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Abstract

Our review is devoted to Lie-algebraic structures and integrability properties of an interesting
class of nonlinear dynamical systems called the dispersionless heavenly equations, which
were initiated by Plebański and later analyzed in a series of articles. The AKS-algebraic and
related R-structure schemes are used to study the orbits of the corresponding co-adjoint
actions, which are intimately related to the classical Lie–Poisson structures on them. It is
demonstrated that their compatibility condition coincides with the corresponding heavenly
equations under consideration. Moreover, all these equations originate in this way and
can be represented as a Lax compatibility condition for specially constructed loop vector
fields on the torus. The infinite hierarchy of conservations laws related to the heavenly
equations is described, and its analytical structure connected with the Casimir invariants, is
mentioned. In addition, typical examples of such equations, demonstrating in detail their
integrability via the scheme devised herein, are presented. The relationship of a fascinating
Lagrange–d’Alembert type mechanical interpretation of the devised integrability scheme
with the Lax–Sato equations is also discussed. We pay a special attention to a generalization
of the devised Lie-algebraic scheme to a case of loop Lie superalgebras of superconformal
diffeomorphisms of the 1|N-dimensional supertorus. This scheme is applied to constructing
the Lax–Sato integrable supersymmetric analogs of the Liouville and Mikhalev-Pavlov
heavenly equation for every N ∈ N\{4;5}.

1. Introduction

We shall discuss the Lax–Sato compatible systems, the related Lie-algebraic structures and complete integrability properties of an interesting
class of nonlinear dynamical systems called the heavenly equations, introduced by Plebański [56] and analyzed in such articles as
[39, 9, 46, 47, 48, 65, 66, 73, 74]. In our previous work, we employed the AKS-algebraic and related R-structure schemes [6, 5, 7, 75, 62, 61],
applied to the holomorphic Birkhoff type factorized loop Lie algebra G̃ := d̃i f f (T1+n

C ) of vector fields on torus T1+n
C ' T1

C×Tn,n ∈ Z+,

and reanalyzed and studied in detail the corresponding coadjoint actions on G̃ ∗, closely related to the classical Lie–Poisson structures. By
constructing two commuting flows on the coadjoint space G̃ ∗, generated by a chosen root element l̃ ∈ G̃ ∗ and some Casimir invariants, we
shall demonstrate that their compatibility condition coincides with the corresponding heavenly equations under consideration.
As a by-product of the construction devised recently in [31, 60], we prove that all the heavenly equations have a similar origin and can be
represented as a Lax compatibility condition for special loop vector fields on the torus T1+n

C . We analyze the structure of the infinite hierarchy
of conservations laws related to the heavenly equations, and demonstrate that their analytical structure connected with the Casimir invariants
is generated by the Lie–Poisson structure on G̃ ∗. Moreover, we generalize the Lie-algebraic scheme of [31, 60] subject to the loop Lie algebra
G̃ ∗ = d̃i f f (T1|N

C ) of superconformal vector fields on T1|N
C , which is the Lie algebra of the Lie group of superconformal diffeomorphisms of
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the 1|N-dimensional supertorus T1|N
C ' T1

C×ΛN
1 , where Λ := Λ0⊕Λ1 is an infinite-dimensional Grassmann algebra over C, Λ0 ⊃C. This is

applied to constructing the Lax–Sato type integrable superanalogs of the Mikhalev–Pavlov heavenly super-equation for every N ∈ N\{4;5}.
Typical examples are presented for all cases of the heavenly equations and their integrability is verified using the scheme devised here. This
scheme also makes it possible to construct a very natural derivation of the well-known Lax–Sato type representation [63, 64] for an infinite
hierarchy of heavenly equations, related to the canonical Lie–Poisson structure on the adjoint space G̃ ∗. As a result of suitably chosen
superconformal mappings in the space of variables (z;θ1, . . . ,θN) ∈ T1|N

C the superanalogs of Liouville type equations are obtained. We also
mention also show that an aspect of our approach to describing integrability of the heavenly dynamical systems is closely related to their
classical Lagrange–d’Alembert type mechanical interpretation.
There are only a few examples of multi-dimensional integrable systems for which detailed descriptions of their mathematical structure
have been given and our work is a next step in extending this list via new mathematical techniques utilizing the internal structure of
heavenly nonlinear dispersionless integrable dynamical systems. We wish to mention that we have been strongly influenced both by the
research of Pavlov, Bogdanov, Dryuma, Konopelchenko and Manakov [11, 9, 10, 33], as well as that of Ferapontov and Moss [26], Błaszak,
Szablikowski and Sergyeyev, Krasil’shchik [7, 67, 70, 71, 68, 69, 34] wherein new effective differential-geometric and analytical methods
for studying integrable degenerate multi-dimensional dispersionless heavenly type hierarchies of equations, the mathematical importance of
which is still far from being fully appreciated.

2. Generalized Lie-algebraic structures and related dispersionless heavenly type quasi-Hamiltonian
systems

2.1. A generalized Lie algebra of holomorphic toral vector fields

Let G̃± := D̃i f f±(T1+n
C ), n ∈ Z+, be subgroups of the Birkhoff type [57] loop diffeomorphisms group D̃i f f (T1+n

C ) := {C ⊃ S1 →
Di f fhol(S1×Tn)}, holomorphically extended in the interior D1

+ ⊂ C and in the exterior D1
− ⊂ C regions of the unit disc D1 with the

boundary ∂D1 = S1 ⊂C, where for any g(λ ) ∈ G̃±, either for λ ∈ D1
− , g(∞) = 1 ∈Di f f (T1+n

C ) or for λ ∈ D1
+ , g(0) = 1 ∈Di f f (T1+n

C ).

The corresponding Lie subalgebras G̃± := d̃i f f±(T1+n
C ) of the loop subgroups G̃± are vector fields on T1+n

C holomorphic, respectively, on
D1
± ⊂ C, where either for any ã(λ ) ∈ G̃−, ã(∞) = 0, or for any ã(λ ) ∈ G̃+, ã(0) = 0. The loop Lie algebra G̃ := d̃i f f (T1+n

C ) allows the
direct sum splitting

G̃ = G̃+⊕ G̃−, (2.1)

which can be naturally identified with a dense subspace of the dual space G̃ ∗ via the Sobolev type metric

(l̃, ã)s;q := res
λ∈C

λ
−sl(λ ;x),a(λ ;x))Hq , (2.2)

for some fixed s ∈ Z and q ∈ Z+. Here, by definition, a loop vector field ã ∈ Γ(T̃ (T1+n
C )) and a loop differential 1-form l̃ ∈ Λ̃1(T1+n

C ) are
given as

ã =
n

∑
j=1

a( j)(λ ;x)
∂

∂x j
+a(0)(λ ;x) :=

〈
a(x),

∂

∂x

〉
, (2.3)

l̃ =
n

∑
j=1

l j(λ ;x)dx j + l0(λ ;x) := 〈l(x),dx〉

for any x:= (λ ;x) ∈ T1+n
C , and

(l,a)Hq =
n

∑
j=0

q

∑
|α|=0

∫
Tn

dx
∂ |α|l j

∂xα

∂ |α|a j

∂xα
. (2.4)

In particular, for q = 0 = s one has

(l̃, ã)0 := (l̃, ã)0;0 = res
λ∈C

∫
Tn

dx(
n

∑
j=0

l j a j), (2.5)

which is the case mainly chosen in the sequel.
It is now important to mention that the holomorphic Lie algebra G̃ = di f f (T1+n

C ) splitting (2.1) makes it possible to introduce on the Lie
algebra G̃ the canonical R-structure:

[ã, b̃]R := [Rã, b̃]+ [ã,Rb̃] (2.6)

for any ã, b̃ ∈ G̃ , where

R := (P+−P−)/2, (2.7)

and

P±G̃ := G̃± ⊂ G̃ . (2.8)
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Then for arbitrary smooth mappings f ,g ∈ D(G̃ ∗) one has two Lie–Poisson brackets

{ f ,g} := (l̃, [∇ f (l̃),∇g(l)]) (2.9)

and

{ f ,g}R := (l̃, [∇ f (l̃),∇g(l̃)]R), (2.10)

where at a fixed seed element l̃ ∈ G̃ ∗ the gradient elements ∇ f (l̃) and ∇g(l̃) ∈ G̃ are calculated, in general, with respect to the metric (2.4).
Now let us assume that a smooth function h ∈ I(G̃ ∗) is a Casimir invariant, that is

ad∗
∇h(l̃) l̃ = 0 (2.11)

for a chosen seed element l̃ ∈ G̃ ∗. As the adjoint mapping ad∗
∇h(l̃)

: G̃ ∗→ G̃
∗ for any h ∈D(G̃ ∗) with respect to the scalar product (2.5) can

be rewritten in the reduced form as

ad∗
∇h(l̃) l̃ =

〈
∂

∂x
,◦∇h(l)

〉
l̃ +

〈〈
l,

∂

∂x
∇ f (l)

〉
,dx
〉
, (2.12)

where, by definition, ∇h(l̃) :=< ∇h(l), ∂

∂x >∈ G̃ and “◦” denotes the composition of mappings. For a suitable Casimir function h ∈D(G̃ ∗),
the condition (2.11) is then equivalent to the equation〈

∂

∂x
,◦∇h(l)

〉
l +

〈
l,(

∂

∂x
∇h(l))

〉
= 0, (2.13)

which should be be solved analytically. When l̃ ∈ G̃ ∗ is chosen to be singular as |λ | → ∞, one can consider [18] the general asymptotic
expansion

∇h(p)(l) ∼ λ
p

∑
j∈Z+

η
(p)
j (l)λ− j (2.14)

for some suitably chosen integers p ∈ Z+, and upon substituting (2.14) into the equation (2.13), one can solve it recurrently.
Now let h(py),h(py) ∈ I(G̃ ∗) be a Casimir functions for which the Hamiltonian vector field generators

∇h(y)(l̃) := ∇h(py)(l̃)|+, ∇h(t)(l̃) := ∇h(pt )(l̃)|+ (2.15)

are, respectively, defined for special integers py, pt ∈ Z+. These invariants generate, owing to the Lie–Poisson bracket (2.10), (as before for
the case q = 0 = s) the following commuting flows

∂ l/∂ t =−
〈

∂

∂x ,◦∇h(t)(l)
〉

l−
〈

l,( ∂

∂x ∇h(t)(l))
〉
,

(2.16)

∂ l/∂y =−
〈

∂

∂x ,◦∇h(y)(l)
〉

l−
〈

l,( ∂

∂x ∇h(y)(l))
〉
,

where y, t ∈R are the corresponding evolution parameters. Since the invariants h(py),h(py) ∈ I(G̃ ∗) commute with respect to the Lie–Poisson
bracket (2.10), the flows (2.16) also commute, implying that the corresponding Hamiltonian vector field generators

∇h(t)(l̃) :=
〈

∇h(t)(l),
∂

∂x

〉
, ∇h(y)(l̃) :=

〈
∇h(y)(l),

∂

∂x

〉
(2.17)

satisfy the Lax–Sato compatibility condition

∂

∂y
∇h(t)(l̃)− ∂

∂ t
∇h(y)(l̃) = [∇h(t)(l̃),∇h(y)(l̃)] (2.18)

for all y, t ∈ R. On the other hand, the condition (2.18) is equivalent to the compatibility condition of two linear equations

(
∂

∂ t
+∇h(t)(l̃))ψ = 0, (

∂

∂y
+∇h(y)(l̃))ψ = 0 (2.19)

for a function ψ ∈C2(R2×T1+n
C ;C) and all y, t ∈ R.

The above can be formulated as the following key result:

Proposition 2.1. Let a seed vector field be l̃ ∈ G̃ ∗ and h(py),h(py) ∈ I(G̃ ∗) be Casimir functions subject to the metric (·, ·)0 on the holomorphic
Lie algebra G̃ and the natural coadjoint action on the loop co-algebra G̃ ∗. Then

∂ l̃/∂y =−ad∗
∇h(y)(l̃) l̃, ∂ l̃/∂ t =−ad∗

∇h(t)(l̃) l̃ (2.20)

are commuting Hamiltonian dynamical systems for all y, t ∈ R. Moreover, the compatibility condition of these flows is equivalent to the
Lax–Sato vector field representation

(∂/∂ t +∇h(t)(l̃))ψ = 0, (∂/∂y+∇h(y)(l̃))ψ = 0, (2.21)

where ψ ∈C2(R2×T1+n
C ;C) and the vector fields ∇h(t)(l̃),∇h(t)(l̃) ∈ G̃ are given by the expressions (2.17) and (2.15).
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Remark 2.2. As mentioned above, the expansion (2.14) is effective if a chosen seed element l̃ ∈ G̃ ∗ is singular as |λ | → ∞. In the case
when it is singular as |λ | → 0, the expression (2.14) should be replaced by the expansion

∇h(p)(l)∼ λ
−p

∑
j∈Z+

η
(p)
j (l)λ j (2.22)

for suitably chosen integers p ∈ Z+, and the reduced Casimir function gradients then are given by the Hamiltonian vector field generators

∇h(y)(l) := ∇h(py)(l)|−, ∇h(t)(l) := ∇h(pt )(l)|− (2.23)

for suitably chosen positive integers py, pt ∈ Z+. Moreover, the corresponding Hamiltonian systems are, respectively, written as

∂ l̃/∂ t =−ad∗
∇h(t)(l̃) l̃, ∂ l̃/∂y =−ad∗

∇h(y)(l̃)l, (2.24)

where we need to mention that, owing to the analytical structure of the seed element l̃ ∈ G̃ ∗, the corresponding functional evolution equations
on its coefficients are only quasi-Hamiltonian and are suitable reductions of the true Hamiltonian flows (2.24).

