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Abstract

Our new technique of restricted convergence domains is employed to provide a finer
convergence analysis of the Gauss-Newton method in order to solve a certain class of
systems of equations under a majorant condition. The advantages are obtained under the
same computational cost as in earlier studies such as [5, 14]. Special cases and a numerical
example are also given in this study.

1. Introduction

Let Ω⊆ Rn be open. Let F : Ω→ Rm be continuously Fréchet- differentiable. The problem of approximating least squares solutions x∗ of
the nonlinear problem

min
x∈Ω
‖F(x)‖2, (1.1)

is very important in computational mathematics. The least squares solutions of (1.1) are stationary points of Q(x) = ‖F(x)‖2. A lot of
problems arising in applied sciences and in engineering can be expressed in a form like (1.1). For example in data fitting n is the number
of parameters and m is the number of observations. Other examples can be found in [6, 16, 19] and the references therein. The famous
Gauss-Newton method defined by

xk+1 = xk−F ′(xk)
†F(xk), for each k = 0,1, · · · , (1.2)

where x0 is an initial point and F ′(xk)
† the Moore-Penrose inverse of the linear operator F ′(xk) has been used extensively to generate a

sequence {xk} converging to x∗ [1]–[6], [8, 10, 20, 14, 15, 17].
In the present paper, we are motivated by the work of Goncalves and Oliveira in [14] (see also [12], [13]) and our works in [1, 2, 3, 4, 6, 7, 8].
These authors presented a semi-local convergence analysis for the Gauss-Newton method (1.2) for systems of nonlinear equations where the
function F satisfies

‖F ′(y)†(IRm −F ′(x)F ′(x)†)F(x)‖ ≤ k‖x− y‖ for each x and y ∈Ω,

where k ∈ [0,1) and IRm denotes the identity operator on Rm. Their semilocal- convergence analysis is based on the construction of a
majorant function (see condition (h3)). Their results unify the classical results for functions involving Lipschitz derivative [6, 7, 16, 18] with
results for analytical functions (α−theory or γ−theory) [9, 11, 15, 17, 19, 20].
We introduce a center majorant function (see (c3)) which is a special case of the majorant function that can provide more precise estimates
on the distances ‖F ′(x)†‖. Then, we find a domain where the iterates lie which is more precise than in the aformentioned studies. This
leads to “smaller” majorant functions yielding to weaker sufficient convergence conditions; more precise error estimates on the distances
‖xk+1− xk‖,‖xk− x∗‖ and an at least as precise information on the location of the solution.
The rest of the paper is organized as follows: The semi-local convergence analysis of the Gauss-Newton method is presented in Section 2.
Special cases and numerical examples are given in the concluding Section 3.
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2. Semi-local convergence analysis

In this section we present the semi-local convergence analysis of the Gauss-Newton method. Let R > 0. Denote by B(x0,R), B̄(x0,R) the
open and closed balls in Rn, respectively with center x0 ∈ Rn and radius R. We shall use the hypotheses denoted by (C ).
(c0) Let B(x0,R)⊆ Rn and F : B(x0,R)→ Rm be continuously Fréchet- differentiable.
(c1) continuously differentiable functions f0 : [0,R)−→ R, f : [0,R∗)→ R

‖F ′(x0)
†‖‖F ′(x)−F ′(x0)‖ ≤ f ′0(‖x− x0‖)− f ′0(0) for each x ∈ B(x0,R)

and
‖F ′(x0)

†‖‖F ′(y)−F ′(x)‖ ≤ f ′(‖y− x‖+‖x− x0‖)− f ′(‖x− x0‖) for each x,y ∈ B(x0,R∗)

with ‖y− x‖+‖x− x0‖< R∗ where R0 := sup{t ∈ [0,R] : f ′0(t)< 0}. Set

R∗ := min{R0,R}.

(c2)

‖F ′(y)†(IRm −F ′(x)F ′(x)†)F(x)‖ ≤ κ‖x− y‖ for each x and y ∈ B(x0,R∗),

where κ ∈ [0,1).
(c3) Set η = ‖F ′(x0)

†F(x0)‖> 0, F ′(x0) 6= 0.

rank(F ′(x))≤ rank(F ′(x0)) 6= 0 for each x ∈ B(x0,R∗).

