥0.

Theorem 3.1. Let n≥ 0 integer. Then, we have

jQ(4)
n −6JQ(4)

n =


2−5i− j+4k if n≡ 0 (mod 4)
−5− i+4 j+2k if n≡ 1 (mod 4)
−1+4i+2 j−5k if n≡ 2 (mod 4)

4+2i−5 j− k if n≡ 3 (mod 4)

. (3.2)

Proof. To prove Eq. (3.2) we need the Eq. (1.9). In fact, it suffices to take the Binet’s formula of J(4)n and j(4)n in (1.18). Then,

j(4)n −6J(4)n =
3
10

(
2n+2 +

5
3
(−1)n +V (4)

n

)
− 6

5

(
2n−V (4)

n

)
=

1
2

(
(−1)n +3V (4)

n

)
.
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For definitions (2.1) and (2.2), we have JQ(4)
n = J(4)n + iJ(4)n+1+ jJ(4)n+2+kJ(4)n+3 and jQ(4)

n = j(4)n + i j(4)n+1+ j j(4)n+2+k j(4)n+3. Then, if we consider
n≡ 0(mod 4), we obtain

jQ(4)
n −6JQ(4)

n =
(

j(4)n + i j(4)n+1 + j j(4)n+2 + k j(4)n+3

)
−6
(

J(4)n + iJ(4)n+1 + jJ(4)n+2 + kJ(4)n+3

)
=

(
j(4)n −6J(4)n

)
+ i
(

j(4)n+1−6J(4)n+1

)
+ j
(

j(4)n+2−6J(4)n+2

)
+ k
(

j(4)n+3−6J(4)n+3

)
= 2−5i− j+4k,

since j(4)n+1−6J(4)n+1 =−5, j(4)n+2−6J(4)n+2 =−1 and j(4)n+3−6J(4)n+3 = 4. The other identities are clear from equations (1.9) and (1.18).

Theorem 3.2. Let n≥ 0 integer. Then,

Nr(JQ(4)
n ) =

{ 1
5
(
17 ·22n−6 ·2n +4

)
if n≡ 0,1 (mod 4)

1
5
(
17 ·22n +6 ·2n +4

)
if n≡ 2,3 (mod 4)

. (3.3)

Proof. To prove Eq. (3.3), we use definition of norm for the fourth-order Jacobsthal quaternion JQ(4)
n ,

Nr(JQ(4)
n ) =

(
J(4)n

)2
+
(

J(4)n+1

)2
+
(

J(4)n+2

)2
+
(

J(4)n+3

)2
.

Then, by the Binet formula (1.18) we have

Nr(JQ(4)
n ) =

1
25


(

2n−V (4)
n

)2
+
(

2n+1−V (4)
n+1

)2

+
(

2n+2−V (4)
n+2

)2
+
(

2n+3−V (4)
n+3

)2


=

1
25

 85 ·22n−2n+1
(

V (4)
n +2V (4)

n+1 +4V (4)
n+2 +8V (4)

n+3

)
+
(

V (4)
n

)2
+
(

V (4)
n+1

)2
+
(

V (4)
n+2

)2
+
(

V (4)
n+3

)2


=

1
25

(
85 ·22n +3 ·2n+1

(
V (4)

n +2V (4)
n+1

)
+20

)
=

1
5

(
17 ·22n +3 ·2n+1U (4)

n+1 +4
)
,

(3.4)

where U (4)
n = H(4)

n (1,−1). Then, if n≡ 0,1(mod 4), we obtain U (4)
n+1 =−1 and Nr(JQ(4)

n ) = 1
5
(
17 ·22n−3 ·2n+1 +4

)
. The other identities

are clear from equations (3.4) and (1.16).

In a similar way, using the Eqs. (1.10) and (1.11) one can easily prove the following theorem.