Remark 2.3. It is also possible to describe the Bäcklund transformations between two special solution sets for the dispersionless heavenly
equations resulting from the Lax–Sato compatibility condition (2.20). In fact, take a diffeomorphism ξ ∈ D̃i f f (T1+n

C ) such that a seed
differential form l̃(λ ;x) ∈ G̃ ∗ ' Λ1(T1+n

C ) satisfies the invariance condition

l̃(ξ (x|µ)) = kl̃(x̄) (2.25)

for some non-zero constant k ∈ C\{0}, any x = (λ ;x) and x̄ = (µ;x) ∈ T1+n
C with arbitrarily chosen parameter µ ∈ T1

C. As the seed

element l̃(ξ (x|µ)) ∈ Λ1(T1+n
C ) satisfies the compatible equations (2.20), the loop diffeomorphism ξ ∈ D̃i f f (T1+n

C ), found analytically
from the invariance condition (2.25), satisfies the compatible system of vector field equations

∂

∂ t
ξ = ∇h(t)(l),

∂

∂y
ξ = ∇h(y)(l),

giving rise to the Bäcklund type relationships for the coefficients of the seed differential form l̃ ∈ G̃ ∗ ' Λ1(T1+n
C ).

The following examples demonstrate the analytical applicability of the above Lie-algebraic scheme for constructing a wide class of nonlinear
multi-dimensional heavenly integrable Hamiltonian systems on function spaces.

2.2. Example: Einstein–Weyl metric equation

Define G̃ := d̃i f f (T2
C), where for any ã(λ ) ∈ G̃−, λ ∈ C, the value ã(∞) = 0, and take a seed element l̃ ∈ G̃ ∗ in the following form

l̃ =
(
uxλ −2uxvx−uy

)
dx+

(
λ

2− vxλ + vy + v2
x

)
dλ ,

where (u,v) ∈C∞(R2×T1) and which generates with respect to the metric (2.5) (as before for q = 0 = s) the gradients of the Casimir
invariants h(1),h(2) ∈ I(G̃ ∗) in the form

∇h(2)(l) ∼ λ 2(0,1)ᵀ+(−ux,vx)
ᵀλ +(uy,u− vy)

ᵀ+O(λ−1), (2.26)

∇h(1)(l) ∼ λ (0,1)ᵀ+(−ux,vx)
ᵀ +(uy,−vy)

ᵀλ−1 +O(λ−2)

as |λ | → ∞ at pt = 2, py = 1. For the gradients of the Casimir functions h(1),h(2) ∈ I(G ∗) determined by (2.15), one can easily obtain the
corresponding Hamiltonian vector field generators

∇h(t)(l̃) :=
〈

∇h(2)(l)+, ∂

∂x

〉
= (λ 2 +λvx +u− vy)

∂

∂x +(−λux +uy)
∂

∂λ
,

∇h(y)(l̃) =
〈

∇h(1)(l)+, ∂

∂x

〉
= (λ + vx)

∂

∂x −ux
∂

∂λ
, (2.27)

satisfying the compatibility condition (2.18), which is equivalent to the system
uxt +uyy +(uux)x + vxuxy− vyuxx = 0,

vxt + vyy +uvxx + vxvxy− vyvxx = 0,
(2.28)

describing general integrable Einstein–Weyl metric equations [23].
As is well known [39], the invariant reduction of (2.28) at v = 0 gives rise to the famous dispersionless Kadomtsev–Petviashvili equation

(ut +uux)x +uyy = 0, (2.29)

for which the reduced vector field representation (2.19) follows from (2.27) and is given by the vector fields

∇h(t)(l̃) = (λ 2 +u) ∂

∂x +(−λux +uy)
∂

∂λ
, (2.30)

∇h(y)(l̃) = λ
∂

∂x −ux
∂

∂λ
,
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satisfying the compatibility condition (2.18), equivalent to the equation (2.29). In particular, (2.19) and (2.30) imply the vector field
compatibility relationships

∂ψ

∂ t +(λ 2 +u) ∂ψ

∂x +(−λux +uy)
∂ψ

∂λ
= 0

∂ψ

∂y +λ
∂ψ

∂x −ux
∂ψ

∂λ
= 0,

(2.31)

satisfied for ψ ∈C2(R2×T2
C;C) and any y, t ∈ R,(λ ;x) ∈ TC×T1.

2.3. Example: The modified Einstein–Weyl metric equation

This equation system is

uxt = uyy +uxuy +u2
xwx +uuxy +uxywx +uxxa, (2.32)

wxt = uwxy +uywx +wxwxy +awxx−ay,

where (u,w) ∈C∞(R2×T1),ax := uxwx−wxy, and was recently derived in [68]. In this case we also take G̃ := d̃i f f (T2
C), where for any

ã(λ ) ∈ G̃−,λ ∈ C, the value ã(∞) = 0, yet for a seed element l̃ ∈ G̃ we choose the form

l̃ = [λ 2ux +
(
2uxwx +uy +3uux

)
λ +2ux∂−1

x uxwx +2ux∂−1
x uy + (2.33)

+3uxwx
2 +2uywx +6uuxwx +2uuy +3u2ux−2aux]dx+

+ [λ 2 +(wx +3u)λ +2∂−1
x uxwx +2∂−1

x uy +wx
2 +3uwx +3u2−a]dλ ,

which with respect to the metric (2.5) (as before for q = 0 = s) generates two Casimir invariants h(1),h(2) ∈ I(G̃ ∗), whose gradients, as
follows from (2.15), equal

∇h(2)(l) ∼ λ 2[(ux,−1)ᵀ+(uux +uy,−u+wx)
ᵀλ−1 + (2.34)

+(0,uwx−a)ᵀλ−2]+O(λ−1) ,

∇h(1)(l) ∼ λ [(ux,−1)ᵀ+(0,wx)
ᵀ λ−1]+O(λ−1),

as |λ | → ∞ at py = 1, pt = 2. The suitable positive projections

∇h(y)(l) := ∇h(1)(l)|+ = (uxλ ,−λ +wx)
ᵀ, (2.35)

∇h(y)(l) := ∇h(2)(l)|+ = (uxλ 2 +(uux +uy)λ ,−λ 2 +(wx−u)λ +uwx−a)ᵀ.

of the gradients (2.34) generate the Hamiltonian flows (2.20), giving rise to the compatible Lax–Sato vector field system

∂ψ

∂y +(−λ +wx)
∂ψ

∂x +uxλ
∂ψ

∂λ
= 0, (2.36)

∂ψ

∂ t + [−λ 2 +( wx−u)λ +uwx−a) ∂ψ

∂x +(uxλ 2 +(uux +uy)λ ]
∂ψ

∂λ
= 0,

satisfied for ψ ∈C2(R2×T2
C;C), any y, t ∈ R and all (λ ;x) ∈ T2

C.

2.4. Example: The Dunajski heavenly equations

This equation, suggested in [20], generalizes the corresponding anti-self-dual vacuum Einstein equation, which is related to the Plebański
metric and the celebrated Plebański [56] second heavenly equation. To study the integrability of the Dunajski equations

ux1t +uyx2 +ux1x1 ux2x2 −u2
x1x2
− v = 0, (2.37)

vx1t + vx2y +ux1x1 vx2x2 −2ux1x2 vx1x2 = 0,

where (u,v) ∈C∞(R2×T2;R2), (y, t;x1,x2) ∈ R2×T2, we define G̃ := d̃i f f (T3
C), where for any ã(λ ) ∈ G̃− the value ã(∞) = 0, and take

the following as a seed element l̃ ∈ G̃ ∗:

l̃ = (λ + vx1 −ux1x1 +ux1x2)dx1 +(λ + vx2 +ux2x2 −ux1x2)dx2 +λdλ . (2.38)
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With respect to the metric (2.5) (as before for q = 0 = s), the gradients of two functionally independent Casimir invariants h(py) ,h(pt ) ∈ I(G̃ ∗)
can be obtained as |λ | → ∞ in the asymptotic forms

∇h(py) (l) ∼ λ (0,1,0)ᵀ+(−vx1 ,−ux1x2 ,ux1x1)
ᵀ +O(λ−1), (2.39)

∇h(pt ) (l) ∼ λ (0,0,−1)ᵀ+(vx2 ,ux2x2 ,−ux1x2)
ᵀ +O(λ−1)

at pt = 1 = py. Upon calculating the Hamiltonian vector field generators

∇h(y)(l) := ∇h(py) (l)|+ = (−vx1 ,λ −ux1x2 ,ux1x1)
ᵀ, (2.40)

∇h(t)(l) := ∇h(pt ) (l)|+ = (vx2 ,ux2x2 ,−λ −ux1x2)
ᵀ,

following from the Casimir functions gradients (2.39), one easily obtains the vector fields

∇h(t)(l̃) :=< ∇h(t)(l), ∂

∂x >= ux2x2
∂

∂x1
− (λ +ux1x2)

∂

∂x2
+ vx2

∂

∂λ
, (2.41)

∇h(y)(l̃) :=< ∇h(y)(l), ∂

∂x >= (λ −ux1x2)
∂

∂x1
+ux1x1

∂

∂x2
− vx1

∂

∂λ
,

satisfying the Lax–Sato compatibility condition (2.18)

∂ψ

∂ t
+ux2x2

∂ψ

∂x1
− (λ +ux1x2)

∂ψ

∂x2
+ vx2

∂ψ

∂λ
= 0,

(2.42)
∂ψ

∂y
+(λ −ux1x2)

∂ψ

∂x1
+ux1x1

∂ψ

∂x2
− vx1

∂ψ

∂λ
= 0,

equivalent to the the Dunajski [20] equation (2.37) and satisfied for ψ ∈C2(R2×T3
C;C), any (y, t;x1,x2) ∈ R2×T2 and all λ ∈ T1

C. As
mentioned in [9], the Dunajski equations (2.37) generalize both the dispersionless Kadomtsev–Petviashvili and Plebański second heavenly
equations, and is also a Lax–Sato integrable quasi-Hamiltonian system.

2.5. Example: The Kupershmidt hydrodynamic heavenly type system

This mutually compatible hydrodynamic system [4, 36, 37, 69, 48] is given as

3vy−6uvx +6uxv+6uuy−6u2ux−2ut = 0,

−12vx +6uy−12uux = 0, (2.43)

6uvxx−3vxy−6uxxv−6uxuy +6u2uxx−6uuxy +12uux
2 +2uxt = 0,

6vxx +6uuxx−3uxy +6ux
2 = 0

for smooth functions (u,v) ∈C∞(R2×T1;R2) with respect to “hidden” evolution parameters t,y ∈ R and the spatial variable x ∈ T1. Its
Lax–Sato integrability stems from a seed element l̃ ∈ G̃ ∗, where G̃ denotes the (holomorphic in λ ∈ S1

± ) Lie algebra G̃ := d̃i f f (T2
C) of

the loop diffeomorphism group D̃i f f (T2
C), such that for any ã(λ ) ∈ G̃−,λ ∈ C, ã(∞) = 0 and

l̃ = [λ (vx +2uux)+λ
2ux]dx+[(v+u2)+2λu+λ

2]dλ (2.44)

for all x ∈ T1 and λ ∈ T1
C. The corresponding gradients for the Casimir invariants h( k) ∈ I(G̃ ∗), k = 1,2, are easily constructed from the

determining conditions ad∗
∇h(k)(l̃)

l̃ = 0,k = 1,2, as the following asymptotic expansions:

∇h(k)(l)∼ λ
pk ∑

j∈Z+

η
(k)
j (l)λ− j, (2.45)

giving rise at pk = k,k = 1,2, to the expressions:

∇h(1)(l) ∼ (2(λ +u),−2λux)
ᵀ+O(λ−1), (2.46)

∇h(2)(l) ∼ (3(λ 2 +2λu++u2 + v),−3λ (λux +2uux + vx))
ᵀ+O(λ−1),

as |λ | → ∞. Now taking into account the following Hamiltonian flows on G̃ ∗

dl̃/dy =−ad∗
∇h(y)(l̃) l̃, dl̃/dy =−ad∗

∇h(t)(l̃) l̃ (2.47)

with respect to the evolution parameters y, t ∈ R, where, by definition,

∇h(y)(l̃) := ∇h(1)(l̃)|+ = 2(λ +u)∂/∂x−2λux∂/∂λ , (2.48)

∇h(t)(l̃) := ∇h(2)(l̃)|+ = 3(λ 2 +2λu+u2 + v)∂/∂x−3λ (λux +2uux + vx)∂/∂λ
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are holomorphic vector fields on T2
C, we can easily derive the corresponding compatible Kupershmidt hydrodynamic systems (2.43).

It is also easy to check that the compatibility condition for a set of the vector fields (2.47) gives rise to the equivalent Lax–Sato vector field
representation

∂ψ

∂ t −3(λ 2 +2λu+u2 + v) ∂ψ

∂x +3λ (λux +2uux + vx)
∂ψ

∂λ
= 0,

∂ψ

∂y −2(λ +u) ∂ψ

∂x +2λux
∂ψ

∂λ
= 0,

(2.49)

satisfied for ψ ∈C2(R2×T2
C;C) for all (y, t;x,λ ) ∈ R2×T2

C. The result obtained above can be formulated as the follows:

Proposition 2.4. The Kupershmidt hydrodynamic heavenly system (2.43) is representable as commuting Hamiltonian flows (2.47) on orbits
of the coadjoint action of the holomorphic loop Lie algebra G̃ = d̃i f f (T2

C) and are equivalent to the Lax–Sato vector field compatibility
condition (2.49).