(c4)

f0(0) = f (0) = 0, f ′(0) = f ′0(0) =−1

f0(t)≤ f (t) and f ′0(t)≤ f ′(t) for each t ∈ [0,R∗).

(c5) f ′0, f ′ are convex and strictly increasing.
Let µ ≥ 0 be such that µ ≥−κ f ′(η) and define ϕη ,µ : [0,R∗)→ R by

ϕη ,µ (t) = η +µt + f (t).

(c6) ϕη ,µ (t) = 0 for some t ∈ [0,R∗).
(c7) For each s, t,u ∈ [0,R∗) with s≤ t ≤ u

t +
ϕη ,µ (u)

f ′0(u)
≤ u+

ϕη ,µ (t)−ϕη ,µ (s)−ϕ ′η ,µ (s)(t− s)

f ′0(t)

The majorizing iteration {rk} for {xk} is given by

r0 = 0, rk+1 = rk−
ϕη ,µ (rk)

f ′0(rk)
. (2.1)

The corresponding iteration {tn} used in [14] is given by

t0 = 0, tk+1 = tk−
ϕ̄η ,µ (tk)

g′(tk)
, (2.2)

where ϕ̄η ,µ (t) = η +µt +g(t), continuously differentiable function g : [0,R)−→ R is such that

‖F ′(x0)
+‖‖F ′(x)−F ′(y)‖ ≤ g′(‖y− x‖+‖x− x0‖)−g′(‖x− x0‖)

for each x,y ∈ B(x0,R). Moreover, define iterations {sk} by

s0 = 0,sk+1 = sk−
ϕη ,µ (sk)

f ′0(sk)
.

This iteration was used by us in [5]. In view of these conditions, we have

f ′0(t)≤ g′(t) (2.3)

and

f ′(t)≤ g′(t) (2.4)

for each t ∈ [0,R∗). Next, the main semi-local convergence result for the Gauss-Newton method is presented.
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Theorem 2.1. Suppose that the (C ) conditions hold and f ′0(t)≤ f ′(t) for each t ∈ [0,R∗]. Then, the following hold:
ϕη ,µ (t) has a smallest zero r∗ ∈ (0,R∗), the sequences {rk} and {xk} for solving ϕη ,µ (t) = 0 and F(x) = 0, with starting point t0 = 0 and
x0, respectively given by (1.2) and (2.3) are well defined, {rk} is strictly increasing, remains in [0,r∗), and converges to r∗, {xk} remains in
B(x0,r∗), converges to a point x∗ ∈ B(x0,r∗) such that F ′(x∗)†F(x∗) = 0. Moreover, the following estimates hold:

‖xk+1− xk‖ ≤ rk+1− rk for each k = 0,1,2, · · · ,

‖x∗− xk‖ ≤ r∗− rk for each k = 0,1,2, · · · ,

and
‖xk+1− xk‖ ≤

rk+1− rk

(rk− rk−1)2 ‖xk− xk−1‖2 for each k = 0,1,2, · · · .

Furthermore, if µ = 0(µ = 0 and f ′0(r
∗)< 0), the sequence {rk}, {xk} converge Q−linearly and R−linearly (Q− quadratically and R−

quadratically) to r∗ and x∗, respectively.

Proof. Simply repeat the proof of Theorem 3.9 in [5] (or the proof in [14]) with f replacing g. Notice also that the iterates xn remain in
B(x0,R0) which is a more precise location than B(x0,R∗) used in [5, 14].

Remark 2.2. (i) As noted in [14] the best choice for µ is given by µ =−κ f ′(κ).
(ii) If f (t) = g(t) = f0(t) for each t ∈ [0,R0) and R0 = R, then Theorem 2.1 reduces to the corresponding Theorem in [8]. Moreover, if

f ′0(t)≤ f ′t) = g′(t) we obtain the results in [5]. If

f ′0(t)≤ f ′(t)≤ g′(t) for each t ∈ [0,R∗) (2.5)

then the following advantages denoted by (A ) are obtained: weaker sufficient convergence criteria, tighter error bounds on the
distances ‖xn− x∗‖,‖xn+1− xn‖ and an at least as precise information on the location of the solution x∗. These advantages are
obtained using less computational cost, since in practice the computation of function g requires the computation of functions f0 and f
as special cases. It is also worth noticing that under (c1) function f ′0 is defined and therefore R∗ which is at least as small as R.