Theorem 3.3. Let n≥ 0 integer. Then,

6JQ(4)
n − jQ(4)

n − jQ(4)
n+1 =


1+2i+ j−4k if n≡ 0 (mod 4)
2+ i−4 j+ k if n≡ 1 (mod 4)
1−4i+ j+2k if n≡ 2 (mod 4)
−4+ i+2 j+ k if n≡ 3 (mod 4)

, (3.5)

JQ(4)
n+2− JQ(4)

n − jQ(4)
n−1 =


−2i+ j+ k if n≡ 0 (mod 4)
−2+ i+ j if n≡ 1 (mod 4)
1+ i−2k if n≡ 2 (mod 4)
1−2 j+ k if n≡ 3 (mod 4)

, (n≥ 1). (3.6)

The following is a result for the sum of fourth-order Jacobsthal quaternions.

Theorem 3.4. Let n≥ 0 integer. Then,

n

∑
s=0

JQ(4)
s =


JQ(4)

n+1− (1+2k) if n≡ 0 (mod 4)

JQ(4)
n+1 +(i− j−3k) if n≡ 1 (mod 4)

JQ(4)
n+1 +(1−2 j−2k) if n≡ 2 (mod 4)

JQ(4)
n+1− (i+ j+ k) if n≡ 3 (mod 4)

. (3.7)

Proof. Using equality (1.12), we have

n

∑
s=0

J(4)s =


J(4)n+1−1 if n≡ 0 (mod 4)

J(4)n+1 if n≡ 1,3 (mod 4)

J(4)n+1 +1 if n≡ 2 (mod 4)

.
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Furthermore, if n≡ 0(mod 4), ∑
n
s=0 J(4)s = J(4)n+1−1, ∑

n+1
s=0 J(4)s = J(4)n+2, ∑

n+2
s=0 J(4)s = J(4)n+3 +1 and ∑

n+3
s=0 J(4)s = J(4)n+4. Then,

n

∑
s=0

JQ(4)
s =

n

∑
s=0

J(4)s + i
n

∑
s=0

J(4)s+1 + j
n

∑
s=0

J(4)s+2 + k
n

∑
s=0

J(4)s+3

=
n

∑
s=0

J(4)s + i

(
n+1

∑
s=0

J(4)s

)
+ j

(
n+2

∑
s=0

J(4)s −1

)
+ k

(
n+3

∑
s=0

J(4)s −2

)
=

(
J(4)n+1−1

)
+ i
(

J(4)n+2

)
+ j
(

J(4)n+3

)
+ k
(

J(4)n+4−2
)

= JQ(4)
n+1− (1+2k).

If n≡ 1(mod 4), we have ∑
n+1
s=0 J(4)s = J(4)n+2 +1, ∑

n+2
s=0 J(4)s = J(4)n+3 and ∑

n+3
s=0 J(4)s = J(4)n+4−1, then ∑

n
s=0 JQ(4)

s = JQ(4)
n+1 +(i− j−3k). The

proof is similar for the cases n≡ 2,3(mod 4). Thus, the proof is completed.

There are three well-known identities for Fibonacci numbers, namely, Catalan’s, Cassini’s, and d’Ocagne’s identities. The proofs of these
identities are based on Binet formulas. We can obtain these types of identities for fourth-order Jacobsthal quaternions using the Binet
formulas derived above. We use the notation

HQ(4)
n (a,b) =

Aωn
1 ω1−Bωn

2 ω2

ω1−ω2

=


a+bi−a j−bk if n≡ 0 (mod 4)
b−ai−b j+ak if n≡ 1 (mod 4)
−a−bi+a j+bk if n≡ 2 (mod 4)
−b+ai+b j−ak if n≡ 3 (mod 4)

,

(3.8)

where A = b−aω2 and B = b−aω1, in which ω1 = 1+ω1i− j−ω1k and ω2 = 1+ω2i− j−ω2k are the complex conjugate quartic roots
of unity (i.e. ω2

1 = ω2
2 =−1). Furthermore, note that for all n≥ 0 we have

HQ(4)
n+2(a,b) =−HQ(4)

n (a,b), (3.9)

where HQ(4)
0 (a,b) = a+bi−a j−bk and HQ(4)

1 (a,b) = b−ai−b j+ak.
The following theorem gives d’Ocagne’s identities for fourth-order Jacobsthal quaternion.