2.6. Examples:New spatially 3D-integrable heavenly systems

2.6.1. The first Sergyeyev spatially 3D-integrable heavenly system

A new spatially 3D-integrable heavenly system, recently constructed in [71], using techniques from contact geometry [12, 38], is given as
the flow

ut − vy− vuz− rux +uvz +wvx = 0, (2.50)

2uz− rz +wx +2wwz = 0,

2rx−3ux−2wy− vz +2wuz−2wwx +2uwz = 0,

wt − ry +2vx−4wux +wrx− rwx− vwz +urz = 0

with respect to two evolution parameters t,y ∈ R for four smooth functions (u,v,w,r) ∈C∞(R2×T2;R4). Let us set G̃ := d̃i f f (T3
C) and

take the corresponding seed element l̃ ∈ G̃ ∗ as

l̃ = [3∂−1
z (3axxx +6wz axx +14wxz wx +(12wwx +6rx) wz +8wwxx+
+
(
6w2 +6r

)
wxz +16w2

x +6rz wx +2vxz + rxx +6wrxz)+
+6λ axx +

(
36λ a+12λ 2) ax +6λ rx]dx+

+[27axx +70wz ax +
(
30a2 +36λ a+30r+12λ 2) wz+

+(64w+6λ ) wx +10vz +(30w+6λ ) rz +9rx]dz+

+[42ax +54w2 +48λ w+18r+12λ 2]dλ ,

(2.51)

where wx = (r−w2−2u)z and a ∈C∞(R2×T2;R) is such that w = az, r−w2−2u = ax for all x,z ∈ T2. The seed element (2.51) naturally
generates two independent Casimir functionals h(1),h(2) ∈ I(G̃ ∗), whose gradients allow as |λ | → ∞ expansions (2.14) in the form

∇h(1)(l)∼ (wzλ
2 +(uz−wx)λ −ux,2λ +w,u−λ 2)ᵀ+O(λ−1),

∇h(2)(l)∼ (2wzλ
3 +(−2wx + rz)λ

2− rx + vz)λ − vx,
3λ 2 +4wλ + r,−2λ 3−2wλ 2 + v)ᵀ+O(λ−1).

Now, by defining

∇h(y)(l) := ∇h(1)(l)|+ = (wzλ
2 +(uz−wx)λ −ux,2λ +w,u−λ 2)ᵀ, (2.52)

∇h(t)(l) := ∇h(2)(l)|+ = (2wzλ
3 +(−2wx + rz)λ

2− rx + vz)λ − vx,

3λ 2 +4wλ + r,−2λ 3−2wλ 2 + v)ᵀ

subject to the canonical splitting G̃ = G̃+⊕ G̃−, one obtains for the heavenly equation (2.50) the following vector field representation

∂ψ

∂ t +(3λ 2 +4wλ + r) ∂ψ

∂x +(−2λ 3−2wλ 2 + v) ∂ψ

∂ z +

+[2wzλ
3 +(−2wx + rz)λ

2 +(−rx + vz)λ − vx]
∂ψ

∂λ
= 0,

∂ψ

∂y +[2λ +w] ∂ψ

∂x +(3λ 2 +4wλ + r) ∂ψ

∂ z +(u−λ 2) ∂ψ

∂λ
= 0,

(2.53)

satisfied for ψ ∈C2(R2×T3
C;C), any (t,y;x,z) ∈ R2×T2 and all λ ∈ TC.
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2.6.2. The second Sergyeyev spatially 3D-integrable heavenly system

The second spatially 3-D integrable heavenly system, presented in [71], is given by two separate flows

ut = 2rvx−2vwz + vrx +wux, (2.54)

vt = vwx +wvx,

wy = 2vrz−2rux +uwz + rvz,

ry = urz + ruz

with respect to two independent evolution parameters t,y ∈ R for four smooth functions (u,v,w,r) ∈ C∞(R2 ×T2;R4). Inasmuch
the system (2.54) is not completely specified as evolution flows and is obviously invariant with respect to the involution mapping
Symm{x� z, t� y;u� w,r� v}, we need to take this into account to imbed this system into our Lie-algebraic integrability scheme.

We start, as before, from the basic vector fields Lie algebra d̃i f f (T3
C) on the torus T3

C with coefficients from the differential-algebra
R{u,v,w,r|(x,z;λ )}, considering its splitting

G̃ : = G̃+⊕ G̃− (2.55)

with G̃± := d̃i f f (T3
C)|±, naturally determining on G̃ the canonical R-structure R = (P+−P−)/2 with projections P±G̃ : = G̃± ⊂ G̃ .

Taking into account the splitting (2.55), one can construct the adjoint with respect to the bilinear form (·, ·)0 space G̃ ∗ = G̃ ∗+⊕ G̃ ∗−, where
G̃ ∗± = d̃i f f

∗
(T3

C)|± . Now if we choose a generating seed element l̃ ∈ G̃ ∗+⊕ G̃ ∗− to be suitably anti-symmetric subject to the system (2.54),
that is

Symmλ l̃ =−l̃, (2.56)

where, by definition, the extended mapping Symmλ : G̃ ∗→ G̃ ∗ acts via the extended involution Symmλ {x� z, t� y;u�w,r� v;λ� 1/λ

}, then one can write down, as an example, the following expression

l̃ = l∗−Symmλ l∗ (2.57)

with some element l∗ ∈ G̃ ∗+ that we take in the form

l∗ := r4dλ ++[r2 ∂

∂ z
−1

(3ar6wz− rwxx +wrxx+

+r−1wr2
x +2r−2ax)+aλ + r3rxλ 2]dx+

+[a− r3wx +2r2wrx + r3(wz + rx)λ + r3rzλ
2]dz

. (2.58)

Here a := r3 ∂

∂ z
−1

(3r−1rxwz +wxz + rxx +5r−1r2
x ), with coefficients from the suitably extended differential-algebra R{u,v,w,r|(x,z;λ )} as

it satisfies the Casimir determining equation (2.5) subject to the vector field

∇h(l∗)∼ ∇h(t)(l∗)++ ∑
j∈Z+

∇h j(l∗)λ−( j+1), (2.59)

where

∇h(t)(l∗) = [rzλ
3 +(wz− rx)λ

2−wxλ ]∂/∂λ +(2λ r+w)∂/∂x− rλ
2
∂/∂ z. (2.60)

Based on the projected gradient element (2.60) one can construct on G̃ ∗ the Hamiltonian flow

∂ l∗/∂ t =−ad∗
∇h(t)(l∗)l

∗ (2.61)

with respect to the temporal evolution parameter t ∈ R. Recalling now the symmetry property (2.56), one can apply the mapping Symmλ to
(2.60) and obtain, as a result, the evolution flow

∂ l∗/∂y =−ad∗
∇h(y)(l∗)l

∗ (2.62)

with respect to the evolution parameter y ∈ R, which is compatible with the flow (2.61), where we define

∇h(y(l∗) := Symmλ ∇h(t)(l∗) = (λuz−ux + vz− vxλ
−1)∂/∂λ − vλ

−2
∂/∂x+(u+2vλ

−1)∂/∂ z. (2.63)

Having applied now the mapping Symmλ to both sides of the relationship (2.62), we obtain the flow

∂

∂ t
(Symmλ l∗) =−ad∗

∇h(t)(l∗)(Symmλ l∗). (2.64)

Combining this with (2.61) gives rise to the flow

∂ l̃/∂ t =−ad∗
∇h(t)(l∗) l̃ , (2.65)
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which is a priori compatible with its symmetry Symmλ image:

∂ l̃/∂y =−ad∗
∇h(y)(l∗) l̃. (2.66)

As the evolution parameters are mutually independent, from flows (2.61) and (2.62) one obtains their natural compatibility condition, which
is equivalent to the following vector field expression:

∂

∂ t
∇h(y)(l∗)− ∂

∂y
∇h(t)(l∗)+ [∇h(t)(l∗),∇h(y)(l∗)] = 0, (2.67)

giving rise to the initial heavenly system of equations of equations (2.54). As a simple consequence of (2.67), we obtain for the heavenly
system (2.54) its Lax–Sato compatible vector fields representation

∂ψ/∂ t +[rzλ
3 +(wz− rx)λ

2−wxλ ]∂ψ/∂λ +(2λ r+w)∂ψ/∂x− rλ 2∂ψ/∂ z = 0,

∂ψ/∂y+(λuz−ux + vz− vxλ−1)∂ψ/∂λ − vλ−2∂ψ/∂x+(u+2vλ−1)∂ψ/∂ z = 0,
(2.68)

satisfied for an invariant ψ ∈C2(R2×T3
C;C), any (t,y;x,z) ∈ R2×T2 and all λ ∈ TC.

Remark 2.5. It must be mentioned that the vector field ∇h(y(l∗) ∈ G̃ as devised above, possesses no proto-Casimir functionals h(y)j ∈

D(G̃ ∗), j = 1,2, whose gradients projections ∇h(y)j (l∗)|± ∈ G̃±, j = 1,2, would be generated. That is ∇h(y(l∗) 6= ∇h(y)1 (l∗)|++∇h(y)2 (l∗)|−
for any smooth functionals h(y)j ∈ D(G̃ ∗), j = 1,2.

2.7. Example: A generalized Liouville type equation

In [10], devoted to studying Grassmannians, closed differential forms and related N-dimensional integrable systems, the authors presented a
Lax–Sato type representation for the well-known Liouville equation

∂ 2ϕ

∂y∂ t
= expϕ, (2.69)

written in the so called “laboratory” coordinates y, t ∈ R2 for a function ϕ ∈C2(R2;R) and having different geometric interpretations.
Their related result, obtained via some completely formal calculations, reads as follows: a system of the linear vector field equations

∂ψ/∂y+(λ 2 + vλ +1)∂ψ/∂λ = 0, (2.70)

∂ψ/∂ t−u∂ψ/∂λ = 0

for a function ψ ∈ C2(R2×T1
C;C) is compatible for all y, t ∈ R2, where u,v ∈ C2(R2;R) are functional coefficients and λ ∈ T1

C is a
complex parameter. Under the simple reduction u = 1/2expϕ the compatibility condition for (2.70) coincides with the Liouville equation
(2.69).
This section is devoted to unveiling the Lie-algebraic structure of a generalized Liouville type heavenly equation, whose Lax–Sato integrability
was shown in [10] using geometric analysis of Grassmanians and related closed differential forms.
As our interest is in the Lie-algebraic nature of the Lax-Sato representation (2.70) for the Liouville equation (2.69), we define the torus
diffeomorphism Lie group G̃ := D̃i f f (T1

C), holomorphically extended in the interior D1
+ ⊂ C and in the exterior D1

− ⊂ C regions of the
unit disc D1 ⊂ C1, such that for any g(z) ∈ Ḡ|D1

−
, z ∈ D1

−, g(∞) = 1 ∈ D̃i f f (T1
C). Then we study specially chosen coadjoint orbits, which

are related to the compatible system of linear vector field equations (2.70).
As a first step,one needs to consider the corresponding Lie algebra G̃ := d̃i f f (T1

C) and its decomposition into the direct sum of subalgebras

G̃ = G̃+⊕ G̃− (2.71)

of Laurent series with positive as |z|→ 0 and strongly negative as |z|→∞ degrees, respectively. Then, owing to classical Adler-Kostant-Symes
theory, for any element l̃ ∈ G̃ ∗ ' Λ1(T1

C) the following formally constructed flows

dl̃/dy =−ad∗
∇h(y)(l̃) l̃, dl̃/dt =−ad∗

∇h(t)(l̃) l̃ (2.72)

along the evolution parameters y, t ∈ R2 are always compatible, if h(py) and h(pt ) ∈ I(G̃ ∗) are arbitrarily chosen functionally independent
Casimir functionals on the adjoint space G̃ ∗, and ∇h(y)(l̃) := ∇h(py)(l̃)+, ∇h(t)(l̃) := ∇h(pt )(l̃)+ are their gradients, suitably projected on the
subalgebra G̃+. Keeping in mind the above result, consider the Casimir functional h(py) on G̃ ∗, whose gradient ∇h(py)(l̃) := ∇h(py)(l)∂/∂ z
as |z| → ∞ is taken, for simplicity, in the asymptotic form

∇h(py)(l̃)' (v2z2 + v1z+ v0 + v−1z−1 + v−2z−2 + . . .)∂/∂ z, (2.73)

where py = 2. This gives rise to the gradient projection ∇h(y)(l̃) = (v2z2 + v1z + v0)∂/∂ z ∈ G̃+, where z ∈ T1
C, |z| → ∞, and v j ∈

C2(R2;R), j ∈ Z, j ≤ 2, are some functional parameters. As the element l̃ = l(y, t;z)dz ∈ Λ1(T1
C) satisfies, by definition, the differential

equation

d
dz

[l(y, t;z)(∇h(py)(l))2] = 0, (2.74)
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we obtain from (2.74) that the element

l(y, t;z) = σ(y, t)2(∇h(py)(l̃))−2, (2.75)

where σ ∈C2(R2;R) is an arbitrary function. If for brevity we set σ(y, t) := 1 and v2 := 1, the element (2.75) becomes

l(y, t;z) = z−4[1−2v1z−1 +(3v2
1−2v0)z−2] (2.76)

Observe now that the relationship (2.74) verifies the following lemma:

Lemma 2.6. The set I(G̃ ∗) of the functionally independent Casimir invariants is one-dimensional.