We have that, if function ϕ̄η ,µ has a solution t∗, then, since ϕη ,µ (t∗)≤ ϕ̄η ,µ (t∗) = 0 and ϕη ,µ (0) = ϕ̄η ,µ (0) = η > 0, we get that function
ϕη ,µ has a solution r∗ such that

r∗ ≤ t∗ (2.6)

but not necessarily vice versa. It also follows from (2.6) that the new information about the location of the solution x∗ is at least as precise as
the one given in [14, 5].
Let us specialize conditions (C ) even further in the case when f0, f and g are constant functions L0,K,L, respectively. Then, (for µ = 0) we
have that:

ϕ̄η ,µ (t) =
L
2

t2− t +η (2.7)

and

ϕη ,µ (t) =
K
2

t2− t +η , (2.8)

respectively. In this case the convergence criteria become, respectively

h = Lη ≤ 1
2

and
h1 = Kη ≤ 1

2
.

Notice that
h≤ 1

2
=⇒ h1 ≤

1
2

but not vice versa unless, K = L. Criterion (2.8) is famous for its simplicity and clarity Kantorovich hypothesis for the semilocal convergence
of Newton’s method to a solution x∗ of nonlinear equation F(x) = 0 [7, 16]. In the case of Wang’s conditions [20] we have for µ = 0 :

g(t) =
γt2

1− γt
− t, f (t) =

β t2

1−β t
− t, f0(t) =

γ0t2

1− γ0t
− t,

ϕ̄η ,µ (t) =
γt2

1− γt
− t +η , (2.9)

ϕη ,µ (t) =
β t2

1−β t
− t +η (2.10)

with convergence criteria, given respectively by

H = γη ≤ 3−2
√

2 (2.11)

H1 = βη ≤ 3−2
√

2. (2.12)
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Then, again we have that

H ≤ 3−2
√

2 =⇒ H1 ≤ 3−2
√

2

but not necessarily vice versa, unless if β = γ.
Concerning the error bounds and the limit of majorizing sequence, suppose that

−
ϕη ,µ (r)

f ′0(r)
≤−

ϕη ,µ (s)
f ′0(s)

for each r,s ∈ [0,R∗] with r ≤ s. According to the proof of Theorem 2.1, sequence {rn} is also a majorizing sequence for (1.2).
Moreover, a simple induction argument shows that

rn ≤ sn,rn+1− rn ≤ sn+1− sn

and
r∗ = lim

n−→∞
rn ≤ s∗.

Furthermore, the first two preceding inequalities are strict, for n≥ 2 if f ′0(t)< f ′(t) for each t ∈ [0,R∗]. Similarly, suppose that

−
ϕη ,µ (s)

f ′0(s)
≤−

ϕη ,µ (t)
f ′0(t)

for each s, t ∈ [0,R∗] with s≤ t. Then, we have that

sn ≤ tn,sn+1− sn ≤ tn+1− tn.

The first two preceding inequalities are also strict for n≥ 2, if strict inequality holds in (2.12).

Finally, the rest of the results in [5, 14] can be improved along the same lines by also using K instead of L. We leave the details to the
motivated reader.

3. Numerical examples

We present a simple example where we show that Wang’s condition (2.11) [20] is violated but our condition (2.12) is satisfied. More
examples can be found in [7] where L0 ≤ K ≤ L are satisfied as strict inequalities (therefore the new advantages apply) (or see also [19]).

Example 3.1. Let µ = 0, p ∈ (0,1),x0 = 1, Ω = B(x0,
1

2−p ) and define functions on Ω by

f (x) =
x4

4
− px, F(x) = x3− p. (3.1)

Define Ω∗ = B(x0,1− p). Then, we have

Ω
∗ ⊆Ω, if p ∈ [0.381966,1). (3.2)

Let L0 = 3− p and L = 2(2− p). Then, Argyros showed in [8] that for each x,y ∈Ω

|F ′(x0)
−1(F ′(x)−F ′(x0))| ≤ L0|x− x0| (3.3)

and

|F ′(x0)
−1(F ′(x)−F ′(y))| ≤ L|x− y|. (3.4)

