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systems of equations under a majorant condition. The advantages are obtained under the
same computational cost as in earlier studies such as [5, 14]. Special cases and a numerical
example are also given in this study.

1. Introduction

Let Q C R” be open. Let F : Q — R™ be continuously Fréchet- differentiable. The problem of approximating least squares solutions x* of
the nonlinear problem

min || F (x)||?, (L.1)
xXEQ

is very important in computational mathematics. The least squares solutions of (1.1) are stationary points of Q(x) = ||F(x)||>. A lot of
problems arising in applied sciences and in engineering can be expressed in a form like (1.1). For example in data fitting # is the number
of parameters and m is the number of observations. Other examples can be found in [6, 16, 19] and the references therein. The famous
Gauss-Newton method defined by

Xl = Xk fF/(xk)TF(xk), foreach k=0,1,---, (1.2)

where xq is an initial point and F'(x;)" the Moore-Penrose inverse of the linear operator F’(x;) has been used extensively to generate a
sequence {x; } converging to x* [1]-[6], [8, 10, 20, 14, 15, 17].
In the present paper, we are motivated by the work of Goncalves and Oliveira in [14] (see also [12], [13]) and our works in [1, 2, 3, 4, 6, 7, 8].
These authors presented a semi-local convergence analysis for the Gauss-Newton method (1.2) for systems of nonlinear equations where the
function F satisfies

IF'(3) (Igm — F' (x)F'(x)")F (x)|| < k||x—y|| for each xandy € &,

where k € [0,1) and Ign denotes the identity operator on R™. Their semilocal- convergence analysis is based on the construction of a
majorant function (see condition (/3)). Their results unify the classical results for functions involving Lipschitz derivative [6, 7, 16, 18] with
results for analytical functions (c¢—theory or y—theory) [9, 11, 15, 17, 19, 20].

We introduce a center majorant function (see (c¢3)) which is a special case of the majorant function that can provide more precise estimates
on the distances ||F’(x)"||. Then, we find a domain where the iterates lie which is more precise than in the aformentioned studies. This
leads to “smaller” majorant functions yielding to weaker sufficient convergence conditions; more precise error estimates on the distances
|lxx11 — xk]|, [[xx — x*|| and an at least as precise information on the location of the solution.

The rest of the paper is organized as follows: The semi-local convergence analysis of the Gauss-Newton method is presented in Section 2.
Special cases and numerical examples are given in the concluding Section 3.
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2. Semi-local convergence analysis

In this section we present the semi-local convergence analysis of the Gauss-Newton method. Let R > 0. Denote by B(x, R), B(xg, R) the
open and closed balls in R”, respectively with center xy € R” and radius R. We shall use the hypotheses denoted by (%).

(co) Let B(xp,R) CR" and F : B(xp,R) — R™ be continuously Fréchet- differentiable.

(c1) continuously differentiable functions fy : [0,R) — R, f: [0,R*) = R

IE" (x0) I F' (x) = F' (xo) | < fo(llx —0]l) = f5(0) for each x € B(xo,R)

and
IF" (x0) 11" (v) = F' ()| < £ (Ily = x|+ [lx = xol|) = £ (|[x = x0]) for each x,y € B(xo,R")

with [ly — x| + |lx —xo|| < R* where Rg := sup{r € [0,R] : f}(¢) < 0}. Set
R* :=min{Ry,R}.
(c2)

IF" ()T (Ign — F'(x)F' (x)")F (x)|| < x||x—y|| for each xand y € B(xo,R"),

where k € [0,1).
(c3) Setn = ||F'(x0)'F (xo) | > 0, F(xp) # 0.

rank(F'(x)) < rank(F'(xq)) # 0 for each x € B(xp,R*).

fo(0)=£(0)=0, f'(0) = f5(0) = ~1
fo(t) < f(t) and f(t) < f'(¢) for each t € [0,R*).

(¢s) f},f' are convex and strictly increasing.
Let 1 > 0 be such that > —xf’(n) and define @y 4 : [0,R*) — R by

Onu(t) =n+ue+f(t).

(c6) @y.u(t) =0 for some ¢ € [0,R*).
(c7) For each s,t,u € [0,R*) with s <t <u

u w(®)=onu(s)—oh (s)(t—s
O o)~ 909~ 0 (6)0
fo("‘) fo(’)
The majorizing iteration {ry} for {x;} is given by
Pn.u (i)
ro=0,r 1 =rg— . @D
" fo(re)
The corresponding iteration {#, } used in [14] is given by
P (1)
10=0,fk1 =1t — ) (2.2)
* 8 (1)
where @n i (1) =1+ pr +g(t), continuously differentiable function g : [0,R) — R is such that
1E" (x0) " II1F" (x) = F' )l < &' (Ily = x| + [l = xo]) — &' (lx = xo )
for each x,y € B(xp, R). Moreover, define iterations {s;} by
Pn.u (k)
S():O7Sk 1 = Sk— —(w 77—~ -
" fo(se)
This iteration was used by us in [5]. In view of these conditions, we have
Jot) <g'(1) 23)
and
() <g'(1) 24

for each ¢ € [0,R*). Next, the main semi-local convergence result for the Gauss-Newton method is presented.
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Theorem 2.1. Suppose that the (€) conditions hold and f;(t) < f'(t) for each t € [0,R*]. Then, the following hold:

©n,u(t) has a smallest zero r* € (0,R*), the sequences {ry} and {x;} for solving @y ;i (t) = 0 and F (x) = 0, with starting point t) = 0 and
X, respectively given by (1.2) and (2.3) are well defined, {ry} is strictly increasing, remains in [0,r*), and converges to r*, {x;.} remains in
B(xg,7*), converges to a point x* € B(xo,r*) such that F' (x*)"F (x*) = 0. Moreover, the following estimates hold:

ka+1 _ka < Tk+1 =Tk for each k:O71,2,"~ )

Ix* —x¢|| < r* —ry foreach k=0,1,2,--,
and
Tk+1 — Tk 2
— < ————||xx —xx_1]||” foreach k=0,1,2,---.
[[41 — x| < Te—ri)? [k = x|
Furthermore, if 1 = 0(1 = 0 and fj(r*) <0), the sequence {r}, {xy} converge Q—linearly and R—linearly (Q— quadratically and R—
quadratically) to r* and x*, respectively.

Proof. Simply repeat the proof of Theorem 3.9 in [5] (or the proof in [14]) with f replacing g. Notice also that the iterates x,, remain in
B(x0,Ro) which is a more precise location than B(xo,R*) used in [5, 14].

Remark 2.2. (i) Asnoted in [14] the best choice for | is given by U = —kf'(k).
(ii) If f(t) = g(t) = fo(t) for eacht € [0,Ry) and Ry = R, then Theorem 2.1 reduces to the corresponding Theorem in [8]. Moreover, if
() < f't) = g'(t) we obtain the results in [5]. If

fot) < f'(¢) < g(t) foreach ¢ € [0,R*) (2.5)

then the following advantages denoted by (<) are obtained: weaker sufficient convergence criteria, tighter error bounds on the
distances ||x, — x*||,||xn+1 — xn|| and an at least as precise information on the location of the solution x*. These advantages are
obtained using less computational cost, since in practice the computation of function g requires the computation of functions fy and f
as special cases. It is also worth noticing that under (cy) function f(’) is defined and therefore R* which is at least as small as R.
We have that, if function @y y has a solution t*, then, since @y, (t*) < @n u(t*) = 0 and @y ;1 (0) = @ 1 (0) =1 > 0, we get that function
On.u has a solution r* such that

rr<r* (2.6)

but not necessarily vice versa. It also follows from (2.6) that the new information about the location of the solution x* is at least as precise as
the one given in [14, 5].

Let us specialize conditions (€') even further in the case when fy, f and g are constant functions Ly, K, L, respectively. Then, (for i1 = 0) we
have that:

Pnu(t) = %tz —t+n 2.7)
and
Pnult) = ng*erTI, (2.8)
respectively. In this case the convergence criteria become, respectively
h=ILn< %
and 1
h=Kn< 3

Notice that

but not vice versa unless, K = L. Criterion (2.8) is famous for its simplicity and clarity Kantorovich hypothesis for the semilocal convergence
of Newton’s method to a solution x* of nonlinear equation F (x) =0 [7, 16]. In the case of Wang’s conditions [20] we have for L =0 :

o _ B et
g([)_l_,yt [af(t)_l_ﬁt tvfo(l)_l_,yot )

~ 2
Pnu(t) = vl 2.9)

_ B2
Pnu(t) = ?BI—H‘TI (2.10)

with convergence criteria, given respectively by

H=ym<3-2V2 (2.11)

H, =pn<3-2V2. (2.12)
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Then, again we have that

H<3-2V2=—H,<3-2V2
but not necessarily vice versa, unless if f = y.
Concerning the error bounds and the limit of majorizing sequence, suppose that
~ Onu(r) <_ Pn.uls)
o) = fols)
Jor each r;s € [0,R*] with r < s. According to the proof of Theorem 2.1, sequence {r,} is also a majorizing sequence for (1.2).
Moreover; a simple induction argument shows that

Tn < SnyTnl —Tn < Sppl —Sn

and

= lim r, <s*.
n—syoo

Furthermore, the first two preceding inequalities are strict, for n > 2 if f(t) < f'(t) for each t € [0,R*]. Similarly, suppose that

Pn.p(s) <_‘Pn+t(f)
fols) = £

for each s,t € [0,R*] with s <t. Then, we have that
Sn StnySpt1 — Sn Syl —In.
The first two preceding inequalities are also strict for n > 2, if strict inequality holds in (2.12).