As a consequence, it follows that for the element l̃ = l(y, t;z)dz ∈ Λ1(T1
C) generated by the expression (2.75), there exists only the flow on

G̃ ∗ from (2.72) with respect to the evolution variable y ∈ R :

dl/dy = ∇h(y)(l)−1 ∂

∂ z
[l(y, t;z)∇h(y)(l)]2. (2.77)

For the flow from (2.72) with respect to the evolution variable t ∈ R one can take the constant functional h(pt ) := const ∈ I(G̃ ∗), pt =
0,∇h(pt )(l) = 0, and construct the trivial flow on G̃ ∗ as

dl/dt =−∇h(t)(l)
∂ l
∂ z
−2l

∂

∂ z
(∇h(t)(l)) = 0, (2.78)

where, by definition, ∇h(t)(l) := ∇h(pt )(l)+ ∈ G̃ .It is now important to observe that the compatibility condition of these two flows for all
y, t ∈ R is equivalent to the following system of two a priori compatible linear vector field equations

∂ψ

∂y
+∇h(y)(l)

∂ψ

∂ z
= 0,

∂ψ

∂ t
+∇h(t)(l)

∂ψ

∂ z
= 0, (2.79)

or

∂ψ

∂y
+ (z2 + v1z+ v0)

∂ψ

∂ z
= 0,

∂ψ

∂ t
+0

∂ψ

∂ z
= 0 (2.80)

for a smooth function ψ ∈ C2(R2×T1
C;C), meaning, in particular, that the complex parameter z ∈ T1

C is constant with respect to the
evolution parameter t ∈ R. The linear equations (2.80) are clearly equivalent to the a priori compatible system of the vector fields

dz/dy = ∇h(y)(l) = z2 + v1z+ v0, dz/dt = ∇h(t)(l) = 0 (2.81)

on the complex torus T1
C, which can be rewritten subject to the following diffeomorphism T1

C 3 z 7→ z−α(t,y) := λ ∈ T1
C, generated by an

arbitrary smooth function α ∈C3(R2;R) :

dλ/dy = λ
2 +λ (2α + v1)+(α2 +αv1 + v0−∂α/∂y), dλ/dt =−∂α/∂ t. (2.82)

The latter system is evidently also compatible for all y, t ∈ R and can be expressed as

dλ/dy = λ
2 +λv+w, dλ/dt =−u, (2.83)

where

2α + v1 := v, α
2 +αv1 + v0−∂α/∂y := w, ∂α/∂ t := u. (2.84)

Moreover, the a priori compatible system (2.80) can be recast as

∂ψ

∂y
+ (z2 + vz+w)

∂ψ

∂λ
= 0,

∂ψ

∂y
−u

∂ψ

∂λ
= 0 (2.85)

for the corresponding function ψ ∈C2(R2×T1
C;C), giving rise to the following system of heavenly equations:

vt −2u = 0, uy−uv+wt = 0. (2.86)

The latter can be parameterized by means of the substitution u := 1/2expϕ as follows:

ϕyt = expϕ− [2wt exp(−ϕ)]t . (2.87)

Then the reductions w := const = 1 or w :=− 1
2 expϕ give rise to the well-known Liouville equations

ϕyt = expϕ, ϕyt −ϕtt = expϕ, (2.88)

which are known to possess standard [6, 44, 59] Lax type isospectral representations. The above analysis leads directly to the following
result.

Proposition 2.7. The system (2.86) of heavenly nonlinear equations possesses Lax–Sato type compatible vector field representation (2.85),
whose Lie-algebraic structure is governed by the classical Lie-algebraic Adler–Kostant–Symes theory.

Remark 2.8. In a manner like the above, one can describe in detail the Lie-algebraic structure for other generalized Liouville type heavenly
equations, presented in [10] for a higher order in λ ∈ T1

C system of linear vector field equations (2.79).
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3. The linearization covering method and its applications

3.1. Introductory notions and examples

Some three years ago I. Krasilshchik [34] analyzed a so called Gibbon–Tsarev equation

zyy + ztzty− zyztt +1 = 0. (3.1)

and its so called nonlinear first-order differential covering

∂w
∂ t
− 1

zy + ztw−w2 = 0,
∂w
∂y

+
zt −w

uy + ztw−w2 = 0, (3.2)

which for any solution z : R2→ R to equation (3.1) is compatible for all (t,y) ∈ R2. He showed this makes it possible to determine for any
smooth solution w : R2→ R to the equation (3.2) a suitable smooth function ψ : R×R2→ R, satisfying the corresponding Lax–Sato type
linear representation:

∂ψ

∂ t
+

1
zy + ztλ −λ 2

∂ψ

∂λ
= 0,

∂ψ

∂y
− zt −λ

zy + ztλ −λ 2
∂ψ

∂λ
= 0, (3.3)

which for any solution to the equation (3.1) is also compatible for all (t,y) ∈ R2 and an arbitrary parameter λ ∈ R.
Krasilshchik [34] also posed the interesting problem of providing a differential-geometric explanation of the linearization procedure for a
given nonlinear differential-geometric relationship J1(Rn×R2;R)|E in the jet-manifold J1(Rn×R2;R), n ∈ Z+, realizing a compatible
covering for the corresponding nonlinear differential equation E [x,τ;u] = 0, imbedded into some adjacent jet-manifold Jk(Rn×R2;Rm)
for some k,m ∈ Z+. His extended version of this procedure, presented in [34], was quite hard to decipher and offered no new example
demonstrating its application. One of our goals is to explain some important points of this linearization procedure in the framework of the
classical nonuniform vector field equations and present new and important applications. We consider the jet manifold Jk(Rn×R2;Rm)
for some fixed k,m ∈ Z+ and a differential relationship [30] in a general form E [x,τ;u] = 0, satisfied for all (x;τ) ∈ Rn×R2 and suitable
smooth mappings u : Rn×R2→ Rm.
As a new example, we can take n = 1 = m,k = 2 and choose a differential relationship E [x;y, t;u] = 0 in the form

utuxy− k1uxuty− k2uyutx = 0; (3.4)

the so called ABC-equation, first discussed in [76], where u : R×R2→ R and k1,k2 ∈ R are arbitrary parameters, satisfying the conditions

k1 + k2−1 = 0 ∨ k1 + k2−1 6= 0. (3.5)

The first case k1 + k2−1 = 0 was investigated in [22, 42, 76] and recently in [31], where its Lax–Sato type linearization was found along
with many other its interesting properties. For the second case k1 + k2−1 6= 0 the following crucial result was stated in equivalent form by
P.A. Burovskiy, E.V. Ferapontov, S.P. Tsarev in [16, 35] and recently by I. Krasilshchik, A. Sergyeyev and O. Morozov in [35].

Proposition 3.1. A dual to (3.4) covering system J1(R×R2;R)|E of quasi-linear first order differential relationships

∂w
∂ t

+
utw

uxk1(k1 + k2−1)
∂w
∂x
− w(w+ k1 + k2−1)utx

uxk1
= 0, (3.6)

∂w
∂y

+
uyw

uxk1(w+ k1 + k2−1)
∂w
∂x
−

w(k1 + k2−1)uyx

uxk1
= 0

on the jet-manifold J1(R×R2;R) is compatible; that is, it holds for any its smooth solution w : R×R2→R at all points (x;y, t) ∈R×R2

iff the function u : R×R2→ R satisfies the ABC-equation (3.4).

Moreover, this result was recently generalized in [35] to the following “linearizing” proposition.

Proposition 3.2. A system J1
lin(R

2×R2;R)|E of linear first order differential relationships

∂ψ

∂ t + λu
k2−1

k1
x ut

k1(k1+k2−1)
∂ψ

∂x −
λ 2u

k2−k1−1
k1

x (ut uxx−k1uxxuxt )
k2

1

∂ψ

∂λ
= 0,

∂ψ

∂y +
k2λu

k2−1
k1

x uy

k1(λu
k2−k1−1

k1
x +k1+k2−1)

∂ψ

∂x −
λ 2k2(k1+k2−1)u

k2−k1−1
k1

x uyuxx

k2
1(λu

k2−k1−1
k1

x +k1+k2−1)

∂ψ

∂λ
= 0

(3.7)

on the covering jet-manifold J1(R2×R2;R)is compatible; that is, it holds for any its smooth solution ψ : R2×R2 → R at all points
(x,λ ;y, t) ∈ R2×R2 iff the function u : R×R2→ R satisfies the generalized ABC-equation (3.4).

A similar result, when n = 1, m,k = 2, was proved for the Manakov-Santini equations

utx +uyy +(uux)x + vxuxy− vyuxx = 0, (3.8)

vxt + vyy +uvxx + vxuxy− vyvxx = 0,
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whose Lax–Sato integrability was extensively studied in [21, 24, 39, 11, 31]. The system (3.8) as a jet-submanifold J1(R×R2;R)|E ⊂
J1(R×R2;R) allows the following nonlinear first order differential representation

∂w
∂ t +(w2−wvx +u− vy)

∂w
∂x +uxw−uy + vyy + vx(vy−u)x = 0,

∂w
∂y +w ∂w

∂x − vxxw+(u− vy)x = 0,
(3.9)

compatible on solutions to the nonlinear differential relationship E [x,τ;u] = 0 (3.8) on J2(R×R2;R2). The existence of the compatible
representation (3.9) makes it possible to verify the following proposition.

Proposition 3.3. A covering system J1
lin(R

2×R2;R)|E of linear first order differential relationships

∂ψ

∂ t +(λ 2 +λvx +u− vy)
∂ψ

∂x +(uy−λux)
∂ψ

∂λ
= 0,

∂ψ

∂y +(vx +λ ) ∂ψ

∂x −ux
∂ψ

∂λ
= 0

(3.10)

on the jet-manifold J1(R2×R2;R) is compatible; that is, it holds for any its smooth solution ψ : R2×R2→ R at all points (x,λ ;y, t) ∈
R2×R2 iff the function u : R×R2→ R satisfies the generalized Khokhlov–Zabolotska equation (3.8).

From the point of view of the propositions above, the main essence of our present analysis, similarly to that in [34], is to recover the intrinsic
mathematical structure responsible for the existence of the “linearizing” covering jet-manifold mappings

J1
lin(R

n+1×R2;R)|E 
 J1(Rn×R2;R)|E (3.11)

for any dimension n ∈ Z+, compatible with our differential relationship E [x,τ;u] = 0, as it was presented above in the form (3.6) and (3.7)
for the relationships (3.4). Thus, for a given nonlinear differential relationship E [x,τ;u] = 0 on the jet-manifold Jk(Rn×R2;Rm) for some
k ∈ Z+ one can formulate the following problem:
If there is a compatible system J1(Rn×R2;Rm)|E ⊂ J1(Rn×R2;Rm) of quasi-linear first order differential relationships, how can construct
a linearizing first order differential system J1

lin(R
(1+n)+2;R)|E ⊂ J1(R(1+n)+2;R) in a vector field equations form on the covering space

Rn+1×R2, realizing the implications (3.11). The latter is interpreted as the corresponding Lax–Sato representation [8, 9, 10, 24, 25, 73, 74]
for the given differential relationship E [x,τ;u] = 0 on the jet-manifold Jk(Rn×R2;Rm).

As a dual approach to this linearization covering scheme, we present also the so called contact geometry linearization, suggested recently in
[71] and slightly generalizing the well-known [69] Hamiltonian linearization covering method. As an example, we have proved the following
proposition.

Proposition 3.4. The following [16] nonlinear singular manifold Toda differential relationship

uxysh2ut = uxuyutt (3.12)

on the jet manifold J2(R2×R2;R) allows the Lax–Sato type linearization covering

∂ψ

∂ t
+

(e−2ut −1)
2ux

∂ψ

∂x
−
[

λ

(
e−2ut −1

2ux

)
x
+λ

2
(

e−2ut −1
2ux

)
z

]
∂ψ

∂λ
= 0, (3.13)

∂ψ

∂y
−

uye−2ut

ux

∂ψ

∂x
+

[
λ

(
uye−2ut

ux

)
x

+λ
2

(
uye−2ut

ux

)
z

]
∂ψ

∂λ
= 0

for smooth invariant functions ψ ∈C2(R3×R2;R), all (x,z,λ ;τ) ∈ R3×R2 and any smooth solution u : R2×R2→ R to the relationship
(3.12).

3.2. The linearization covering scheme

A realization of the scheme (3.11) is based on the notion of invariants of suitably specified vector fields on the extended base space
Rn+1×R2, whose definition suitable for our needs is as follows: a smooth mapping ψ : Rn+1×R2→ R is, subject to parameters τ ∈ R2,
an invariant of a set of vector fields

X (k) :=
∂

∂τk
+ ∑

j=1,n

a(k)j (x,λ ;τ)
∂

∂x j
+b(k)(x,λ ;τ)

∂

∂λ
(3.14)

on Rn+1×R2 with smooth coefficients (a(k),b(k)) : Rn+1×R2→ En×R, k = 1,2, if

X (k)
ψ = 0 (3.15)

holds for k = 1,2 and all (x,λ ;τ) ∈ Rn+1×R2. The system of linear equations (3.15) is equivalently representable as a jet-submanifold
J1

lin(R
n+1×R2;R)|E ⊂ J1(Rn+1×R2;R). It is also well known [17] that simultaneously the following vector field flows

∂x j

∂τk
= a(k)j (x,λ ;τ),

∂λ

∂τk
= b(k)(x,λ ;τ) (3.16)
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are compatible for any j = 1,n,k = 1,2 and all (x,λ ;τ) ∈ Rn+1×R2. Taking now into account that there is such an invariant function
ψ : Rn+1×R2 → R representable as ψ(x,λ ;τ) = w(x;τ)−λ := 0 for some smooth mapping w : Rn×R2 → R, it provides upon its
substitution into (3.15) the following a priori compatible reduced system of quasilinear first order equations

∂w
∂τk

+ ∑
j=1,n

a(k)j (x,w;τ)
∂w
∂x j
−b(k)(x,w;τ) = 0 (3.17)

for k = 1,2 on the jet-manifold J0(Rn×R2;R). Moreover, subject to the system (3.17) one sees [17, 29] that, modulo solutions to the
equations (3.16), the expression w(x;τ) = ψ(x,λ (τ);τ)+λ (τ) for all (x;τ) ∈ Rn×R2, where ψ : Rn+1×R2→ R is a first integral of
the vector field flows (3.16). Thus, the reduction scheme just described above provides the algorithm

J1
lin(R

n+1×R2;R)|E → J1(Rn×R2;R)|E (3.18)

from the implications (3.11) formulated above. The corresponding inverse implication

J1
lin(R

n+1×R2;R)|E ← J1(Rn×R2;R)|E (3.19)

can be algorithmically described as follows.
Consider a compatible system J1(Rn+2;R)|E ⊂ J1(Rn+2;R) of the first order nonlinear differential relationships

∂w
∂τk

+ ∑
j=1,n

a(k)j (x,w;τ)
∂w
∂x j
−b(k)(x,w;τ) = 0 (3.20)

with smooth coefficients (a(k),b(k)) : Rn+1×R2→ En×R,k = 1,2. As the first step it is necessary to check whether the adjacent system of
vector field flows