Theorem 3.5. If JQ(4)
n = J(4)n + iJ(4)n+1 + jJ(4)n+2 + kJ(4)n+3 be the n-th fourth-order Jacobsthal quaternion. Then, for any integers n and m, we

have

JQ(4)
m JQ(4)

n+1− JQ(3)
m+1JQ(4)

n =
1
5

{
2mαUQ(4)

n −2nUQ(4)
m α

−i
(
ω

m−n
1 ω1ω2−ω

m−n
2 ω2ω1

) } (3.10)

where α = 1+2i+4 j+8k , ω1 = 1+ω1i− j−ω1k, ω2 = 1+ω2i− j−ω2k and UQ(4)
n = HQ(4)

n (−1,−1).

Proof. Using the Binet formula for the fourth-order Jacobsthal quaternions and V Q(4)
n = HQ(4)

n (1,−3) in (3.8) gives

JQ(4)
m JQ(4)

n+1− JQ(4)
m+1JQ(4)

n

=
1

25

 (
2mα−V Q(4)

m

)(
2n+1α−V Q(4)

n+1

)
−
(

2m+1α−V Q(4)
m+1

)(
2nα−V Q(4)

n

) 
=

1
25

(
−2mαV Q(4)

n+1−2n+1V Qmα +2m+1αV Q(4)
n +2nV Q(4)

m+1α

+V Q(4)
m V Q(4)

n+1−V Q(4)
m+1V Q(4)

n

)

=
1
5

(
2m

αUQ(4)
n −2nUQ(4)

m α− i
(
ω

m−n
1 ω1ω2−ω

m−n
2 ω2ω1

))
,

(3.11)

where UQ(4)
n = 1

5

(
2V Q(4)

n −V Q(4)
n+1

)
= HQ(4)

n (1,−1).

Taking m = n+1 in this theorem and using the identity

−i
(
ω1ω1ω2−ω2ω2ω1

)
= ω1ω2 +ω2ω1 =−4(1+ j),

we obtain Cassini’s identities for fourth-order Jacobsthal quaternions.

Corollary 3.6. For any integer n≥ 0, we have(
JQ(4)

n+1

)2
− JQ(3)

n+2JQ(4)
n =

1
5

(
2n
(

2αUQ(4)
n −UQ(4)

n+1α

)
−4(1+ j)

)
. (3.12)

We will give an example in which we check in a particular case the Cassini-like identity for fourth-order Jacobsthal quaternions.
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Example 3.7. Let {JQ(4)
s : s = 0,1,2,3} be the fourth-order Jacobsthal quaternions such that JQ(4)

0 = i+ j+ k, JQ(4)
1 = 1+ i+ j+3k,

JQ(4)
2 = 1+ i+3 j+7k and JQ(4)

3 = 1+3i+7 j+13k. In this case,(
JQ(4)

1

)2
− JQ(4)

2 JQ(4)
0 = (1+ i+ j+3k)2− (1+ i+3 j+7k)(i+ j+ k)

= (−10+2i+2 j+6k)− (−11−3i+7 j− k)

= 1+5i−5 j+7k

=
1
5

((
2αUQ(4)

0 −UQ(4)
1 α

)
−4(1+ j)

)
.

and (
JQ(4)

2

)2
− JQ(4)

3 JQ(4)
1 = (1+ i+3 j+7k)2− (1+3i+7 j+13k)(1+ i+ j+3k)

= (−58+2i+6 j+14k)− (−48+12i+12 j+12k)

= −10−10i−6 j+2k

=
1
5

(
2
(

2αUQ(4)
1 −UQ(4)

2 α

)
−4(1+ j)

)
.

4. Conclusions

In this work, some known identities of the sequence of Jacobsthal numbers have continued to be generalized with the use of the quaternion
ring. The main motivation is based on the study of the non-commutative properties of the quaternions, and how we can solve friendly cases
with sequences of recursive numbers. In particular, the ideas of finding rules of commutativity, matrix representation of quaternion sequences
and their study in a wider class of rings, say in octonions or in any power associative ring.
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