Finally, the rest of the results in [5, 14] can be improved along the same lines by also using K instead of L. We leave the details to the
motivated reader.

3. Numerical examples

We present a simple example where we show that Wang’s condition (2.11) [20] is violated but our condition (2.12) is satisfied. More
examples can be found in [7] where Ly < K < L are satisfied as strict inequalities (therefore the new advantages apply) (or see also [19]).

Example 3.1. Ler u =0, p € (0,1),x0 = 1, Q = B(xo, ﬁ) and define functions on Q by

x4 3
fx) == —px, F(x) =x"—p. (3.1

Define Q* = B(xqg,1 — p). Then, we have
Q* CQ, if p € [0.381966,1). (3.2)
Let Ly =3 — p and L =2(2 — p). Then, Argyros showed in [8] that for each x,y € Q
IF'(x0) ™" (F'(x) = F'(x0))| < Lolx — o] (3.3)
and
|F'(x0) " (F'(x) = F'(9)| < Lx—yl. (3.4)

Consider the conditions

, i 2y
|F (x0) ™ F" (x)|| < (1= ylx—x0|)? >
for each x € Q,
1
N SRS 3.6
|F' (x0)™" (F'(x) (o)l < (1 ,yOfoxOH)Z 0
for each x € Q and
, —1 1 2p
[F' (x0) " F" ()] < T—Blr—x|)? o

for each x € Q*. Notice that functions @y o, Qn o satisfy these conditions, respectively. In view of (3.4) and (3.5), we have L <2, so we
choose Yy =2 — p. Then, since N = %(1 —p), condition (2.11) is satisfied, if

0.6255179 < p < 1. 3.8)
We must have L
BX071777 ngOalipa
(xo0, ( ﬂ)y) ( )
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which is true for
0< p<0.7631871. (3.9)
1t follows from (3.8) and (3.9) that
0.6255179 < p <0.7631871. (3.10)

Set y = y|x —xo| and Ly = dy, d > 0,y > 0. Using (3.6) and (3.3), we must have

1

L0|x—x0 S T v
| (1= 7lx—x0])?

or
d(1-y)><2-y
or
dy* +(1—2d)y+d—2<0. (3.11)
Lete.g. d =2, then yy = % = 377’7 and (3.11) becomes (p—3)(p—1) <3 or p(p—4) <0, which is true. We must show (1 — %)% <l-p
or p? —4p+1++/2 >0, which is true for
0< p<0.7407199. (3.12)
Notice that Qy C Q, since (1 — %)% < 71, or p < 3++/2, which is true, so
QNQy = Q. (3.13)
Then, for x € Q

[F'(x0) ™' F" ()]

2|x| < 2(|x—2xo| + [xo)
1 2

< 2((1=——F%)57——+1
< 2A(1- )t
must be smaller than 23, so we can choose
1, 2 2—-V2
=14+(1-— =1+ .
B ( ﬁ)3—p 3-p
Notice that B <y, if (3.12) holds. We also have that ¥y < B, if
3— 2—+/2
J<]+7\/7
2 3—p
orif

PP—4p—1+42V2<0
or, if
0.5263741 < p < 1. (3.14)
We also must have L1
(1_72)3 <l-p

207+ (V2-10)p+4++2<0,

or

which is true for

p <0.767996. (3.15)
Then, notice that |
l-p< ;/,
if p> —3p—+1 <0, which is true for
0.381966 < p < 1. (3.16)

Then, wehavethata()§372\/§=q,if(1+23;6)%(17p)Sqorif

PPH(V2-6+3¢)p+5-v2-9¢<0,
which is true for

0.5857931 < p < 1. (3.17)
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In view of (3.12), (3.14), (3.15) and (3.17) we must have

0.5857931 < p <0.7407199. (3.18)
Define intervals I and I, by

I=1[0.5857931,0.6255179) (3.19)
and

I} = (0.7407199,0.7631871]. (3.20)

In view of (3.10), (3.19) and (3.20), we see that for p € I [20] cannot guarantee the convergence of x, to x* = 3/p. However, our Theorem
2.1 guarantees the convergence of x, to x*. Notice that, if p € I, then we can set B =y ="7.

Next, we compare the error bounds. Choose p = 0.623. Then, we have the following comparison table, which shows that the new error
bounds are more precise than the ones in [20].

n "'n+1 —Tn Inrl —In
1 0.1257 0.1257

2 0.0268 0.0333

3 0.0013 0.0027

4 3.3384e-06 | 1.8199e-05
5 2.0876e-11 | 8.2197e-10

Table 1: Comparison table.
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