∂x j

∂τk
= a(k)j (x,w;τ) (3.21)

on Rn+1 modulo the flows (3.20) for all j = 1,n and k = 1,2 is also compatible. If the answer is yes, it just means [17] that any solution to
(3.20) as a complex function w : Rn×R2→ R is representable as w(x;τ)−λ = α(ψ(x,λ ;τ)) for any λ ∈ R and some smooth mapping
α : R→ R, where the mapping ψ : Rn+1×R2→ R is a first integral of the vector field equations

∂ψ

∂τk
+ ∑

j=1,n

a(k)j (x,λ ;τ)
∂ψ

∂x j
+b(k)(x,λ ;τ)

∂ψ

∂λ
= 0 (3.22)

on the extended space Rn+1×R for all (x,λ ;τ) ∈ Rn+1×R2. Moreover, the value w(x(τ);τ) = λ ∈ R for all τ ∈ R2 is constant as
follows from the condition α(ψ(x(τ),w;τ)) = 0 for the τ ∈ R2. Thus, we have shown that the equations (3.22) realize the covering linear
first order differential relationships J1

lin(R
n+1×R2;R)|E ⊂ J1(Rn+1×R2;R) for k = 1,2 and all (x,λ ;τ) ∈ Rn+1×R2, linearizing the

first order nonlinear equations (3.20) and interpreting it as the corresponding Lax–Sato representation.
On the other hand, if the adjacent system of vector field flows (3.21) is not compatible, it is necessary to recover a hidden isomorphic
transformation

J1(Rn+1×R2;R) 3 (x,w;τ)→ (x, w̃;τ) ∈ J1(Rn+1×R2;R), (3.23)

for which the resulting a priori compatible first order equations

∂ w̃
∂τk

+ ∑
j=1,n

ã(k)j (x, w̃;τ)
∂ w̃
∂x j
− b̃(k)(x, w̃;τ) = 0 (3.24)

already possess a compatible adjacent system of the corresponding flows

∂x j

∂τk
= ã(k)j (x, w̃;τ) (3.25)

on the space Rn×R, for which any solution w̃ : Rn+2→ R generates a first integral ψ̃ : Rn+1×R2→ R of an adjacent compatible system
of the linear vector field equations

∂ψ̃

∂τk
+ ∑

j=1,n

ã(k)j (x,λ ;τ)
∂ψ̃

∂x j
+ b̃(k)(x,λ ;τ)

∂ψ̃

∂λ
= 0 (3.26)

on the space Rn+1×R2→ R for k = 1,2. Here ψ̃(x,λ ;τ) := α̃(w̃(x;τ)−λ ) for all (x,λ ;τ) ∈Rn+1×R and some smooth mapping α̃ : R→
R. From this one easily obtains - as above - a linearized covering jet-submanifold J1

lin(R
n+1×R2;R)|E ⊂ J1(Rn+1×R2;R), as a compatible

system of the vector field equations (3.26), generated by the nonlinear first order differential system J1(Rn×R2;R)|E ⊂ J1(Rn×R2;R) on
the space Rn×R2. This determines the inverse implication (3.19) as applied to general compatible first order equations (3.22), providing
for the nonlinear first order system J1(Rn×R2;R)|E ⊂ J1(Rn×R2;R) its corresponding Lax–Sato representation.
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Remark 3.5. The existence of the map (3.23) can be deduced from the following reasoning. Assume that the mapping (3.23) exists and is
equivalent to

w(x;τ) := ρ(x, w̃(x;τ);τ) (3.27)

for some smooth function ρ : Rn+1×R2→ R and all (x;τ) ∈ Rn×R2, where the corresponding map w̃ : Rn×R2 → R satisfies the
following system of differential equations:

∂ w̃
∂τk

+ ∑
j=1,n

a(k)j (x,ρ(x, w̃;τ);τ)
∂ w̃
∂x j

= b̃(k)(x, w̃;τ), (3.28)

compatible for all τk ∈ R, k = 1,2, and x ∈ Rn. Here functions b̃(k) : Rn+1×R2→ R, k = 1,2, defined as

b̃(k)(x, w̃;τ) :=

b(k)− ∑
j=1,n

(
∂ρ

∂τk
+a(k)j

∂ρ

∂x j

) ( ∂ρ

∂x j

)−1
∣∣∣∣∣
w =ρ(x,w̃ ;τ)

, (3.29)

should depend on the mapping (3.27) in such a way that the vector fields

∂x j

∂τk
= a(k)j (x,ρ(x, w̃;τ);τ) := ã(k)j (x, w̃;τ) (3.30)

are also compatible for all j = 1,n and k = 1,2 modulo the flows (3.28). This means that the equation (3.28) can be equivalently
represented as a compatible system of the following vector field equations

∂ψ̃

∂τk
+ ∑

j=1,n

ã(k)j (x,λ ;τ)
∂ψ̃

∂x j
+ b̃(k)(x,ρ(x,λ ;τ);τ)

∂ψ̃

∂λ
= 0 (3.31)

on its first integral ψ̃ : Rn+1×R2→ R, where ψ̃(x,λ ;τ) = α(w̃(x;τ)−λ ) for an arbitrarily chosen smooth mapping α : R→ R, any
parameter λ ∈R and all (x;τ) ∈Rn×R2. The system (3.31) provides a suitable Lax–Sato type linearization of the compatible quasi-linear
first order differential equations (3.17). Concerning the map (3.27) and its dependents on it functions b̃(k) : Rn+1×R2→ R, k = 1,2, one
can easily observe that the compatibility condition for the vector fields (3.30) reduces to the a priori compatible equations

∂a(k)j
∂ρ

∂ρ

∂τs
− ∂a(s)j

∂ρ

∂ρ

∂τk
+

(
∂a(k)j
∂ρ

b̃(s)− ∂a(s)j
∂ρ

b̃(k)
)

∂ρ

∂ w̃+

+∑m=1,n

(
∂a(k)j
∂ρ

a(s)m −
∂a(s)j
∂ρ

a(k)m

)
∂ρ

∂xm
= 0,

(3.32)

where j = 1,n and k 6= s = 1,2, and whose solution is exactly the desired map (3.27). Inasmuch as we have only two functional
parameters b(s) : Rn+1×R2→ R, s = 1,2, the system of 2n differential relationships (3.32) can be, in general, compatible only for the case
n = 1. For all other cases n≥ 2 the compatibility condition for (3.32) must be checked separately by calculations.

3.3. Example: the Gibbons–Tsarev equation

As a first degenerate case of the scheme (3.19) above, we consider a compatible nonlinear first order system J1(R2;R)|E ⊂ J1(R2;R) at
n = 0, as discussed in [34]:

∂w
∂ t
− 1

zy + ztw−w2 = 0,
∂w
∂y

+
zt −w

uy + ztw−w2 = 0, (3.33)

first derived in [27], where (t,y;w) ∈ R2×R and a map u : R2→ R satisfies the Gibbon–Tsarev equation E [y, t;u] = 0 in the form

zyy + ztzty− zyztt +1 = 0. (3.34)

Since the nonlinear system (3.33) is compatible and the adjacent system of vector field flows (3.25) it follows that any solution w : R2→ R
to (3.33) generates a first integral ψ : R×R2→ R of a system of equations

∂ψ

∂ t
+

1
zy + ztλ −λ 2

∂ψ

∂λ
= 0,

∂ψ

∂y
− zt −λ

zy + ztλ −λ 2
∂ψ

∂λ
= 0, (3.35)

where ψ(λ ;y, t) := α(w(t,y)−λ ) for all (λ ; t,y) ∈R×R2 and some smooth map α : R→ R. The compatible system (3.35) considered as
the jet-submanifold J1

lin(R
1×R2;R)|E ⊂ J1(R1×R2;R) solves the problem of constructing the linearizing implication (3.19).

As was demonstrated in [28, 40], the substitution

u :=
1
2
(−zt +

√
z2
t +4zy), v :=

1
2
(−zt −

√
z2
t +4zy) (3.36)

gives rise to the equivalent dynamical system

uy = vut − (u− v)−1, vy = uvt +(u− v)−1 (3.37)
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on a functional space M ⊂C∞(R;R2) subject to the evolution parameter y∈R modulo evolution with respect to the joint evolution parameter
t ∈ R. Taking into account the Lax–Sato representation (3.35), one readily obtains the corresponding linearizing Lax–Sato representation
for the dynamical system (3.37):

∂ψ

∂ t
− 1

(λ +u)(λ + v)
∂ψ

∂λ
= 0,

∂ψ

∂y
− u+ v+λ

(λ +u)(λ + v)
∂ψ

∂λ
= 0. (3.38)

The above Lax–Sato representation can be now reanalyzed more deeply within the Lie-algebraic scheme devised recently in [31]. Namely,
we define the complex torus diffeomorphism Lie group G̃ := Di f f (T1

C), holomorphically extended in the interior S1
+ ⊂C and in the exterior

S1
− ⊂ C regions of the unit circle S1 ⊂ C1, such that for any g(λ ) ∈ G̃|S1

−
, λ ∈ S1

−, g(∞) = 1 ∈ Di f f (T1), and study its specially chosen
coadjoint orbits, related to the compatible system of linear vector field equations (3.38).
As a first step for solving this problem one needs to consider the corresponding Lie algebra G̃ := di f f (T1

C) and its decomposition into the
direct sum

G̃ = G̃+⊕ G̃− (3.39)

of Laurent series with positive as |λ | → 0 and strongly negative as λ | →∞ degrees, respectively. Then, it follows from Adler–Kostant–Symes
theory, that for any element l̃ ∈ G̃ ∗ ' Λ1(T1

C) the following formally constructed flows

dl̃/dy =−ad∗
∇h(y)(l̃) l̃, dl̃/dt =−ad∗

∇h(t)(l̃) l̃ (3.40)

along the evolution parameters y, t ∈ R2 are always compatible, if h(py) and h(pt ) ∈ I(G̃ ∗) are arbitrarily chosen functionally independent
Casimir functionals on the adjoint space G̃ ∗ and ∇h(y)(l̃) := ∇h(py)(l̃)−, ∇h(t)(l̃) := ∇h(pt )(l̃)− are their gradients, suitably projected on the
subalgebra G̃−. Keeping in mind this result, consider the Casimir functional h(py) on G̃ ∗, whose gradient ∇h(py)(l̃) := ∇h(py)(l)∂/∂λ∈ G̃
as |λ | → ∞ is taken, for simplicity, in the asymptotic form

∇h(py)(l̃)∼
(

λ +u+ v
(λ +u)(λ + v)

+α0 +α1λ

)
∂

∂λ
, (3.41)

where λ ∈ T1
C, |λ | → ∞, and the coefficients α j ∈C∞(R2;R), j = 0,1, are arbitrarily chosen nontrivial functional parameters, giving rise

to the gradient projection

∇h(y)(l̃) := ∇h(py)(l̃)|− =
λ +u+ v

(λ +u)(λ + v)
, (3.42)

generating the first flow of (3.40). As the differential 1-form l̃ = l(λ ;y, t)dλ ∈ Λ1(T1
C)' G̃ satisfies, by definition, the condition

ad∗
∇h(py)(l̃) l̃ = 0, (3.43)

equivalent to the differential equation

d
dλ

[l(λ ;y, t)(∇h(py)(l))2] = 0, (3.44)

one readily obtains from (3.42) and (3.44) the coefficient

l(λ ;y, t) = (∇h(py)(l))−2 =
(λ +u)2(λ + v)2

[λ +u+ v+(α0 +α1λ )(λ +u)(λ + v)]2
, (3.45)

satisfying the relationship l(λ ;y, t)(∇h(py)(l))2 = 1 for all (t,y) ∈ R2.
Now we prove the following useful observation.

Lemma 3.6. The set I(G̃ ∗) of functionally independent Casimir invariants is one-dimensional.

Proof. Any asymptotic solution to the determining equation (3.47) satisfies the symmetry invariance with respect to the multiplication
∇h(pt )(l̃)→ σ(t,y)∇h(pt )(l̃) by an arbitrary smooth function σ : R2→ R, which proves the lemma.

Consider now the gradient ∇h(pt )(l̃) ∈ G̃ of the Casimir functional h(pt ) ∈ D(G̃ ∗), which satisfies, as does (3.43), the condition

ad∗
∇h(pt )(l̃) l̃ = 0, (3.46)

which is equivalent to the following linear differential equation

2l(λ ;y, t)
∂

∂λ
∇h(pt )(l̃)+∇h(pt )(l̃)

∂

∂λ
l(λ ;y, t) = 0. (3.47)

Its solution can be naturally represented as the asymptotic series

∇h(pt )(l̃)∼ 1
(λ +u)(λ + v)

+ ∑
j∈Z+

β jλ
j (3.48)

for some nontrivial coefficients β j ∈C∞(R2;R), successively determined from the equation (3.47).
From Lemma 3.6, we see that the solution (3.48) to the determining equation (3.47) is unique owing to its natural symmetry invariance
with respect to the multiplication ∇h(pt )(l̃)→ σ(t,y)∇h(pt )(l̃) by an arbitrary smooth function σ : R2→ R. In particular, this means that
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asymptotically as λ → ∞ the product l(λ ;y, t)(∇h(pt )(l))2 ∼ 0, for otherwise if l(λ ;y, t)(∇h(pt )(l))2 9 0, this product becomes, owing to
(3.44), a nonzero constant subject to the parameter λ ∈ C. This means that ∇h(pt )(l) = ∇h(py)(l̃)σ(t,y) for any smooth arbitrary function
σ ∈C∞(R2;R), producing no new flow with respect to the evolution parameter t ∈ R.
Consider now the gradient projection

∇h(t)(l̃) := ∇h(pt )(l̃)|− =
1

(λ +u)(λ + v)
, (3.49)

generating the second flow of (3.40). As a consequence of the results above we can easily derive the following compatibility condition for
the flows (3.40):

[
∂

∂y
−∇h(y)(l̃),

∂

∂y
−∇h(ty)(l̃)] = 0, (3.50)

which is equivalent modulo the dynamical system (3.37) to the following system of two a priori compatible linear vector field equations:

∂ψ

∂y
− λ +u+ v

(λ +u)(λ + v)
∂ψ

∂λ
= 0,

∂ψ

∂ t
− 1

(λ +u)(λ + v)
∂ψ

∂λ
= 0 (3.51)

for ψ ∈C2(R;R) and all (λ ; t,y) ∈ C×R2. Thus, we can formulate the results, obtained above, as the following proposition.