Consider the conditions

‖F ′(x0)
−1F ′′(x)‖ ≤ 2γ

(1− γ‖x− x0‖)3 (3.5)

for each x ∈Ω,

‖F ′(x0)
−1(F ′(x)−F ′(x0))‖ ≤

1
(1− γ0‖x− x0‖)2 −1 (3.6)

for each x ∈Ω and

‖F ′(x0)
−1F ′′(x)‖ ≤ 2β

(1−β‖x− x0‖)3 (3.7)

for each x ∈Ω∗. Notice that functions ϕ̄η ,0, ϕη ,0 satisfy these conditions, respectively. In view of (3.4) and (3.5), we have L≤ 2γ, so we
choose γ = 2− p. Then, since η = 1

3 (1− p), condition (2.11) is satisfied, if

0.6255179≤ p < 1. (3.8)

We must have
B(x0,(1−

1√
2
)

1
γ
)⊆ B(x0,1− p),



84 Journal of Mathematical Sciences and Modelling

which is true for

0 < p≤ 0.7631871. (3.9)

It follows from (3.8) and (3.9) that

0.6255179 < p≤ 0.7631871. (3.10)

Set y = γ0|x− x0| and L0 = dγ0, d > 0,γ0 > 0. Using (3.6) and (3.3), we must have

L0|x− x0| ≤
1

(1− γ0|x− x0|)2 −1

or
d(1− y)2 ≤ 2− y

or

dy2 +(1−2d)y+d−2≤ 0. (3.11)

Let e.g. d = 2, then γ0 =
L0
2 = 3−p

2 and (3.11) becomes (p−3)(p−1)≤ 3 or p(p−4)≤ 0, which is true. We must show (1− 1√
2
) 1

γ0
≤ 1− p

or p2−4p+1+
√

2≥ 0, which is true for

0 < p≤ 0.7407199. (3.12)

Notice that Ω0 ⊂Ω, since (1− 1√
2
) 1

γ0
< 1

γ
or p≤ 3+

√
2, which is true, so

Ω∩Ω0 = Ω0. (3.13)

Then, for x ∈Ω0

|F ′(x0)
−1F ′′(x)| = 2|x| ≤ 2(|x− x0|+ |x0|)

≤ 2((1− 1√
2
)

2
3− p

+1)

must be smaller than 2β , so we can choose

β = 1+(1− 1√
2
)

2
3− p

= 1+
2−
√

2
3− p

.

Notice that β < γ, if (3.12) holds. We also have that γ0 < β , if

3− p
2

< 1+
2−
√

2
3− p

or if
p2−4p−1+2

√
2 < 0

or, if

0.5263741 < p < 1. (3.14)

We also must have
(1− 1√

2
)

1
β
≤ 1− p

or
2p2 +(

√
2−10)p+4+

√
2≤ 0,

which is true for

p≤ 0.767996. (3.15)

Then, notice that

1− p≤ 1
γ
,

if p2−3p+1≤ 0, which is true for

0.381966≤ p < 1. (3.16)

Then, we have that α0 ≤ 3−2
√

2 = q, if (1+ 2−
√

2
3−p ) 1

3 (1− p)≤ q or if

p2 +(
√

2−6+3q)p+5−
√

2−9q≤ 0,

which is true for

0.5857931≤ p < 1. (3.17)
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In view of (3.12), (3.14), (3.15) and (3.17) we must have

0.5857931≤ p≤ 0.7407199. (3.18)

Define intervals I and I1 by

I = [0.5857931,0.6255179) (3.19)

and

I1 = (0.7407199,0.7631871]. (3.20)

In view of (3.10), (3.19) and (3.20), we see that for p ∈ I [20] cannot guarantee the convergence of xn to x∗ = 3
√

p. However, our Theorem
2.1 guarantees the convergence of xn to x∗. Notice that, if p ∈ I1, then we can set β = γ = γ0.
Next, we compare the error bounds. Choose p = 0.623. Then, we have the following comparison table, which shows that the new error
bounds are more precise than the ones in [20].

n rn+1− rn tn+1− tn
1 0.1257 0.1257
2 0.0268 0.0333
3 0.0013 0.0027
4 3.3384e-06 1.8199e-05
5 2.0876e-11 8.2197e-10

Table 1: Comparison table.
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[11] Ferreira, O.P., Gonçalves, M.L.N, Oliveira, P.R.:, Local convergence analysis of inexact Gauss–Newton like methods under majorant condition, J.

Complexity, 27(1), 111-125, 2011.
[12] Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput.Optim. Appl. 42(2), 213–229, 2009.
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