Proposition 3.7. A system J1
lin(R×R2;R)|E of the linear first order equations (3.51) on the covering jet-manifold J1(R×R2;R) is

compatible; that is, it holds for any its smooth solution ψ : R×R2→R at all points (λ ;y, t) ∈ R×R2 iff the function u : R2→R satisfies
the Gibbons–Tsarev equation (3.34).

Moreover, taking into account that the flows (3.40) are Hamiltonian systems on the coadjoint space G̃ ∗, their reductions on the space of
functional variables (u,v) ∈C∞(R2;R2) are also Hamiltonian. This reduction scheme is now under study and shall be presented elsewhere.

3.4. Example: the ABC-equation

As the second example we consider a compatible system J1(R×R2;R)|E of the nonlinear first order differential equations (3.6) on the
jet-manifold J1(R×R2;R). It is easy to check that the adjacent system of vector field flows

∂x
∂ t

=
utw

uxk1(k1 + k2−1)
,

∂x
∂y

=
uyw

uxk1(w+ k1 + k2−1)
, (3.52)

modulo the relationships (3.6), is not compatible for all (w; t,y) ∈ R×R2. Thus, we need to construct a map (3.23) such that the resulting
system (3.24) will possess an adjacent system of vector field flows already compatible for all (w̃; t,y) ∈ R×R2. To do this let us get rid of
to begin with the strictly linear part of the equations (3.6), giving rise to the representation of its solution as w(x; t,y) = (ux(x; t,y))α w̃(x; t,y)
for α = (k1 + k2−1)/k1 and all (x; t,y) ∈ R×R2. Its corresponding substitution into (3.6) yields the following a priori compatible system
J1(R×R2;R)|E of the first order equations

∂ w̃
∂ t +

w̃uα−1
x ut
k1α

∂ w̃
∂x +

w̃2uα
x (ut uxx−k1uxxuxt )

k2
1

= 0,

∂ w̃
∂y +

k2w̃uα−1
x uy

k1(w̃uα
x +α)

∂ w̃
∂x +

k2αw̃2uα
x uyuxx

k2
1(w̃uα

x +α)
= 0

(3.53)

on the jet-manifold J1(R×R2;R). We can now easily check that the above expression w̃(x; t,y) = (ux(x; t,y))−α w(x; t,y) for all
(x; t,y) ∈ R×R2, determining the map (3.23), is exactly the one searched for, inasmuch the corresponding adjacent system of vector field
flows

∂x
∂ t

=
w̃uα−1

x ut

k1α
,

∂x
∂y

=
k2w̃uα−1

x uy

k1(w̃uα
x +α)

(3.54)

on R×R2 proves to be compatible modulo the system J1(R×R2;R)|E of a priori compatible differential relationships (3.53) on
J1(R×R2;R). Based on this compatibility result, one can easily construct the corresponding linearizing system J1

lin(R
2×R2;R)|E on the

covering jet-manifold J1(R2×R2;R), realizing the inverse implication (3.19) as the Lax–Sato representation

∂ψ

∂ t +
λuα−1

x ut
k1α

∂ψ

∂x −
λ 2uα

x (ut uxx−k1uxxuxt )
k2

1

∂ψ

∂λ
= 0,

∂ψ

∂y +
k2λuα−1

x uy
k1(λuα

x +α)
∂ψ

∂x −
λ 2k2αuα−1

x uyuxx

k2
1(λuα

x +α)
∂ψ

∂λ
= 0,

(3.55)

exactly coinciding with (3.7), where ψ(x,λ ; t,y) := α(w̃(x; t,y)−λ ) for all (x,λ ; t,y) ∈ R2×R2 and any smooth mapping α : R→ R.
Thus, the linear differential system (3.55) solves the above problem of constructing the inverse implication (3.19) for the compatible
nonlinear differential system J1(R×R2;R)|E (3.6), thereby proving Proposition 3.4.
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3.5. Example: the Manakov-Santini equations

The Manakov–Santini equations

utx +uyy +(uux)x + vxuxy− vyuxx = 0, (3.56)

vxt + vyy +uvxx + vxvxy− vyvxx = 0,

where (u,v) ∈C∞(R×R2;R2), as well known [39], are obtained as some generalization of the dispersionless reduction for the Kadomtsev-
Petviashvili equation. It possesses the following compatible nonlinear first order differential covering J1(R×R2;R)|E ⊂ J1(R×R2;R)
as

∂w
∂ t +(w2−wvx +u− vy)

∂w
∂x +(w− vx)(ux−wvxx)−uy + vyy + vxvxy = 0,

∂w
∂y +w ∂w

∂x − vxxw+(u− vy)x = 0,
(3.57)

giving rise for all (x; t,y) ∈R×R2 to the Manakov–Santini differential relationship E [x;y, t;u,v] = 0 (3.56) as a submanifold on the adjacent
jet-manifold J2(R×R2;R2). It is now easy to check that the naturally related to (3.57) system of vector field flows

∂x
∂ t

= w2−wvx +u− vy,
∂x
∂y

= w (3.58)

is for all (t,y) ∈ R2 not compatible modulo these differential relationships (3.57). Thus, one needs to construct such an isomorphic
transformation

J1(R2×R2;R) 3 (x,w; t,y)→ (x, w̃; t,y) ∈ J1(R2×R2;R) (3.59)

that the expression w(x;y, t) = β (x, w̃;y, t) for some, in general nonlinear, smooth mapping β : R2×R2 → R transforms the first order
differential covering (3.57) into an equivalent compatible first order differential covering (3.24), for which the corresponding vector field
flows (3.25) become also compatible. This problem is easily enough solved, giving rise to the simple mapping:

w = w̃+ vx (3.60)

from which one ensues the following compatible first order differential covering:

∂ w̃
∂ t +(w̃2 + w̃vx +u− vy)

∂ w̃
∂x −uy + w̃ux = 0,

∂ w̃
∂y +(vx + w̃) ∂ w̃

∂x +ux = 0.
(3.61)

It is easy to check that the naturally related to (3.61) system of vector field flows

∂x
∂ t

= w̃2 + w̃vx +u− vy,
∂x
∂y

= vx + w̃ (3.62)

is already compatible for all (t,y) ∈ R2 modulo these differential relationships (3.61). Based on this compatibility result, stated above,
one can easily construct the corresponding linearizing first order differential system J1

lin(R
2×R2;R)|E on the covering jet-manifold

J1(R2×R2;R), realizing the inverse implication (3.19) as the Lax-Sato representation

∂ψ

∂ t +(λ 2 +λvx +u− vy)
∂ψ

∂x +(uy−λux)
∂ψ

∂λ
= 0,

∂ψ

∂y +(vx +λ ) ∂ψ

∂x −ux
∂ψ

∂λ
= 0,

(3.63)

thus proving proposition 3.3.

3.6. The contact geometry linearization covering scheme

3.7. Short setting

We consider two Hamilton–Jacobi type compatible for all (x;τ) := (x; t,y) ∈ R×R2 first order differential relationships:

∂ z
∂ t

+ H̃(t)(x,z,∂ z/∂x; t,y) = 0,
∂ z
∂y

+ H̃(y)(x,z,∂ z/∂x; t,y) = 0, (3.64)

where z : R3→ R is a so called “action function” and H̃(t), H̃(y) : R3 ×R2→ R are smooth generalized Hamiltonian functions. The
relationships 3.64 follow from the contact geometry [12, 19] interpretation of some mechanical systems, generated by vector fields. Namely,
a differential one-form α(1) ∈ Λ1(R3×R), defined by the expression

α
(1) := dz−λdx, (3.65)



122 Journal of Mathematical Sciences and Modelling

is called contact and vector fields XH(t) ,XH(y) ∈ Γ( T (R3×R)) are called contact vector fields, if there exist functions µ(t),µ(y) :R3×R→R,
such that for all (x,z;τ) ∈ R2×R2 the following equalities

−iX
H(t) α

(1) = H(t) := H̃(t)|∂ z/∂x=λ , − iX
H(y) α(1) = H(y) := H̃(y)|∂ z/∂x=λ , (3.66)

LH(t)α
(t) = µ(t)α(t), LH(y)α

(y) = µ(y)α(y)

hold, where LH(t) ,LH(y) are the corresponding Lie derivatives [17, 29, 19] with respect to the vector fields XH(t) ,XH(y) ∈ Γ( T (R3×R)).
From the conditions (3.66) one finds [32, 58] easily that

XH(t) = ∂H(t)

∂λ

∂

∂x − ( ∂H(t)

∂x +λ
∂H(t)

∂ z ) ∂

∂λ
+(−H(t)+λ

∂H(t)

∂λ
) ∂

∂ z , (3.67)

XH(y) = ∂H(y)

∂λ

∂

∂x − ( ∂H(y)

∂x +λ
∂H(y)

∂ z ) ∂

∂λ
+(−H(y)+λ

∂H(y)

∂λ
) ∂

∂ z ,

where H(t) := H̃(t)|∂ z/∂x=λ ,H
(y) := H̃(y)|∂ z/∂x=λ , and the compatibility of the nonlinear relationships (3.64) is equivalent to the commuta-

tivity of the following vector fields:

[
∂

∂ t
+XH(t) ,

∂

∂y
+XH(y) ] = 0 (3.68)

for all (x,z,λ ;τ) ∈R3×R2, depending parametrically on λ ∈R. The latter can be rewritten as a compatible Lax–Sato representation for the
vector field equations

∂ψ

∂ t
+XH(t)ψ = 0,

∂ψ

∂y
+XH(y)ψ = 0 (3.69)

for smooth invariant functions ψ ∈C2(R3×R2;R) and all (x,z,λ ;τ) ∈ R3×R2.

Remark 3.8. It is worth mentioning that when the Hamiltonian functions in (3.64) do not depend on the “action function” z : R3→ R, the
contact vector fields naturally reduce to the classical Hamiltonian ones:

XH(t) =
∂H(t)

∂λ

∂

∂x
− ∂H(t)

∂x
∂

∂λ
, XH(y) =

∂H(y)

∂λ

∂

∂x
− ∂H(y)

∂x
∂

∂λ
, (3.70)

well known [19] from symplectic geometry.

3.8. Example: the differential Toda singular manifold equation

Some examples of applying this contact geometry linearization scheme to integrable 3D-dispersionless equations were recently presented by
A. Sergyeyev [71]. We shall apply this scheme to a degenerate case when the system (3.64) is given by the following linear equations

∂ z
∂ t

+
(e−2ut −1)

2ux

∂ z
∂x

= 0,
∂ z
∂y
−uyu−1

x e−2ut
∂ z
∂x

= 0 (3.71)

for a smooth map z : R×R2→ R, whose compatibility condition is the interesting [16] differential Toda singular manifold equation (3.12)
on a smooth function u : R×R2→ R for all (x;y, t) ∈R×R2, which defines a differential relationship J2(R2×R2;R)|E ⊂ J2(R2×R2;R)
on the jet-manifold J2(R2×R2;R)

uxysh2ut = uxuyutt . (3.72)

Even though the equations (3.71) are linear, they contain no “spectral” parameter λ ∈ R subject to which one can construct the related
conservation laws for (3.17) and apply the modified inverse scattering transform to construct exact special solutions.
Nevertheless, the above contact geometry linearization scheme makes it possible present the system as a set of compatible Hamilton–Jacobi
equations

∂ z
∂ t

+
(e−2ut −1)

2ux
λ = 0,

∂ z
∂y
−

uye−2ut

ux
λ = 0 (3.73)

with the contact Hamiltonians

H(t) :=
(e−2ut −1)

2ux
λ , H(y) :=−

uye−2ut

ux
λ , (3.74)

where the function u : R2×R2→ R depends here on the additional variable z ∈ R. Taking into account (3.67), one can construct the
corresponding extended contact vector fields

X̃H(t) := ∂

∂ t +XH(t) = ∂

∂ t +
(e−2ut−1)

2ux

∂

∂x −
[

λ

(
e−2ut−1

2ux

)
x
+λ 2

(
e−2ut−1

2ux

)
z

]
∂

∂λ
, (3.75)

X̃H(y) := ∂

∂y +XH(y) = ∂

∂y −
uye−2ut

ux

∂

∂x +

[
λ

(
uye−2ut

ux

)
x
+λ 2

(
uye−2ut

ux

)
z

]
∂

∂λ
,

compatible on the solution set to the equation (3.72) on J2(R2×R2;R). This makes it possible to verify our final proposition on the contact
geometry linearization covering of the system (3.72).
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Proposition 3.9. The linear first order differential equation (3.71) on J2(R2×R2;R) allows the following, dual quadratic in the parameter
λ ∈ R, Lax–Sato linearization covering

∂ψ

∂ t
+

(e−2ut −1)
2ux

∂ψ

∂x
−
[

λ

(
e−2ut −1

2ux

)
x
+λ

2
(

e−2ut −1
2ux

)
z

]
∂ψ

∂λ
= 0, (3.76)

∂ψ

∂y
−

uye−2ut

ux

∂ψ

∂x
+

[
λ

(
uye−2ut

ux

)
x

+λ
2

(
uye−2ut

ux

)
z

]
∂ψ

∂λ
= 0

for smooth invariant functions ψ ∈C2(R3×R2;R), all (x,z,λ ;τ)∈R3×R2 and any smooth solution u : R2×R2→ R to the differential
equation (3.72).

4. Integrable heavenly type superflows and their Lie-algebraic structure

4.1. Introductory notions and notations

We begin from preliminaries for the superconformal loop diffeomorphism groups and their superconformal loop algebras. Let G̃ be the
superconformal group of smooth loops {C⊃ S1→ G}, where G := Di f f (T1|N) is the group of superconformal diffeomorphisms of the
1|N-dimensional supertorus T1|N , N ∈ N, with coordinates (x,ϑ) ∈ T1|N ' Λ0×ΛN

1 from the infinite-dimensional Grassmann algebra
Λ = Λ0⊕Λ1. A superconformal vector field is

ã := a
∂

∂x
+

1
2
< Da,D >, (4.1)

where D := (Dϑ1 ,Dϑ2 , · · · ,DϑN )
ᵀ,Dϑ j := ∂

∂ϑ j
+ϑ j

∂

∂x , j = 1,N, ϑ := (ϑ1, . . . ,ϑN)
>, a ∈C∞(T1|N ;Λ0), and is defined by the condition

that the Lie superderivation Lã : Λ1(T1|N)→ Λ1(T1|N) of the superdifferential 1-form

ω
(1) = dx+

N

∑
j=1

ϑ jdϑ j (4.2)

is conformal, that is

Lãω
(1) = µãω

(1) (4.3)

for some µã ∈C∞(T1|N ;Λ0). As a simple consequence of the condition (4.3), one also has the commutator of any two vector fields ã, b̃ ∈ G̃ :

[ã, b̃] := c̃ = c
∂

∂x
+

1
2
< Dc,D >, (4.4)

c = a
∂b
∂x
−b

∂a
∂x

+
1
2
< Da,Db >,

verifying that the set G̃ := d̃i f f (T1|N) of loop superconformal vector fields is a Lie algebra. One can naturally identify this loop Lie algebra
G̃ with a dense subspace of the dual space G̃ ∗ through the parity

(l̃, ã)0 := res
λ∈C

(l,a)H , (4.5)

where l̃ := ldx ∈ G̃ ∗.
For p ∈ Z and for any superconformal vector field ã ∈ G̃ and element l̃ ∈ G̃ ∗

ã := a
∂

∂x
+

1
2
< Da,D >, l̃ := ldx, (4.6)

and the bilinear form

(l,a)H :=
∫

T1|N

l(x,ϑ)a(x,ϑ)dxdN
ϑ (4.7)

is determined by means of the integration with respect to the Berezin measures∫
T1|1

α(x)dxdϑ j = 0,
∫

T1|1

α(x)dxϑ jdϑ j =
∫
T1

α(x)dx,

where α ∈C∞(T1;R), j ∈ 1,N. There are two cases: the first one when N = 2k−1, a ∈C∞(T1|(2k−1);Λ0), l ∈C∞(T1|(2k−1);Λ1) and the
second one, when N = 2k, a ∈C∞(T1|2k;Λ0), l ∈C∞(T1|2k;Λ0), where k ∈ N.
The constructed loop Lie algebra G ∗ of superconformal vector fields on the supertorus T1|N allows the following natural splitting

G̃ = G̃+⊕ G̃−, (4.8)
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where G̃+ and G̃− are also loop Lie algebras, that is

[G̃+, G̃+]⊂ G̃+, [G̃−, G̃−]⊂ G̃−. (4.9)

This fact makes it possible to apply to the Lie algebra G̃ the known Lie algebraic AKS-scheme of constructing integrable Hamiltonian flows
on the coadjoint space G̃ ∗. Namely, let a R-structure endomorphism R : G̃ → G̃ be defined as

R = (P+−P−)/2, (4.10)

where, by definition, the projections

P±G̃ := G̃± ⊂ G̃ . (4.11)

Then the following commutator

[ã, b̃]R := [Rã, b̃]+ [ã,Rb̃], (4.12)

where ã, b̃ ∈ G̃ defines, on the linear space G̃ a new Lie structure, satisfying the Jacobi identity, and generating the deformed Lie–Poisson
bracket

{ f ,g}R := (l̃, [∇ f (l̃),∇g(l̃)]R), (4.13)

where f ,g ∈ D(G̃ ∗). The corresponding set of Casimir invariants I(G̃ ∗) is generated by the functional h ∈ D(G̃ ∗), satisfying

ad∗
∇h(l̃) l̃ = 0, (4.14)

where

ad∗a l = ∂ l/∂x a+
4−N

2
l ∂a/∂x+

(−1)N+1

2
< Dl,Da > (4.15)

for any superconformal vector field ã ∈ G̃ and a fixed element l̃ ∈ G̃ ∗. Here

ã = a
∂

∂x
+

1
2
< Da,D >, l̃ = ldx. (4.16)

The Adler-Kostant-Symes theorem allows us to construct an infinite hierarchy of mutually commuting Hamiltonian flows

dl̃/dtp =−ad∗
∇h(p)(l̃)+

l̃, (4.17)

where ∇h(p)(l) = λ p∇h(l), tp ∈ R, p ∈ Z+, by means of the asymptotic as |λ | → ∞ expansion

∇h(l)∼ ∑
j∈Z+

∇h j(x,ϑ)λ− j (4.18)

for the gradient of a generating functional h ∈D(G̃ ∗). The evolution equations (4.17) take the following forms

dl/dtp =
(
−∇h(p)(l)+ ∂

∂x + 1
2 < D∇h(p)(l)+,D >+

+
(
2− N

2
)

∂∇h(p)(l)+
∂x

)
l =

=−(Ã
∇h(p)(l)+ +B

∇h(p)(l)+)l, (4.19)

where

Ã
∇h(p)(l̃)+ := (∇h(p)(l)+

∂

∂x
+

1
2
< D∇h(p)(l)+,D > (4.20)

for all p ∈ Z+. Thus, as the flows (4.19) are commuting, the following proposition automatically holds.

Proposition 4.1. The commuting condition for any two flows d/dtp1 and d/dtp2 , p1 6= p2 ∈ Z+, from the hierarchy (4.17) is equivalent to
the equality

∂

∂ tp2

Ã
∇h(p1)(l̃)+ −

∂

∂ tp1

Ã
∇h(p2)(l̃)+ = [Ã

∇h(p1)(l̃)+ , Ã∇h(p1)(l̃)+ ], (4.21)

or

∂

∂ tp2

∇h(p1)(l̃)+−
∂

∂ tp1

∇h(p2)(l̃)+ = [∇h(p1)(l̃)+,∇h(p2)(l̃)+]. (4.22)

Moreover, the relationship (4.22) is a compatibility condition for the first order partial differential equations(
∂

∂ tp1

+∇h(p1)(l̃)+

)
ψ = 0,

(
∂

∂ tp2

+∇h(p2)(l̃)+

)
ψ = 0, (4.23)

where ψ ∈C2(R2×T1|N ;Λ0).

The procedure for reducing the relationship (4.22) on the corresponding coadjoint action orbits for different p1 and p2 ∈ Z+ allows us to
obtain integrable superanalogs of known integrable two-dimensional systems of heavenly equations with the Lax–Sato representations in the
forms (4.21).
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4.2. Example: The superanalogs of the generalized Mikhalev–Pavlov equations and their Lax–Sato integrability

We now consider the well-known Mikhalev–Pavlov [43, 48] heavenly equation

uxt +uyy = uyuxx−uxuxy, (4.24)

where u ∈C∞(R2×T1;R) and (t,y;x) ∈ R2×T1, which is the compatibility condition for the vector fields

∂ψ

∂ t
+(λ 2 +λux−uy)

∂ψ

∂x
= 0,

∂ψ

∂y
+(λ +uy)

∂ψ

∂x
= 0, (4.25)

for a function ψ ∈ C∞(R2×T1;R) and arbitrary evolution parameters y, t ∈ R and construct its Lax–Sato integrable superanalogs for
different N ∈ N.
When N ∈Z+ is odd, N 6= 5 and l = ϑN((N−5)ux/2+λ )−ξ/2, u = u(x,ϑ1, . . . ,ϑN−1), ξ = ξ (x,ϑ1, . . . ,ϑN−1), the asymptotic expansion
for the gradient of the generating functional h ∈ D(G̃ ∗) as |λ | → ∞ has the form

∇h(l)∼ 1+(ux +ϑNξx)λ
−1− (uy +ϑNξy)λ

−2 + . . . . (4.26)

If p1 = 1 and p2 = 2, one obtains from the equality (4.22) the system

uxt +uyy = uyuxx−uxuyx−ξxξy/2−∑
N−1
i=1 (Dϑi ux)(Dϑi uy)/2, (4.27)

ξxt +ξyy = uyξxx−uxξyx +uxxξy/2−uyxξx/2+

+∑
N−1
i=1 (Dϑi uy)(Dϑi ξx)/2−∑

N−1
i=1 (Dϑi ux)(Dϑi ξy)/2,

where tp1 := y, tp2 := t and (u,ξ )> ∈ C∞(R2×T1|(N−1);Λ0×Λ1). The compatibility condition for the first order partial differential
equations such as

ψy +((λ +ux)+ϑNξx)ψx + (4.28)

+∑
N−1
i=1 ((Dϑi ux)−ϑN(Dϑi ξx))(Dϑi ψ)/2+

+(ξx +ϑNuxx)(DϑN ψ)/2 = 0,

∂ψ

∂ t +[(λ 2 +uxλ −uy)+ϑN(ξxλ −ξy)]
∂ψ

∂x +

+∑
N−1
i=1 (((Dϑi ux)λ − (Dϑi uy))−

−ϑN((Dϑi ξx)λ − (Dϑi ξy)))(Dϑi ψ)/2+

+((ξxλ −ξy)+ϑN(uxxλ −uyx))(DϑN ψ)/2 = 0,

where ψ ∈C2(R2×T1|N ;Λ0), are Lax–Sato representation for the system (4.27).
When N ∈ Z+ is even, N 6= 4 and l = ((N−4)ux/2+λ )+ϑN(N−4)ξx/2, u = u(x,ϑ1, . . . ,ϑN−1), ξ = ξ (x,ϑ1, . . . ,ϑN−1), the asymptotic
expansion for the gradient of the generating functional h ∈D(G̃ ∗) as |λ | → ∞ also has the form (4.26). For p1 = 1 and p2 = 2 one obtains
from (4.22) the system (4.27), in which tp1 := y, tp2 := t and (u,ξ )> ∈C∞(R2×T1|(N−1);Λ0×Λ1).
The system (4.27) can be considered as a superconformal analog of the Mikhalev–Pavlov heavenly equation for every N ∈ N\{4;5}. Namely,
for N = 1 and N = 2 one obtains easily the systems

uxt +uyy = uyuxx−uxuyx−ξxξy/2, (4.29)

ξxt +ξyy = uyξxx−uxξyx +uxxξy/2−uyxξx/2

and

uxt +uyy = uyuxx−uxuyx−ξxξy/2− (Dϑ1 ux)(Dϑ1 uy)/2, (4.30)

ξxt +ξyy = uyξxx−uxξyx +uxxξy/2−uyxξx/2+

+(Dϑ1 uy)(Dϑ1 ξx)/2− (Dϑ1 ux)(Dϑ1 ξy)/2,

respectively.
It should be noted that for N = 4 and N = 5 one cannot find the asymptotic expansions for gradients of the generating functional h ∈ D(G̃ ∗)
as |λ | → ∞ by means of the relationship (4.14) and as a consequence construct integrable superanalogs in the framework of the proposed
Lie-algebraic approach.

4.3. Example: The superanalogs of the generalized Liouville equations and their Lax–Sato integrability

We now show using the Lie superalgebra G̃(1|N) := d̃i f f (T1|N
C ) of the superconformal vector fields on T1|N

C ' T1
C×ΛN

1 , that the Lax–Sato
integrable superanalogs of the Liouville heavenly equations can be obtained as a result of a diffeomorphism in the space of variables
(z,ϑ) ∈ T1|N

C .

First one introduces the superderivatives Dϑ j := ∂/∂ϑ j +ϑ j∂/∂ z, z ∈ T1
C, ϑ j ∈ Λ1, j = 1,N, in the superspace Λ0×ΛN

1 . The loop Lie
algebra G̃(1|N) is generated by the superconformal vector fields

ã := a
∂

∂ z
+

1
2
< Da,D >, (4.31)
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where D := (Dϑ1 ,Dϑ2 , · · · ,DϑN )
ᵀ, i = 1,N, ϑ := (ϑ1, . . . ,ϑN)

>, a ∈C∞(T1|N
C ;Λ0), with the commutator

[ã, b̄] := c̄ = c
∂

∂ z
+

1
2
< Dc,D >, (4.32)

c = a
∂b
∂ z
−b

∂a
∂ z

+
1
2
< Da,Db >,

This loop Lie algebra allows the following splitting:

G̃(1|N) = G̃(1|N)+⊕ G̃(1|N)−.

A nontrivial Casimir invariant h(py) ∈ I(G̃ ∗(1|N)) satisfies the relationship

(l(∇h(py)(l))2)z−
N
4

l((∇h(py)(l))2)z =
(−1)N

4
< Dl,D(∇h(py)(l))2 >, (4.33)

where l̃ := ldz ∈ G̃ ∗(1|N),∇h(y)(l̃) := ∇h(y)(l)∂/∂ z ∈ G̃(1|N). If the corresponding gradient has the asymptotic expansion as |z| → ∞

∇h(py)(l̃)' (V2z2 +V1z+V0 +V−1z−1 +V−2z−2 + . . .)∂/∂ z, (4.34)

where py = 2,V j ∈C2(R2×ΛN
1 ;Λ0), j ∈ Z, j ≤ 2, are functional parameters, we can construct the Hamiltonian flow

dl/dy =−lz∇h(y)(l)− 4−N
2

l(∇h(y)(l))z +
(−1)N

2
< Dl,D∇h(y)(l)> (4.35)

in the framework of the classical AKS-theory. The constant Casimir invariant h(pt ) ∈ I(G̃ ∗(1|N)), pt = 0, generates the trivial flow

dl/dt = 0. (4.36)

The compatibility condition of these two flows for all y, t ∈ R is equivalent to the following system of two a priori compatible linear vector
field equations

∂ψ

∂y +∇h(y)(l) ∂ψ

∂ z + 1
2 < D∇h(y)(l),Dψ >= 0,

∂ψ

∂ t +∇h(t)(l) ∂ψ

∂ z + 1
2 < D∇h(t)(l),Dψ >= 0, (4.37)

or

∂ψ

∂y
+V

∂ψ

∂ z
+

1
2
< DV,Dψ >= 0,

∂ψ

∂ t
= 0, (4.38)

where ∇h(y)(l) := V, V = V (y, t,ϑ ;z) = V2z2 +V1z+V0, and ∇h(t)(l) = 0, for a smooth function ψ ∈C2(R2×ΛN
1 ;Λ0). In this case we

have the evolutions

dz
dy =V − 1

2 < θ ,DV >, dϑ

dy = 1
2 (DV ),

dz
dt = 0, dθ

dt = 0. (4.39)

Under the diffeomorphism z 7→ z−α−< θ ,η >:= λ and ϑ 7→ ϑ +η := ϑ̃ , η := (η1, . . . ,ηN)
>, ϑ̃ := (ϑ̃1, . . . , ϑ̃N)

>, on T1|N
C , generated

by the functions α := α(y, t) ∈C3(R2;Λ0) and η := η(y, t) ∈C3(R2;ΛN
1 ), the equations (4.38) are rewritten as

∂ψ

∂y +W ∂ψ

∂λ
+ 1

2 < D̃W, D̃ψ >= 0,

∂ψ

∂ t −U ∂ψ

∂λ
− 1

2 < D̃U, D̃ψ >= 0, (4.40)

where W :=W (y, t, ϑ̃ ;λ ) =W2λ 2+W1λ +W0, U :=U(y, t, ϑ̃), D̃ := (Dϑ1 , . . . ,DϑN )
> and D

ϑ̃i
:= ∂

∂ ϑ̃i
+ ϑ̃i

∂

∂λ
, i = 1,N. Taking into account

the equations (4.39) and

dλ

dy =W − 1
2 < θ̃ , D̃W >, dϑ̃

dy = 1
2 (D̃W ), (4.41)

dλ

dt =−U + 1
2 < θ̃ , D̃U >, dϑ̃

dt =− 1
2 (D̃U),

one obtains the function W in the following form

W = Ṽ+< η , D̃Ṽ >−∂α

∂y
+< η ,

∂η

∂y
>, (4.42)

Ṽ := Ṽ (y, t, ϑ̃ ;λ ) = V (y, t,ϑ ;z)|z=λ+α+<θ ,η>, ϑ=ϑ̃−η
.

Here the superderivatives transform by the rules

Dϑi = D
ϑ̃i
−2ηi∂/∂λ , i = 1,N,
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and the functions α and η obey the relationships

∂α

∂ t
−< η ,

∂η

∂ t
>=U,

∂η

∂ t
=−1

2
(D̃U). (4.43)

If W2 := 1 and U := 1/2exp ϕ , ϕ := ϕ(y, t,ϑ), the compatibility condition for the first order partial differential equations (4.40) leads to the
following Lax–Sato integrable superanalogs of the Liouville heavenly type equations:

ϕyt = exp ϕ− 1
4

N

∑
i=1

(
∂

∂ ϑ̃i
ϕy

)(
∂

∂ ϑ̃i
exp ϕ

)
(4.44)

for W0 = 1, and

ϕyt −ϕtt = exp ϕ− (4.45)

−1
4

N

∑
i=1

(
∂

∂ ϑ̃i
(ϕy−ϕt)

)(
∂

∂ ϑ̃i
exp ϕ

)
,

for W0 =−1/2exp ϕ. Owing to the relationship (4.33), the element l̃ ∈ G̃ ∗(1|N) can be found explicitly. For example, in the case of N = 1 it
has the form

l(y, t,ϑ1;z) = z−4(ϑ1(1−2v1z−1 +(3v2
1−2v0)z−2)+

+β1/2+(β0/4−9β1v1/8)z−1),

where V2 := 1 and V j := v j +ϑ1β j, j = 0,1. Whence, one has the following proposition.

Proposition 4.2. The super Liouville equations (4.44) and (4.45) are Hamiltonian flows on the co-adjoint space G̃ ∗(1|N), generated by the

seed element (4.41) and is equivalently representable as the Lax–Sato compatible linear system (4.40) on the space C2(R2×ΛN
1 ;Λ0).

5. Integrability, bi-Hamiltonian structures and the classical Lagrange–d’Alembert principle

It is evident that all evolution flows like (2.16) or (2.20) are Hamiltonian with respect to the second Lie–Poisson bracket (2.10) on the adjoint
loop space G̃ ∗ = d̃i f f

∗
(Tn

C). Moreover, they are poly-Hamiltonian on the corresponding functional manifolds, as the related bilinear
form (2.2) is marked by integers s ∈ Z. This leads to [75] an infinite hierarchy of compatible Poisson structures on the phase spaces,
isomorphic, respectively, to the orbits of a chosen seed element l̃ ∈ G̃ ∗ or of a seed element l̃ ∈ G̃ ∗. Since all these Hamiltonian flows possess
an infinite hierarchy of commuting nontrivial conservation laws, one can prove their formal complete integrability under naturally formulated
constraints. The corresponding analytical expressions for the infinite hierarchy of conservation laws can be retrieved from the asymptotic
expansion (2.14) for Casimir functional gradients by employing the well-known [6, 5, 45, 75] formal homotopy technique.
In his book "Mecanique analytique", v.1-2, published in 1788 in Paris, Lagrange formulated one of the basic, most general, differential
variational principles of classical mechanics, expressing necessary and sufficient conditions for the correspondence of the real motion of a
system of material points, subjected to ideal constraints and applied active forces. Within the d’Alembert–Lagrange principle the positions
of the system in its real motion are compared with infinitely close positions permitted by the constraints at a given time.
According to the d’Alembert–Lagrange principle, during a real motion of a system of N ∈ Z+ particles with masses m j ∈ R+, j = 1,N,

the totality elementary work performed by the given active forces F( j), j = 1,N, and by the forces of inertia for all the possible particle
displacements δx( j) ∈ E3, j = 1,N, is equal to or less than zero:

∑
j=1,N

< F( j)−m j
d2x( j)

dt2 ,δx( j) > ≤ 0 (5.1)

at any moment of time t ∈ R, where < ·, ·> denotes the standard scalar product in the three-dimensional Euclidean space E3. Equality in
(5.1) is valid for the possible reversible displacements, the symbol≤ is valid for the possible irreversible displacements δx( j) ∈ E3, j = 1,N.
Equation (5.1) is the general equation of the dynamics of systems with ideal constraints; it comprises all the equations and laws of motion,
so that one can say that all dynamics is reduced to this single general formula.
This principle was established by J.L. Lagrange by generalizing the principle of virtual displacements with the aid of the classical d’Alembert
principle. For systems subject to bilateral constraints, Lagrange used the formula (5.1) to deduce the general properties and laws of motion
of bodies, as well as the equations of motion, which he applied to solve a number of problems in dynamics including the problems of motions
of non-compressible, compressible and elastic liquids, thus combining “dynamics and hydrodynamics as branches of the same principle and
as conclusions drawn from a single general formula”.
As was first demonstrated in [31], in the last case of generalized reversible motions of a compressible elastic liquid in a simply-connected
open domain Ωt ⊂ Rn with the smooth boundary ∂Ωt , t ∈ R, in space Rn,n ∈ Z+, the expression (5.1) can be rewritten as

δW (t) :=
∫

Ωt

< l(x(t);λ ),δx(t)> dnx(t) = 0 (5.2)

for all t ∈ R. Here l(x(t);λ ) ∈ T̃ ∗(Rn)' G̃ ∗ is the corresponding virtual vector “reaction force”, exerted by the ambient medium on the
liquid and called a seed element, which is here assumed to depend meromorphically on a constant complex parameter λ ∈ C. If we suppose
that the evolution of liquid points x(t) ∈Ωt is determined for any parameters λ 6= µ ∈ C by the generating gradient type vector field

dx(t)
dt

=
µ

µ−λ
∇h( l(µ))(t;x(t)) (5.3)
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and the Cauchy data

x(t)|t=0 = x(0) ∈Ω0

for an arbitrarily chosen open one-connected domain Ω0 ⊂Tn with the smooth boundary ∂Ω0 ⊂Rn and a smooth functional h : T̃ ∗(Rn)→R,
the Lagrange–d’Alembert principle says: the infinitesimal virtual work (5.2) equals zero for all moments of time, that is δW (t) = 0 =
δW (0) for all t ∈ R. To check this, let us calculate the temporal derivative of the expression (5.2):

d
dt δW (t) = d

dt
∫

Ωt
< l(x(t);λ ),δx(t)> dnx(t) =

= d
dt
∫

Ω0
< l(x(t);λ ),δx(t)> | ∂ (x(t)

∂x0
|dnx(0) =

∫
Ω0

d
dt (< l(x(t);λ ),δx(t)> | ∂ (x(t)

∂x0
|)dnx(0) =

=
∫

Ω0
[ d

dt < l(x(t);λ ),δx(t)>+< l(x(t);λ ),δx(t)> div K̃(µ)]| ∂ (x(t)
∂x0
|dnx(0) =

=
∫

Ωt
[ d

dt < l(x(t);λ ),δx(t)>+< l(x(t);λ ),δx(t)> div K̃(µ)]dnx(t) = 0,

(5.4)

if the condition
d
dt

< l(x(t);λ ),δx(t)>+< l(x(t);λ ),δx(t)> div K̃(µ;λ ) = 0 (5.5)

holds for all t ∈ R, where

K̃(µ;λ ) :=
µ

µ−λ
∇h( l̃(µ)) =

µ

µ−λ
< ∇h( l(µ)),

d
dx

> (5.6)

is a vector field on Rn, corresponding to the evolution equations (5.3). Taking into account that the full temporal derivative d/dt :=
∂/∂ t +LK̃(µ;λ ), where LK̃(µ;λ ) = iK̃(µ;λ )d +diK̃(µ;λ ) denotes the well known [1, 5, 29] Cartan expression for the Lie derivation along the
vector field (5.6), can be represented as µ,λ → ∞, |λ/µ|< 1 in the asymptotic form

d
dt
∼ ∑

j∈Z+

µ
− j ∂

∂ t j
+ ∑

j∈Z+

µ
− j LK̃ j(λ

, (5.7)

the equality (5.5) can be equivalently rewritten as an infinite hierarchy of the following evolution equations

∂ l̃(λ )/∂ t j :=−ad∗K̃ j(λ )+
l̃(λ ) (5.8)

for every j ∈ Z+ on the space of differential 1-forms Λ̃1(Rn)' G̃ ∗, where l̃(λ ) :=< l(x;λ ),dx >∈ Λ̃1(Rn)' G̃ ∗, G̃ : = d̃i f f (Rn) is the
Lie algebra of the corresponding loop diffeomorphism group D̃i f f (Rn). From (5.6) one easily finds that

K̃ j(λ ) = ∇h( j)( l̃) (5.9)

for λ ∈ C and any j ∈ Z+, the evolution equations (5.8) transform equivalently into

∂ l̃(λ )/∂ t j :=−ad∗
∇h( j)( l̃)+

l̃(λ ), (5.10)

allowing to formulate the following important Adler–Kostant–Symes type [6, 5, 7, 75, 62, 61] proposition.

Proposition 5.1. The evolution equations (5.10) are completely integrable mutually commuting Hamiltonian flows on the adjoint loop space
G̃ ∗ for a seed element l̃(λ ) ∈ G̃ ∗, generated by Casimir functionals h( j) ∈ I(G̃ ∗), naturally determined by conditions ad∗

∇h( j)( l̃)
l̃(λ ) = 0,

j ∈ Z+, with respect to the modified Lie-Poisson bracket on the adjoint space G̃ ∗

{(l̃, X̃),(l̃,Ỹ )} := (l̃, [X̃ ,Ỹ ]R),

defined for any X̃ ,Ỹ ∈ G̃ by means of the canonical R-structure on the loop Lie algebra G̃ :

[X̃ ,Ỹ ]R := [X̃+,Ỹ+]− [X̃−,Ỹ−], (5.11)

where ”Z̃±” means the positive (+)/(-)-negative part of a loop Lie algebra element Z̃ ∈ G̃ subject to the loop parameter λ ∈ C.
If, for instance, we consider the first two flows from (5.10) in the form

∂ l̃(λ )/∂ t1 := ∂ l̃(λ )/∂y =−ad∗
∇h(y)( l̃)

l̃(λ ), (5.12)

∂ l̃(λ )/∂ t2 := ∂ l̃(λ )/∂ t =−ad∗
∇h(t)( l̃)

l̃(λ ),

where

∇h(y)(l̃) := ∇h(1)(l̃)|+, ∇h(t)(l̃) := ∇h(t)(l̃)|+,

which are by construction commuting, from their compatibility condition one obtains a system of nonlinear partial differential equations for
the coefficients of the seed element l̃(λ ) ∈ G̃ ∗. As this system is equivalent to the Lax–Sato compatibility condition for the corresponding
vector fields ∇h(y)(l̃) and ∇h(t)(l̃) ∈ G̃ :

[∂/∂y+∇h(y)( l̃), ∂/∂ t +∇h(t)( l̃)] = 0, (5.13)

from (5.13) we obtain a system of nonlinear equations in partial derivatives (often called heavenly) that was analyzed in a series of articles
[39, 9, 46, 47, 48, 65, 66, 42, 73, 74] and more recently in [11, 9, 10, 33]. These works are closely related to the problem of constructing
a hierarchy of commuting vector fields, analytically depending on a complex parameter λ ∈ C, which was posed in 1928 by the French
mathematician M.A. Buhl [13, 14, 15] and in general form studied and completely solved by M.G. Pfeiffer in [50, 51, 52, 53, 54, 55].
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